Article

 

Episodic Neoglacial expansion and rapid 20th century retreat of a small ice cap on Baffin Island, Arctic Canada, and modeled temperature change Öffentlichkeit Deposited

https://scholar.colorado.edu/concern/articles/p8418n76f
Abstract
  • Records of Neoglacial glacier activity in the Arctic constructed from moraines are often incomplete due to a preservation bias toward the most extensive advance, often the Little Ice Age. Recent warming in the Arctic has caused extensive retreat of glaciers over the past several decades, exposing preserved landscapes complete with in situ tundra plants previously entombed by ice. The radiocarbon ages of these plants define the timing of snowline depression and glacier advance across the site, in response to local summer cooling. Erosion rapidly removes most dead plants that have been recently exposed by ice retreat, but where erosive processes are unusually weak, dead plants may remain preserved on the landscape for decades. In such settings, a transect of plant radiocarbon ages can be used to construct a near-continuous chronology of past ice margin advance. Here we present radiocarbon dates from the first such transect on Baffin Island, which directly dates the advance of a small ice cap over the past two millennia. The nature of ice expansion between 20 BCE and ∼ 1000 CE is still uncertain, but episodic advances at ∼ 1000 CE, ∼ 1200, and  ∼ 1500 led to the maximum Neoglacial dimensions ~ 1900 CE. We employ a two-dimensional numerical glacier model calibrated using the plant radiocarbon ages ice margin chronology to assess the sensitivity of the ice cap to temperature change. Model experiments show that at least ∼ 0.44 °C of cooling over the past 2 kyr is required for the ice cap to reach its 1900 CE margin, and that the period from ∼ 1000 to 1900 CE must have been at least 0.25° C cooler than the previous millennium, results that agree with regional temperature reconstructions and climate model simulations. However, significant warming since 1900 CE is required to explain retreat to its present position, and, at the same rate of warming, the ice cap will disappear before 2100 CE.
Creator
Date Issued
  • 2017-11-16
Academic Affiliation
Journal Title
Journal Issue/Number
  • 11
Journal Volume
  • 13
File Extent
  • 1527-1537
Zuletzt geändert
  • 2019-12-05
Resource Type
Urheberrechts-Erklärung
DOI
ISSN
  • 1814-9332
Language
License

Beziehungen

Artikel