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In many applications high-dimensional observations are assumed to arrange on or near a low-

dimensional manifold embedded in an ambient Euclidean space. In this thesis, ideas from differ-

ential geometry are extended to equation-free data analysis to better understand high-dimensional

datasets. In particular, two questions are addressed: (1) how can the intrinsic dimensionality of

a manifold-valued dataset be determined? and (2) how can this intrinsic dimensionality be lever-

aged to obtain a better notion of centrality? For (1), two common methods for estimating global

dimensionality are stated and a novel approach is proposed to obtain an estimator for local di-

mensionality. Then, for (2), a novel approach is presented to estimate the geometric median on

manifolds of which no prior knowledge of the underlying geometry is known. These methods are

first applied to synthetic datasets and then to real world neurological measurements to create a

biomarker for the development of epilepsy in an animal model.
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Chapter 1

Introduction

In recent years we have become surrounded by an abundance of data. One implication of

this is the need for new mathematical approaches to visualize, understand, and leverage massive

data products. Not surprisingly, these fields of research have exploded in recent years. In general

these big data problems belong to one of two categories: first, the data may come from a system

for which underlying mathematical relationships are known or second, the data may come from a

system which is difficult or impossible to model. For the first situation knowledge of the underlying

system can be leveraged to understand the data. In the second case, however, a model must be

inferred purely from data and not from known laws describing the system’s behavior. The focus of

this thesis is the second, equation-free case.

Data from equation-free systems can be roughly divided into two cases. In the first, there

is an abundance of observations, each of which consists of a relatively small number of values (i.e.

observations are of relatively low dimension). For instance, if a survey is conducted over a large

population, data is collected on several thousand people but each participant’s response consists

of relatively few answers. In this context, statistics can be used to understand the relationships

between variables. The second case is where the dimensionality of observations is significantly

larger than the total number of observations. An example of this is observations of dynamical

systems. Typically when the output of a dynamical system is sampled, thousands of data points

are collected for each observation. The goal is then to relate these high-dimensional observations to

configurations of the system in its implicit state space. In this second situation it is typically useful
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to find a parameterization of the observation space by a set of significantly fewer parameters. Here,

the underlying assumption is that observations will arrange on or near a low-dimensional manifold

embedded in the ambient Euclidean space.

A classic tool for learning such a parameterization is Principal Component Analysis (PCA).

In PCA a set of coordinate axes is found that accounts for as much variance as possible. An obser-

vation is then projected onto these principal components to get a low-dimensional representation.

This however assumes that the full set of observations may be written as a linear combination

of basis vectors which in general is not true. A modern approach is to instead assume that the

observations arrange on or around a low-dimensional manifold. In this case, one seeks a nonlinear

parameterization of the observation space to recover this underlying manifold. Approaches to this

end include Local Linear Embedding (LLE) [34], where linear models are fit to local regions of the

observation space and are then patched together to ensure a smooth parameterization, and Lapla-

cian Eigenmaps [7] which approximates the Laplacian operator on the data manifold and uses its

eigenvectors as a set of global coordinates.

One challenge of using nonlinear dimensionality reductions is finding the appropriate number

of coordinates to use in a global parameterization. In the case of noise-free data observed on a

linear subspace of the ambient space, the number of nonzero singular values of the data matrix gives

the dimensionality of the subspace [16]. For nonlinear subspaces however, curvature of the space

will cause the number of nonzero singular values to overestimate the data’s implicit dimensionality.

In the noise-free case, this issue can be resolved by running local PCA on small neighborhoods

of data, assuming that the sampling density is sufficiently high. The presence of noise however

adds an additional difficulty to estimating data dimensionality. Even in the linear case, noise

in the data will cause noise in the singular values of the data matrix, requiring a threshold to

define when a principal component should be considered noise. In the nonlinear case noise adds a

more severe difficultly. In this situation it is crucial to select an appropriate neighborhood size to

analyze the data. If the neighborhood is too large, manifold curvature will cause the estimator to

overestimate dimensionality and if the neighborhood is too small, noise may cause the estimator
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to overestimate the dimensionality. For this reason the most successful estimators have taken a

multiscale approach to dimensionality estimation. One final complication is that the data manifold

may have different dimensionality in different regions, motivating the use of local estimators. In

chapter 3, two common global estimators of dimensionality are discussed and a novel approach to

convert a generalized global estimator into a local estimator is presented.

Once an appropriate dimensionality estimate has been reached, a natural goal for time series

data is to track the progression of observations over time. In other words, one would like to find

a smooth trajectory that minimizes the residual variance. A simple yet common approach to

this problem is to look at moving window averages. In the case of high-dimensional observations

arranging on or around a low-dimensional manifold, one should be careful in defining the average

of a set of points. In particular, the mean taken in the ambient Euclidean space will typically not

belong to the manifold. In this context it is more useful to define the geometric median as the

point which minimizes the total manifold distance to each point. Most work on estimating the

geometric median ([11], [15]) has assumed prior knowledge of manifold geometry, which is typically

not available in equation-free models. In chapter 4, a novel extension of prior work on estimating

the geometric median to data manifolds is presented.

The methods discussed in this thesis are largely motivated by an interdisciplinary effort to

construct a computational biomarker for the development of epilepsy following a traumatic shock

(epileptogenesis) [27]. In this project, an animal model is injected with a drug known to induce

epilepsy. As the animal progresses through the stages of epileptogenesis, a measurement of auditory

evoked potential in the animal’s hippocampus is recorded. These hippocampal auditory evoked

potentials (hAEPs) serve as a measurement of the rats current status in epileptogenesis. In chapter

5, the methods from chapters 3 and 4 are used to construct a computational biomarker that tracks

the progression of epileptogenesis based solely on these measurements.



Chapter 2

Differential Geometry Preliminaries

In this chapter relevant concepts from differential geometry are formalized. In general, differ-

ential geometry applies methods from calculus and linear algebra to study problems in geometry,

particularly understanding smooth manifolds (defined below). Unlike differential topology, which

is concerned with spaces up to a homeomorphism, differential geometry is concerned with spaces

up to an isometry. In other words, differential topology deals with the structure of a space, whereas

differential geometry also deals with metrics associated with the space.

Differential geometry is a useful tool for a wide variety of disciplines ranging from general

relativity, to stochastic processes, computer vision, and econometrics. For the purpose of this thesis

we will focus on a specific subset of differential geometry that is relevant to our application for high-

dimensional observations. In particular, we will only consider extrinsic geometries, in other words

geometric structures that are embedded in a high but finite-dimensional Euclidean space. We focus

here because most high-dimensional observations can be interpreted as samples in such a Euclidean

space. The definitions and examples in this chapter are taken from [33].

2.1 Manifolds

Differential geometry is largely concerned with understanding smooth manifolds, so defining

such an object is perhaps the most logical place to begin.
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Figure 2.1: An illustration of a smooth d-manifold.

Definition 2.1 Let D and d be positive integers. A subset M ⊂ RD is called a smooth

d-submanifold of RD if for each p ∈ M, there exists an open neighborhood Np ⊂ RD such that

there is an diffeomorphism (i.e. a smooth invertible bijective map) Φ : Np ∩M→ Ω where Ω is an

open subset of Rd. Φ is called a coordinate chart of M, while its inverse Φ−1 : Ω→ Np ∩M is

called a parametrization of Np ∩M. The collection of all of the coordinate charts of M is called

the altas of M and d is called the dimensionality of M.

Example 2.1.1 Consider the unit circle S1 = {x ∈ R2 | ‖x‖2 = 1} where ‖x‖22 :=
∑

i x
2
i .

For any p ∈ S1 an open neighborhood of p can be mapped to an open interval on the real line. In

particular, let θ ∈ [0, 2π) be the angle between p and the horizontal axis. Then, the set S1 ∩Np =

{(cos(η), sin(η)) | η ∈ (θ − π
2 , θ + π

2 )} is diffeomorphic to the open interval (0, π). Thus the unit

circle is a smooth 1-manifold.

Example 2.1.2 The unit circle is a special case of the n-sphere, Sn−1 = {x ∈ Rn | ‖x‖2 = 1}.

Sn also satisfies the definition of a smooth manifold by considering the map

Φ : {x ∈ Sn−1 | xn > 0} → Rn−1
x1

...

xn

 7→

x1

...

xn−1

 ,
(2.1)
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and its inverse,

Φ−1 : Rn−1 → {x ∈ Sn−1 | xn > 0}


x1

...

xn−1

 7→


x1

...

xn−1√
1−

∑n−1
i=1 x

2
i


.

(2.2)

This map satisfies the coordinate chart definition for any p ∈ {x ∈ Sn−1 | xn > 0}. By

defining similar maps for x1 > 0, x1 < 0, . . . , xn−1 > 0, xn−1 < 0, and xn < 0 we see that any

p ∈ Sn−1 has a neighborhood for which there exists a diffeomorphism to Rn−1. Thus Sn−1 is a

smooth (n− 1)-manifold.

Example 2.1.3 Consider the space of special orthogonal 2 × 2 matrices, SO(2) = {M ∈

R2×2 |MTM = MMT = I , det(M) = 1}. Any element of SO(2) can be written as

M =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 . (2.3)

From this parameterization one can construct a diffeomorphism from SO(2) to the unit circle as

Φ : SO(2)→ S1a11 a12

a21 a22

 7→
a11
a12

 , (2.4)

which has the inverse

Φ−1 : S1 → SO(2)b1
b2

 7→
 b1 b2

−b2 b1

 . (2.5)
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Figure 2.2: An illustration of the tangent plane of M, TpM.

Then, by composing this map with the map from S1 to R, one sees that SO(2) is a smooth

1-manifold.

2.2 Tangent Plane

When dealing with a smooth manifoldM it is often useful to understand the local geometry

of M around a point p ∈ M. To formalize this notion we define the tangent plane of M at p as

follows.

Definition 2.2 Let M ⊂ RD be a smooth d-manifold and let p ∈ M. A vector v ∈ RD

is called a tangent vector of M at p if there exists a smooth curve γ : [0, 1] → M such that

γ(0) = p and γ̇(0) = v. The set of all tangent vectors at p is called the tangent space of M at p

and denoted by TpM. In other words,

TpM = {γ̇(0) | γ : [0, 1]→M is smooth, γ(0) = p}. (2.6)

One should note that since there is a diffeomorphism from Np ∩M to Rd, it follows that

TpM is a d-dimensional space. Further, TpM is an affine (linear) subspace of RD (the reader is

referred to [33] for a proof of this).

Example 2.2 Consider the tangent plane TpSn−1 of Sn−1 at a point p ∈ Sn−1. Since
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p ∈ Sn−1, pT p = 1. Further, for any path γ(t) ⊂ Sn−1, ‖γ(t)‖2 = 1 so d
dt‖γ(t)‖2 = 0. That is,

2γ̇(t)Tγ(t) = 0. Since γ(0) = p, it follows that γ̇(0)T p = 0. In other words,

TpSn−1 = {x ∈ Rn | xT p = 0}. (2.7)

2.3 Path Length and Manifold Distance

The final tool that we need from differential geometry is a notion of distance. First, let us

recall the length of a path γ : [0, 1]→ RD, L(γ),

L(γ) :=

∫ 1

0
‖γ̇(t)‖dt. (2.8)

It is important to note that this definition does not depend on the parameterization of γ but

rather the image γ([0, 1]). To see this, consider a reparameterization of γ, γ̂(t) = γ(s(t)) where

s : [0, 1]→ [0, 1], s(0) = 0, s(1) = 1, and ṡ ≥ 0. Then

L(γ̂) =

∫ 1

0
‖ d
dt
γ(s(t))‖dt

=

∫ 1

0
‖γ̇(s(t))‖ṡ(t)dt.

(2.9)

By performing the change of variable u = s(t), we see from the second integral that L(γ̂) = L(γ).

We can now define a notion of distance on a smooth manifoldM based on the shortest path

between points.

Definition 2.3 Let p, q ∈M. The manifold distance between p and q is defined as

d(p, q) = inf
γ:[0,1]→M,γ(0)=p,γ(1)=q

L(γ). (2.10)

The reader should note that L(γ) ≥ ‖γ(1)− γ(0)‖, so it follows that d(p, q) ≤ ‖p− q‖. Fur-

ther, one can show that this distance forms a metric on M, i.e.

(i) If p, q ∈M and d(p, q) = 0, then p = q

(ii) For all p, q ∈M, d(p, q) = d(q, p)

(iii) For all p, q, r ∈M, d(p, q) ≤ d(p, r) + d(r, q)
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Figure 2.3: The distance in example 2.3.

For a proof of this result, the reader is referred to [33].

Example 2.3 On the 2-sphere, S2 ⊂ R3, the distance between two points p, q ∈ S2 is the

length of the shortest path between p and q on S2, i.e. an arc on a great circle between p and q

(figure 2.3). The distance on S2 is thus d(p, q) = cos−1(〈p, q〉) where 〈·, ·〉 is the dot product.

2.4 Conclusion

In this chapter we have formalized essential ideas from differential geometry. Specifically,

we have defined a smooth d-manifold, M ⊂ RD, the tangent plane at any point p ∈ M, and the

distance metric onM. In the following chapters these ideas are applied to equation-free models. In

particular, given a set of manifold-valued data, we discuss methods for estimating dimensionality,

the tangent plane and the distance metric and demonstrate that these estimates can be used for

creating equation-free models based solely on the underlying geometric structure of a dataset.



Chapter 3

Dimensionality Estimation

3.1 Background and Related Work

In many cases high-dimensional observations exhibit a dramatically lower-dimensional struc-

ture. In other words, the observations lie on or around a low-dimensional manifold embedded in

a high-dimensional ambient space. Consider images of a ball rolling across a table. Every pixel in

the image corresponds to a distinct coordinate, so each image can be represented as a square n×n

matrix. Therefore, the space of all possible images has n2 dimensions. The images however depend

on at most five parameters describing the ball’s location and orientation in three-dimensional space,

so the images will indeed concentrate around a five-dimensional manifold embedded in Rn2
.

In the case of a linear manifold, i.e. a manifold closed under addition and scalar multipli-

cation, the underlying parameters can be recovered using Principal Component Analysis (PCA).

In most cases however (e.g. the images of a ball rolling across a table) the underlying manifold is

nonlinear. There has been significant work on recovering a parameterization of nonlinear manifolds

[35], [34], [7], [39] but each of these approaches assumes that the submanifold’s dimension is know

a priori. Estimating the intrinsic dimensionality of a dataset is an active field of research [26], [19],

[24]. Some datasets also exhibit different dimensionality in different regions of the ambient space

[12] and in this case an estimator for the local intrinsic dimensionality is desirable.

The goal of this chapter is to describe two modern approaches for estimating the global

dimensionality and to then propose a novel approach to estimate the local dimensionality of a point

cloud. The first estimator, which is motivated by linear algebra, is based on applying the Singular
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Value Decomposition (SVD) on neighborhoods of varying size [26]. The second estimator, which is

inspired by geometry, is based on the number of points inside the ball Br(p) = {x ∈ RD | ‖x−p‖ <

r} as r varies [19]. These two methods are explained in the next two sections respectively. In

the fourth section, experiments are performed on synthetic data that demonstrate the strengths

and weaknesses of the two methods. Finally, we describe a novel approach to estimating the local

dimensionality is presented.

3.2 Multiscale Singular Value Decomposition (MSVD)

Fukunaga [16] first proposed using Principle Component Analysis to determine the intrinsic

dimensionality of linear subspaces embedded in a high-dimensional space. Let X = [x1 ... xN ] be

the D by N data matrix with columns corresponding to data points. If this data lies on a d < D

dimensional linear subspace of RD, then only the first d singular values of X will be non-zero. In

practice, data is usually obscured by some amount of high-dimensional noise, so instead of looking

for nonzero singular values, we look for singular values above a certain threshold.

In the case where the data lies on a nonlinear manifold, the magnitude of the singular values

will be influenced by manifold curvature. Consider for example S2, the unit sphere in R3. As

discussed earlier, this is a two-dimensional manifold. Indeed, if you look at the sphere on a small

enough scale it will look like a two-dimensional plane and only the first two singular values will be

non-zero. However, as the scale increases curvature will cause the third singular value to become

non-zero, making the manifold appear three-dimensional. In the case of a noisy sampling from the

manifold, the Singular Value Decomposition may also mistake noise in the ambient space as an

additional dimension. We thus need to consider the data at a scale large enough such that the

singular values from noise may be differentiated from the singular values from the manifold’s true

geometry, but small enough such that manifold curvature does not cause us to overestimate the

intrinsic dimensionality.

Motivated by this thought, the authors in [26] suggests a multiscale SVD approach (MSVD)

where one computes the singular values of neighborhoods of varying size and then selects an
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appropriate scale to determine the intrinsic dimensionality. The multiscale SVD method first

finds for each xi, i = 1, ..., N and for each scale r = rmin, ..., rmax the neighborhood given by

Nr(xi) = {xj | xj ∈ Br(xi)} where Br(z) is a ball of radius r centered at z. We then denote σi,rk

as the kth singular value of the data matrix corresponding to the data points in Nr(xi) sorted in

decreasing order, σi,rk ≥ σ
i,r
k+1.

As an example, consider the unit sphere S4 = {x ∈ R5 |
∑5

i=1 x
2
i = 1} embedded in R60 and

obscured by 60-dimensional noise. Note that after this embedding, samples still arrange around

a four-dimensional manifold embedded in R60. Figure 3.1 shows the singular value spectrum as

a function of the ball size r. We indeed see that at a small scale there is not a significant gap

in singular values while at a large scale the largest gap is between the fifth and sixth eigenvalue,

suggesting that the manifold is five dimensional. Between these cases however, there is a scale (ball

size of roughly 1) where the spectrum does indeed reflect the true intrinsic dimensionality of four.

Unfortunately, this method falls apart with a slight deviation from this ideal experiment.

Consider replacing the sphere in the previous experiment with the ellipsoid {x ∈ R5|
∑5

i=1 x
2
i /i =

1}. Figure 3.2 shows the singular value spectrum of neighborhoods as a function of the ball

size r. In this example there is no scale which correctly captures the intrinsic dimensionality.

Even considering the rate at which the singular values grow as suggested in [26], there is no clear

distinction between singular values corresponding to the true geometry and those corresponding

to noise. Indeed, applying the algorithm described in [26] estimates the intrinsic dimensionality to

be 1.6, significantly underestimating the true dimensionality of four. It seems that although this

method can handle noisy samples quite well, it suffers in the case of anisotropic curvature.

3.3 Kernelized Correlation Coefficient

The second estimator considered is motivated by the behavior of the number of points within

a ball of varying radius. Specifically, one expects the number of points in a ball of size r centered

at xi to grow as rd where d is the true dimensionality of the manifold. We define the sample



13

Figure 3.1: The singular values associated with a four-dimensional sphere embedded in R60 as a
function of scale. The solid line represents the mean over data points and the dashed lines represents
one standard deviation above and below the mean. We see that at a ball size of 1 the singular value
spectrum does indeed reflect the true dimensionality of the manifold.

Figure 3.2: The singular values associated with a four-dimensional ellipsoid embedded in R60 as
a function of scale. The solid line represents the mean over data points and the dashed lines
represents one standard deviation above and below the mean. We see that there is no scale which
accurately represents the true dimensionality.
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correlation sum as

Cn(s) =
2

n(n− 1)

n∑
i<j

I(||xi − xj || < s), (3.1)

where n is number of data points in the dataset and I is the indicator function. Noting that

2
n(n−1) =

(
n
2

)−1
, Cn(s) has the simple interpretation as the fraction of points with a pairwise

distance less than s.

We can then approximate the dimensionality of the dataset as

d ≈ ν := lim
s→0

lim
n→∞

logCn(s)

log s
. (3.2)

Since of course we cannot let s→ 0 and n→∞, we instead compute ν for varying values of

s and fit a line to estimate the behavior of Cn(s) as s→ 0.

Instead of using the correlation method directly, we apply the kernel version proposed in [19].

The authors replace the correlation sum with the U -statistic

Un,h(k) =
2

n(n− 1)

n∑
i<j

kh(||xi − xj ||2), (3.3)

where

kh(z) =
1

hl
k(z/h2). (3.4)

For some kernel k. After making several assumption on the probability density function

describing the data, its supporting manifold, and k, the authors in [19] show that if h → 0 and

nhl →∞ then limn→∞ Un,h(k) converges if and only if l = d, where d is the true dimension of the

manifold.

As discussed in [19] we would like hl(n) to approach zero at the fastest possible rate while

meeting the constraints that nhl →∞ so we fix hl(n) as a function of dimension and sample size,

nhl(n)l =
1

cl
log n⇒ hl(n) =

1

c

(
log n

n

)1/l

, (3.5)

where c is a constant. We choose c in such a way that when looking at the full dataset of N points

we use the same scale independent of dimension. Specifically, we set hl(N) to the mean distance
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of a point to its nearest neighbor,

hl(N) =
1

N

N∑
i=1

min
j 6=i
||xi − xj ||. (3.6)

Finally we have

hl(n) = hl(N)

(
N

n

log n

logN

)1/l

. (3.7)

Note that this function evaluated at n = N has no dependency on l.

For each dimension l = 1, ..., lmax the authors divides the data into r partitions r = 1, ..., 5

and compute UbN/rc,hl(bN/rc)(k). To make the algorithm more robust, they look not only at the U -

statistic of subsamples individually but also at the U -statistic between subsamples. The two-sample

U -statistic is defined as

Un,h(X,Y ) =
1

n2

n∑
i,j=1

kh(||xi − yj ||). (3.8)

The U -statistic is then averaged for all r(r + 1)/2 combinations of the r subsamples and a

line is fit through the points
[
log hl(bN/rc), UbN/rc,hl(bN/rc)(k)

]
using weighted least squares with

weights 1/r. The analysis in [19] shows that, under certain assumptions, the slope of logUn,hl(n)(k)

is given by (d− l) log hl(n) as n→∞ and h→ 0. The dimensionality is thus estimated by the line

with the smallest slope in absolute value.

3.4 Experiments

Estimating the intrinsic dimensionality of a dataset is made difficult by two main factors:

noise and curvature. To study the effect of these two factors on the performance of the two

methods described, we construct the datasets shown in table 3.1 and apply both estimators. In

each dataset, the points are embedded in R60. The noise in datasets 2 and 4 is normally distributed

with standard deviation 0.2. Table 3.2 shows the estimated dimensionality of each of these datasets

by both methods.

This experiment demonstrates the strengths and weaknesses of the two methods. First, as

discussed previously, we notice that in the presence of anisotropic curvature, the MSVD method

begins to underestimate the intrinsic dimensionality. Next, we note that the presence of noise
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Dataset Description

1 Noiseless samples drawn from a 4-dimensional unit sphere
2 Noisy samples drawn from a 4-dimensional unit sphere

3 Noiseless samples drawn from the 4-dimensional ellipsoid defined by
∑5

i=1 x
2
i /i = 1

4 Noisy samples drawn from the 4-dimensional ellipsoid defined by
∑5

i=1 x
2
i /i = 1

Table 3.1: The synthetic datasets used to compare the MSVD and kernelized correlation coefficient
estimators.

Dataset Manifold Noise MSVD Ustat

1 Sphere 0 4 4
2 Sphere 0.2 4 10
3 Ellipsoid 0 2 5
4 Ellipsoid 0.2 1.6 9

Table 3.2: The estimated dimensionality of each dataset by the two methods discussed.
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causes the kernelized correlation coefficient to severely overestimate the intrinsic dimension. The

authors of [19] do not claim that their method generalizes to noisily sampled manifold and mentions

that noisy data can be considered to be sampled from a highly curved manifold.

3.5 Going from Global to Local

In general a manifold could be of different dimensionality in different regions. For instance,

consider the synthetic “mouse” dataset shown in figure 3.3. Here the tail is of dimension 1 while the

body is of dimension 2. In this case we would like an estimator for the local manifold dimensionality.

Carter [12] suggests using a k nearest neighbor (kNN) approach to determine local dimension-

ality. For each point they determine the k nearest neighbors and run an intrinsic dimensionality

estimator on the neighborhood. We however use a different approach for turning a generalized

global estimator into a local estimator based on the medians of randomly selected dimensions. In

chapter 5 we will see that applying this randomized method on real data leads to a more locally

consistent estimator. The approach is summarized in algorithm 1

for i = 1, . . . , EPOCHS do
for j = 1, . . . , l do

Randomly select a dimension
Use this dimension’s median to divide the dataset into two equal-size subsets

end

Run the global estimate on each of the 2l subsets
Assign each point in each subset a dimension based on this global estimate

end
Assign a local dimensionality estimate to each point from the average over epochs

Algorithm 1: Partitioning by the median of a random dimension to turn a generalized global
dimensionality estimator into a local one.

As a proof of concept consider the following example. Let S2 be the unit sphere in R3 (recall

that S2 is a 2-dimensional manifold) and let T = {x = [t sin(3(t − 1)) 0] | t ∈ (1, 5)}. Now

consider the dataset defined as S3∪T rotated by some random orthogonal matrix R. This rotation

is only necessary because of issues that arise when partitioning the dataset by the median of x3.

Specifically, since all of the points in T have x3 = 0, the median is poorly defined.

Figure 3.3 shows the mean and standard deviation of the estimated dimensionality for each
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Figure 3.3: The mean and standard deviation of the dimensionality estimate for the synthetic
mouse dataset over 200 trials.

point over 200 trails. The dataset here has 500 samples from S3 and 200 from T . l = 3 is used. We

see indeed that points sampled from S3 are estimated to have dimension 2 and points sampled from

T are estimated to have dimension 1. Further, we see that points on the boundary have dimension

between 1 and 2, and a high standard deviation. This demonstrates the limitations of our method

near the boundary between regions of different dimensionality.

3.6 Conclusion

In this chapter we have developed multiscale SVD and the kernelized correlation coefficient,

two methods to estimate the intrinsic dimensionality of a set of observations. These estimators

were compared through a controlled experiment on synthetic data and their respective strengths

and weaknesses were discussed. In particular, we found that while MSVD handles noise well the

quality of the estimate suffers in the presence of anisotropic curvature. The kernelized correlation

coefficient estimate on the other hand was shown to handle anisotropic curvature, but not noise.

A method to make a local dimensionality estimator from a generalized global estimator was then

presented and finally, this local dimensionality estimator was demonstrated on a synthetic dataset.



Chapter 4

The Geometric Median on Data Manifolds

4.1 Introduction

In this chapter an estimator for the geometric median of a manifold-valued dataset is de-

veloped. For a set of points sampled from a manifold M, the mean computed in the ambient

Euclidean space may no longer belong to M. As an example, consider a set of orthogonal n × n

matrices. Although each matrix in this set is orthogonal, the mean of these matrices is typically

non-orthogonal. A more reliable notion of centrality would require the mean to be an element of the

underlying manifold. The common approach here is to define the geometric p-mean on the mani-

fold as the point which minimizes a manifold distance based cost function. Several methods have

been proposed to estimate the geometric p-mean based on closed form knowledge of the manifold

logarithm and exponential maps. In equation-free models however, no knowledge of these maps is

known.

In what follows we extend recent work in estimating the geometric median [15] to manifolds

implicitly defined by a set of observations. This work focuses on the geometric median (i.e. the

geometric 1-mean) due to the median’s low sensitivity to outliers [15]. The result is an algorithm

that uses the geometry of a dataset to create a meaningful notion of centrality for high-dimensional

data with low intrinsic dimensionality. In the next section the geometric median is defined and a

method for estimating it is described. In section 4.2, this method is extended to data manifolds

and in section 4.3, the approach is demonstrated on synthetic datasets.
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Figure 4.1: An example of manifold-valued data with a mean that is not manifold-valued.

4.2 Background and Related Work

4.2.1 Geometric p-mean

In what follows let xi ∈ M , i = 1, ..., n denote a set of observations where M ⊂ RD is a

d-dimensional submanifold equipped with a distance metric d : M×M → R+. The p-mean is

defined as the minimizer of the cost function

Cp(m) =

n∑
i=1

wi (d(m,xi))
p (4.1)

where wi is a set of weights with wi ∈ [0, 1] and
∑n

i=1wi = 1.

In the Euclidean case M = Rd, the p-mean can be found in closed form for p ∈ [2,∞)

while for p = 1 no such closed form exists. Nonetheless, there are gradient descent methods that

have been shown to quickly converge to the 1-mean (i.e. the median) [41], [22], [31]. In the non-

Euclidean case however there are typically no closed form expressions of the p-mean for any p.

Recently, there has been significant progress on iterative methods to find the geometric p-mean.

The authors in [4] derive a stochastic gradient decent algorithm and shows almost sure convergence.

In [2] a deterministic approach is taken and conditions for convergence are given based on manifold

properties and step size. The authors in [18] take a slightly different approach and views the problem

as finding the zero of a vector field on the manifold. In [17], [6], [38], and [23] the special cases of
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positive definite matrices, the circle, finite-dimensional Lie groups, and Kendal shape spaces are

considered, respectively. Applications include animation [32], and shape analysis [9]. The authors

in [9] also discuss the benefit of extrinsic analysis over intrinsic analysis.

4.2.2 Geometric Median

In Euclidean spaces it is well known that the sample mean (in our context the 2-mean)

is sensitive to outliers. In [15] this problem is discussed extensively and the authors derive an

algorithm to find the geometric median (1-mean). Due to the robustness of the median to outliers,

the current work will focus on the p = 1 case.

In a Euclidean space, M = Rd, C1 can easily be shown to be convex by the convexity of the

distance metric. However, for the more general Riemannian case we cannot guarantee the convexity

of C1. If we assume that the xi lie in a convex subset U ⊂M, then there is a unique shortest-path

geodesic from xi to xj for each i, j and the notion of manifold distance is well defined. Under this

assumption, the authors in [15] show the following result:

Theorem 4.2:

If the sectional curvatures of M are non positive or are bounded above by ∆ > 0 and

diam(U) < π/(2
√

∆), then C1(x) has a unique minimizer.

4.2.3 The Weiszfeld Algorithm for Manifolds

In the Euclidean case the algorithm first proposed by Weiszfeld [41] (later improved by [22],

[31]) can be used to find the median. First consider the gradient of the cost function,

∇C1(m) = ∇

(
n∑
i=1

wi||xi −m||

)
=

n∑
i=1

wixi
||m− xi||

. (4.2)

The iteration presented by Ostresh [31] is a scaled gradient descent method,

m(k+1) = m(k) − α

(
n∑
i=1

wixi

||m(k) − xi||

)(
n∑
i=1

wi

||m(k) − xi||

)−1
. (4.3)
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Ostresh showed that this iteration will converge when 0 ≤ α ≤ 2 and the points are not colinear.

In the general Riemannian case the gradient of the cost function is

∇C1(m) = ∇

(
n∑
i=1

wid(xi,m)

)
= −

n∑
i=1

wiLogm(xi)

d(xi,m)
. (4.4)

Fletcher [15] presents a gradient descent iteration for finding the median on a manifold,

m(k+1) = Expm(k)(ανk) ; νk =

(
n∑
i=1

wiLogm(xi)

d(xi,m)

)(
n∑
i=1

wi
d(xi,m)

)−1
. (4.5)

Fletcher showed that this iteration converges to the unique geometric median if 0 ≤ α ≤ 2 and the

conditions of theorem 4.2 are met.

4.2.4 Moving to Data Manifolds

In all prior work on estimating the geometric median on Riemannian manifolds, either ex-

plicit knowledge of the logarithmic and exponential maps is assumed or an approximation based

on application specific assumptions is used. In data-driven, equation-free models, however, the log-

arithmic and exponential map are typically unknown. Nonetheless, a notion of centrality is useful

in a variety of applications. In what follows the algorithm given by (4.5) is extended to manifolds

implicitly defined by a set of samples. The result is a method for finding the geometric median for

an arbitrary set of points with no closed form expressions describing the underlying manifold.

4.3 The Geometric Median on Data Manifolds

To apply the algorithm defined in (4.5) four issues must be addressed. First, an appropriate

approximation for the logarithmic and exponential maps must be defined. Second, a reliable esti-

mate of the manifold distance function d : M×M → R+ must be found. Third, an appropriate

initial guess for the median must be determined, and fourth, the effect of finite sampling of the

manifold must be considered. These four issues are the topics of the subsequent sections.
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4.3.1 Approximating the Logarithmic and Exponential Maps

Inferring the geometry of a manifold M from a finite set of samples is challenging for three

main reasons. First, separating the structure of M from noise in the ambient space is difficult

when the sampling density is low. Indeed, there is a fundamental principal that limits how large

curvature and noise can become before the underlying local linear structure is no longer recoverable

[21]. Second, an appropriate scale must be chosen to recover the local linear structure and third,

the deviation from this local linear structure, i.e. the curvature of M, must be understood. For

the last issue, methods in multivariate interpolation have proven to be useful for approximating

the nonlinear structure of M [29].

In what follows, let M be a d-dimensional manifold embedded in RD. At each point x ∈M

let TxM denote the tangent plane ofM at x. The logarithm at x is the projection of a neighborhood

of x onto TxM,

Logx : N(x) ∩M→ TxM. (4.6)

When M is embedded in RD the tangent plane and thus Logx can be approximated by

applying Principal Component Analysis to a neighborhood of points centered on x. There are two

common methods for selecting the neighborhood N(x): the epsilon ball,

Nε(x) = {y ∈ RD | ||y − x||2 < ε}, (4.7)

and by taking the k-nearest neighbors (kNN) of x,

Nk(x) = arg min
y1,...,yk

k∑
i=1

||x− yi||2. (4.8)

In the current work we focus on Nk(x) as it is typically more robust to nonuniform sampling. The

d coordinates of TxM are then given by the first d left singular vectors of the mean centered data

matrix XN(x) = [xi1 ... xik ] ∈ RD×k where i1, ..., ik are the indices of the data points in Nk(x).

XN(x) is centered such that each row has mean zero.

The exponential map, Expx : TxM→ N(x) ∩M is defined as the inverse of Logx. Since the

projection given by PCA is not invertible, an approximate exponential map is not directly available.
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Indeed, to compute the exponential map knowledge of the geometry of M is typically needed. In

the equation-free case, however, the local geometry of M may be approximated by interpolating

the known values of the exponential map at each sample point. If we let x′1, ..., x
′
k denote the set

of data points within N(x) (i.e. x′j = xij ) and denote y′i = Logx(x′i) then we have x′i = Expxy
′
i for

i = 1, ..., k. We then employ multivariate interpolation to approximate the exponential function at

any yq 6= y′1, ..., y
′
k.

While there are many effective interpolation methods, only a few generalize well to multiple

dimensions. Two of the most successful methods for multivariate interpolation are Radial Basis

Functions (RBF) and Inverse Distance Weighting (IDW), also known as Shepard’s method, a

common tool in computer graphics. RBF’s have proven to perform very well on multivariate

interpolation when provided a sufficient set of samples [14]. In our context, however, the query

point need not be in the region of known function values. To see this, note that the image LogxN(x)

may not be convex and νk from (4.5) may not be in LogxN(x). For this reason we seek an

interpolation scheme that is well-behaved outside of the sampled region, i.e. one that provides

stable extrapolation away from the sampled region. To this end we use Shepard’s method. The

IDW scheme presented by Shepard [36] produces an interpolant from a weighted average of nearby

points with weight given by 1/||x− y||p2, for some p > 0. The interpolant at yq is then defined as

Expx(yq) =

(
k∑
i=1

Expx(y′i)

||yq − y′i||
p
2

)(
k∑
i=1

1

||yq − y′i||
p
2

)−1
(4.9)

when yq 6= y′1, ..., y
′
k and Expx(yq) = Expx(y′j) if yq = y′j . The power parameter p controls the scale

of the interpolation. As p approaches infinity, Shepard’s method provides interpolants given by the

value of the function at the nearest data point. On the other hand, as p approaches 0 Shepard’s

interpolation approaches a constant function defined as the average of known function values.

4.3.2 Approximating Manifold Distance

When the data points xi lie in a convex subset U ⊂M there is a unique shortest path from xi

to xj for each i, j. Determining the length of this geodesic in the absence of a closed form expression
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for the manifold metric is however a nontrivial task. In this work we consider two approaches. First,

as motivated by [8], we construct a data graph G = (V,E) where each vi ∈ V corresponds to xi,

and (i, j) ∈ E if xi ∈ N(xj) or xj ∈ N(xi). Here N(x) can be defined via either the ε-ball definition

or the k-NN definition. Each edge (i, j) is then assigned a weight given by wij = ||xi − xj ||2. The

shortest path from vi to vj on this graph will approach the manifold distance from xi to xj as the

number of samples approaches infinity and the volume of N(x) approaches zero. For a detailed

argument that this approximation converges, the reader is referred to [8].

The above approach gives a good estimate of the true distance in the case of high sampling

density and low noise. Unfortunately, this estimate of the distance is typically quite sensitive

to noise [25]. Also, computing all of the pairwise shortest paths on G takes roughly O(n2 log n)

operations using Dijkstra’s algorithm with binary heaps. As an alternative, we consider estimating

the manifold distance by first finding an approximate global parameterization of M and then

computing the distance between each xi and xj in parameter space. There have recently been many

algorithms proposed for the problem of manifold learning such as Laplacian Eigenmaps [7], Local

Linear Embedding [34], and ISOMAP [39] which provide approximate global maps Φ̂ : M → Rd.

These methods typically seek to preserve local distances at the cost of introducing some global

distortion, causing them to be non-isometric at large scales. Since the algorithm in (4.5) weights

data points like 1/d(xi,m), we suspect that the large scale distortion will have relatively little

effect on the quality of the estimator. This intuition is confirmed in our experiments as discussed

in section 4.4. In addition to being more robust to noise, methods such as Laplacian Eigenmaps

and Local Linear Embedding only require solving one eigendecomposition of a sparse matrix and

can typically be computed in less time than the all pair shortest paths problem.

In the current work we focus on Laplacian Eigenmaps for a global parameterization to use as

a proxy for manifold distance. One way to motivate Laplacian Eigenmaps is through the minimal

distortion embedding of a weighted, undirected graph G = (V,W ) into Rd. The vertex set V =

[1, ..., n] here corresponds to the n samples in the dataset and the weight between two vertices, wij

reflects the spatial similarity between xi and xj . A common choice here is to use the Gaussian
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kernel,

wij = exp
(
−‖xi − xj‖/σ2

)
, (4.10)

where σ is a scale parameter. In our context we are interested in preserving local distance,

so we apply a neighborhood scheme to the graph so that each vertex is only connected to its k

nearest (i.e. most similar) neighbors.

We then seek an embedding Φ̂ : V → Rd such that two points are close in the parameter

space, Rd, if and only if they are close in the ambient space, RD. To this end we consider the

objective function

min
φ

∑
i,j∈V

||Φ̂vi − Φ̂vj ||22wij := min
Y ∈Rd×n

∑
i,j∈V

||yi − yj ||22wij , (4.11)

where Y ∈ Rd×n is a matrix with columns yi = Φ̂vi.

The summand is zero whenever vi and vj are not connected (i.e. wij = 0) so this objective

function is a measure of the total distance in the embedded space between connected vertices,

weighted by their similarity, wij .

It is important to note that the objective function is trivially minimized by the constant

vector. This is not helpful in our context so we introduce the condition that each yi must be

orthogonal to the vector of all ones, i.e. yTi 1 = 0. An additional trivial solution to the optimization

problem is to choose Y to be a matrix full of zeros. To avoid this we force each column of Y to

have unit length i.e. yTi yi = 1.

Claim : For a connected graph G, the optimal Φ̂ in (4.11) is given by mapping each vertex vi

to the ith coordinate of the d eigenvectors of the combinatorial graph Laplacian L that correspond

to the d smallest magnitude nonzero eigenvalues. i.e if L has the eigendecomposition L = QΛQT

where the columns of Q correspond to eigenvectors and Λ is a diagonal matrix of eigenvectors with

0 = λ1 < λ2 ≤ λ3 ≤ ... then the optimal embedding is Y = [q2 q3 ... qd+1].

Here the combinatorial graph Laplacian is defined as L = D − W where D is a diagonal

matrix with dii =
∑n

j=1wij .
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Proof - First note that when d = 1 we have

n∑
i,j=1

||yi − yj ||22wij =

n∑
i,j=1

(yi − yj)2wij

=
n∑

i,j=1

(y2i − 2yiyj + y2j )wij

= 2
n∑
i=1

diiy
2
i − 2

n∑
i,j=1

yiyjwij

= 2
(
yTDy − yTWy

)
= 2yTLy.

(4.12)

Now we let L = QΛQT , and

yTLy = (QT y)TΛ(QT y)

=
n∑
i=1

(qTi y)2λi.
(4.13)

Since L is symmetric we know that {qi}ni=1 form an orthogonal basis for Rn so we can write

y =
∑n

i=1 ciqi with
∑n

i=1 c
2
i = 1. It follows that qTi y = ci (assuming each qi has unit length). Our

expression becomes

yTLy =

n∑
i=1

ciλi. (4.14)

We also note that since L = D −W , 1 is always an eigenvector of L with eigenvalue 0. So the y

that minimizes the above expression and is orthogonal to 1 is given by setting y to the eigenvector

corresponding to λ2. For the d > 1 case, an inductive argument based on orthogonal subspaces

shows the original claim.

For reasons as discussed in [40] and [30] we introduce the Normalized Combinatorial Graph

Laplacian, L̂, defined as

L̂ := D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 , (4.15)

where (D−
1
2 )ii = d

− 1
2

ii . This normalization adjusts for nonuniform sampling density on the

underlying manifold. [37] showed that under this normalization, L̂ converges to the Laplacian
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operator defined on the manifold (i.e. the Laplace-Beltrami operator) as the number of points goes

to infinity under some light assumption on the sampling distribution.

As seen in (4.11), this embedding in Rd preserves small scale distance in the data graph

G, which in turn serves as a proxy for the true manifold distance. For this reason, we choose to

approximate the true distance d(xi, xj) with the distance in this embedded space ‖yi − yj‖. Since

this embedding only introduces distortion at large scales and the gradient descent algorithm uses

weights that are inversely proportionate to distance, we suspect (and later confirm) that this proxy

for distance will perform as well as the shortest path distance on the data graph.

4.3.3 Determining an Appropriate Initial Guess

Under appropriate assumptions on M, (4.5) will converge to the true median if the initial

guess, m(0), is sufficiently close to the true median. Finding a suitable initialization is therefore

very important when estimating the geometric median. Unfortunately, taking the median of the

sample points in the ambient space may give an initial estimate that is quite far from the manifold.

To determine a more accurate initial guess we again note that the distance in the parameter space

given by Laplacian Eigenmaps can serve as a proxy for manifold distance at small scales and, since

the median is not sensitive to distance points, we suspect that this proxy may provide a suitable

initial guess.

In what follows, let yi denote the embedding assigned to data point xi by Laplacian Eigen-

maps, yi = Φ̂xi. We then have that d(xi, xy) ∼ ||yi− yj || when d(xi, yi) is small. It is reasonable to

assume that the embedding of the true median m?, Φ̂m? would not be too far from the median of

y1, ..., yn. We use this notion to get an initial guess, m(0), by first finding a locally quasi-isometric

map Φ̂ : M → Rd, computing the median of the embedded coordinates yi = Φxi , i = 1, ..., n,

denoted ȳ, and then assigning m(0) = Φ̂−1ȳ. Of course, methods such as Laplacian Eigenmaps do

not provide an inverse map directly. We can however use multivariate interpolation to approximate

the inverse map from the known samples xi = Φ̂−1yi. This approach to inverting nonlinear di-

mensionality reductions has been studied in [29]. Again, we suggest using Shepard’s method as an
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interpolation scheme as Φ̂M is not necessarily convex, and we are not guaranteed that ȳ ∈ Φ̂M. As

discussed earlier, Shepard’s method is more stable when the query value is outside of the sampling

domain.

4.3.4 Adjusting for Finite Sampling

A common issue with applying gradient descent techniques to non-differentiable cost functions

on a finite set of samples is that as the iterates converge they may overshoot the true minimum,

leading to orbits. In other words, the algorithm gets stuck at the sampling resolution. Two

methods for resolving this issue are decreasing the descent constant (in our case α) and resampling

the function at a higher resolution. Once orbits are detected α is decreased by 10%. If the

iterations still do not converge after decreasing α ten times, the tangent plane is approximated

from ∪m(k)∈RN(m(k)) where R denotes the points in the orbit of {m(k)}. This tangent plane is

then resampled at a high density. These samples are then pushed back to M using multivariate

interpolation and augmented onto the training set. Note that the algorithm described in this

chapter estimates the geometric median of a set of point x1, ..., xn, but more data, xn+1, ..., xm may

be easily used to better understand the geometry of M (see algorithm 2).

4.3.5 An Algorithm for Estimating the Geometric Median on Data Manifolds

Algorithm 2 summarizes the estimator for the geometric median on data manifolds developed

in this chapter.

4.4 Experiments

As a demonstration of the proposed estimation scheme we consider finding the median of a

random set of points drawn from the first octant of the unit d-sphere,

M = Sd ∩ (R+)d+1 = {x ∈ Rd+1 | xi ≥ 0 ,
∑

x2i = 1}. (4.16)

This manifold is then embedded in R10 and nTr samples are taken from M. Ten of these
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Input :
X = [x1, ..., xm], xi ∈ RD - a set of samples from a manifold M
I - index set for points of which median is to be computed
d - the intrinsic dimensionality of M
Output :
m - the geometric median of {xi}i∈I

compute Laplacian Eigenmap of X, yi = Φxi , i = 1, . . . ,m
compute ȳ, the median of {yi | i ∈ I} in Rd, with (4.3)
set m(0) = Φ−1ȳ where Φ−1 is interpolated from xi = Φ−1yi with Shepard’s method
while ||m(k+1) −m(k)|| > tol do

approximate Logm( · ) from the first d principal components of N(m(k)) (using full
dataset)
approximate νk from (4.5) using d(xi, xj) = ||yi − yj || for i, j ∈ I
compute m(k+1) = Expm(ανk) using Shepard’s method on xi = Expmyi , xi ∈ N(m(k))
if orbits detected then

set α← 0.9α
if decreased α 10 times then

resample manifold and append to dataset
end

end

end
Algorithm 2: Estimating the geometric median on data manifolds.
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samples are randomly selected and their median is estimated. To compute a ground truth median,

m?, we take a dense, noise-free sampling ofM (2,500 samples) and do an exhaustive search for the

median using the shortest path on the graph. Performance is measured by comparing the proposed

method with mtriv, the trivial estimator given by the sample with the minimum total shortest path

to each point on the graph,

mtriv = arg min
xi

∑
j

dG(xi, xj), (4.17)

where dG(·, ·) denotes the shortest path on the graph G. To evaluate an individual estimate’s

performance we compare the cost function at the estimator with the cost function at the true

median,

score(m) =
C1(m)

C1(m?)
. (4.18)

Here C1(m) is computed using the dense sampling of M.

We compared the cost function relative to optimal for 6 estimators: (1) mtriv defined above,

(2) the initial guess giving by pushing the median in Laplacian Eigenmap parameter space back

to M, (3) the estimator given in algorithm 2 using graph distance and RBF interpolation, (4)

the same estimator using IDW interpolation, (5) the estimator in algorithm 2 using Laplacian

Eigenmap coordinates as a proxy for distance and RBF interpolation, and (6) the same estimator

using IDW interpolation. Figures 4.2, 4.3, and 4.4 show the score of each estimator as sample size,

noise level, and dimensionality are varied respectively.

Our first observation is that the Laplacian Eigenmap proxy for manifold distance does indeed

perform very similarly to the shortest path on the data graph. Also as expected, IDW seems to be

a more stable interpolation scheme in this context than RBF. In figure 4.2 we see that the trivial

estimator is sensitive to low sampling density whereas all of our estimators are not. Figure 4.3

shows that all of the estimators are sensitive to high levels of noise, which is not surprising. What

is interesting is that, although at low noise levels the gradient descent algorithm typically increases

the quality of the estimate, for very high levels of noise the initial guess actually provides a better

estimate. This can be explained by the fact in the presence of high noise, the estimated tangent
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plane from PCA may be quite far from the true tangent plane. On the other hand, the graph

Laplacian has been effectively used for manifold denoising [20], [28]. With this in mind, it is not

surprising that the Laplacian Eigenmap approach to finding an initial guess is more robust to

extreme noise than the gradient descent algorithm. Future work could include incorporating a

denoising step based on the graph Laplacian.

4.5 Conclusion

In this chapter an estimator for the geometric median was developed. In particular, a gradient

descent method from differential geometry was applied to equation-free data analysis. This was

accomplished by determining appropriate approximations for the logarithm and exponential maps

and the manifold distance. Further, a suitable initial guess was presented and numerical stability

issues were addressed. The proposed method was applied to synthetic datasets and shown to

outperform a trivial estimate of the median. The estimator’s sensitivity to sampling density, noise,

and dimensionality was then examined. While high levels of noise decreased the quality of the

estimator, the estimator was shown to not be sensitive to low sampling density. Further work could

include studying the effects of the parameters in algorithm 2, such as the number of neighbors

used when computing PCA, and studying the convergence criteria of our estimator. In the next

chapter this method is applied to a real world neurological dataset to demonstrate its usefulness in

equation-free data analysis.
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Figure 4.2: A comparison of several estimators’ sensitivity to sample size. d = 3, noise level = 0.05.
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Chapter 5

Creating a Biomarker for Epileptogenesis

5.1 Background

5.1.1 Epilepsy

Epilepsy is one of the most common neurological diseases, affecting nearly 50 million people

worldwide yet the causes of most cases are unknown [1]. Some cases are the result of a traumatic

event such as stroke, brain tumor, or head injury. In this case epilepsy slowly develops by a process

called epileptogenesis. An active research question is how to quantify and measure the progression

of epileptogenesis. This will be the focus of this chapter.

A large challenge for understanding epileptogenesis and other neurological conditions is cre-

ating an informative biomarker. The National Institute of Health defines a biomarker as a “char-

acteristic that is objectively measured and evaluated as an indicator of normal biological processes,

pathogenic processes, or pharmacologic responses to a therapeutic intervention” [13]. For instance,

hepatitis B serologic tests can determine the presence of certain antigens and antibodies and help

understand in what stage of hepatitis B a patient is. Unfortunately, there is no know physical

substance that can indicate the stage of epileptogenesis. The goal of this chapter is to develop a

computational biomarker based on measurements of electrical activity in the hippocampus.

5.1.2 Experiment and Data

In this experiment, an animal model is used to collect hippocampal auditory evoked potentials

(hAEP) before and after dosing of a certain epileptogenesis inducing drug. Over the course of the
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experiment a lab rat progresses through four stages: pre-injection (baseline), comatose immediately

following the injection (silent), recovery from the injection (latent), and repeated seizures (chronic).

Every thirty minutes over the course of the experiment, the electric potential in the animal’s

hippocampus is collected at 10 kHz immediately following an auditory evocation. These hippocam-

pal auditory evoked potentials (hAEPs) are then decomposed using a wavelet decomposition, and a

t-test is used to find in wavelet space the most significant predictors of the rat’s condition. Finally,

temporally adjacent measurements are concatenated to form a time-delay embedded signal. These

concatenated responses form vectors with 12,000 elements. For more details on the experiment and

preprocessing see [27]. In the following sections we estimate the local intrinsic dimensionality of

these signals and develop a method to decode the progression of epileptogenesis.

5.2 Intrinsic Dimensionality

5.2.1 Visualizing Dataset

Before performing analysis on the hAEP dataset it is useful to visualize it. To this end

Laplacian Eigenmaps are used to determine a low-dimensional representation of the full dataset.

The result is seen in figure 5.1. We see that there indeed appears to be some low-dimensional

structure to the hAEP data. Further, we notice that different regions of the data manifold do

indeed correspond to specific stages.

5.2.2 Local Dimensionality Estimates

Here we apply the local dimensionality estimator from chapter 3 to the set of hAEPS. Fig-

ure 5.2 shows the mean and standard deviation of the dimensionality estimate over 100 random

partitionings. l = 2 partitioning steps are used for reasons discussed below. We see that indeed

different regions of the hAEP manifold exhibit different intrinsic dimensionality. Further, as one

would expect, we see that while the rat is in the silent stage (i.e. in a coma immediately following

the injection) their hAEPs arrange near a lower-dimensional region of the manifold than while the
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Figure 5.1: Laplacian Eigenmaps of hAEP data for each condition. Blue - Baseline, Cyan - Silent,
Green - Latent, Red - Chronic.
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Standard Deviation Mode Prevalence
l Baseline Silent Latent Chronic All Baseline Silent Latent Chronic All

1 0.1051 0.2709 0.0932 0.2420 0.1612 0.9449 0.8410 0.9437 0.8434 0.9027
2 0.0000 0.2447 0.1455 0.0379 0.1071 1.0000 0.8510 0.9142 0.9782 0.9362
3 0.0460 0.1846 0.1119 0.1036 0.1088 0.9713 0.9023 0.9366 0.9439 0.9396
4 0.3590 0.2661 0.2234 0.2089 0.2551 0.7732 0.8560 0.8627 0.2089 0.6885

Table 5.1: The standard deviation and mode prevalence of the dimensionality estimate using ran-
dom dimension median partitioning with l partitioning steps.

rat is awake and healthy.

If the method is giving an accurate local intrinsic dimensionality estimate we expect points to

have similar dimensionality as their immediate neighbors. We thus measure the local consistency

of our estimator by comparing each point to its 10 nearest neighbors. Specifically, we measure two

things: (1) the standard deviation of the dimensionality estimator within each neighborhood and (2)

the number of points within each neighborhood where the estimator equals the neighborhood’s mode

estimate. Table 5.1 shows (1) and (2) when the local dimensionality is estimated by the random

dimension median approach,1 with varying values of l. Table 5.2 shows (1) and (2) when the local

dimensionality is estimated using kD nearest neighbors. To make a fair comparison between the

two methods, the dimensionality estimate from the random dimension median partitioning method

is rounded to the nearest integer.

We see that the kD-NN approach needs kD to be around 250 in order to get similar local

consistency as obtained by the random dimension median approach. For some stages the number

of samples is only a little over 250 so this is almost equivalent to computing the global estimate.

Accordingly, we choose to use the random dimension median method and, based on the results in

Table 5.1, we select l = 2.

1 The local dimension estimator is computed for each stage individually. The “All Stages” column is a weighted
average of each stages score (weighted by number of data points in each stage).
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Figure 5.2: The mean (top) and standard deviation (bottom) of the dimensionality estimate for
the hAEP dataset over 100 trials using l = 2.
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Standard Deviation Mode Prevalence
kD Baseline Silent Latent Chronic All Baseline Silent Latent Chronic All

25 1.0319 0.7789 1.3428 1.1631 1.1403 0.5150 0.5742 0.4909 0.5147 0.5157
50 0.5751 0.3384 0.6211 0.5550 0.5478 0.5936 0.6610 0.6852 0.6948 0.6645
75 0.4824 0.1803 0.3771 0.3394 0.3562 0.6902 0.7809 0.8164 0.8123 0.7835
100 0.3591 0.0759 0.2844 0.2956 0.2668 0.7921 0.8683 0.8481 0.8425 0.8387
150 0.3143 0.0000 0.2486 0.2020 0.2086 0.8433 1.0000 0.8503 0.8838 0.8686
200 0.1566 0.0000 0.2606 0.0087 0.1352 0.9150 1.0000 0.8354 0.9967 0.9180
250 0.0000 0.0000 0.1329 0.0151 0.0551 1.0000 1.0000 0.9248 0.9945 0.9696

Table 5.2: The standard deviation and mode prevalence of the dimensionality estimate using kD-
NN.

5.2.3 Dimensionality as Disease Progresses

Figure 5.3 shows the mean and standard deviation of the local intrinsic dimensionality es-

timate of each rat as the disease progresses. We see that in baseline the responses are roughly

four-dimensional. When the epilepsy inducing drug is injected and the rat enters the silent stage,

the intrinsic dimension drops down to three. During the latent stage the dimension returns to four

at different rates over the test rats. By the time the rat is experiencing chronic epileptic seizures

the dimension consistently returns to roughly four.

5.3 Decoding the Progression of Epileptogenesis

We now turn our attention to developing a computational biomarker for the progression of

epileptogenesis. We assume that each rat shares a common drift on the data manifold that is

distorted by high-dimensional noise. We do not however assume that these drifts occur at the same

rate and instead assign each rat an intrinsic time scale τi(t) where i denotes a specific test rat.

To get a sense of the noise free trajectory we utilize the geometric median algorithm developed in

chapter 4.

Unfortunately, the method developed in chapter 4 depends on extensive computations of

Singular Value Decompositions in the ambient space, so instead of using the wavelet coefficients

discussed previously, we parameterize the set of hAEPs using cubic spline approximation. We note
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Figure 5.3: The mean and standard deviation of the local intrinsic dimensionality estimate as the
disease progresses over 100 trials using l = 2.
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that projecting the hAEPs onto the set of cubic splines may cause a decrease in dimensionality,

but argue that since the strongest predictors are low frequency wavelet coefficients, this projection

will preserve the structure of the hAEP dataset. Projecting the hAEP signals onto cubic spline

approximations gives vectors in R13 corresponding to the set of hAEPs. In what follows let yi(t)

denote the spline coefficients associated with animal i’s hAEP at time t.

With this model for the hAEP dataset we seek a path µ(t) that describes the average tra-

jectory of epileptogenesis and a set of intrinsic timescales {τi} corresponding to each animal. In

particular, we seek to minimize the residual of yi(t) on µ(τi(t)) in L1 norm, i.e. solve the minimiza-

tion problem

min
µ,τi

nrats∑
i=1

∫ 1

0
d(yi(t), µ(τi(t))dt. (5.1)

For simplicity we rescale the true timescale so that t ∈ [0, 1] and force the intrinsic time to

remain on this scale, τi : [0, 1] → [0, 1]. These timescales τi serve as computational biomarkers as

they provide a notion of how far epileptogenesis has progressed for each animal.

To solve this optimization problem, we propose the two step optimization scheme shown in

algorithm 3.

initialize τi(t) = t , i = 1, . . . , nrats
while stopping criteria not met do

for s ∈ [0, 1] do

set µ(k+1)(s) = M({yi(t) | τi(t) ∈ (s− w/2, s+ w/2)})
end
for i = 1, ..., nrats do

set τi(t) = arg minτ(t)
∫
d(yi(t), µ(τ(t)))dt

end

end
Algorithm 3: A two step optimization scheme to minimize the functional in (5.1).

Here M(S) is the geometric median of the set S, w is a parameter that declares how large of a

window to use for temporal averaging, and the stopping criteria is based on how much the residual

decreases each iteration. At each iteration, the method developed in chapter 4 is used to estimate

M(S) and the dynamic programming approach in algorithm 4 is used to find the minimizing set of
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τi. One should note that by forcing 1 ≤ k ≤ j in this algorithm we force τi to be non-decreasing.

This is because the animals included in this experiment all developed epilepsy eventually, so we

would like the intrinsic clock to be monotonically non-decreasing.

for i, j = 1, ..., n do
set C(i, j) = d(y(ti), µ(τj))

end
for j = 1, n do

set J(1, j) = C(1, j)
end
for i = 1, ..., n do

for j = 2, ..., n do
set J(i, j) = C(i, j) + min1≤k≤j(J(i− 1, k)) and U(i, j) = arg min1≤k≤j(J(i− 1, k))

end

end
Recursively define τ with τ(n) = arg minj J(n, j) and τ(i− 1) = U(i, τ(i))

Algorithm 4: A dynamic programming algorithm to solve for τi(t).

5.3.1 Biomarker Results

Figure 5.4 shows the value of τi(t) for each animal during the course of the experiment. We

see that in most animals τi does indeed correspond to the stage of epileptogenesis but there is not

a clear threshold to determine when a animal will begin having spontaneous seizures. Nonetheless,

the proposed biomarker does seem to track the progression of epileptogenesis and provides insights

on the variability in progression between different rats. For instance, two rats seem to exhibit

characteristics of hippocampal damage very early, two seem to progress slowly, and the rest seem

to progress at roughly the same rate. Information like this could be beneficial for quantifying the

effectiveness of pharmaceutical interventions.

5.4 Conclusion

In this chapter we applied the methods developed in the previous two chapters to high-

dimensional observations of a neurological process. Tracking the progression of epileptogenesis is a

nontrivial problem and traditional statistics do not provide very high predictability. As we have seen

in this chapter, looking at the data from a geometric perspective is beneficial in several ways. First,
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we saw that the responses do indeed lie near a remarkably low-dimensional manifold embedded in

the ambient Euclidean space. Further, the dimensionality of this manifold was shown to vary

across different regions of the ambient space. In particular, when the animal is in a comatose, its

hippocampal activity was shown to exhibit lower dimensionality. This is interesting as it quantifies

the intuitive notion that while the animal is unconscious there are fewer degrees of freedom in its

neurological activity.

Next we showed how the intrinsic dimensionality of the responses can be leveraged to track

the progression of an underlying neurological process. By using a relatively simple model that

utilized no equations unique to neurology, we were able to construct a computational biomarker

that reflects the progression of epileptogenesis over the course of the experiment. To our knowledge,

this is the first proposed method to solve for an underlying biological timescale based solely on a

set of high dimensional observations. This computational biomarker could lead to new insights on

the variability of the underlying processes that occur during epileptogenesis and serve as a useful

tool for experimental pharmacology.



Chapter 6

Conclusion

In this thesis we have demonstrated that ideas from differential geometry can be meaningfully

applied to problems in equation-free data analysis. Understanding data from a geometric perspec-

tive has proven to be an effective way to leverage the underlying structure in high-dimensional

datasets. In particular, we have seen that the intrinsic dimensionality of a dataset can be recov-

ered, and that approximations for the tangent plane and manifold distance can be used to construct

a more meaningful notion of centrality.

Much of the existing work on manifold-valued data analysis has assumed some degree of prior

knowledge of the data, be it closed form expressions for the data’s supporting manifold or at least

its dimensionality. The first topic of this thesis addressed the problem of estimating a dataset’s

intrinsic dimensionality based only on sample values. Existing estimators for global dimensionality

were presented and extended to the problem of local dimensionality estimation. The performance

of this estimator was first demonstrated on a synthetic dataset and later shown to provide locally

consistent estimates on real world data.

Then, in the second portion of this thesis, a novel extension of a previous algorithm to

equation-free data analysis was developed. The geometric median, a meaningful notion of centrality

for high-dimensional data with low-dimensional structure, was formalized and an estimator for the

geometric median in equation-free models was proposed. This estimator was then applied to a

synthetic dataset, demonstrating that by leveraging the underlying structure of a dataset one can

indeed provide a more meaningful notion of centrality for manifold-valued data.
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The previous two section were then applied to a real world high-dimensional data problem.

In particular, the dimensionality estimator was used to understand how the geometric structure

of a certain neurological measurement changed over the course of an experiment. We saw that

immediately following a traumatic shock, an animal model’s hippocampal activity exhibited fewer

degrees of freedom than when the animal was awake. As the animal recovered from this shock,

we saw that its neurological activity returned to normal. The rate at which this return to normal

occurred may help understand the variability between different instances of the experiment.

Finally, the proposed estimator for the geometric median was used to create a computa-

tional biomarker for the progression of epileptogenesis. Since each animal may develop epilepsy

at a different rate, we used a joint optimization scheme to fit a model where each animal has its

own unique biological timescale. The geometric median estimator and a dynamic programming

algorithm were used to find a trajectory and a set of animal dependent biological timescales that

best fit the observations. These biological timescales then served as a computation biomarker for

the progression of epileptogenesis. While there was not a clear threshold for when the animal will

begin exhibiting epileptic symptoms, this computation biomarker may provide insights on how the

neurological processes behind epileptogenesis vary across experiments.

The two estimators developed in this thesis are highly generalized and could be applied to

a wide range of problems in data science. In any situation where a high-dimensional dataset is

to be parameterized, having a suitable estimate of the intrinsic dimensionality will allow the data

scientist to know how many parameters should be included. Further, many real datasets exhibit

different dimensionality depending on the configuration of an underlying process. Overlooking this

potential variability in intrinsic dimensionality could cause the data scientist to underestimate or

overestimate the appropriate number of parameters to use.

Using an appropriate notion of centrality for data with low intrinsic dimensionality is also

an important consideration in high-dimensional data analysis. In many problems high-dimensional

observations are assumed to have a nonlinear, low-dimensional structure. In this case the mean in

the ambient Euclidean space will typically have a different structure than the original data. By
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forcing the average to remain on the low-dimensional structure, the data scientist will be able to

construct a more meaningful average.
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Appendix A

Notation

Symbol Definition (equation)

RD ambient Euclidean space
Rd embedding (parameterization) space
M a smooth manifold embedded in the observation space, M⊂ RD
Φ a coordinate chart of a manifold M, Φ : Np ∩M→ Ω ⊂ Rd

Φ̂ an approximate global parameterization of a manifold M, Φ̂ :M→ Rd
Logx the logarithm map at x ∈M, Logx : N(x) ∩M→ TxM (4.6)
Expx the exponential map at x ∈M, Expx : TxM→ N(x) ∩M
TpM the tangent plane of M at a point p ∈M (2.6)
d(x, y) the manifold distance between x, y ∈M, d :M×M→ R+ (2.10)
Sn−1 the unit sphere in Rn, Sn−1 = {x ∈ Rn | ‖x‖2 = 1}
Br(z) a ball of radius r centered at z, Bz(r) = {x | ‖x− z‖ < r}
X = [x1 . . . xn] ∈ RD×N the data matrix with columns representing data points
Nr(xi) A neighborhood of size r centered at xi, Nr(xi) = {xj | xj ∈ Br(xi)}
σi,rk the kth singular value of the data matrix corresponding to Nr(xi)
Cn(s) sample correlation sum (3.1)
Un,h(k) kernelized correlation sum (3.3)
kh(z) scaled kernel (3.4)
Un,h(X,Y ) two sample kernelized correlation sum (3.8)
Cp(m) the geometric p-mean cost function (4.1)

Table A.1: Notation.
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Symbol Definition (equation)

m(k) the kth iteration of the Weiszfeld algorithm (4.3), (4.5)
Nk(x) the k nearest neighbors of x (4.8)
G = (V,E,W ) a weighted graph with vertex set V , edge set E, and edge weights W
dG(vi, vj) the shortest path on G between vertices vi and vj
L the combinatorial graph Laplacian, L = D −W
L̂ the normalized graph Laplacian, L̂ = D−

1
2LD−

1
2 (4.15)

M(S) the estimated geometric median of the set S
mtriv a trivial estimator for comparison (4.17)
m? the ground truth median
µ the residual minimizing trajectory of epileptogenesis, µ : [0, 1]→M
τi the residual minimizing biological clock of test animal i, τi : [0, 1]→ [0, 1]

Table A.2: Notation (cont).


