Graduate Thesis Or Dissertation

 

Dimensionality Detection and the Geometric Median on Data Manifolds Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/mk61rh16b
Abstract
  • In many applications high-dimensional observations are assumed to arrange on or near a low-dimensional manifold embedded in an ambient Euclidean space. In this thesis, ideas from differential geometry are extended to equation-free data analysis to better understand high-dimensional datasets. In particular, two questions are addressed: (1) how can the intrinsic dimensionality of a manifold-valued dataset be determined? and (2) how can this intrinsic dimensionality be leveraged to obtain a better notion of centrality? For (1), two common methods for estimating global dimensionality are stated and a novel approach is proposed to obtain an estimator for local dimensionality. Then, for (2), a novel approach is presented to estimate the geometric median on manifolds of which no prior knowledge of the underlyinggeometry is known. These methods are first applied to synthetic datasets and then to real world neurological measurements to create a biomarker for the development of epilepsy in an animal model.
Creator
Date Issued
  • 2017
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-17
Resource Type
Rights Statement
Language

Relationships

Items