
SIMULATION OF A QUANTUM PRIME

FACTORING ALGORITHM

by

Elizabeth E. Parsons

A Thesis Submitted to the Graduate School of

The University of Colorado

in Partial Fulfillment of the Requirements

for the Degree of

Master of Arts

Department of Mathematics

May 2016

Boulder, Colorado

ii

This thesis entitled:

Simulation of a Quantum Prime Factoring Algorithm

written by Elizabeth Ellen Parsons

has been approved for the Department of Mathematics

APPROVED:

Dr. Katherine Stange Date

Dr. Bengt Fornberg Date

Dr. Judith Packer Date

Dr. Divya E. Vernerey Date

The final copy of this thesis has been examined by the signatories, and we find that

both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

iii

ABSTRACT

Elizabeth Ellen Parsons

MA, Department of Mathematics

Simulation of a Quantum Prime Factoring Algorithm

Advisor: Dr. Katherine Stange

The intent of this thesis is to elucidate the quantum computing algorithm devel-

oped by Peter Shor called Shor’s algorithm. We will provide a detailed description

and simulation of the algorithm using MATLAB. Precursory information regarding

quantum phenomena such as superposition, entanglement, and Dirac notation, will

be described in great detail so that the reader may have a better understanding of

the operations in Shor’s algorithm.

Quantum computers store and transport information quite differently than their

classical counterparts. We will provide a quick overview of these differences to high-

light the benefit of utilizing quantum phenomena in a computer in order to create

massive parallel computations. Thus, reducing the complexity time for classical al-

gorithms used to solve problems such as the prime factorization problem and the

period finding problem.

The Quantum Fourier Transform is a principle component in Shor’s algorithm.

We will explicitly define the Quantum Fourier Transform and show that it is a unitary

transformation. We will also show how the Quantum Fourier Transform, as well as

another unitary transformation called the Hadamard transform, functions in Shor’s

algorithm.

iv

One of the initial parameters in Shor’s algorithm is to select a random variable.

We will examine the erratic effects of this random variable as well as how it effects the

probability of us successfully reducing an integer into a product of two primes. We

will provide a thorough analysis of the randomness in Shor’s algorithm. We will also

show how measuring the state of our quantum system as well as selecting a suitable

random variable impacts finding the period of the Quantum Fourier Transform which

in turn will either give a high or low probability of obtaining a factor of some integer.

v

To my parents,

I am forever grateful for your

unconditional love and support in all that I do.

vi

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude and appreciation for my

advisor, Dr. Katherine Stange. I am incredibly grateful for her immeasurable support

and encouragement throughout my studies. Her scope of knowledge as well as her

patience and flexibility were invaluable. Working with Dr. Stange has been a very

rewarding and positive experience. I am deeply indebted to her for devoting so much

time and guidance in every aspect of my masters research.

I have been privileged to learn from incredible professors whose enthusiasm for

mathematics has been quite influential in my studies. I would like to thank Dr.

Bengt Fornberg for inspiring me to explore areas of mathematics which would have

gone unnoticed. I am incredibly thankful for his passion of bringing mathematics

to life through modeling and simulation. I would also like to thank Dr. Judith

Packer for her kindness and ebullience. Her passion for making sure students truly

understand mathematics was pivotal for me. Furthermore, I would like to thank

Dr. Divya Vernerey. I am exceedingly grateful for her wholehearted compassion and

support through difficult times in my studies. Her guidance and understanding were

irreplaceable.

Thank you Dr. Bengt Fornberg, Dr. Judith Packer and Dr. Divya Vernerey for

your time and willingness to be members of my committee.

Finally, I would like to thank my parents and sister for their unconditional love.

I could not have done this without you. Thank you.

vii

TABLE OF CONTENTS

Page

Introduction .1

Entanglement . 3

Dirac Notation & Linear Algebra for Quantum Computing 5

Measurement .12

Introduction to Shor’s Algorithm . 13

Quantum Fourier Transform .14

Continued Fractions . 20

Exponent Factorization .23

Quantum Bits & Hadamard Transformation . 23

Shor’s Algorithm . 27

Simulation of Shor’s Algorithm . 31

Results of Simulation .36

Inverse Quantum Fourier Transform . 39

Complexity Time .41

Conclusion . 43

MATLAB Code . 46

References . 54

Appendix A . 57

Appendix B . 68

viii

LIST OF TABLES

Table 1 Peak Location & Absolute Value of g(k) .36

ix

LIST OF FIGURES

Fig. 1 Non-entangled Balls . 4

Fig. 2 Entangled Balls .5

Fig. 3 Sinusoidal Waveform in Time Domain . 16

Fig. 4 Approximate Spectrum of Sinusoidal Waveform . 16

Fig 5. Hadamard Transform on 3 Qubits . 26

Fig. 6 Absolute Value of g(k) . 34

Fig. 7 Absolute Value of g(k) on Local Minima . 35

Fig. 8 Results for Each Random Variable . 38

Fig. 9 Failed Run of Shor’s Algorithm . 39

Fig. 10 Inverse Fast Fourier Transform Output . 41

Fig. 11 Run Time for Shor’s Algorithm .42

1

INTRODUCTION

In ”Euclidis Elementa”, the greek mathematician Euclid proposed that every

composite number is measured by some prime number (Heiberg & Fitzpatrick, 2008,

p. 218). That is to say, every composite integer can be factored into a product

of prime integers. Many modern day cryptosystems utilize this to create secure

means of sharing private information. The most commonly used cryptosystem is the

asymmetric, also called public-key, cryptographic scheme RSA named after Ronald

Rivest, Adi Shamir and Leonard Adleman. The security of RSA relies on the fact

that factoring a large composite integer into a product of two prime integers can not

be accomplished in polynomial time (Rivest et al., 1977).

We say an algorithm runs in polynomial time, P, if the number of steps required to

find the solution for a given input is bounded by a polynomial functionO(nk) where k

is a nonnegative integer and n is the complexity of the input (Terr, 2016). Factoring

the product of large prime numbers can be done using sub-exponential algorithms.

The run time of sub-exponential algorithms are faster than any exponential algorithm

but significantly slower than any polynomial algorithm. Hence, factoring composite

integers which are hundreds of digits long into product of two prime integers is

impractical to implement on classical computers.

The most efficient classical algorithm used to factor integers is the general num-

ber field sieve (GNFS) algorithm. The sub-exponential complexity of the GNFS

algorithm is

exp
((64

9

) 1
3
(ln(N)

1
3)(ln(ln(N))

2
3

)
.

2

Using the GNFS algorithm, RSA Laboratories estimated factoring a 2048-bit key, an

integer 617 digits long, would require 9× 1015 years to factor on a standard desktop

(“RSA Laboratories”). This is more than the number of atoms in the observable

universe (4× 1081 atoms) (“Shannon Number,” 2016).

In his paper “Simulating Physics with Computers”, Richard Feymann asked: ”By

using the properties of quantum mechanics in a computer, can we compute more

efficiently then on a classical computer?”. MIT applied mathematician, Peter Shor,

took Feymann’s question one step further. He developed an algorithm, now called

Shor’s Algorithm, which demonstrated that the complexity time it takes to factor a

large composite integer into a product of two primes can be reduced to polynomial

time if implemented on a quantum computer. Thus, the security of RSA would be

compromised since RSA relies solely on the fact that factoring a large integer takes

an impractical amount of time to compute.

In 2001, a group at IBM successfully implemented Shor’s Algorithm on a quantum

computer. They were able to factor 15 into its product of primes 3 and 5 using a

Nuclear Magnetic Resonance (NMR) quantum computer with 7-qubits (Vandersypen

et al., 2001, p. 883 - 887). Since then, the current largest integer factored on a NMR

quantum computer is 56153 (Dattani & Bryans, 2014).

3

ENTANGLEMENT

Entanglement plays a crucial role in quantum computing. It is thought to be

the main reason certain algorithms, especially Shor’s Algorithm, can out-perform its

classical counterparts (Kendon & Munro, 2005). Quantum computing and quantum

information processing utilize the quantum phenomenon of entanglement. Because

of entanglement, quantum computers are able to perform arithmetic and logical

operations on many qubits simultaneously as compared to a classical computer which

can only perform operations in an evolutionary fashion i.e. bit-by-bit.

Quantum entanglement is a physical phenomenon which occurs when pairs or

groups of particles behave in such a way that the states of the particles can not be

described independently from one another. Altering the state of one particle will

effect the state of the other particles. Furthermore, the distance between entangled

particles is irrelevant. Meaning, changing the state of one particle will still change

the state of the other particles even if they are light years away.

For example, suppose two observers, A and B, are each holding a box with a ball

inside. One box contains a red ball and the other box contains a blue ball. Both

observers do not know which color of ball they are holding. If observer A opens

the box and discovers a red ball, then we know with 100% certainty that observer

B must be holding the blue ball. As illustrated in Figure 1, the color of the ball

remains unchanged for both observers when the boxes are open and when the boxes

are closed.

4

Figure 1: Non-Entangled Balls

Now suppose observer A and observer B are in some parallel universe where each

ball can be both red and blue at the same time. We call this superposition. If

observer A opens her box and discovers she has a red ball, then we know with 100%

certainty observer B is holding a blue ball prior to observer B even opening his box.

Remember that observer B also had a ball in superposition, e.g. both red and blue

at the same time. Equally important, observer B didn’t open his box so how do we

know with 100% certainty observer B is holding the blue ball? Something strange

happened when observer A opened her box which collapsed the state of observer B’s

ball. The only way to describe this interaction is to say that observer A and observer

B’s balls are entangled.

5

Figure 2: Entangled Balls

DIRAC NOTATION & LINEAR ALGEBRA

FOR QUANTUM COMPUTING

Before we represent an entangled quantum state mathematically, we will intro-

duce the Dirac, or Bra-ket, notation. Dirac notation is a different, perhaps more

compact way of handling vectors and their corresponding bases. David Mermin de-

scribed it best. “Mathematicians tend to despise Dirac notation, because it can

prevent them from making important distinctions, but physicists love it, because

they are always forgetting such distinctions exist and the notation liberates them

from having to remember.” (Bacon).

In quantum computing, we will almost exclusively be living in a Hilbert space.

A Hilbert space, H, is a complete inner product space composed of N-dimensional

complex vectors, CN . Since we will consider only Hilbert spaces which are finite

dimensional, we can choose a finite basis of vectors. A basis is a set of linearly

6

independent vectors, {|bi〉 : i ≥ 0}, which span the vector space. Dirac notation

denotes column vectors as “kets”, |ψ〉, and their corresponding dual vectors as “bras”,

〈ψ|, where bras are the Hermitian transpose of kets i.e. 〈ψ| ∈ H†.

As an illustration, we can represent the following column vectors in Dirac notation

|00 . . . 0〉 =



1

0

0

...

0


|00 . . . 1〉 =



0

1

0

...

0


|11 . . . 0〉 =



0

...

0

1

0


|11 . . . 1〉 =



0

0

0

...

1


.

For every ket, there exists a unique bra. Hence, the corresponding dual vectors for

these are

〈00 . . . 0| =
(

1 0 0 . . . 0

)
〈00 . . . 1| =

(
0 1 0 . . . 0

)
〈11 . . . 0| =

(
0 0 . . . 1 0

)
〈11 . . . 1| =

(
0 0 0 . . . 1

)
.

There is one particular vector to be aware of when using Dirac notation and

that is the 0 vector. The 0 vector is never written as |0〉, which we will see later.

Furthermore, Shor’s algorithm will represent vectors using digits rather then binary

7

numbers. As an example, for some computational basis {|0〉 , |1〉 , . . . , |N − 1〉}, the

N-dimensional vector space is composed of the column vectors

|0〉 =



1

0

0

...

0


|1〉 =



0

1

0

...

0


|2〉 =



0

0

1

...

0


|N − 1〉 =



0

0

0

...

1


.

Using digits instead of their binary representation makes the notation compact

and more manageable when we have very large bases.

We say a basis is orthonormal if every vector is a unit vector, i.e. ‖ |v〉 ‖ = 1,

and orthogonal to the other vectors. To describe an orthonormal basis we use the

Kronecker delta function, δi,j, where

δi,j =

 1 i = j

0 i 6= j

Hence, a finite basis, B = {|bi〉} ∈ H, is orthonormal if

〈bi|bj〉 = δi,j for all bi, bj ∈ B.

Every quantum state, |ψ〉 ∈ H, with respect to an orthonormal basis {|bi〉}, can

8

be represented as

|ψ〉 =
N∑
n=1

ψn |bn〉 for some ψn ∈ C.

All coefficients of the quantum state, ψn, must by assumption obey

ψ2
1 + ψ2

2 + . . .+ ψ2
n = 1.

Say we have |v〉 and |w〉 where v, w ∈ C. Then the inner product between |v〉

and |w〉 outputs a scalar so that

〈v|w〉 =

(
v∗1 v∗2 . . . v∗n

)


w1

w2

...

wn


= v∗1w1 + v∗2w2 + . . .+ v∗nwn

=
n∑
i=1

v∗iwi.

where * denotes the complex conjugate. Another linear operator often performed is

the outer product denoted |v〉 〈w| and operates as follows.

9

|v〉 〈w| =



v1

v2
...

vn


(
w∗1 w∗2 . . . w∗n

)

=



v1w
∗
1 v1w

∗
2 . . . v1w

∗
n

v2w
∗
2 v2w

∗
2 . . . v2w

∗
n

...
...

...
...

vnw
∗
1 vnw

∗
2 . . . vnw

∗
n


.

Dirac notation allows us to represent any arbitrary ket as a linear superposition of

orthonormal basis states. The superposition principle of quantum mechanics states,

if |v1〉 and |v2〉 are two states in some quantum system, |ψ〉, then a superposition

of the two states is anything of the form |ψ〉 = α |v1〉 + β |v2〉 where α, β ∈ C and

|α|2 + |β|2 = 1 (Nielsen & Chuang, 2000, p. 94). Often α and β are referred to as the

complex amplitudes or coefficients of a quantum state. Furthermore, the probability

of being in state |v1〉 is |α|2 and the probability of being in state |v2〉 is |β|2.

Two bases which are commonly used in quantum computing are the computa-

tional basis, {|0〉 , |1〉}, and the Hadamard basis, {|+〉 , |−〉}. The basis vectors of

the computational basis can be represented as column vectors

|0〉 =

 1

0

 |1〉 =

 0

1

 .

10

This is why we never denote the 0 vector as |0〉. The column vector representation

of the Hadamard basis vectors is

|+〉 =
1√
2

(|0〉+ |1〉) |−〉 =
1√
2

(|0〉 − |1〉) .

Throughout the rest of this thesis, we will be interested in combining quantum

state vectors and creating larger Hilbert spaces. The tensor product is a way to

expand smaller Hilbert spaces into even larger Hilbert spaces. We write the tensor

product as follows: if |V 〉 ∈ H1 and |W 〉 ∈ H2 where the dim(|V 〉) = m and the

dim(|W 〉) = n then the tensor product of |V 〉 and |W 〉 is written as |V 〉 ⊗ |W 〉 ∈

H1 ⊗ H2 where dim(H1 ⊗ H2) = mn. The tensor product is often abbreviated as

|VW 〉, |V 〉 |W 〉 and |V,W 〉.

The tensor product has the following properties. Let |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2

then,

(1) For some scalar c ∈ C,

c(|ψ1〉 ⊗ |ψ2〉) = (c |ψ1〉)⊗ (|ψ2〉)

= (|ψ1〉)⊗ (c |ψ2〉).

(2) For some |φ1〉 ∈ H1,

(|ψ1〉+ |ψ2〉)⊗ |φ1〉 = |ψ1〉 ⊗ |φ1〉+ |ψ2〉 ⊗ |φ1〉 .

11

(3) For some |φ2〉 ∈ H2,

|ψ1〉 ⊗ (|ψ2〉+ |φ2〉) = |ψ1〉 ⊗ |ψ2〉+ |ψ1〉 ⊗ |ψ2〉 .

With the above tensor product properties we can now define entanglement. A

quantum state, |ψ〉, is entangled if there are no single states |v〉 and |w〉 such that

|ψ〉 = |v〉⊗ |w〉 (Nielsen & Chuang, 2000, p. 96). As an illustration of entanglement,

we will show the basis vector, |ψ〉 = 1√
2
(|00〉+ |11〉) is entangled.

Proof:

Suppose we have two quantum states |φ1〉 = α |0〉 + β |1〉 and |φ2〉 = γ |0〉 + δ |1〉

where α, β, γ, δ ∈ C. We need to show that |ψ〉 6= |φ1〉 |φ2〉 so we will proceed with a

proof by contradiction. Assume |ψ〉 = |φ1〉 |φ2〉. Then

|ψ〉 = (α |0〉+ β |1〉)(γ |0〉+ δ |1〉)

= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 .

For this to be true, γδ = 0. When γ = 0, αγ = 0 6= 1√
2
. Similarly, if δ = 0 then

βδ = 0 6= 1√
2
. This means |ψ〉 can not be decomposed into a product of the two

states |φ1〉 and |φ2〉 which shows |ψ〉 is entangled.

12

MEASUREMENT

The quantum systems we have been describing are closed, meaning they do not

suffer from unwanted interactions from the surrounding environment. This is great,

however far from satisfying. More often then not, experimentalists want to know

what is happening inside the quantum system. Just like in our example of entangle-

ment, both observers wanted to know which color ball they were holding. In order

to see inside a closed quantum system, we must make a measurement. Note that

measuring the state of a quantum system is sometimes referred to as observing the

state of a quantum system.

A major consequence of measuring the state of a quantum system is that the

result is irreversible. Once a measurement is made, the state of the quantum system

can never return to its original state prior to the measurement. As we will see in

Shor’s Algorithm, if you need to make a measurement on the state of a quantum

system, you better hope the result is what you want because there is no way of going

back. When we measure the state of an unknown closed quantum system, we change

that state in some indeterminate way. This is called quantum indeterminacy (Jha

et al.) Quantum indeterminacy is the basis of the Heisenberg Uncertainty Principle

and the No Cloning Theorem. It is often exploited to detect any eavesdroppers as

well as determine how much information has been compromised or intercepted, for

example in Quantum Key Distribution (Rubenok, 2013)

13

INTRODUCTION TO SHOR’S ALGORITHM

Now that we have the necessary quantum mechanical foundations and phenomena

as well as the notation to describe quantum systems, we will elaborate on certain

subject matter which are crucial to Shor’s algorithm and hopefully elucidate the

algorithm. The prime factorization problem Shor’s algorithm solves is

Given a integer N, find exactly two primes p and q such that N = pq.

The prime factorization problem used here is intended for factoring large integers.

The quantum part of Shor’s algorithm has a run time of

O
(
(logN)2 · (log(logN))

)
which is significantly more efficient than the GNFS algorithm which has a run time

of

O
(
exp

(
(logN)1/3 · (log(logN))2/3

))
.

In other words, Shor’s algorithm solves the prime factorization problem for large

integers in polynomial time by finding the period, r, of some superposed periodic

function f(x) = ax (mod N) and then applying classical algorithms to find a factor

corresponding to the period. If r is even, then for some integer x, we can solve

gcd(xr/2−1, N) and gcd(xr/2 + 1, N) which will ideally give a factor of N . If r is not

even then xr/2 ± 1 will not be an integer which means we do not have a valid prime

factor of N . When this occurs, we can repeat the process and solve using a different

14

r until we get the right factors. The most challenging part of this prime factorization

problem, which Shor was able to execute beautifully, is finding the period.

Shor’s Algorithm can be divided into two parts. The first part takes the prime

factorization problem and turns it into the period finding problem which can be

implemented on a classical computer. The second part of the algorithm finds the

period using the Quantum Fourier Transform. It would seem that both parts could be

implemented on a classical computer. However, the intent is to factor huge positive

composite integers. Applying a Discrete Fourier Transform to such a large set would

be impractical and inefficient. Shor’s Algorithm relies on a quantum computer’s

ability to compute simultaneous operations at once on quantum states, i.e. states

in superposition. This massive parallel computing is derived from entanglement

and superposition. So instead of performing the DFT multiple times on a classical

computer in hopes of finding the period, we can compute the QFT once for all states

which will return the period with high probability.

QUANTUM FOURIER TRANSFORM

In mathematics, sometimes we are not able to find a solution to a problem simply

by how the problem is set up. When this happens, we can apply some sort of

transformation to the problem. By doing so we can transform the problem into

another problem where a solution is known. The Discrete Fourier Transform (DFT)

is a great example of this. The DFT takes some vector of input data, applies a

transformation on the vector, then outputs the transformed data. Commonly in

signal processing this would be like taking a signal which resides in some time domain,

15

apply a transformation to that signal and the result outputs all of the frequencies

within that signal i.e. the output of the signal is now in the frequency domain. We

aren’t actually changing the data itself. We are simply transforming it.

Suppose we have a vector of length N with input values x0, . . . , xN−1 ∈ C. The

DFT takes these input values and outputs a vector of transformed values call them

y0, . . . , yN−1 ∈ C by performing the following transformation (Riley et al., 2006 p.

462)

yk ≡
1√
N

N−1∑
j=0

xje
2πijk/N .

Let the roots of unity be written as ω = e2πi/N (Chen, 2001, p. 24). Then the DFT

has the following matrix representation



y(0)

y(1)

y(2)

y(3)

...

y(N − 1)


=

1√
N



1 1 1 1 . . . 1

1 w w2 w3 . . . wN−1

1 w2 w4 w6 . . . wN−2

1 w3 w6 w9 . . . wN−2

...
...

...
...

...
...

1 wN−1 wN−2 wN−3 . . . w





x(0)

x(1)

x(2)

x(3)

...

x(N − 1)


We illustrate the DFT by using the Fast Fourier Transform to compute the DFT

on a continuous sinusoidal waveform (see Figure 3 and Figure 4). The FFT decom-

poses a DFT into several DFT’s on smaller intervals (Smith, 1997, p. 157). This is

an incredibly efficient algorithm for computing the DFT on a classical computer.

16

Figure 3: Sinusoidal Waveform in Time Domain

Figure 4: Approximate Spectrum of Sinusoidal Waveform

17

The Quantum Fourier Transform (QFT) is the same linear transformation as the

DFT applied to quantum bits. More specifically, the QFT applies a DFT to the

amplitudes of some quantum state. As we will later see, Shor’s Algorithm exploits

this transformation in order to solve the factorization problem. The QFT acting on

some orthonormal basis |0〉 , . . . , |N − 1〉 is a linear operator written as

QFT (|x〉) =
1√
N

N−1∑
x=0

e2πixk/N |k〉 .

We will prove that the QFT is a unitary transformation (Nielson & Chuang,

2000). Let F denote the QFT. We will show F is a unitary operator, i.e. F †F =

FF † = I. Write |ψ̃〉 = F |ψ〉 for some quantum state |ψ〉. Here |ψ̃〉 represents the

quantum state after the transformation has been applied. We can write the unitary

operator, F , as

F =
1√
N

N−1∑
j′=0

N−1∑
k′=0

e2πij
′k′/N |k′〉 〈j′|

=
1√
N

N−1∑
j′,k′=0

e2πij
′k′/N |k′〉 〈j′| .

The Hermitian transpose of our unitary operator, F †, can be written as

F † =
1√
N

N−1∑
j=0

N−1∑
k=0

e−2πijk/N |j〉 〈k|

=
1√
N

N−1∑
j,k=0

e−2πijk/N |j〉 〈k| .

18

And now for the proof that F is indeed a unitary transformation.

F †F =
1√
N

N−1∑
j,k=0

e−2πijk/N |j〉 〈k| 1√
N

N−1∑
j′,k′=0

e2πij
′k′/N |k′〉 〈j′|

=
1

N

N−1∑
j,k=0

N−1∑
j′,k′=0

e−2πijk/N |j〉 〈k| e2πij′k′/N |k′〉 〈j′|

=
1

N

N−1∑
j,k=0

N−1∑
j′,k′=0

e2πi(j
′k′−jk)/N |j〉 〈k|k′〉 〈j′|

=
1

N

N−1∑
j,k,j′=0

e2πi(j
′−j)k/N |j〉 〈j′|

Note if j = j′ then e2πi(j
′−j)/N = e0 = 1. If j 6= j′ then e2πi(j

′−j)/N = (e2πi)(j
′−j)/N .

Recall that e2πi = 1. Hence (e2πi)(j
′−j)/N = 1(j′−j)/N = 1. This means we can write

F †F as

F †F =
N−1∑

j,k,j′=0

|j〉 〈j′| .

Any arbitrary quantum state, |ψ〉, can be represented as a linear combination of

basis vectors {|N〉 : |0〉 , . . . , |N − 1〉}

|ψ〉 =
N−1∑
N=0

φN |N〉

where
∑N−1

N=0 φ
2
N = 1. Since the basis is orthonormal, then the expansion coefficients

19

can be written as

φN = 〈N |ψ〉 .

This means the quantum state can be written as

|ψ〉 =
N−1∑
N=0

φN |N〉

=
N−1∑
N=0

|N〉φN

=
N−1∑
N=0

|N〉 〈N |ψ〉

=
N−1∑
N=0

|ψ〉 .

The only way this is true is if
∑N−1

N=0 |N〉 〈N | = I. We call this representation

of the identity the completeness relation or the resolution of the identity. By the

completeness relation

F †F =
N−1∑
j,j′=0

|j〉 〈j′| = I.

Showing that FF † = I is similar so we omit that here. Therefore we can conclude

that F is a unitary operation. Furthermore, because F represented the QFT, we can

conclude that the QFT is a unitary transformation. This is important because a

quantum circuit implementing the QFT can run in reverse to implement the Inverse

Quantum Fourier Transform (IQFT) if needed.

20

CONTINUED FRACTIONS

The continued fraction algorithm is an incredibly important step in Shor’s al-

gorithm. By approximating real numbers as rationals, we can obtain a sequence of

convergents to a continued fraction. Within this sequence of convergents, we will

discover the period of the QFT that we seek in Shor’s algorithm. Once we find the

period using the continued fractions algorithm, we use the exponent factorization

method to solve the factorization problem.

For any x ∈ Q and x ≥ 0, we can write x as a finite continued fraction. A

finite continued fraction is a collection of partial quotients, or simply quotients,

[a0, a1, . . . , an] ∈ Z+ written as

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

Sometimes we denote our rational number, x, as [a0, a1, . . . , an] (i.e. x ≡ [a0, a1, . . . , an])

(Nielsen & Chuang, 2000, p.635 - 637). Also, if there is no loss of ambiguity, finite

continued fractions are simply called continued fractions. We can calculate conver-

gents of the continued fraction as follows. Let pn and qn be real numbers so that p0,

21

p1, q0 and q1 are

p0 = 0

p1 = 1 + a0a1

q0 = 1

q1 = a1.

We can inductively write the remaining pn and qn as

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2.

The convergents of a continued fraction are of the form

pn
qn

=
anpn−1 + pn−2
anqn−1 + qn−2

.

The continued fraction algorithm will terminate after a finite number of iterations

(Hardy & Wright, 2008, p. 166). As an example, we will find the continued fraction

representation of 181
101

as well as the sequence of convergents for this rational number.

First we will use Euclid’s algorithm to find the partial quotients. In other words,

22

find the greatest common divisor of 181 and 101 as follows

181 = 1 · 101 + 80

101 = 1 · 80 + 21

80 = 3 · 21 + 17

21 = 1 · 17 + 4

17 = 4 · 4 + 1

4 = 4 · 1 + 0.

The partial quotients of the continued fraction for 181
101

are read off from the algorithm

as [1, 1, 3, 1, 4, 4]. Therefore the continued fraction representation of 181
101

is

181

101
= 1 +

1

1 +
1

3 +
1

1 +
1

4 +
1

4

.

Using the partial quotients we find the convergents, pn
qn

, of this continued fraction to

be

{
0, 1,

3

4
,

4

5
,

19

24
,

80

101

}
.

23

If x ∈ R\Q, a continued fraction expansion exists but it is infinite. For example,

the continued fraction representation of π is infinite. Although important, We will

only be handling finite continued fractions in Shor’s algorithm.

EXPONENT FACTORIZATION

Once we derive the period from the sequence of convergents, which will be dis-

cussed in greater detail in the steps of Shor’s algorithm, we apply the exponent

factorization method to find the greatest common divisor of the integer n to be fac-

tored with another integer. The exponent factorization method we used is directly

from (Trappe & Washington, 2006) and works as follows.

Suppose we have some exponent, which in Shor’s algorithm this will be the period

r, where r > 0 such that for some a ∈ N we have ar ≡ 1 (mod n). Write the

exponent, r, as a product of an odd integer, m, and some power of two, 2k, so that

r = 2km. Let b0 ≡ am (mod n) and bu+1 ≡ b2u (mod n) for 0 ≤ u ≤ k − 1.

1. If b0 ≡ 1 mod n, stop. The factorization method has failed to find a factor of n.

2. If, for some u, bu ≡ −1 (mod n), stop. The method has failed.

3. If bu+1 ≡ 1 (mod n) but bu 6≡ ±1 (mod n), then gcd(bu − 1, n) gives a nontrivial

factor of n.

QUANTUM BITS & HADAMARD TRANSFORMATION

Quantum Computers are fundamentally different than classical/digital comput-

ers. They utilize the quantum mechanical phenomena superposition and entangle-

24

ment to perform operations. Classical computers can only accept data if it is encoded

into binary digits or bits and then perform operations using logic gates such as AND

and OR. Bits can only ever be 0 or 1 at any given time. On the other hand, quan-

tum computers can accept encoded data which is in a superposition of states 0 and

1. We refer to these superposition bits as quantum bits or qubits for short. The

most common qubit used in quantum computing is the quantum state, |ψ〉, written

with respect to the computational basis {|0〉 , |1〉} as |ψ〉 = α |0〉+ β |1〉 where where

α, β ∈ C and |α|2 + |β|2 = 1. It is important to note that qubits are only in a state

of superposition before any measurement has been made. Once a measurement is

made on the quantum state, the superposed state of a qubit collapses to |0〉 or |1〉.

We never actually see that a qubit is in a superposition because by simply measuring

the state, we cause an effect which collapses the state.

Gate operations applied on quantum bits are unitary transformations. One im-

portant example is the Hadamard transformation. The Hadamard transform per-

forms an orthogonal, symmetric and linear operation on 2n complex or real numbers.

The Hadamard transform is a multidimensional 2n × 2n DFT normalized to be uni-

tary. We can find the values for any 2n×2n Hadamard matrix by using the following

equation

(Hn)i,j =
1√
2n

(−1)i·j

where i and j are the i-th row and j-th column entry in a 2n × 2n matrix. For

example, the Hadamard transform used most in quantum computing, and which will

be used in Shor’s algorithm, is the matrix

25

H1 =
1√
2

 1 1

1 −1


which is exactly a DFT of size 2. Shor’s algorithm uses the Hadamard transform

as an initial step in the algorithm because the Hadamard transform maps n-qubits

which have been initialized with |0〉 e.g. |1, 0〉+ |2, 0〉+ . . .+ |n, 0〉, to a superposition

of 2 · n orthogonal states of equal weight with respect to the computational basis

{|0〉 , |1〉}. In other words, the Hadamard transform maps the computational basis

to the Hadamard basis as follows

|0〉 → |0〉+ |1〉√
2

|1〉 → |0〉 − |1〉√
2

.

Thus when we apply the Hadamard transform to a quantum state in superposi-

tion, |ψ〉 = α |0〉+ β |1〉, we obtain the quantum state, |ψ′〉, written as

|ψ′〉 = α

(
|0〉+ |1〉√

2

)
+ β

(
|0〉 − |1〉√

2

)
=

(
α + β√

2

)
|0〉+

(
α− β√

2

)
|1〉 .

The Hadamard transform essentially transforms the range of states that a quantum

computer can be in. By doing so we can take short cuts which can not be done on

a classical computer. This will allow us to do some computations faster.

26

In Shor’s algorithm, we will want to apply the Hadamard gate to qubits in some

initial state. We know that the Hadamard gate maps |0〉 to |0〉+|1〉√
2

. A schematic

representation of applying the Hadamard gate, H, to three qubits, |0〉, is illustrated

in figure 5.

Figure 5: Hadamard Transform on 3 qubits

The schematic tells us once we apply a Hadamard gate to three qubits we obtain

a superposition of eight qubits. In general, the Hadamard gate transforms some ket

|x〉 into a superposition of (−1)x |x〉+ |1− x〉.

There is another way to visualize an m-qubit Hadamard transformation on some

state, which will also be helpful in Shor’s algorithm (Kaye, Laflamme & Mosca, 2007,

p. 100). Let |0〉⊗m denote the tensor product of m-qubits each in the state |0〉 i.e.

|0〉⊗m = |0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉︸ ︷︷ ︸
m times

.

An m-qubit Hadamard transformation is denoted as H⊗m. Therefore m-qubit

27

Hadamard transformations is written as

H⊗m |0〉⊗m =
1√
2m

(|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ . . .⊗ (|0〉+ |1〉)︸ ︷︷ ︸
m times

.

If we expand out this tensor product we will find that the transformation can be

written as the sum

H⊗m |0〉⊗m =
1√
2m

∑
x∈{0,1}m

|x〉 .

SHOR’S ALGORITHM

If we want a quantum computer to physically act like a classical computer, the

quantum computer needs a way to keep track of any computations that occur with

quantum bits. To do so we use quantum memory registers. A memory register in

a classical computer contains data, i.e. bits, and records any operations performed

on those bits. A quantum memory register does the same thing for quantum bits

(Mollin, 2001, p. 28). We can think of quantum memory registers as just a string of

qubits (Vries, 2012, p. 20).

Before implementing Shor’s algorithm (Shor, 1994), create a quantum memory

register composed of two registers, an input register call it register 1 and an output

register call it register 2. The state of the qubits in register 1 will be initialized to

some superposed quantum state and the state of the qubits in register 2 will contain

the values of the periodic function f(x) = |ax (mod n)〉. According to (Kendon &

28

Munro, 2005), if register 2 has 2n qubits, we have a high enough accuracy to find

the period from one measurement.

Shor’s Algorithm

1. Pick a composite integer to factor and call it n.

2. Find an integer m such that n2 ≤ 2m < 2n2.

3. Choose a random integer a such that 1 < a < n and gcd(a, n) = 1.

4. Create two registers. Initialize register 1 and register 2 of size 2m both to state

|0〉 so that the composite system has the state |ψ〉 = |0〉 |0〉. For now, we will

use this tensor product notation to distinguish between registers, e.g. if we

initialize register 1 to |a〉 and register 2 to |b〉, then the composite system has

the state |ψ〉 = |a〉 |b〉. We can think of a composite quantum system as the

tensor product of multiple qubits e.g. |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 ⊗ . . .⊗ |ψm〉.

5. Apply the Hadamard gate, H, to each of the m qubits in register 1 to create a

superposition of states. As we’ve shown earlier, when we apply a Hadamard

gate to m qubits we obtain a superposition of 2m qubits normalized by 1√
2m

.

So applying the Hadamard gate to m qubits in register 1 leaves the computer

in the superposed quantum state

|ψ〉 =
1√
2

2m−1∑
x=0

|x〉 |0〉 =
1√
2

[|0〉+ |1〉+ |2〉+ . . .+ |2m − 1〉] |0〉 .

29

6. Compute f(x) = ax (mod n) for 0 ≤ x < 2m which will be

|ψ′〉 =
1√
2m

2m−1∑
x=0

|x〉 |axmod n〉

=
1√
2m

[
|0〉 |f(0)〉+ |1〉 |f(1)〉+ . . .+ |2m − 1〉 |f(2m − 1)〉

]
.

Leave the results in register 2.

7. Make a measurement on register 2. By doing so we will discover that register

2 will be in some base state |ax (mod n)〉. By measuring register 2 we are

collapsing the superposed quantum state into a smaller superposed quantum

state.

8. Apply the QFT to our newly measured quantum state |x, f(u)〉 as follows

QFT (|x〉) =
1√
2m

2m−1∑
x=0

e2πixk/2
m |k〉 .

9. From this we obtain the sum

1√
W

2m−1∑
x=0

g(k) |k〉

where W is the total number of qubits in our measured quantum state which

was made in step 7 of this procedure. The function g(k) is given by

g(k) =
1√
2m

2m−1∑
x=0

e2πixk/2
m

.

30

which is just the DFT of some binary sequence.

10. Choose one of the 2m integers which has a high probability of being a peak

in our QFT plot. Note that if this were actually implemented on a quantum

computer we would not have all the 2m. After we make a measurement and

apply the QFT, the quantum computer will only output a single point from

the 2m integers with high probability of this point being near a peak. As we

will see in the plot of the QFT in our example, it is easy to pick the right point

or peak since we implemented this classically. It is important to select, or have

the quantum computer output, one of the 2m integers which is closest to being

a peak because we will have a higher probability of obtaining the period of our

periodic function. This in return will allow us to find a factor of n with high

probability. We will show results for using integers close to a peak and integers

with low probabilities of being a peak.

11. Using the integer selected in step 10, we need to create a continued fraction.

If P is the value we selected then find the continued fraction for P
2m

. Once

we obtain the continued fraction, find the convergent values, [b0, b1, . . . , bn] by

calculating

pn
qn

=
bnpn−1 + pn−2
bnqn−1 + qn−2

where p0 = b0, p1 = b1b0 +1, q0 = 1 and q1 = b1. This will output a sequence of

fractions. Within that sequence, find the last denominator which is less then

n. This denominator is the period, r, which is what we’ve been solving for.

31

Check that ar ≡ 1 mod n.

12. Apply the exponent factorization method to factor n using the new found

period r. Write the period as r = 2km where k ≥ 0 and m is some odd

integer. If the exponent factorization method fails, then choose a different

random variable a in step 3 of this procedure, and repeat steps 4 through 12

until a factor of n is found.

SIMULATION OF SHOR’S ALGORITHM

Now that we know the procedure, we will demonstrate Shor’s algorithm by fac-

toring 33 into its product of primes 3 and 11. Set the initial parameters to n = 33,

the random variable a = 7 and the number of qubits m = 11. Recall that the

random variable must satisfy 1 < a < n and the number of qubits is derived from

n2 ≤ 2m < 2n2. The next step is where we start to deviate away from the quantum

phenomenon which creates a massive parallelism for computing. Quantum or not

we need to compute the function f(x) = |ax (mod n)〉 for 1 ≤ x ≤ 2048. Note that

MATLAB starts the indexes at 1 for summations whereas Shor’s algorithm initiates

the index from 0 and runs to 2m − 1. Here we run from 1 to 2048.

Because we are restricted to the physical properties of classical mechanics, we do

not initialize the input register to a superposition of quantum states. We physically

can not do that if we don’t have access to the properties of quantum mechanics. The

benefit to finding all f(x)’s using a quantum computer is that this computation would

just happen once. Meaning, we are able to perform all 2m modular exponentiation

32

functions simultaneously. Once we compute f(x) = |ax (mod n)〉, we obtain the

quantum state

|ψ〉 =
1√

2048

[
|0, 1〉+ |1, 7〉+ |2, 16〉+ |3, 13〉+ |4, 25〉+

|5, 10〉+ |6, 4〉+ |7, 28〉+ |8, 31〉+

|9, 19〉+ |10, 1〉+ . . .+ |2047, 28〉+ |2048, 31〉
]
.

The way we bypassed handling a superposed quantum state in a digital register

is by representing |ψ〉 as one long column vector of length (211)2 = 4194304. Next

we need to measure the quantum state (or column vector) |ψ〉. When we make a

measurement on a quantum computer, we have no way of knowing which state the

closed quantum state will collapse to. However, we do know that there is equal

probability of collapsing the quantum state to one of kets within the quantum state.

This is because all kets are weighted equally by the fraction 1√
2m

.

In order to simulate the effect of a measurement collapsing a quantum state,

we explicitly defined f(x) to one of the values in its periodic sequence. So for this

simulation, we defined our new post-measurement quantum state, |ψ′〉, to be all kets

which are 7 modulo 33. That means we can write |ψ′〉 as

|ψ′〉 =
1√
204

[|1, 7〉+ |11, 7〉+ |21, 7〉+ |31, 7〉+

|41, 7〉+ |51, 7〉+ . . .+ |2031, 7〉+ |2041, 7〉].

33

Recall that the tensor product between qubits can be represented as |a, b〉 or |a〉 |b〉

for some qubit a in register 1 and some qubit b in register 2. This notation helps us

distinguish between the values contained in each register. Since all of the important

outputs of f(x) are stored in register 2, we only care to make a measurement on

register 2. For notational purposes we drop the second half of each ket in |ψ′〉 so

that

|ψ′〉 =
1√
204

[|1〉+ |11〉+ |21〉+ |31〉+

|41〉+ |51〉+ . . .+ |2031〉+ |2041〉].

If we were using a quantum computer, the next step would be to apply the

Quantum Fourier Transform to |ψ′〉 and then compute the g(k) values. We, on

the other hand, applied the Fast Fourier Transform to the modular exponentiation

functions and plotted the absolute values of g(k). The peaks of the absolute values

of g(k) should correspond to the frequency of the DFT sequence. This should be

around 2m/r = 211/10 = 2048/10. We call 2m/r the fundamental frequency. We

know that the period is 10 from computing the convergents of the continued fraction

which are

{0, 1,
9

10
,

226

251
,

235

261
,

461

512
}.

As we see in Figure 6, the sharp peaks do occur every k = 204.8. Figure 7 is

the same information obtained in Figure 6, just scaling the y-axis to better show the

local minima. More plots of the absolute value of g(k) for all random variables, a,

34

such that 1 ≤ a < 33 are shown in Appendix A.

Figure 6:

Result of factoring 33 into a product of 3 and 11 using random variable a = 7 with the
period of the function being 10.

35

Figure 7:

Local minima from the result of factoring 33 into a product of 3 and 11 using random
variable a = 7 with the period of the function being 10.

Each plot of the absolute value of g(k) will be symmetric about 2m−1 as a result

of the symmetric property of the DFT. These plots of the absolute value of g(k)

are a great illustration because we can find where all the peaks are and select those

peaks directly to find the period with high probability. On the other hand, a quantum

computer would only output one integer. We would have little information regarding

other extrema. Peter Shor showed there is high probability of obtaining k
2m

with

36

∣∣∣ k
2m
− peak

r

∣∣∣ < 1

2m+1
<

1

2n2

where “peak” is a peak value from the absolute value of g(k) (Shor, 1997).

RESULTS OF SIMULATION

For our initial run of Shor’s algorithm, with m = 11 and the random variable set

at a = 7, the peaks and corresponding values are shown in the table below.

Peak Location (2m) Absolute Value of g(k)

206 2.3476

411 4.0452

615 2.2101

820 1.9067

1230 1.9067

1435 2.2101

1639 4.0452

1844 2.3276

We implemented our modified Shor’s algorithm on all possible random variables

for 33, that is for all 1 ≤ a < 33. The quantum state measured at 7 remains

unchanged for each run. We chose select integers or peak values to compute the

period. The gcd column in figure 8 shows the factor our algorithm computed, if it

did not fail at any step in the procedure. The issues and successes we obtained for

37

each run with different a values are shown in figure 8.

After running through each random variable, our results show that 25% of the

time we actually obtain a factor of n being 3 or 11. If we include 1, which seems

trivial, as a factor of n, then 37.5% of the runs will have a successful output. Our

algorithm selected a peak value by finding all local maxima which occurred in |g(k)|

then selecting the last value of the sequence. There was no particular reason why

this peak was chosen other than convenience.

Most of the failures we had with certain random variables occurred during the

exponent factorization step of Shor’s algorithm. When we computed bu+1 (mod n),

we found this to be equivalent to 12 or 22. Therefore, we were not able to obtain a

factor of n since 12 and 22 are definitely not equivalent to 1 (mod n). Another issue

in the exponent factorization method was when b1 (mod n) was not equivalent to 1.

Thus, we could not obtain a factor of n. A plot of the absolute value of g(k) when

the random variable chosen could not successfully factor n is provided in figure 9.

38

Figure 8:

Results for each random variable 1 ≤ a < 33.

39

Figure 9:

Failed run of Shor’s algorithm with random variable 23.

INVERSE QUANTUM FOURIER TRANSFORM

As mentioned earlier in this thesis, the Quantum Fourier Transform is invertible.

We call this the Inverse Quantum Fourier Transform (IQFT). The IQFT returns the

integer x from our QFT equation encoded in binary by an m-qubit state (Kaye et

al., 2007, p. 117). Recall the QFT was written as

QFT (|x〉) =
1√
N

N−1∑
x=0

e2πixk/N |k〉 .

40

We can write the IQFT as

IQFT (|k〉) =
1√
N

N−1∑
x=0

e−2πixk/N |k〉 .

We used this idea in our modified version of Shor’s algorithm to see what each

IQFT would return. To implement the classical version of IQFT, we used the Inverse

Fast Fourier Transform algorithm in MATLAB to invert the absolute value of g(k)

as a function in k. For our initial random variable, a = 7, a plot of the IFFT is

provided. The remaining plots of the IFFT for all random variables 1 ≤ a < 33 are

provided in Appendix B. The importance of the being able to sudo-implement the

Inverse Quantum Fourier Transform is that we have confirmed the QFT is invertible

and we our able to examine the periodic nature of our 2m qubits in superposition.

By understanding the initial waveform of the absolute values of g(k), i.e. the IFFT,

we are able to see how the periodicity translates to the absolute value of g(k) in the

domain created by applying the QFT.

41

Figure 10:

IFFT outputs x.

COMPLEXITY TIME

An implementation to illustrate the complexity time of our version of Shor’s

Algorithm using MATLAB version 8.5.0.197613(R2015a) is provided below. We

factored several integers with select random variables, which were chosen for no

particular reason, to demonstrate the complexity time of our procedure.

42

Figure 11:

Total Run Time for Shor’s Algorithm

As we increase the size of the integer to factor into a product of two primes, the

total run time of Shor’s algorithm appears to increase exponentially. This is because

we are using a classical computer and do not have the power of massive parallel

computing to see a polynomial run time.

43

CONCLUSION

The theory of quantum computing is a captivating area of research. Here, we pre-

sented a general overview of quantum phenomena as well as a fundamental overview

of quantum computers. There are numerous books devoted to these topics so our

focus was on providing enough detail and information to demystify Shor’s algorithm.

We successfully implemented Shor’s algorithm, which is intended for use in quan-

tum computers, on a classical computer. In order to do so, some modifications were

made to the algorithm. Because classical computers do not have the physical capa-

bilities to employ quantum phenomena, we had to use classical methods to obtain

the same results as if this algorithm had been implemented on a quantum computer.

One necessary modification made to Shor’s algorithm was to apply a Fast Fourier

Transform to obtain the Discrete Fourier Transform of our quantum system. From

here we could derive the period of some periodic function which would return a factor

of n with high probability.

We examined how the random variable in Shor’s algorithm affected the entire

procedure. After case-by-case analysis for each random variable 1 ≤ a < n, we

discovered that there was experimentally a 25% chance of obtaining a correct factor,

not including the trivial factors 1 and n. This is unfortunately low considering the

overall power and ramifications of Shor’s algorithm itself. Shor’s algorithm has the

capability of breaking the common RSA cryptosystem if quantum computers can

ever be made with sufficiently large quantum memory registers.

If we did not obtain a factor of n the first time we implemented Shor’s algorithm,

based on our experimental results, we would have 1− 3
4

2
chance of correctly factoring

44

n after a second iteration of the algorithm. Note that as the number of iterations

increases, the probability of actually obtaining a correct factor of n drastically in-

creases. Hence, it would not take many iterations before we finally obtain a factor.

In our implementation of factoring 33, the probability of successfully obtaining some

factor of 33 after 3 runs would put us at a 57% chance of computing a factor. In

worst case scenario, 16 implementations of Shor’s algorithm would give us a 99%

chance of actually finding a factor of 33. We would not have to run through all

possible 32 random variables in order to find some factor.

Even though there is no direct correlation between the random variable selected

and the success of returning a non-trivial factor of n, we were able to demonstrate

exactly where Shor’s algorithm would fail. This gave us more insight into the com-

plexity of this algorithm and showed us that even though the algorithm is quite

efficient, there is still room for improvement. One modification I would like to see is

figuring out some way to increase the percentage likelihood of obtaining a non-trivial

factor of n so that the number of iterations of Shor’s algorithm itself would be mini-

mized. In other words, by utilizing another mathematical method, would we be able

to find a non-trivial factor of n no matter which random variable we’ve selected?

Our modified version of Shor’s algorithm was able to run in exponential time. As

the size of integers we wish to factor increases, the complexity time would drastically

increase. Eventually, it would be necessary to exploit quantum phenomena in order

to successfully find non-trivial factors of some integer.

I have tried to illustrate that although Shor’s algorithm is efficient, the probability

of actually obtaining some factor of n immediately remains low. I firmly believe

45

that using probabilistic and statistic-based methods to better define which random

variable we select and why would significantly increase our chances of finding some

factor immediately rather than having to iterate the algorithm a possible n − 1

number of times. This would reduce the computational time of the algorithm which

in turn would make Shor’s algorithm even more powerful. And isn’t this the goal

anyway? Who can solve the prime factorization problem and break RSA the fastest?

46

MATLAB CODE USED IN THESIS

Shor’s Algorithm using MATLAB

1 % IMPLEMENTATION OF SHOR’ S ALGORITHM

2 % March 26 , 2016

3 % Author : E l i zabeth Parsons

4

5 % Composite I n t eg e r to f a c t o r

6 n = 33 ;

7 % Compute nˆ2 <= 2ˆm < 2nˆ2 and f i n d m

8 f o r i = 1 : n/2+1

9 i f nˆ2 <= 2ˆ i && 2ˆ i <2∗n ˆ2 ;

10 m = i

11 end

12 end

13 % S e l e c t random v a r i a b l e a with 1 < a < n

14 a = 7 ;

15 % Compute f (x) = aˆx mod n

16 f o r x = 1:2ˆm

17 f (x) = bigmod (a , x , n) ;

18 end

19 % mult ip ly f by f a c t o r

47

20 newf = 1/ s q r t (2ˆm)∗ f ;

21 % Compute the per iod

22 p = seqper i od (f) ;

23 % f i n d a l l ke t s with output 2

24 output2 = f i n d (f==7) ;

25 % Compute g (c)

26 f o r c= 1 :2ˆm

27 g (c) = exp (2∗ s q r t (−1)∗ pi ∗c ∗5/2ˆm) ;

28 end

29 % Take abso lu t e va lue o f g (c) t imes f a c t o r

30 g = abs (g) ∗1/ s q r t (2ˆm) ;

31 % Compute FFT

32 l e t b i r d y = (1/ s q r t (2ˆm))∗abs (f f t (newf)) ;

33 % Compute IFFT

34 pigeon = i f f t (l e t b i r d y) ;

35 % Plot IFFT

36 f i g u r e ;

37 p lo t (pigeon)

38 a x i s ([0 , 2 ˆm, 0 , 0 . 0 5])

39 % Plot IFFT

40 f i g u r e ;

41 p lo t (pigeon)

42 a x i s ([0 , 2 ˆm, 0 , 5])

48

43 % Plot FFT

44 f i g u r e ;

45 p lo t ((1/ s q r t (2ˆm))∗abs (f f t (newf)))

46 a x i s ([0 , 2 ˆm, 0 , 0 . 2])

47 f i g u r e ;

48 stem ((1/ s q r t (2ˆm))∗abs (f f t (newf)))

49 a x i s ([0 , 2 ˆm, 0 , 5])

50 % Normalize the Pr obab i l i t y

51 f o r w = 1:2ˆm

52 probsum (w) = l e t b i r d y (w) ˆ2 ;

53 end

54 totalsum = sum(probsum) ;

55 %peak = f indpeaks (f , x , ’ MinPeakProminence ’ , 4 , ’ Annotate ’ , ’

extents ’)

56 [peak , l o c] = f indpeaks (l e t b i r d y) ;

57 % pick one o f the l o c s

58 % pk = l o c (4) ;

59 % Compute the number o f peaks and s e l e c t the l a s t peak to

use

60 l e n l o c = length (l o c) ;

61 pkloc = l e n l o c (end) ;

62 pk = l o c (pkloc)

63 i f l e n l o c == 0

49

64 %pr in t (’No peaks found or only peak i s at 0 ’)

65 end

66 newprob = l e t b i r d y (pk) ˆ2/ totalsum ;

67 peakprob = 4∗newprob ;

68 % Apply Method o f Continued Frac t i ons to f i n d the per iod

69 xx (1) = pk/2ˆm;

70 % Find the Convergent Values

71 aa (3) = f l o o r (xx (1)) ;

72 aa (2) = 0 ;

73 aa (1) = 0 ;

74 %format ra t

75 f o r i = 1 : n

76 xx (i +1) = 1/(xx (i) − aa (i +2)) ;

77 aa (i +3) = f l o o r (xx (i +1)) ;

78 end

79 % Calcu la te the Continued Frac t i ons

80 % I n i t i a l Parameters

81 p (1) = 0 ;

82 p (2) = 1 ;

83 q (1) = 1 ;

84 q (2) = 0 ;

85 % Find the per iod r

86 f o r nn = 1 : l ength (aa)−2

50

87 p(nn+2) = aa (nn+2)∗p(nn+1) + p(nn) ;

88 q (nn+2) = aa (nn+2)∗q (nn+1) + q (nn) ;

89 p(nn+2)/q (nn+2) ;

90 i f q (nn+2) < n

91 r = q (nn+2) ; % Capture the l a s t denominator < prime

92 end

93 end

94 % Apply the Exponent F a c t o r i z a t i o n Method

95 f a c = f a c t o r (r) ;

96 % check that aˆ r = 1 mod n :)

97 check = mod(aˆr , n) ;

98 % f i n d the number o f 2 ’ s which are prime f a c t o r s o f the

per iod r

99 f s p e c = f i n d (f a c==2) ;

100 m = fac (end) ;

101 k = length (f s p e c) ;

102 % need to wr i t e r as r = 2ˆk∗m where m i s some odd i n t e g e r

103 r = 2ˆk∗m;

104 % Find b (1)

105 b (1) = mod(aˆm, n) ;

106 i f mod(b (1) ,n) == 1

107 %f p r i n t f (’ Shors a lgor i thm has f a i l e d l i n e 147 ’)

108 break % Shor ’ s Algorithm has f a i l e d

51

109 end

110 % Find a f a c t o r o f n

111 % Use t h i s i f the r e i s not a power o f 2 in the per iod

112 f o r u = 1 :m

113 b(u+1) = mod(b(u) ˆ2 ,n) ;

114 i f mod(b(u) ,n) == −1

115 %f p r i n t f (’ Shors Algorithm has f a i l e d 173 ’)

116 break % shor ’ s a lgor i thm has f a i l e d

117 end

118 i f mod(b(u+1) ,n) == 1 && mod(b(u) ,n)˜= 1 && mod(b(u) ,n)˜=

−1

119 gcd (b(u)−1,n)

120 end

121 end

Modulo Function for Large Integers

1 f unc t i on remainder = bigmod (number , power , modulo)

2 % modulo func t i on f o r l a r g e numbers , −> numberˆpower (mod

modulo)

3 % by bennyboss / 2005−06−24 / Matlab 7

4 % I used a lgor i thm from t h i s webpage :

5 % http ://www. d i sappear ing−i n c . com/ c i p h e r s / r sa . html

6

52

7 % binary decomposit ion

8 binary (1 , 1) = 1 ;

9 c o l = 2 ;

10 whi le (b inary (1 , co l −1) <= power−binary (1 , co l −1))

11 binary (1 , c o l) = 2∗ binary (1 , co l −1) ;

12 c o l = c o l + 1 ;

13 end

14 % f l i p matrix

15 binary = f l i p l r (b inary) ;

16 % e xt r a c t binary decomposit ion from number

17 r e s u l t = power ;

18 c o l s = length (binary) ;

19 ex t r a c t ed b ina ry = ze ro s (1 , c o l s) ;

20 index = ze ro s (1 , c o l s) ;

21 f o r (c o l=1 : c o l s)

22 i f (r e s u l t−binary (1 , c o l) > 0)

23 r e s u l t = r e s u l t − binary (1 , c o l) ;

24 ex t r a c t ed b ina ry (1 , c o l) = binary (1 , c o l) ;

25 index (1 , c o l) = c o l ;

26 e l s e i f (r e s u l t−binary (1 , c o l) == 0)

27 ex t r a c t ed b ina ry (1 , c o l) = binary (1 , c o l) ;

28 index (1 , c o l) = c o l ;

29 break ;

53

30 end

31 end

32 % f l i p matrix

33 binary = f l i p l r (b inary) ;

34 % doubl ing the powers by squar ing the numbers

35 c o l s 2 = length (ex t r a c t ed b ina ry) ;

36 rem sqr = ze ro s (1 , c o l s) ;

37 rem sqr (1 , 1) = mod(number ˆ1 , modulo) ;

38 i f (c o l s 2 > 1)

39 f o r (c o l=2 : c o l s)

40 rem sqr (1 , c o l) = mod(rem sqr (1 , co l −1)ˆ2 , modulo) ;

41 end

42 end

43 % f l i p matrix

44 rem sqr = f l i p l r (rem sqr) ;

45 % compute reminder

46 index = f i n d (index) ;

47 remainder = rem sqr (1 , index (1 , 1)) ;

48 c o l s = length (index) ;

49 f o r (c o l=2 : c o l s)

50 remainder = mod(remainder∗ rem sqr (1 , index (1 , c o l)) ,

modulo) ;

51 end

54

REFERENCES

Bacon, D. (n.d.). Dirac Notation and Basic Linear Algebra for Quantum Com-

puting. Lecture presented in University of Washington, Seattle, WA. Retrieved

March 19, 2016, from http://courses.cs.washington.edu/courses/cse599d/06wi

/lecturenotes2.pdf

Chen, C. (2001). Digital signal processing: Spectral computation and filter de-

sign. New York: Oxford University Press.

Dattani, N. S., & Bryans, N. (2014, December 1). Quantum factorization of 56153

with only 4 qubits. Retrieved March 15, 2016, from http://arxiv.org/pdf/

1411.6758v3.pdf

Hardy, G. H., & Wright, E. M. (2008). An introduction to the theory of numbers

(Vol. 6). Oxford: Clarendon Press.

Heiberg, J. L., Fitzpatrick, R., & E. (2008). Euclid’s elements of geometry:

The Greek text of J.L. Heiberg (1883-1885): From Euclidis Elementa, edidit

et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883-1885.

Place of publication not identified: Publisher not identified.

Jha, S., Chatterjee, P., Falor, A., & Chakraborty, M. (n.d.). A Matlab Realiza-

tion of Shor’s Quantum Factoring Algorithm. Retrieved March 19, 2016, from

https://researchpapers4scolars.files.wordpress.com /2015/06/spsitm2011 submission

55-quantum.pdf

Kaye, P., Laflamme, R., & Mosca, M. (2007). An introduction to quantum

computing. Oxford: Oxford University Press.

Kendon, V. M., & Munro, W. J. (2005). Entanglement and its Role in Shor’s

55

Algorithm. Hewlett-Packard Development Company.

Mollin, R. A. (2001). An Introduction to Cryptography. Boca Raton: Chapman

& Hall/CRC.

Nielsen, M. A., & Chuang, I. L. (2000). Quantum Computation and Quantum

Information (10th ed.). Cambridge: Cambridge University Press.

Riley, K., Hobson, M., & Bence, S. (2006). Mathematical Methods for Physics

and Engineering (Vol. 3). Cambridge: Cambridge University Press.

Rivest, R. L., Shamir, A., & Adleman, L. (1977, April 4). A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems. Retrieved March 03, 2016,

from https://people.csail.mit.edu/rivest/Rsapaper.pdf

RSA Laboratories. (n.d.). Retrieved March 25, 2016, from http://www.rsasecurity

.com.tw/emc-plus/rsa-labs/historical/a-cost-based -security-analysis -key-lengths.htm

Shannon Number. (2016, March 16). Retrieved March 22, 2016, from

https://en.wikipedia.org/wiki/Shannon number

Shor, P. W. (1994). Algorithms for Quantum Computation: Discrete Logarithms

and Factoring. Retrieved February 03, 2016, from http://www.csee.wvu.edu/

xinl/library/papers/comp/shor focs1994.pdf

Shor, P. W. (1997). Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing,

26(5), 1484-1509. Retrieved February 05, 2016.

Smith, S. W. (1997). The Scientist and Engineer’s Guide to Digital Signal Pro-

cessing. San Diego, CA: California Technical Publishing.

Terr, David. ”Polynomial Time.” From MathWorld–A Wolfram Web Resource,

56

created by Eric W. Weisstein. http://mathworld.wolfram.com/ Polynomial-

Time.html

Trappe, W., & Washington, L. C. (2006). Introduction to cryptography: With

coding theory (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

Vandersypen, L. M., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood, M. H.,

& Chuang, I. L. (2001). Experimental realization of Shor’s quantum factor-

ing algorithm using nuclear magnetic resonance. Nature, 414(6866), 883-887.

Retrieved March 22, 2016.

Vries, A. D. (2012). Quantum Computation: An Introduction for Engineers and

Computer Scientists. Norderstedt: Books on Demand.

57

APPENDIX A

This appendix provides all plots of the absolute value of g(k) for random variables

1 ≤ a < 33 with a measurement made at 7.

(a) Random Variable = 1 (b) Random Variable = 1

(c) Random Variable = 2 (d) Random Variable = 2

58

(a) Random Variable = 3 (b) Random Variable = 3

(c) Random Variable = 4 (d) Random Variable = 4

(e) Random Variable = 5 (f) Random Variable = 5

59

(a) Random Variable = 6 (b) Random Variable = 6

(c) Random Variable = 7 (d) Random Variable = 7

(e) Random Variable = 8 (f) Random Variable = 8

60

(a) Random Variable = 9 (b) Random Variable = 9

(c) Random Variable = 10 (d) Random Variable = 10

(e) Random Variable = 11 (f) Random Variable = 11

61

(a) Random Variable = 12 (b) Random Variable = 12

(c) Random Variable = 13 (d) Random Variable = 13

(e) Random Variable = 14 (f) Random Variable = 14

62

(a) Random Variable = 15 (b) Random Variable = 15

(c) Random Variable = 16 (d) Random Variable = 16

(e) Random Variable = 17 (f) Random Variable = 17

63

(a) Random Variable = 18 (b) Random Variable = 18

(c) Random Variable = 19 (d) Random Variable = 19

(e) Random Variable = 20 (f) Random Variable = 20

64

(a) Random Variable = 21 (b) Random Variable = 21

(c) Random Variable = 22 (d) Random Variable = 22

(e) Random Variable = 23 (f) Random Variable = 23

65

(a) Random Variable = 24 (b) Random Variable = 24

(c) Random Variable = 25 (d) Random Variable = 25

(e) Random Variable = 26 (f) Random Variable = 26

66

(a) Random Variable = 27 (b) Random Variable = 27

(c) Random Variable = 28 (d) Random Variable = 28

(e) Random Variable = 29 (f) Random Variable = 29

67

(a) Random Variable = 30 (b) Random Variable = 30

(c) Random Variable = 31 (d) Random Variable = 31

(e) Random Variable = 32 (f) Random Variable = 32

68

APPENDIX B

This appendix provides all plots of the Inverse Fast Fourier Transform for random

variables 1 ≤ a < 33 with a measurement made at 7.

(a) Random Variable = 1 (b) Random Variable = 2

(c) Random Variable = 3 (d) Random Variable = 4

69

(a) Random Variable = 5 (b) Random Variable = 6

(c) Random Variable = 7 (d) Random Variable = 8

(e) Random Variable = 9 (f) Random Variable = 10

70

(a) Random Variable = 11 (b) Random Variable = 12

(c) Random Variable = 13 (d) Random Variable = 14

(e) Random Variable = 15 (f) Random Variable = 16

71

(a) Random Variable = 17 (b) Random Variable = 18

(c) Random Variable = 19 (d) Random Variable = 20

(e) Random Variable = 21 (f) Random Variable = 22

72

(a) Random Variable = 23 (b) Random Variable = 124

(c) Random Variable = 25 (d) Random Variable = 26

(e) Random Variable = 27 (f) Random Variable = 28

73

(a) Random Variable = 29 (b) Random Variable = 30

(c) Random Variable = 31 (d) Random Variable = 32

