Molecular Iodine Clock

Jun Ye,* Long Sheng Ma, and John L. Hall
JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics, University of Colorado, Boulder, Colorado 80309-0440

(Received 15 June 2001; published 13 December 2001)

We demonstrate a simple optical clock based on an optical transition of iodine molecules, providing a frequency stability superior to most rf sources. Combined with a femtosecond-laser-based optical comb to provide the phase coherent clock mechanism linking the optical and microwave spectra, we derive an rf clock signal of comparable stability over an extended period. Measurements suggest the stability (5×10^{-14} at 1 s) of the cw laser locked on the iodine transition is transferred to every comb component throughout the optical octave bandwidth (from 532 to 1064 nm) with a precision of 3.5×10^{-15}. Characterization of the performance of the optical clock shows (in-)stability below 3×10^{-13} at 1 s (currently limited by the microwave sources), and 4.6×10^{-15} over one year.

DOI: 10.1103/PhysRevLett.87.270801 PACS numbers: 06.20.Fn, 06.30.–k, 42.62.Eh

The recent revolution in physical science brought about by the beautiful merger of cw based ultraprecision laser work and ultrafast lasers and associated nonlinear optics has enabled profound progress in both areas. Optical frequency measurements have been reduced to a simple task even while the highest level of measurement precision has been achieved [1–5]. Control of the carrier-envelope phase [6] and realization of an optical atomic clock [7] are now possible. Pulse trains from independent mode-locked lasers have been synchronized below 5 fs and their carrier waves phase locked, leading to coherent pulse synthesis [8,9]. Arbitrary and yet phase coherent synthesis of optical spectra, either in terms of selecting desired discrete components in the frequency spectrum or by way of specifying preferred pulse shape and duration in the time domain, now appears possible.

To complement the rapid development of high performance optical frequency standards, it is important to establish an optical comb with phase coherence among its individual components exceeding the standards level. With this capability, we will be able to transfer the stability of a single optical oscillator to the entire comb set over its vast bandwidth, and also derive clock signals in the microwave/rf domain without any stability compromise. Optical standards based on single ions and cold atoms promising potential stability around 1×10^{-16} at 1 s [10] and accuracy at 1×10^{-18} [11] may very well become future national standards, but require elaborate system designs. On the other hand, excellent candidates in cell-based optical frequency standards do exist, such as the one presented in this Letter, that would offer compact, simple, and less expensive system configurations at the cost of performance degradation by one or two decades. Along with optical combs, a competent laboratory would be able to realize a network of microwave and optical frequencies at a level of stability and reproducibility that surpasses the properties of basically all normal commercially available frequency sources. Easy access to the optical standards would greatly facilitate application of frequency metrology both to precision experiments for fundamental physics and to practical devices.

To reach that goal, it is important to understand and implement an optimized control scheme of the optical comb which would avoid the limitation in phase coherence between the two ends of comb spectrum. In our previous work, an entangled control scheme could achieve only frequency locking across the comb spectrum, with residual frequency noise exceeding 100 Hz at 1 s [12]. In this Letter we demonstrate that orthogonal control of the optical comb can lead to Hz level ($\leq 3.5 \times 10^{-15}$) phase-tracking stability across the entire optical octave. Furthermore, the orthogonalization procedure permits independent control of both degrees of freedom associated with the optical comb, leading to a clock work mechanism using only one comb parameter. Recent work [7] uses a two-parameter control to transfer the stability of a cold ion based optical standard to the comb lines at the 3×10^{-16} level. Clearly, with a mature technical solution to the “gearbox problem” at hand, all future progress in optical domain and rf domain standards can be utilized in both spectra.

The octave-spanning optical comb and the associated control scheme are shown in Fig. 1. A Kerr-lens mode-locked (KLM) femtosecond (fs) (using intracavity prism-dispersion compensation) laser [13] generates a repetitive (~ 10 ns repetition interval) pulse train, with a corresponding rigorous periodicity in the spectral domain. To permit the coverage of an entire optical octave, the bandwidth of the comb emitted from the laser is further broadened by launching the pulse train into a microstructure fiber [14]. The interval between adjacent frequencies in this periodically spaced “comb” is directly defined by the pulse repetition rate. The other degree of freedom is the rate of slipping of the carrier-envelope phase of these short pulses. The generation of ultrashort pulses requires that the group velocity (v_g) dispersion inside the laser cavity is minimized across the pulse’s frequency spectrum. This criterion is not directly related to the frequency comb spacing, since the individual mode frequencies correspond...
and in general we have
\[y_{lc} \]
for example, to generate a clock signal in microwave, or a swivel mirror re
tected spectrum inside
the pump laser power which in
frequencies both

\[s_{ctrl1} = f_{beat532} - f_{beat1064} = n \times f_{rep} + f_{ceo} - 2f_{cw}, \]
\[s_{ctrl2} = f_{beat1064} - 2f_{beat532} = -f_{ceo}. \]

Both beat signals, \(f_{beat1064} = n \times f_{rep} + f_{ceo} - f_{cw} \)
and \(f_{beat532} = 2n \times f_{rep} + f_{ceo} - 2f_{cw}, \) are recovered
with about 30 dB signal-to-noise ratio in a 100 kHz
bandwidth, as shown in Fig. 1. These beat signals
are regenerated electronically using the rf
tracking
oscillator/filter approach and are then mixed in the follow-
ing way to produce control signals related to \(f_{rep} \) and \(f_{ceo} \):
\[s_{ctrl1} = f_{beat532} - f_{beat1064} = n \times f_{rep} - f_{cw} \]
and \(s_{ctrl2} = f_{beat532} - 2f_{beat1064} = -f_{ceo}. \)
Therefore the
frequency/phase variations arising in both \(f_{rep} \) and \(f_{ceo} \)
are now directly manifested in the two control variables
\(s_{ctrl1} \) and \(s_{ctrl2} \) and are linked to the optical frequency
standard \(f_{cw}. \) These two signals can then drive the two
control transducers mentioned above to close the servo
loops.

To demonstrate the effectiveness of our orthogonalized
control scheme, we first show the stabilization of \(f_{rep} \)
the optical standard. Essentially we need to use only
the information of \(s_{ctrl1} \) to control \(l_c \) and thus \(f_{rep}. \) This
approach magnifies the noise of \(f_{rep} \) relative to the
optical standard by a factor \(\sim 3 \times 10^6. \) In doing so, we can
leave the variable \(f_{ceo} \) free-running since it has been ef-
effectively taken out of the control equation. In practice
we use \(l_c \) to control the phase of \(s_{ctrl1} \) to that of another
stable oscillator in the rf domain (which basically trans-
lates the frequency of the optical standard by a small offset
with negligible degradation of stability). Figure 2 shows
the time record of the frequency differences between
\(f_{cw} \) and \(2 \times 10^6 \times f_{rep}, \) with a standard deviation of 0.8 Hz
at 1-s counter gate time. Allan deviation calculated from
this time record is shown in the bottom trace of the figure.

It is satisfying to find that the tracking capability of the
comb system, at a level of \(10^{-15} \) or better, is more than
10 times more precise than the current optical standard
itself.

With the excellent tracking property of the comb
system, we expect the stability of the derived clock signal
of \(f_{rep} \) to be basically that of the optical standard, namely,
\(5 \times 10^{-14} \) at 1 s. To characterize the system, a reality
check would be to compare the optical clock signal against
other well-established microwave/rf frequency standards.
The international time standard, Cs clock, should certainly
be one of the references. However, the short term stability
of a commercial Cs atomic clock is only about \(5 \times 10^{-12} \)
at 1 s. For improved short term characterization of the
fs comb clock, we also use a hydrogen maser signal
transmitted over a 2-km fiber, and another in-house highly
stable crystal oscillator (short term stability better than
\(5 \times 10^{-13} \) at 1 s), which is slowly slaved to the Cs
reference for correcting the frequency offset and drift
[17]. Figure 3 summarizes the comparison results of the
optical clock against all three rf references. The upper

\[f_{rep} = n \times f_{rep} + f_{ceo} - f_{cw} \]

\[f_{ceo} = n \times f_{rep} - f_{cw} \]

\[f_{rep} = v_g / l_c \]

\[v_g = v_p \]

\[f_{rep} = v_g / l_c \]

\[v_p = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_g / l_c \]

\[v_p = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]

\[v_g = v_p \]

\[f_{rep} = v_p \]
heterodyne beat to magnify the frequency noise while making measurements at a low carrier frequency. The standard deviation of the beat frequency at 1-s averaging time is 0.0033 Hz. The resultant Allan deviation is shown as the curve in triangles in the bottom graph of the figure. Use of a more stable hydrogen maser signal further reduces the Allan deviation of the beat, to be just below 3×10^{-13} at 1 s (shown with open circles). The beat between the optical and the Cs clock is represented by the curve in diamonds. For comparison, we also display the Allan deviation associated with the Cs atomic clock (“worst case” specification) in circles and the Allan deviation of the iodine stabilized laser in squares. The data of the optical standard itself were obtained from heterodyne experiments between two similar laser stabilization systems. We note that the superior stability of our optical clock is currently not yet revealed by the microwave-clock based tests. A microwave source with a better short term stability can be substantially more expensive, even more than our optical system. Use of two optical clock systems would be the ultimate choice to perform thorough cross-checks of these optical clocks.

So far we have made an optical comb that has a well-defined frequency spacing but the absolute frequencies are uncertain since f_{ceo} is left floating. An attractive approach to stabilize the entire comb spectrum is to transfer the stability of a single optical standard to the whole set of the comb components throughout the bandwidth. To accomplish this task, we need the information carried by s_{ctrl2} to exert servo action on the comb by the second control parameter, in our case, the swivel mirror. When this second loop is activated, the impact to the first loop where f_{rep} is being stabilized through I_c is small. This is partly due to the fact that the dependence of f_{rep} and f_{ceo} on their respective control variables is to a large degree already well separated. The other part of the reason is that fluctuations of f_{ceo} develop on a slower time scale compared with that of f_{rep} and therefore a correspondingly slower servo loop is sufficient for stabilization of f_{ceo}.

We use the two original optical beats, namely, $f_{beat1064}$ and $f_{beat532}$ that are responsible for generating the control observables but are otherwise outside the servo loops, to characterize the performance of the orthogonal control of the comb. Figure 4 shows the counting record of the two beat frequencies of $f_{beat1064}$ and $f_{beat532}$. Both signals are shown with their mean values removed but indicated in the figure. Again the counter gate time is 1 s and the standard deviations of the two beat signals are 1.7 Hz for $f_{beat532}$ and 1.5 Hz for $f_{beat1064}$. This result suggests that every comb component over the entire optical octave bandwidth is following the cw laser standard at a level of 3.5×10^{-15}, again a factor of roughly 10 times better than the current optical standard itself. The future implication of this work is very clear: with an appropriately chosen optical standard, we can establish an optical frequency grid with lines repeating every 100 MHz over an octave bandwidth and with every line stable at the 1-Hz level.

The long term stability/reproducibility of the iodine stabilized laser is characterized by comparison against the
a Nd:YAG laser is stabilized on the R(56) 32-0 width, and the nonlinear cell is 1.2 m long and its vapor pressure maintained by its transition via a modulation transfer technique. The iodine scale massive installations. The stability (microwave and optical domains is exceptional, surpassing time with a single device. The frequency stability in both would have a great impact in frequency standards. certainty associated with any compact, cell-based optical is not statistically signifi

The iodine clock over a period of more than one year. In this long term comparison, basically we measured repeatedly the stabilized laser frequency using the Cs-referenced optical comb. During the measurement period, we changed a number of parameters associated with the comb and its generation, including f_{sep}, laser power, spectrum and pulse width, and the nonlinear fiber lengths, etc. The reference Nd:YAG laser is stabilized on the R(56) 32-0 a_{10} iodine transition via a modulation transfer technique. The iodine cell is 1.2 m long and its vapor pressure maintained by its cold finger (−15 °C) is 0.787 Pa. The pump (probe) laser power is ~1.0 (0.25) mW with collimated beam diameters of ~1.9 mm. The result of this rf-optical frequency intercomparison is shown in Fig. 5 and is consistent with our previous measurement [2]. However, we are now able to show that the measurement uncertainty over the entire year is about 126 Hz, or about 4×10^{-13}. Long term drift is not statistically significant. During the last month of the data record, after the optical comb system was further improved, the standard deviation was reduced to 16 Hz (6×10^{-14}). This result represents the lowest level of uncertainty associated with any compact, cell-based optical frequency standards.

A portable version of this iodine based optical clock would have a great impact in field applications: we will be able to make precision measurements in length and time with a single device. The frequency stability in both microwave and optical domains is exceptional, surpassing basically all common sources save only national-standards-scale massive installations. The stability (5×10^{-14} at 1 s) and reproducibility (4×10^{-13}) of the cw laser locked on the iodine transition can be further improved, possibly by another factor of 10. We fully expect such simple optical clock systems will be developed by various interested laboratories.

We thank J. L. Peng, T. Fortier, R. Shelton, S. Cundiff, S. Diddams, L. Hollberg, J. Bergquist, H. Kaptyn, John Kitchin, and J. Levine for useful discussions. The work at JILA is supported by NASA, NIST, NSF, and the Research Corporation. J. Y. and J. L. H. are staff members of NIST Quantum Physics Division.

*Corresponding author.
Email address: ye@jila.colorado.edu