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Abstract

Interactive science simulations, built by the PhET Interactive Simulations Project at the

University of Colorado, rely heavily on visual representations to achieve their learning goals.

This prevents students with visual disabilities from using those simulations. This paper

examines one simulation, Capacitor Lab: Basics, as a case study on the implementation

of keyboard navigation and auditory descriptions in PhET simulations. By manipulating

a parallel DOM, it was possible to provide HTML equivalents of every Javascript element

of the simulation, allowing a screenreader to access the descriptions. Keyboard navigation

and auditory descriptions were designed and refined based on interviews with screenreader

users. Through these think-aloud interviews, students’ ability to learn concepts related to

capacitors was assessed. The interviewees explored how to light the lightbulb and change

the capacitance of the capacitor, and were successful in both goals. Findings suggest that

these designs can support students with visual impairments to successfully learn from the

simulation.
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2 Introduction

The PhET Interactive Simulations Project at the University of Colorado [15] designs and

develops educational simulations that address numerous topics in science and mathematics. They

are aimed at grade levels K to 16. The simulations, of which there are over 130, are run over 75

million times a year, in classrooms across the country, but are currently inaccessible to students

with visual or motor disabilities. The former may use a screen reader, while the latter may need

alternative input methods, neither of which is supported by the PhET simulations at this time.

This paper investigates the design and implementation of accessibility features in one simulation,

Capacitor Lab: Basics, which is used as a case study for the implementation of these features in

PhET simulations.

Students who are blind or have visual impairments are often at a disadvantage when it comes

to educational achievement. The American Printing House for the Blind reported 60,393 legally

blind students ages 3 to 21 in the American school system in 2014 [18]. The number of children

under age 20 with visual disabilities is much higher, according to the American Community Survey:

694,300 children reported a visual disability in 2013 [4]. Children with visual disabilities are much

less likely to graduate high school or complete college; 24% of adults ages 21 to 64 with a visual

disability never graduated high school [18], while only 11.4% of the general population has less

than a high school diploma [4]. Only 13.7% of adults with visual disabilities have a bachelor’s

degree or higher, while 30% of the total population has attained that level [4]. The most recent

available NAEP (National Assessment of Educational Progress) science assessment indicates that

only 11% of 8th grade students with disabilities scored “at or above proficient”, compared to the

34% of students without disabilities who received the same score. Even more alarming, two-thirds

(66%) of all 8th grade students with disabilities scored “below basic” (i.e., the lowest) level of

science achievement, compared to 31% of 8th grade students without disabilities [12].

When it comes to learning science, students with visual impairments are particularly disad-

vantaged. They are often forced into a passive role, where their sighted partner completes the

lab experiment and then describes the results. This impedes their ability to learn the science –

the NAEP shows a correlation between higher scores on the NAEP science assessment and the
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amount of time students spent performing hands-on activities [13]. In general, students with visual

disabilities have less access to experiential learning, which is a valuable component of learning in

the sciences. Tools such as PhET simulations can provide such experiential learning, which is why

they need to be accessible to all students.

More generally, the requirements for accessible technologies have been shifting towards equiv-

alent interactions, so scenarios wherein a sighted student performs an exercise and then describes

the results is becoming less accepted as a reasonable accommodation [5]. Legislation passed in

2013 requires that educational agencies use the principles of universal design for learning to ensure

that all students have “equitable access to high-quality curriculum, instruction, assessments, tech-

nology and digital learning” [7]. Thus the goal for Capacitor Lab: Basics is to create a simulation

that conveys equivalent experiences for users no matter their disability status.
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3 Background

PhET simulations rely on the visual layout and implicit scaffolding to “support student learn-

ing through exploration and experimentation” [11]. Text is rarely used to cue interactions; instead,

object placement, color, and other design choices are utilized [16]. The interactivity of the simula-

tion is essential, as “learning goals are parameterized into interactive representations” [16], which

are movable or changeable elements that provide dynamic feedback as the student interacts with

them. All of these design choices make accessibility features more difficult to design and implement

within the confines of the existing PhET infrastructure.

3.1 Infrastructure

PhET simulations use a modified Model-View-Controller pattern to structure the simulation

architecture, as shown in Figure 1. The model represents the physics of the simulation: the speed

at which the capacitor discharges, the calculations for stored energy and capacitance, the state

of global variables, and more. All changes in state are handled by the model. So when the user

drags the voltage slider, for instance, the view notifies the model of the change, and the model

then updates the value of the battery voltage variable, which is stored as a Property of the main

model class. Property is a class created by PhET developers to store changeable physical values

of the simulation. The model also updates the values of the variables for the plate charge, stored

energy, and electric field, which are Property objects as well; it then notifies the view of those

changes.

The view classes, which also take on the controller role, draw the simulation and handle user

input. They describe the various visual attributes of the view, which is structured using the

composite design pattern, shown in Figure 2. In this design, every view class inherits from a class

called Node. Node objects must have a parent, and can have any number of children. For example,

the class that draws the circuit in the capacitance screen is called CapacitanceCircuitNode. It

is a child of the screen view, which tells the simulation to how to draw the circuit; its children

include an object of class BatteryNode, an object of class CapacitorNode, and several objects of

class WireNode, among others. These classes draw the battery, capacitor, and circuit wires, and
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Figure 1: Modified Model-View-Controller architecture as used by PhET; simulations lack an explicit
set of Controller classes.

handle user interaction with those elements.

Figure 2: Example of the composite design pattern.

The view classes pass user input to the model via the observer pattern. In the observer pattern,

pictured in Figure 3, the view classes take on the observer role, while the model classes are the

classes that the view observes. When the model changes state – more specifically, when the

Property objects in the model change state – it notifies the observer classes in its list of observers

of that change. View classes can add themselves to that list, so they only listen for changes to

properties that concern them. For example, the BatteryNode class listens for changes to the

Property that describes the voltage of the battery, but it doesn’t care about changes to any other

9



variables. When a view class observer is notified by a subject that a variable changed, it then

updates the visual representations shown to the users.

Figure 3: Example of the observer design pattern.
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4 Capacitor Lab: Basics

Capacitor Lab: Basics is a simulation designed to support students in learning how a capacitor

functions in a circuit. It has two screens, which guide the student through the concepts necessary

to understand capacitors.

Figure 4: Capacitance screen of Capacitor Lab: Basics, with voltmeter in use.

Figure 5: Lightbulb screen of Capacitor Lab: Basics, with lightbulb lit.

In the capacitance screen, which is the first one that students generally encounter, there is a
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lone capacitor connected to a battery, along with a voltmeter and a bar graph that displays the

value of the capacitance. Students can change the voltage of the battery and discover how the

charge on the capacitor and the electric field change.

The second screen of the simulation, the lightbulb screen, adds a lightbulb to the circuit. The

capacitor can be charged by connecting it to the battery, and discharged by connecting it to the

lightbulb. The graph of capacitance is joined by a graph of the plate charge and a graph of the

stored energy of the capacitor.

4.1 Interface design

The user interface for Capacitor Lab: Basics is designed to support three specific learning goals:

1. Explain the relationships between voltage, charge, stored energy, and capacitance

2. Predict how capacitance changes when the plate area or plate separation change

3. Describe how charge drains away from a capacitor into a lightbulb

The sequence of the screens guides students to initially explore the first two learning goals, as

the third learning goal is only apparent in the second screen. The complex concepts are broken

down into manageable pieces so the student is not overwhelmed by information [16].

In Capacitor Lab: Basics, students usually interact first with the circuit, as its importance

is highlighted via its placement in the screen. The initial interaction provides motivation [10] for

productive simulation usage by motivating the student to ask questions and by providing immediate

feedback from their actions [16]. In the circuit, the slider on the battery and the arrows next to the

capacitor allow them to change the battery voltage, as well as the plate area and plate separation.

The use of such affordances guides students without the need for explicit instructions [11].

When they change the voltage, there is immediate feedback from the charges on the capacitor;

changing the capacitor dimensions produces feedback from the graph of capacitance. This leads

students towards exploring the first two learning goals without explicit instructions within the

simulation.
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5 Challenge: Designing for Vision Impairment

Accessibility features need to be consistent with web standards, and need to support learning

through exploration and inquiry. The Web Content Accessibility Guidelines (WCAG) from the

World Wide Web Consortium require that every non-text element has a text equivalent and the

equivalents for dynamic content are updated as the dynamic content changes [2]. The PhET

project requires that the accessible content supports the implicit scaffolding used to guide the

student exploration and conveys the necessary information for students to achieve the learning

goals. Capacitor Lab: Basics is used as a case study of how to be consistent with the WCAG

design guidelines while satisfying the PhET project’s goals of exploration and inquiry. Rather

than designing a version of the PhET simulation specifically for students with vision impairments,

the goal is to design features that will allow any group of students to work with the same simulation.

The WCAG guidelines were created to provide developers with standards for creating basic

web pages. They include many useful rules, including the ones described above. Other guidelines

include ensuring sufficient contrast within pages and using header elements to convey document

structure [2]. However, while many of the guidelines are useful, WCAG designed its rules to apply

to ordinary web pages, not complex Javascript simulations. Many of the rules, such as “Organize

documents so they may be read without style sheets” [2], simply do not apply. Others, such as

the requirement to provide text equivalents – such as alt text for images – for non-text elements,

are good to follow, but do not provide any specific information. While it is fairly straightforward

to provide alt text for images and videos in a normal website, alt text alone is not sufficient for a

PhET simulation.

The lack of specificity is one reason why the design process for Capacitor Lab: Basics was

relatively complicated. The WCAG standards do not cover all of the scenarios that users encounter

in the simulation, so much of the work was done in previously-unexplored territory. Furthermore,

the standards are not consistently implemented across all browsers – some support more accessible

technology than others – so the simulation design needed to work around those issues as well.

Adhering to the PhET project requirements for exploration and learning was just as important as

working within the WCAG standards, and guided much of the design when the WCAG failed to
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provide sufficient guidance.

14



6 Design Process

Current PhET simulations do not allow for keyboard navigation or screen reader descriptions

without modification, as every element is dynamically generated with Javascript. That means that

the typical elements a screen reader looks for, such as links and headings, do not exist. Similarly,

there are no simulation elements that are naturally navigable via the keyboard. The WCAG

require that every element in the page must be accessible via the keyboard, as users with visual or

motor disabilities often cannot use a mouse [6]. So modifications to the simulation must support

both keyboard navigation and auditory descriptions.

To design and implement those modifications, an iterative design process was used. The struc-

ture of the keyboard navigation and auditory descriptions was sketched out and refined on paper,

leading to a document that described a sample path through the simulation. At each step, the

active keys and their effects was listed, along with the auditory descriptions that would accompany

each key press. A sample set of interactions is shown in Table 1.

Interaction Secondary Action Outcome Screenreader De-

scription

Tab Keyboard focus moves

to battery slider

Slider - Battery volt-

age

Up arrow key Voltage increases Voltage is [insert

value]

Down arrow key Voltage decreases Voltage is [insert

value]

Tab Keyboard focus moves

to top wire connector

Toggle - Circuit wire

Space bar Toggle connector from

connected to discon-

nected position

Circuit disconnected

Table 1: Sample interaction set from first implementation of keyboard navigation and auditory descrip-
tions.
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Once the paper draft was completed, implementation began. To allow screenreaders to access

the content of the simulations, a parallel DOM was created by PhET developers. It contained all of

the common-code elements of the simulation, such as the reset button and the PhET menu button,

but did not include any of the objects that were created specifically for Capacitor Lab: Basics.

Then, by altering the specific parallel DOM structure of Capacitor Lab: Basics, each interactive

element of the simulation was given an HTML equivalent. This allowed the screenreader to control

the keyboard navigation when a screenreader was in use, and gave the screenreader access to

descriptions of each element.
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7 Methods for Evaluating the Design

The initial implementation was tested using a think-aloud interview with a volunteer who

identified as blind and regularly used a screenreader but had little knowledge of physics. She will

be given the pseudonym of Megan. Megan was a recent college graduate, who had not pursued

a degree in any physical science or mathematics. She was asked to explore the simulation while

describing her thought process to the interviewer. This type of interview allows interviewers to

discover how the users interpret various components of the simulation [3]. It also reveals any

plans, hypotheses, or revelations they have as they manipulate the simulation, so the interviewer

can assess how well they understand the physical concepts being presented. Misconceptions can

be found through this process as well; if multiple users misunderstand the same component, that

suggests that it needs to be redesigned.

Megan worked with Capacitor Lab: Basics for approximately twenty minutes. The interview

was videotaped so that both her discourse and her interaction with the simulation could be an-

alyzed. That analysis, combined with her feedback, was used to create another iteration of the

design. A similar redesign process occurred, wherein the design was first created on paper and

then implemented.

The new design was tested via two longer think-aloud interviews – one with Megan and one with

another student who will be given the pseudonym Anna. Anna was a senior in college, majoring

in a non-science field, who also identified as blind. Like Megan, she regularly used screenreader

technology. Megan worked directly with the simulation for a total of 21 minutes, while Anna used

the simulation for 29 minutes; both women were asked three questions before and after their use

of the simulation:

1. What happens to the charge on a capacitor when the voltage is increased? Explain.

2. In a capacitor, how can you change plate area and plate separation to achieve maximum

capacitance? Explain.

3. What happens when a charged capacitor is connected to a lightbulb?

These three questions capture essential elements of the learning goals described above. Neither

interviewee knew the answers to any of the questions prior to using the simulation, although both
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guessed that the lightbulb would light up when connected to a charged capacitor.

Their answers to these questions were analyzed along with the videos of their interaction with

the simulation. The results are presented below.

8 Initial Design and Implementation

In the first iteration of the design, each interactive element was given an accessibleContent

property and a tab order of 0. That tab order designation allowed the PhET architecture to handle

the traversal of the nodes, focusing on them in their rendering order when the user pressed the

tab key. When a screenreader is in use, it takes over from the PhET architecture and handles the

traversal, following the same order as the PhET architecture.

The order in which the elements are navigated must follow the logical flow of the page, according

to the WCAG [6]. In Capacitor Lab: Basics, the layout of the screen guides the order in which

students interact with objects [16], so the initial keyboard navigation path followed that order.

First, focus went to the elements in the circuit, then the graphs, and then the checkboxes controlling

aspects of the view (all pictured in Figure 4.) Focus is denoted with a magenta box around the

object in focus, as shown in Figure 6. If the focused object was movable, arrow keys allowed the

user to move it.

Initial auditory descriptions focused solely on the interactive elements, so elements such as the

circuit or the capacitor were not given descriptions. Only elements such as the slider on the battery,

pictured in Figure 4, had auditory descriptions. Those descriptions were minimal; e.g., the battery

slider read “Slider - battery voltage.” No indication of how to use the objects was provided. This

approach was chosen because sighted students focus primarily on the interactive elements, which

are designed to provide pedagogically-beneficial interactions [16]. The lack of explicit instructions

in the simulations is designed to give students a sandbox in which to explore, rather than give

them a set path to follow. By focusing the descriptions on the interactive elements, the design

was intended to encourage students to explore the simulation by discovering what each interactive

element did. However, this approach was modified after the initial interview, as described below.
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Figure 6: Focus box around the voltage slider on the battery.

8.1 Initial Interview

The first interview contained numerous technical challenges, and served to identify areas where

the simulation could be improved. Megan began by using screenreader shortcuts to search for

headings, and did not find any, as the original version of the parallel DOM only included divs,

paragraphs, and input elements. She informed us that most screenreader users navigate first

through the headings to see what the page contains, in the same manner that a sighted user

briefly skims the page. Without the headings, and lacking a simple description of the simulation

contents, she found it difficult to understand what was happening in the simulation. This led

to the introduction of the scene description, accompanied by headings, paragraphs, and other

structures, as described in the Current Design and Implementation section. These new features

give screenreader users an overview of the simulation.

Megan had to be prompted to switch into forms mode and use the tab key to navigate through

the elements. Once she did so, she was able to interact with the simulation, but did not know how

to manipulate the interactive elements. Her feedback led to changes in the auditory descriptions,

some of which are described in Table 2.
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Figure 7: First interview, user trying to increase voltage.

Simulation Element Initial Description Modified Description

Battery Slider Slider - battery voltage Slider - battery voltage. Use

arrow keys to change voltage

Toolbox Menu - toolbox The toolbox contains a volt-

meter, which measures volt-

age. Press enter to use the

voltmeter

Voltmeter Probe Voltmeter probe Voltmeter probe 1. Use arrow

keys to move probe

Table 2: Sample descriptions of interactive simulation elements before and after the initial interview.

8.2 Infrastructure Redesign

As a result of the changes suggested by the first interview, the infrastructure that created the

parallel DOM needed several modifications.

Some elements of the simulation change dynamically, and that must be announced through
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the auditory descriptions [2]. For those elements, ARIA live regions are used. WAI-ARIA is a

framework that allows developers to make their web applications, especially ones with dynamic

content and advanced user interfaces, more accessible to people with disabilities [19]. It provides

methods for developers to add extra attributes to elements so a disabled user can identify their

current state and their relationship to other elements. Live regions are specifically created for

dynamic content, so a change in the content will be announced to the user no matter which object

is currently in focus [8]. To create a live region, the element in the DOM tree must be tagged

with the aria-live attribute. Significant changes to the infrastructure were made to support live

regions, as well as a wider range of HTML elements such as headings.

The initial implementation of the parallel DOM did attempt to support live regions, but did

not communicate them clearly to the screenreader, so numerous bugs were present. Many changes

were announced multiple times: e.g., if the voltage changed to 0.30 volts, the user would hear

“Voltage is 0.30 volts” repeated up to four times. Other live regions simply failed to announce

any changes. Bugs were highly browser-specific and system-specific, with different browsers having

varying levels of support for live regions. The infrastructure redesign mainly utilized Firefox, as

it had the most native support for all ARIA attributes. By revealing more of the parallel DOM

structure to the browser and screenreader, the PhET architecture was able to bypass some of the

problematic interactions that were causing the repetition or omission of strings.

8.3 Cuing Interaction

Implementation was designed to be compatible with NVDA, a free screen reader for Win-

dows [14]. A 2015 survey conducted by WebAIM revealed that 41% of respondents commonly use

NVDA, but only 14.6% use it as their primary screenreader [17]. JAWS, a commercial screenreader

for Windows [1], was the most popular, as 44% of respondents commonly use it, and 30.2% use

it as their primary screenreader. However, its market share has declined in recent years, as users

trend towards free or low-cost screenreaders [17]. This study used NVDA to test the simulation’s

implementation of auditory descriptions because of its cost and relatively high – and increasing [17]

– market share.
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NVDA has two modes: browse mode, which allows users to navigate through headings, para-

graphs, and text content; and forms mode, which allows users to manipulate interactive elements.

Browse mode is the default mode for NVDA, and forms mode disables most of the key shortcuts

that allow screenreader users to efficiently navigate a document [9]. In forms mode, the application

handles most of the key events, while browse mode strictly limits the amount of control that the

application is given. Because of the differences between the modes, and the different information

accessible from each one, the simulation needs to provide information to the user about which

mode to be in. Once users switched into forms mode, it needed to explain which key commands

would produce the desired effects. Early interview feedback suggested that strings such as “Use

arrow keys to change voltage” would be helpful when an element like the battery voltage slider is

in focus, so those were added. A help menu was also added to provide a list of active keys and their

effects. Using the ‘H’ key brings up the help menu so long as focus is somewhere within the main

body of the simulation. Either the escape key or the tab key returns focus to the previously-focused

element when the user is finished with the help menu.

The keys used in the simulation are shown in Table 3.

Key Description Given in Help Menu

Tab Navigates through elements

Enter Enters groupings of elements

Escape Leaves groupings of elements

Spacebar Toggles checkboxes

Arrow keys Move moveable objects like sliders

H Brings up help menu

Table 3: Descriptions of keys used in the simulation.
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9 Current Design and Implementation

The current design utilizes the new architecture to provide information for both forms mode

and browse mode, the two modes common in screenreaders, although the majority of interactions

are completed using forms mode. The terms ‘browse mode’ and ‘forms mode’ are specific to NVDA

– not all screenreaders use the same terms, although most have similar modes. Because NVDA

was the primary screenreader used to test the simulation, this paper will use those terms.

The parallel DOM is organized into sections and divs, with headings to describe the purpose

of each area, which are accessible in the browse mode of the screenreader. The level 1 heading and

its associated paragraphs, which are the first thing many screenreader users encounter, provide a

high-level overview of the features of the simulation; the level 2 heading describes the play area.

Every element within the simulation is then described with lower-level headings and paragraphs.

Both aria-describedby and aria-labelledby attributes are used to convey this information to

the screenreader.

For example, the parallel DOM element for the circuit in the first screen looks like this:

1 <div id= ‘ ‘ c i r c u i t −widget ” ar ia−l a b e l l e d b y = ‘ ‘ c i r c u i t −l a b e l ” ar ia−

descr ibedby = ‘ ‘ c i r c u i t −d e s c r i p t i o n ”>

2 <h3 id = ‘ ‘ c i r c u i t −l a b e l ”>C i r c u i t</h3>

3 <p id= ‘ ‘ c i r c u i t −d e s c r i p t i o n ”>The c i r c u i t conta in s a c a p a c i t o r and a

batte ry . The c a p a c i t o r i s c u r r e n t l y connected to the batte ry .</p

>

4 <div id = ‘ ‘ battery−widget ” ar ia−l a b e l l e d b y = ‘ ‘ battery−label ” ar ia−

descr ibedby = ‘ ‘ battery−d e s c r i p t i o n ”>

5 <h4 id= ‘ ‘ battery−label ”>Battery</h4>

6 <p id = ‘ ‘ battery−d e s c r i p t i o n ”>The batte ry has a s l i d e r on i t that

c o n t r o l s vo l t age . The cur rent vo l tage i s 0 v o l t s . Use the

arrow keys to change the vo l tage o f the batte ry .</p>

7 </div>

8 <div id= ‘ ‘ capac i to r−widget ” ar ia−l a b e l l e d b y = ‘ ‘ capac i to r−l a b e l ” ar ia−

descr ibedby = ‘ ‘ capac i to r−d e s c r i p t i o n ”>
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9 <h4 id = ‘ ‘ capac i to r−l a b e l ”>Capacitor</h4>

10 <p id= ‘ ‘ capac i to r−d e s c r i p t i o n ”>The c a p a c i t o r i s r ep re s ent ed by two

r e c tangu l a r p la t e s , one on top o f the other , s eparated by a

smal l space . I t has a s l i d e r above i t that c o n t r o l s the

s epa ra t i on o f the p la t e s , and a s l i d e r next to i t that c o n t r o l s

the area o f the p l a t e s . There are no charges v i s i b l e on the

p l a t e s .</p>

11 </div>

12 <div id = ‘ ‘ switch−widget ” ar ia−l a b e l l e d b y = ‘ ‘ switches−label ” ar ia−

descr ibedby = ‘ ‘ switches−d e s c r i p t i o n ”>

13 <h4 id= ‘ ‘ switches−label ”>Switches</h4>

14 <p id = ‘ ‘ switches−d e s c r i p t i o n ”>The c i r c u i t has two switches , above

and below the capac i to r , that connect and d i s connec t the

c a p a c i t o r from the batte ry .</p>

15 </div>

16 </div>

The circuit contains a battery, a capacitor, and two switches, each of which is represented by

their own <div> element. As shown above, the <div> for the circuit is given the id of “circuit-

widget”, as well as the aria-labelledby and aria-describedby properties. The aria-labelledby

property is assigned the value “circuit-label”, which is the id of the heading which labels it as ‘Cir-

cuit,’ while the aria-describedby property is assigned the value “circuit-description”, which is

the id of the paragraph that provides a longer description of the circuit. Every <div> element

contained in the circuit is given the same properties.

When the screenreader is in forms mode, the first element in the focus order is the circuit, which

is a group containing the battery voltage slider, the wire connectors, and the capacitor dimension

controls. The user can either choose to enter the circuit grouping or continue to navigate through

the simulation. If they choose the latter, navigation proceeds in a clockwise manner.

Pressing enter brings the focus inside the group to the battery slider. Subsequent presses of

the tab key will allow the user to navigate among the elements of the group, with the arrow keys

24



changing the values of the sliders. Pressing the escape key brings the focus back to the circuit

group, from which the student can navigate among the rest of the simulation.

Navigation proceeds in a clockwise manner around the screen after the circuit loses focus. In

the Light Bulb screen, the panel containing bar graphs also acts as a group, but otherwise the two

screens behave in an identical manner. Tasks such as lighting the lightbulb can be accomplished

in a few number of key presses, as shown in Figure 8.

Numerous elements, such as the bar graphs and lightbulb, are ARIA live regions. WAI-ARIA

live regions are special elements that announce any changes in state to the user, no matter which

element is in focus [8]. This allows a blind user to receive feedback for their actions comparable to

the feedback seen by a sighted user. Because “well-designed feedback is foundational to effective

interface design,” [16], the feedback provided through the accessibility features must convey all of

the information that the visual changes do.

9.1 Second Round of Interviews

During the second round of interviews, both interviewees accessed a description of the screen

and formed a concept of the layout. They both navigated sequentially through the scene descrip-

tion; Megan listened to all of the element-level descriptions provided, while Anna listened to most

of them. They then proceeded to explore the simulation. After interacting with most of the in-

teractive elements, both women chose a specific conceptual problem to explore. Megan focused

initially on changing the voltage, then explored the plate area and plate separation controls, with

the goal of determining what effect those changes would have on the capacitance. Anna decided

to focus on the voltmeter and attempted to determine which factors would change the voltage

reading.

Megan encountered no technical challenges while interacting with the circuit elements, but

Anna ran into multiple usability issues while working with the voltmeter. She spent a significant

amount of time attempting to figure out how to productively use the voltmeter, which impeded her

ability to engage conceptually with the simulation. She was eventually prompted by the interviewer

to access the lightbulb screen, pictured in Figure 5, and immediately focused on lighting the
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Figure 8: Auditory descriptions and keyboard navigation path used to light the lightbulb.

lightbulb. To do so, she needed to follow the path shown in Figure 8 – first, increase the voltage

of the battery to charge the capacitor; then, connect the capacitor to the lightbulb. Within her

first three minutes on the lightbulb screen, she able to successfully charge the capacitor and light

the lightbulb, which pleased her.

Megan, on the other hand, was able to focus on the relationship between the circuit elements
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and capacitance from the beginning, without interference from usability challenges. She spent the

majority of her time on the capacitance screen, exploring how changes to the voltage, plate area,

and plate separation affected the capacitance. Due to this deeper exploration, she did not have

time to explore the lightbulb screen. However, she successfully learned that voltage does not affect

capacitance, while both a smaller separation and larger plate area increase it.

In the end, both interviewees were able to conceptually engage with features of the simulation.

Despite technical issues, they could access the scene descriptions as well as the interactive elements.

That allowed them to explore the simulation and successfully learn some of the learning goals which

are described above. Megan successfully met the learning goals for the capacitance screen, while

Anna was able to learn one of the main goals of the lightbulb screen. More detailed results will be

presented below.

Figure 9: Third interview, user lighting the lightbulb.
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10 Results: Learning Physics

In order to discuss the results of the second round of interviews in more depth, excerpts from

the interview transcripts will be presented. The time will given in min:sec format, and will be

followed by a brief summary of the user’s interactions and verbalizations. Summaries will be used

for lengthy interaction patterns or long quotes.

The first learning goal of Capacitor Lab: Basics is to explain the relationship between voltage,

charge, stored energy, and capacitance. To measure it, both interviewees were asked, “What

happens to the charge on a capacitor when the voltage is increased? Explain.” Unfortunately,

neither user was able to successfully answer the question, as feedback about the plate charges

is only provided in the second screen. In the lightbulb screen, there is a graph depicting the

plate charge, which, as a live region, gives feedback about the value of the graph. But the only

representation of charge in the first screen is the visual accumulation of red positive charges and

blue negative charges on the plates of the capacitor. A sighted user can see the accumulation of

charges on the plates, but feedback for that visual representation was not provided.

This made it impossible for Megan to realize the relationship between charge and voltage, since

she was never given any information about charge. She guessed that the voltage had no effect on

charge, but was quite uncertain about why, probably due to the lack of information. While Anna

was given some information about charge when she explored the second screen, she was not focusing

on that information. When asked the question, she replied, “I don’t know, because I don’t think

I actually got it to read.” She then guessed that an increase in voltage decreased the charge, but

admitted that it was “a complete guess.” This is an area for future work.

The second learning goal of Capacitor Lab: Basics is to predict capacitance changes when plate

charge or plate area change. This is the goal that Megan chose to focus on, without prompting

on during her exploration. After listening to all of the descriptions of the various elements, which

took a bit over four minutes, she announced, “Okay. I think I more or less know the parts.” After

prompting from the interviewers, she then switched into forms mode, allowing her to manipulate

the interactive elements, and began to explore the circuit group. She started by changing the plate

separation, then plate area, before returning both to the default values and exploring the circuit
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switches, then the voltage slider. Here is the transcript of that interaction:

8:24 Changes capacitor plate separation, plate area, battery voltage, and navigates through

all of sims interactive elements.

11:05 Switches into browse mode and begins listening to the scene description.

11:39 Says “I’m looking for where it would tell me... so if I can control voltage, I can control

size and I can control distance...so that all goes together to... so what’s the output?”

Continues listening through description.

13:20 Listens to description of capacitance graph, which reads “Capacitance Graph, measures

the capacitance of the capacitor”. Says “I guess I’m looking for capacitance.”

In this way, she realizes that a goal of the simulation is to learn about capacitance. The

capacitance graph is a live region, which means that it should read out the value of capacitance

whenever it changes. Unfortunately, due to a bug in the simulation that appeared during the

interview, the capacitance graph was not properly functioning during Megan’s interaction with

the plate separation and plate area sliders, so she was not receiving appropriate feedback. To

address this, the interviewer offered to tell Megan the value of capacitance whenever she wanted.

Megan then began to explore the elements with the goal of determining how capacitance changes,

as shown in the sample transcript below.
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14:25 Makes an initial prediction before interacting: “I assume that if I push the voltage up,

the capacitance is also going to go up, but it might stay the same because it might

not be dependent on I don’t know, so I’m going to check.” Navigates to the voltage

slider, increases the voltage, and asks “How many picofarads?”. Capacitance was 0.11

pF. Megan says “Okay, so its the same. So voltage does not impact okay.”

15:29 Navigates to the plate area slider, currently with a value of 121 mm2. Says, “Okay, so

I had it at 121.” Increases area to 144 mm2., and says, “Okay, so if I go up, then what

is it?” Interviewer informs her that capacitance is 0.13 pF. Megan increases area to 169

mm2, and asks, “Okay, what is it there?” When informed that capacitance was 0.15 pF,

says, “Okay, the size of the capacitor is increasing, umm, I don’t know if exponentially

is the right word.” Explains her ideas about the relationship between plate size and

capacitance.

18:01 Says, “I’m going to take the size back down to where the default was.” Decreases the

plate area back to 121 mm2 and navigates to the plate separation slider. Decreases

plate separation, then increases it back to the maximum. Asks, “Okay, so it’s back to

0.11 there, right?” Interviewer informs her that she’s correct. Megan then decreases the

plate separation from its maximum to its minimum in the 0.5 mm increments available

to her through keyboard presses, asking for the capacitance readout with each change.

Then she explains her ideas about the relationship between plate separation and the

capacitance.

Through her explanations of the relationship between capacitance, plate area, and plate sepa-

ration, it was clear that Megan had figured out that decreasing plate separation increased capac-

itance, while increasing plate area did the same. She also learned that voltage has no effect on

capacitance. This realization was a significant accomplishment, as she was able to learn one of

the major learning goals of the simulation without the visual cues that sighted students rely on.

Her new knowledge allowed her to confidently answer the question regarding how to change plate

area and plate separation to achieve maximum capacitance when it was asked at the end of the

interview.
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The third learning goal of Capacitor Lab: Basics relates to the functioning of a lightbulb in a

circuit containing a capacitor. The lightbulb can be found in the second screen of the simulation,

pictured in Figure 5. The PhET project has found that the introduction of a lightbulb, when

appropriate, provides users with a clear goal: light the bulb. The interview with Anna showed

that users with visual impairments also immediately realize the purpose of the bulb.

Anna worked with the capacitance screen for approximately 23 minutes, spending most of the

time struggling with the voltmeter. At that point, the interviewer suggested that she switch over

to the lighbulb screen, which she did. She then proceeded to explore the screen with the clear goal

of determining how to light the lightbulb, and was successful within approximately three minutes.

Here is a transcript of her interactions:

23:32 The interviewer suggests switching to the Light Bulb screen, indicating that it has the

same features as the Capacitance screen “and a few more”. Anna says “Yeah!” and the

interviewer helps her navigate to the screen.

24:27 The lightbulb screen opens. Anna navigates around the interactive features, finding the

circuit group but not entering the group. After changing the screen reader from focus

mode to browse mode, she begins listening to sections of the scene description, but does

not get to the description of the bulb. She changes the screen reader back to focus mode.

25:22 Navigates to the voltage slider and increases the voltage, then navigates to the circuit

toggle switch. The switch connects the capacitor to either the lightbulb or the battery –

the capacitor starts connected to the battery. She explores connecting and disconnecting

the battery.

27:02 Toggles the circuit to connect the capacitor to the lightbulb, which lights the bulb.

“Hooray, the lightbulb lit!”

When the interviewer asked Anna the third question, “What happens when a charged capacitor

is connected to a lightbulb?” she immediately answered that it turns the lightbulb on. She then

remarked, “Most exciting thing that I’ve done so far is when the lightbulb turned on.” She later

said that the lighbulb was her favorite part of the simulation.

Anna also said that “As soon as you said there is a lightbulb page, I’m like, I know what I’m
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supposed to do.” This is a positive sign that the lightbulb representation is serving its function in

guiding student exploration. Sighted users focus on the lightbulb as an obvious indication of the

goal of the simulation; that Anna did the same implies that the nonvisual representation of the

lightbulb also gives a clear indication of a goal. This shows that the implicit scaffolding desired by

the PhET project [16] can translate reasonably well into an auditory version of the simulation.

32



11 Challenges

11.1 Description Clarity

The keyboard navigation and auditory descriptions allowed both interviewees to engage with

the simulation on a conceptual level, setting up experiments to answer questions such as ‘What

affects the capacitance?’ and ‘How do I light the lightbulb?’ However, a lack of appropriate

descriptions and feedback impeded the interviewees’ ability to accomplish all of the learning goals

of the simulation.

For instance, the voltmeter contains two probes, one red and one black. These are described

in the initial description of the voltmeter, but the probes themselves are only identified as probes;

they are not identified with their color. Without that indicator, Anna found it difficult to keep

track of the probes. As both probes need to be on the wires or the capacitor plates for the voltmeter

to provide a reading, this proved to be problematic.

The voltmeter also frustrated Anna by repeating “Voltage cannot be measured.” The voltmeter

is a live region that announces its state every time a probe moves. If both probes are on the wires

or the capacitor plates, it will announce “Measured voltage is x volts,” where x is the voltage gap

between the probes. However, if one or both of the probes is somewhere other than the wires, it

informs the user that it cannot measure the voltage. A sighted user receives the same information

visually, as depicted in Figure 10.

Anna wanted to figure out how to measure the voltage, and simply being told “Voltage cannot

be measured” did not explain why she could not measure the voltage, so she grew frustrated with

it. If the voltmeter had announced “Voltage cannot be measured. Try moving the probes,” that

might have been more useful.

The auditory descriptions related to current were another set of cues that neither interviewee

in the second round understood. The simulation announces “Current is flowing” when the current

starts to flow, and “No current is flowing” when it stops. A sighted user sees Figure 11 when the

current begins to flow; the blue arrow then slowly fades out as the current decreases to zero.

Both interviewees said that they chose to ignore the information about the current, as neither
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Figure 10: Voltmeter and probes, currently unable to measure voltage.

Figure 11: Depiction of current flowing through the circuit.

understood what it meant. Here is a sample interaction from Megan’s interview:

12:22 Voltage changes; simulation announces “Current is flowing.”

12:30 Simulation announces “No current is flowing.” Megan remarks, “Current is flowing...

and then no current is flowing. So I don’t, um... But I assume the current is actually

flowing, um... that the ‘no current is flowing’ is just, um, an extra... it shouldn’t really

be there.”

She had said earlier that she didn’t understand what was happening when the simulation

announced the changes in current. As can be seen from this interaction, Megan did not understand

that the current starts to flow when the voltage changes, but stops flowing as soon as the capacitor
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is charged. So she chose to interpret the string ‘No current is flowing’ as a bug in the simulation,

rather than valid information.

Sonification of the current, as will be discussed in Section 12.1, may clarify the representation,

as it would provide a representation of the slow decrease of current. However, it would not explain

what current is, or why it’s flowing, which appear to be the main source of Megan’s confusion.

More interview data would be necessary to determine the best way to represent the current.

11.2 Technical Challenges

Screenreaders such as NVDA have both a browse mode and a forms mode; browse mode is used

to navigate “complex read-only documents,” while forms mode allows the user to manipulate the

elements such as text boxes [14]. The screenreader should switch into the correct mode, depending

on which elements are present on the page. Capacitor Lab: Basics was originally built to work

only in forms mode, as nearly every element takes user input. However, in complex applications

like simulations, the screenreaders do not automatically recognize when to switch into that mode.

It was necessary to tell interviewees to manually switch, as that was not always obvious.

Navigating Capacitor Lab: Basics in browse mode provides some information, but does not

allow users to interact with the elements. The parallel DOM contains various sections and headings,

which sort the content into semantically-relevant groupings and give users a high-level overview

of the contents of the simulation. We found that screenreader users tend to search first for those

headings, and then explore deeper into the document.

Because this work pushed the boundaries of current standards for implementing accessible

content, many standards are not yet developed, and no comparable examples exist. Some im-

provements are still needed for a seamless interface between the simulation and browse mode of

the screenreader, and some current bugs caused the interviewees some frustration.
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12 Future Work

Though significant progress has been made in making Capacitor Lab: Basics accessible for

students with visual impairments, a number of improvements are in progress to ensure that all

features of the simulation are easily accessible with a screenreader.

12.1 Sonification

The current design uses ARIA live regions to provide feedback when dynamic content changes.

For some situations, this can work well – e.g., announcing the change in capacitance when the

plate area or plate separation change. However, in other situations, it can be clunky and obtrusive

without conveying all of the necessary information. For example, the lightbulb in the second screen

lights up when the charged capacitor is connected to it. That light immediately begins decreasing

as the capacitor discharges, until the lightbulb is dark again. Using live regions, the user receives

feedback when the lightbulb is lit, and again when it goes dark, but receives no information about

the time in between. So this does not convey the physical processes that occur as the capacitor

discharges.

Sonification would remedy that problem. To sonify the lightbulb, a sound – possibly a hum

like that generated by a fluorescent bulb – would be chosen to represent it. The magnitude of

that sound would represent the magnitude of the light being emitted. So when the user connected

the charged capacitor to the lightbulb, the sound would turn on, then decrease in sync with the

dimming of the light. That would convey to the user what is happening during every point in the

process, rather than giving discrete points of feedback.

Near the end of the interview with Anna, she said that she enjoyed working with the physical

circuits during a class in middle school because she could actually perform the experiments. She

went on to say that “There’s actually a sound component to when the lightbulb turned on, it

also played a sound [when in a physical circuit].” She wanted to know if there would be a way to

incorporate that sort of feedback into the simulation. If her view is common among screenreader

users, that suggests that sonification would be quite effective.

Other elements such as the current and plate charge could be sonified as well. As discussed
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above, both interviewees struggled to understand the representation of current – sonification might

alleviate some of their confusion. In the case of the charges, which currently lack any form of

auditory representation, the value of sonification is less clear, but it could still be useful. The

charges do not dynamically increase or decrease in the same way that the light or the current

do; charge changes in discrete intervals as a function of voltage and capacitance. So a numerical

representation, similar to that of capacitance, might be just as valuable. It will take further user

testing to determine which is better.

12.2 Browse Mode

The simulation needs to interface seamlessly with both browse mode and forms mode. Browse

mode is especially important, as it is the initial mode that people use. Because the two modes

behave quite differently, users need to be clear about which mode they need to be in. Forms mode,

for instance, disables most of the keyboard shortcuts that are commonly used in browse mode.

As both modes contain essential features for interaction with the simulation, users will need to

comfortably toggle between modes. Future work will implement cues for users that inform them

that they may need to switch into a different mode to interact with a certain element, and will

strive to make such switching as seamless as possible.
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13 Conclusion

Although many technical challenges remain, this work demonstrated that students with vision

impairment can successfully use and learn from a PhET simulation. The implicit scaffolding that

guides a visual learner through the simulation was mirrored in the descriptions in the parallel

DOM, and proved, on the whole, successful. Both visual and nonvisual users react to elements

such as the lightbulb in the same way: they figure out how to turn it on. The majority of the

interviewees’ play focused on the circuit, as does the majority of play among visual users, so the

relative importance of different elements was also maintained.

This supports the idea that a diverse group of students can use the simulation together in

a classroom environment, even if a student has low or no vision. They can still interact with

the simulation and learn the requisite concepts, though they cannot see the screen the way their

peers can. The learning of their peers is not impeded, as the accessibility features do not disable

the features used by sighted students. So all students can work together to discover the various

physical concepts presented in the simulation.

The use of the parallel DOM illustrates the necessity of well-designed auditory descriptions,

and depicts a way of providing those descriptions for dynamically-generated content. Using such

a structure, even websites purely composed of Javascript can be accessible to screenreader users.
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Appendices

Sample Parallel DOM

1 < ! doctype html>

2 <html lang= ‘ ‘ en”>

3 <head>

4 <t i t l e >Capacitor Lab : Bas i c s </ t i t l e >

5 </head>

6 <body>

7 <header r o l e = ‘ ‘ banner” ar ia−l a b e l l e d b y = ‘ ‘ scene−label ” ar ia−descr ibedby = ‘ ‘

scene−d e s c r i p t i o n ”>

8 <h1 id= ‘ ‘ scene−label ”>The Scene f o r the Capacitance s c r e en o f Capacitor

Lab : Bas i c s </h1>

9 <div id = ‘ ‘ scene−d e s c r i p t i o n ”>

10 <p>A capac i to r , r ep r e s ent ed by two r e c t angu l a r p la t e s , i s in a c i r c u i t

with a bat te ry . The batte ry i s to the l e f t and the c a p a c i t o r to

the r i g h t .</p>

11 <p>There are sw i t che s above and below the c a p a c i t o r to connect and

d i s connec t i t from the batte ry . I t i s c u r r e n t l y connected .</p>

12 <p>There i s a graph l a b e l e d ‘ ‘ Capacitance ” above the c i r c u i t .</p>

13 <p>There i s a c o n t r o l panel that c o n t r o l s the v i s i b i l i t y o f the

charges on the c a p a c i t o r p late , the bar graph , the e l e c t r i c f i e l d ,

and the cur rent . Al l but the e l e c t r i c f i e l d i s c u r r e n t l y v i s i b l e

.</p>

14 <p>There i s a too lbox conta in ing a voltmeter , which measures vo l t age

.</p>

15 <p>S e l e c t Tab f o r next item , and ente r to go i n s i d e groups o f i tems .

S e l e c t H f o r keyboard help .</p>

16 </div>

17 </header>
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18 <main>

19 <s e c t i o n id = ‘ ‘ play−area ” ar ia−l a b e l l e d b y = ‘ ‘pa−l a b e l ” ar ia−descr ibedby = ‘ ‘

pa−d e s c r i p t i o n ”>

20 <h2 id= ‘ ‘pa−label ”>Play Area</h2>

21 <p id = ‘ ‘pa−d e s c r i p t i o n ”>Place to play with a c a p a c i t o r in a c i r c u i t

with a bat te ry</p>

22 <div id= ‘ ‘ c i r c u i t −widget ” ar ia−l a b e l l e d b y = ‘ ‘ c i r c u i t −l a b e l ” ar ia−

descr ibedby = ‘ ‘ c i r c u i t −d e s c r i p t i o n ”>

23 <h3 id = ‘ ‘ c i r c u i t −l a b e l ”>C i r c u i t</h3>

24 <p id= ‘ ‘ c i r c u i t −d e s c r i p t i o n ”>The c i r c u i t conta in s a c a p a c i t o r and a

batte ry . The c a p a c i t o r i s c u r r e n t l y connected to the batte ry .</p

>

25 <div id = ‘ ‘ battery−widget ” ar ia−l a b e l l e d b y = ‘ ‘ battery−label ” ar ia−

descr ibedby = ‘ ‘ battery−d e s c r i p t i o n ”>

26 <h4 id= ‘ ‘ battery−label ”>Battery</h4>

27 <p id = ‘ ‘ battery−d e s c r i p t i o n ”>The batte ry has a s l i d e r on i t that

c o n t r o l s vo l t age . The cur rent vo l tage i s 0 v o l t s . Use the

arrow keys to change the vo l tage o f the batte ry .</p>

28 </div>

29 <div id= ‘ ‘ capac i to r−widget ” ar ia−l a b e l l e d b y = ‘ ‘ capac i to r−l a b e l ” ar ia−

descr ibedby = ‘ ‘ capac i to r−d e s c r i p t i o n ”>

30 <h4 id = ‘ ‘ capac i to r−l a b e l ”>Capacitor</h4>

31 <p id= ‘ ‘ capac i to r−d e s c r i p t i o n ”>The c a p a c i t o r i s r ep re s ent ed by two

r e c tangu l a r p la t e s , one on top o f the other , s eparated by a

smal l space . I t has a s l i d e r above i t that c o n t r o l s the

s epa ra t i on o f the p la t e s , and a s l i d e r next to i t that c o n t r o l s

the area o f the p l a t e s . There are no charges v i s i b l e on the

p l a t e s .</p>

32 </div>

33 <div id = ‘ ‘ switch−widget ” ar ia−l a b e l l e d b y = ‘ ‘ switches−label ” ar ia−
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descr ibedby = ‘ ‘ switches−d e s c r i p t i o n ”>

34 <h4 id= ‘ ‘ switches−label ”>Switches</h4>

35 <p id = ‘ ‘ switches−d e s c r i p t i o n ”>The c i r c u i t has two switches , above

and below the capac i to r , that connect and d i s connec t the

c a p a c i t o r from the batte ry .</p>

36 </div>

37 </div>

38 <div id= ‘ ‘ toolbox−widget ” ar ia−l a b e l l e d b y = ‘ ‘ toolbox−l a b e l ” ar ia−

descr ibedby = ‘ ‘ toolbox−d e s c r i p t i o n ”>

39 <h3 id = ‘ ‘ toolbox−l a b e l ”>Toolbox</h3>

40 <p id= ‘ ‘ toolbox−d e s c r i p t i o n ”>The too lbox conta in s a voltmeter , which

measures vo l t age . Press ente r to use the vo l tmeter .</p>

41 <div id = ‘ ‘ voltmeter−widget ” ar ia−l a b e l l e d b y = ‘ ‘ voltmeter−label ” ar ia−

descr ibedby = ‘ ‘ voltmeter−d e s c r i p t i o n ”>

42 <h4 id= ‘ ‘ voltmeter−label ”>Voltmeter</h4>

43 <p id = ‘ ‘ voltmeter−d e s c r i p t i o n ”>The vo l tmeter has two probes , one

red and one black , connected to the body o f the vo l tmeter with

wi re s . The body o f the vo l tmeter d i s p l a y s the vo l tage measured

by the probes : the cur rent d i s p l ay i s a ques t i on mark .</p>

44 </div>

45 </div>

46 </ s e c t i o n>

47 <s e c t i o n id= ‘ ‘ graphs ” ar ia−l a b e l l e d b y = ‘ ‘ graph−l a b e l ”>

48 <h2 id= ‘ ‘ graph−label ”>Graph Panel</h2>

49 <div id = ‘ ‘ capac i tance−graph−widget ” ar ia−l a b e l l e d b y = ‘ ‘ capac i tance−

graph−label ” ar ia−descr ibedby = ‘ ‘ capac i tance−graph−d e s c r i p t i o n ”>

50 <h3 id= ‘ ‘ capac i tance−graph−label ”>Capacitance Graph</h3>

51 <p id = ‘ ‘ capac i tance−graph−d e s c r i p t i o n ”>The bar graph o f capac i tance

measures the capac i tance o f the c a p a c i t o r</p>

52 </div>
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53 </ s e c t i o n>

54 <s e c t i o n id= ‘ ‘ cont ro l−panel ” ar ia−l a b e l

55 edby = ‘ ‘ cp−l a b e l ”>

56 <h2 id= ‘ ‘ cp−label ”>Control Panel</h2>

57 <div id = ‘ ‘ view−widget ” ar ia−l a b e l l e d b y = ‘ ‘ view−label ” ar ia−descr ibedby

= ‘ ‘ view−d e s c r i p t i o n ”>

58 <h3 id= ‘ ‘ view−label ”>View Panel</h3>

59 <p id = ‘ ‘ view−d e s c r i p t i o n ”>The view panel c o n t r o l s the v i s i b i l i t y o f

the c a p a c i t o r p l a t e charges , the bar graphs , the e l e c t r i c f i e l d ,

and the cur rent . Al l but the e l e c t i c f i e l d are c u r r e n t l y v i s i b l e

.</p>

60 </div>

61 <div id= ‘ ‘ r e s e t−widget ” ar ia−l a b e l l e d b y = ‘ ‘ r e s e t−l a b e l ” ar ia−

descr ibedby = ‘ ‘ r e s e t−d e s c r i p t i o n ”>

62 <h3 id = ‘ ‘ r e s e t−l a b e l ”>Reset Button</h3>

63 <p id= ‘ ‘ r e s e t−d e s c r i p t i o n ”>The r e s e t button r e s e t s the experiment to

the o r i g i n a l s t a t e .</p>

64 </div>

65 </sec t i on>

66 </main>

67 </body>

68 </html>
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