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Abstract
Some youths develop multiple substance use disorders early in adolescence and have

severe, persistent courses. Such youths often exhibit impulsivity, risk-taking, and problems

of inhibition. However, relatively little is known about the possible brain bases of these

behavioral traits, especially among females.

Methods

We recruited right-handed female patients, 14–19 years of age, from a university-based

treatment program for youths with substance use disorders and community controls similar

for age, race and zip code of residence. We obtained 43 T1-weighted structural brain

images (22 patients and 21 controls) to examine group differences in cortical thickness

across the entire brain as well as six a priori regions-of-interest: 1) medial orbitofrontal cor-

tex; 2) rostral anterior cingulate cortex; and 3) middle frontal cortex, in each hemisphere.

Age and IQ were entered as nuisance factors for all analyses.

Results

A priori region-of-interest analyses yielded no significant differences. However, whole-brain

group comparisons revealed that the left pregenual rostral anterior cingulate cortex extend-

ing into the left medial orbitofrontal region (355.84 mm2 in size), a subset of two of our a pri-
ori regions-of-interest, was significantly thinner in patients compared to controls (vertex-

level threshold p = 0.005 and cluster-level family wise error corrected threshold p = 0.05).

The whole-brain group differences did not survive after adjusting for depression or external-

izing scores. Whole-brain within-patient analyses demonstrated a positive association

between cortical thickness in the left precuneus and behavioral disinhibition scores (458.23

mm2 in size).
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Conclusions

Adolescent females with substance use disorders have significant differences in brain corti-

cal thickness in regions engaged by the default mode network and that have been associ-

ated with problems of emotional dysregulation, inhibition, and behavioral control in past

studies.

Introduction
Some individuals have onset of substance use disorder (SUD) early in adolescence, develop
multiple SUD diagnoses and have severe persistent courses [1, 2]. These youth exhibit prob-
lems of self-control and risk taking in real life and laboratory settings [2–4] and such problems
of inhibition may stem from measurable brain differences. Brain structural differences associ-
ated with these behavioral phenotypes are poorly understood in females. Therefore, we tested
whether adolescent females with early onset substance use problems differ from controls in
brain cortical thickness.

A Focus on Youths with Child/Adolescent-Onset Substance Use
Problems
Despite important and recent advances [5], our understanding of the neurobiology of SUDs
remains insufficient. SUDs are common in the general population [6], are a source of great
morbidity and mortality [6, 7], and exact a huge cost to society in drug-related crime, health
care costs, and productivity losses [8]. Although many youths experiment with substances [9],
most will not progress to develop a SUD [6]. While it is well documented that these disorders
cluster within families [10] and are moderately heritable [11–14], it is not soundly understood
at a biological level why some youth appear more prone to develop a SUD.

Considering those who develop a SUD, the peak age of onset is in later adolescence or
young adulthood, with less common onset after age of 25 [15]. However, some individuals
have onset of SUD early in adolescence, develop multiple SUD diagnoses, and have severe per-
sistent courses [1, 2]. Youths in this population are likely to have a number of precursors, char-
acteristic co-morbidities, and associated cognitive deficits. For example, youths with poor self-
control [16], low constraint [17], and early problems with inhibition [18, 19] are at an
increased risk for later developing SUDs. Youths with SUDs also display risk-taking [3], impul-
sivity [20], difficulty delaying gratification [21], and impaired performance on laboratory cog-
nitive tasks [22, 23]. Youths of both genders with SUDs are also very likely to have co-morbid
conduct disorder [24, 25] and individuals with conduct disorder on average initiate substance
use at an early age [26]. While conduct disorder is more common in males, it is still prevalent
in adolescent girls, representing the second most common psychiatric diagnosis in female ado-
lescents [27]. This clustering of high externalizing behavior problems within individuals with
SUD is sometimes referred to as behavioral disinhibition (BD), a highly heritable (h2>0.8)
latent trait [11,14, 19, 28] which has a strong genetic correlation with laboratory-measured
problems of executive control [29].

A Female-Only Sample
Adolescence is a time in which many sex differences begin to emerge with regards to psychopa-
thology (e.g., rates of depression; [30]) and these sex differences appear to be mirrored by sex
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differences in brain development [31, 32]. Becker et al. review the broad literature of neural net-
works mediating addiction, highlighting clear sex-differences in dopaminergic, noradrenergic,
corticotropic, opioid, and cholinergic pathways. The authors suggest that these differences may
correlate with distinct clinical presentations of addiction in females and emphasize the impor-
tance of studying males and females separately [33]. Hardee et al. recently presented their find-
ings from a longitudinal fMRI study showing clear differences between males and females in
amygdala and premotor cortex activation, in support of the proposition that the development of
SUD in females is more likely to be related to negative affectivity, whereas in males, risk may be
more likely mediated by impulsiveness [34]. While there has been some examination of differ-
ences in behavior and brain anatomy/function in boys with and without SUD or related pheno-
types [35–43], little research has examined girls [36, 44]. Behaviorally, SUD in girls looks
somewhat different than boys. For example, although the prevalence of substance use is similar
between young adolescent males and females, with increasing age a higher SUD prevalence
develops in males [6]. Females also show telescoping effects, having faster rates of progression
from use to dependence, resulting in more severe clinical profiles upon presentation to treat-
ment despite less or equivalent total substance use [45]. Other studies of SUD suggest male-
female differences in genetic contributors [46] and environmental risks [47].

Considering these differences in behavior, and the clear sex differences in brain anatomy/
function during adolescence, it is reasonable that males and females may have different, as well
as overlapping, biological underpinnings to SUD. As anatomical differences between boys with
and without SUD have been clearly documented, the current paper focuses on anatomy in
females with and without SUD. In addition, given the literature on externalizing problems and,
especially in females, affect regulation, we also seek here to explore whether patient-control dif-
ferences covary with the severity of these comorbidities.

Brain Cortical Thickness
Several brain regions have been implicated in volumetric studies of youths with serious SUD,
youths with high BD, or similar phenotypes. These include the insula [35, 36], dorsolateral pre-
frontal cortex (DLPFC) [37], orbitofrontal cortex (OFC) [38], and anterior cingulate cortex
(ACC) [39–43], among others. This literature of volumetric studies is rapidly growing but, to
our knowledge, few of these studies have focused on adolescent females specifically [36, 44]. In
addition, relatively few studies of cerebral cortical thickness have been previously conducted on
these adolescent phenotypes. Adolescent heavy marijuana users reportedly have cortical thin-
ning in right caudal middle frontal regions, bilateral insula, and bilateral superior frontal cortex
along with increased cortical thickness in the lingual, superior temporal, inferior parietal and
paracentral regions [48]. Adolescents with "gaming addiction" [49] and "internet addiction"
[50] have shown cortical thinning in the orbitofrontal cortex and elsewhere. However, to our
knowledge, none of these previous studies focus on cortical thickness in female-only samples.
Instead most prior studies have used male-only or mixed-sex samples. Although the literature
on cortical thickness is more limited, available volumetric studies strongly suggest that prefron-
tal cortex, including the ACC, DLPFC, and OFC sub-regions are involved in SUD. These
regions participate in behavior inhibition, executive functions, and decision-making [51]; local-
ized lesions in these regions are associated with significant impairment in neuropsychological
function, similar to those discussed with BD patients [52]. Thus, the ACC, DLPFC, and OFC
are logical targets for region-of-interest analyses.

While volume and thickness are related, they are distinct phenotypes. According to the
radial unit hypothesis, cells with the same origin are organized into columns, which run per-
pendicular to the brain’s surface [53–56]. The number of columns determines surface area,
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which is strongly related to grey matter volume, while the number of cells within a column
determines cortical thickness [57, 58]. Both surface area and cortical thickness are heritable but
available twin work supports that they have different genetic determinants [57, 59]. Thus,
studying cortical thickness as we do here provides important complementary information to
our recently published volumetric work [60].

Study Hypothesis
We hypothesized that whole-brain and region-of-interest analyses would identify differences
in cortical thickness in prefrontal (especially anterior cingulate, middle frontal gyrus and orbi-
tofrontal cortex) brain regions in female adolescents with early onset SUD, compared to
controls.

Methods
The Colorado Multiple Institutions Review Board (COMIRB) approved all procedures and the
study consents. Subjects 18 years of age or older provided written consent; those under 18 pro-
vided written assent while their parents provided written consent to study participation. Differ-
ent data from this sample are reported in Dalwani et al., (volumetric results) [60] and Crowley
et al., (fMRI data results) [61].

Sample
We report on 22 patients and 21 controls. All were female, aged 14–19 years, had an estimated
IQ� 80, and adequate English proficiency to understand the study consents.

Patients were recruited from a university-based adolescent treatment program for youths
with serious substance and conduct problems and were required to meet criteria for at least
one non-nicotine DSM-IV-TR substance abuse or dependence diagnosis [62]. To reduce con-
founds from intoxication or recent drug use, we required patients to have multiple negative
urine (AccuTest™ for THC, cocaine, methamphetamine, amphetamine, barbiturates, benzodi-
azepines, MDMA, methadone, other opioids, PCP) and saliva (AlcoScreen™ for alcohol) tests
for at least 7 days prior to scanning. 26 patients were enrolled in the study but did not complete
MRI scanning for reasons including positive urinalysis, not meeting substance use disorder
screening criteria, IQ< 80, MRI contraindications, epilepsy, positive pregnancy test, court-
ordered ankle monitor that could not be removed, or simply no longer willing to participate.

Controls, contacted first by advertising or by a research marketing company, were similar to
the patient group with respect to age, race, and zip code of residence. Exclusion criteria for con-
trols included previous court conviction (excluding minor traffic or curfew offenses), a sub-
stance-related arrest or treatment, school expulsions, meeting DSM-IV-TR criteria for a non-
nicotine substance abuse or dependence diagnosis, meeting DSM-IV-TR criteria for conduct
disorder in the last year, or a positive test for a non-prescribed substance about 7 days before
and immediately prior to scanning using the same urine and saliva tests mentioned above.
Four controls were enrolled in the study but did not complete MRI scanning for reasons
including IQ< 80 or meeting criteria for a non-nicotine SUD

For all subjects, we applied standard MRI exclusion criteria (e.g. orthodontic braces, claus-
trophobia, ferric metal in the body) for adolescents. Subjects with a positive pregnancy test, his-
tory of serious neurological illness, prior neurosurgery, or a history of unconsciousness lasting
greater than 15 minutes were also excluded. Because the scanning session also acquired fMRI
data using a paradigm requiring subjects to distinguish green from red for use in another
study, color blindness was an additional exclusion criterion. Prior work showing cortical asym-
metry amongst right- and left-handed individuals resulted in the exclusion of left-handed
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adolescents from these analyses [63, 64]. Exclusion criteria for all subjects also included current
high risk of suicide, psychosis, violence, or fire setting.

Assessments
Each participant completed numerous psychosocial assessments before MRI scanning [65].
Parents of each adolescent completed the Child Behavior Checklist (CBCL) and an updated
Hollingshead Four-Factor Index of socioeconomic status [66]. The CBCL assessed attention-
deficit/hyperactivity disorder (ADHD) symptoms and associated problems [67]. Each adoles-
cent completed the vocabulary and matrix reasoning subtests of the Wechsler Abbreviated
Scale of Intelligence to provide an estimate of IQ [68], the Youth Self Report (YSR), the Com-
posite International Diagnostic Interview—Substance Abuse Module (CIDI-SAM), the Diag-
nostic Interview Schedule for Children (DISC), a Peak Aggression Scale (PAS) [2], the Eysenck
Junior Impulsiveness Scale (EJIS) for a measure of impulsivity [69], and finally the Carroll Rat-
ing Scale for Depression (CRS). The YSR measure of ADHD symptoms was substituted for
those participants (n = 6, all in the patient group) that did not have a CBCL available [70]. The
CIDI-SAM and supplement served to generate DSM-IV SUD diagnoses and to determine
recency of substance use, respectively [71]. From CIDI-SAM data, we also calculated SUM-
DEP, the total number of substance dependence symptoms across 10 different categories
(range 0 to 70). We have used this measure in previous studies to compare groups on substance
use severity [2]. The DISC assessed lifetime DSM-IV conduct disorder diagnoses [72] and the
CRS estimated depression scores [73]. These assessments were completed in one session lasting
approximately 3 hours.

Behavioral disinhibition (BD) scores combined information from 4 behavioral measures:
DSM-IV symptom counts for conduct disorder, CBCL/YSR-measured scores of inattention
(questions 8, 13,17, 61, and 80) and impulsivity (questions 1, 10, 36, 41, 45, 46, 62, 93, and
104), and sum of abuse/dependence symptoms across 10 drug categories. Subjects’ scores were
normed to a community sample of 414 adolescent females (i.e. number of standard deviations
from the community sample mean). Utilizing this community sample, principal component
analyses extracted the maximum covariance among the 4 behavioral measures and the result-
ing standardized factor loadings (on the first principal component) were utilized to weight our
4 standardized behavioral measures and sum them to generate BD scores (see http://ibgwww.
colorado.edu/cadd/bd.html for details; [61]). We chose this validated measure of externalizing
behavior, as opposed to other broader measures, as it takes into account those specific external-
izing traits commonly comorbid with SUD (see Introduction, A Focus on Youths with Child/
Adolescent-Onset Substance Use Problems).

MRI Parameters
A General Electric 3T MRI scanner was used to acquire high-resolution 3D T1-weighted
images, taken along the coronal plane, using an SPGR-IR sequence and a standard quadrature
head coil. The parameters were: TR = 9 ms, TE = 1.9 ms, T1 = 500 ms, flip angle = 10°,
FOV = 220 mm2, slice thickness = 1.7 mm, and matrix = 256x256, 0.97 x 0.97 mm2 in plane.
Scan time was 9 minutes and 12 seconds to acquire 124 slices.

Data Analyses
We compared groups for differences in demographic (e.g. age, race, SES) and diagnostic data
(e.g. attention-deficit/hyperactivity disorder, conduct disorder, substance use disorder diagno-
ses) using SPSS software (IBM SPSS Statistics, Version 21. Chicago, IL: IBM Corp; 2012). Chi-
square or Fisher’s Exact tests were used to compare categorical variables and t-tests or Mann-
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Whitney U tests were appropriately performed for continuous variables. We conducted all of
these analyses using two-tailed tests at a 0.05 significance level.

FreeSurfer Analyses
MRI scans were reconstructed to measure cortical thickness using FreeSurfer software version
5.3.0. FreeSurfer reconstructs the images by first fitting the image to Talairach space, stripping
non-brain structures from the image, forming the outermost grey matter boundary, and finally
forming a white/grey matter boundary. The program utilizes triangular tessellation and surface
deformation algorithms to form the boundaries. Cortical thickness is measured as the distance
from the outer grey boundary, the pial surface, to the white/grey boundary [74]. A single team
member blinded to the subjects’ group affiliation ensured that the software performed the
reconstructions properly by conducting a slice-by-slice visual inspection of each step of the
reconstruction for all subjects in 3 planes (coronal, sagittal, and horizontal). As needed, edits
were performed consistently throughout the sample and then the edited images were run
through the program again. Necessary edits included: ensuring proper fit into Talairach space,
manually stripping skull that the program missed, and adding control points to areas that were
assuredly white matter but were not appropriately recognized as white matter. The temporal
lobe commonly demanded edits. The effects of these edits on the results were examined (See S1
Text. Testing the Effects of Edits). The program then automatically parfcellated the recon-
structed brain into regions according to Desikan’s atlas [75].

Brain Morphometry Analysis
We conducted whole-brain and region-of-interest (ROI) analyses. The whole-brain analysis was
performed using FreeSurfer’s QDEC program while adjusting for age and IQ by entering them
as nuisance factors. QDEC smoothed the data with a 10 mm full width at half maximum Gauss-
ian kernel, while enforcing a Monte Carlo cluster correction (250 mm2) with a vertex-level
threshold of p< 0.005. SPSS was used to conduct the ROI analyses on extracted regions. We
examined 3 ROIs bilaterally (total of 6 ROIs) defined by the Desikan’s atlas [75] for our a priori
predictions based on published literature (see Introduction, Brain Cortical Thickness, paragraph
1). These regions were: 1) medial orbitofrontal cortex (mOFC); 2) rostral anterior cingulate cor-
tex (RACC); 3) middle frontal gyrus (MFG). In order to calculate MFG cortical thickness we
combined surface-area-adjusted values for rostral middle frontal cortex and caudal middle fron-
tal cortex as measured according to the Desikan’s atlas. Regression analyses tested for group dif-
ferences while controlling for age and IQ for each ROI. This approach to perform both whole-
brain and a priori identified ROI analyses follows procedures used in past studies [31, 48].

Secondary Analyses
Patient-only regression analyses. We explored differences among patients that affect cor-

tical thickness. To do this, we conducted within-patient regression analyses examining associa-
tion of cortical thickness with recency of drug use (a single variable calculated from number of
days since last use of any non-tobacco substance) and separately with severity of BD after
adjusting for age and IQ. This was done as both a whole-brain vertex-level analysis and also
utilizing a virtual mask to include only those regions that differed significantly in patient-con-
trol comparisons.

Testing how patient-control cortical thickness differences relate to differences in inter-
nalizing and externalizing behavior problems. To investigate how differences in cortical
thickness between patients and controls might relate to internalizing and externalizing measures
we performed additional QDEC analyses using the same procedures as for our primary whole-
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brain analysis (described in section 2.6), with the same Monte Carlo cluster correction (250
mm2) and vertex-level threshold (p< 0.005). In addition to age and IQ, we evaluated depression
scores from the CRS, total anxiety scores from the YSR, total affectivity scores from the YSR, or
total externalizing scores from the YSR as covariates in 4 separate analyses.

Testing for sex differences. Lastly, we have previously published very similar analyses
testing brain cortical thickness patient-control differences in cortical thickness in a male ado-
lescent sample [76]. This study used essentially the same recruitment procedures, inclusion/
exclusion criteria and imaging parameters (see S1 Table. Comparing Inclusion and Exclusion
Criteria for Our Female Sample with Male Sample Published Previously). Males and females
from our patient, and separately control samples, were similar for demographic and clinical
measures, except conduct disorder prevalence in patients (see S2 Table. Comparing Males and
Females Within Patients and Within Controls for Demographics and Key Clinical Measures).
Although our focus in this study is squarely on patient-control differences in a female sample,
and we do not wish to duplicate reports of these previously published male patient-control
findings, we utilized this male sample in these secondary analyses to explore sex differences.
We therefore completed female vs male comparisons for cortical thickness differences, while
controlling for age and IQ, within-patients and within-controls. Again, we used the same pro-
cedures and parameters as our primary whole-brain analysis.

Results

Demographic and Clinical Assessments
Table 1 compiles demographic, diagnostic, and substance use data along with other sample
characteristics. There was a trend for age to differ between groups (p = 0.08) with controls
being slightly older (16.67 years) than patients (16.09 years). Controls had significantly higher
IQ than patients (p = 0.004; Mean IQ controls: 103.95; Mean IQ patients: 94.26). As a result we
adjusted for age and IQ in all analyses. As expected, patients and controls significantly differed
on various clinical measures including combined ADHD raw scores, lifetime conduct disorder
diagnoses, aggression scores, impulsivity scores, and depression scores.

Region-of-Interest Analysis
Female patients and controls did not differ significantly in cortical thickness in regression anal-
yses of the 6 regions of interest while controlling for age and IQ (Left-mOFC Beta = -0.16,
p = 0.37; Right-mOFC Beta = -0.07, p = 0.69; Left-RACC Beta 0.22, p = 0.24; Right-RACC Beta
= -0.06, p = 0.76; Left-MFG Beta 0.09, p = 0.62; Right-MFG Beta = 0.31, p = 0.08).

Whole-Brain Analysis
With specified vertex-level p< 0.005 and cluster threshold (250 mm2), female patients had sig-
nificantly less cortical thickness than controls in left pregenual rostral anterior cingulate cortex
extending into the medial orbitofrontal region, including parts of Brodmann Areas 24, 32 and
10 (MNI coordinates for center of region: x = -6.7, y = 39.5, z = 2.6; see Fig 1). The region was
355.84 mm2 in area and is a subset of both our RACC and mOFC a priori defined ROIs, but is
not circumscribed by strict anatomical boundaries from either ROI.

Secondary Analyses
Patient-only regression analyses. Regression analyses within the patient group, adjusted

for age and IQ, revealed no correlation between either recency of substance use nor BD scores
with cortical thickness of the RACC-mOFC cluster identified in patient-control whole-brain

Brain Cortical Thickness Differences in Adolescent Females with SUD

PLOSONE | DOI:10.1371/journal.pone.0152983 April 6, 2016 7 / 20



analyses. Performing these regression analyses on a whole-brain basis did not show any associa-
tions between cortical thickness and recency of use. However, these whole-brain regression
analyses identified a positive correlation between BD severity and cortical thickness in a cluster
in the left precuneus measuring 458.23 mm2 (MNI coordinates for center of region: x = -21.1,
y = -61.3, z = 17.7; see Fig 2).

Testing how patient-control cortical thickness differences relate to differences in inter-
nalizing and externalizing behavior problems. The RACC-mOFC finding identified in our
patient-control whole-brain analysis did not survive after additionally adjusting for either CRS

Table 1. Adolescent controls and patients: comparing demographic and diagnostic differences.

Measure Controls (n = 21) mean(SEM) or n Patients (n = 22) mean(SEM) or n Test Statistic p-value

Demographic Data

Age in years 16.67 (0.25) 16.09 (0.20) t41 = 1.84 0.08

Race

Caucasian 13 12

African American 1 1

Hispanic 1 7

Other 6 2

Caucasian vs. non-Caucasian χ2 = 0.24 0.62

Education-Highest grade completed 10.00 (0.30) 8.77 (0.17) Mann-Whitney U 0.0021

Socioeconomic status1 36.14 (3.57) 45.19 (3.34) t35 = 1.80 0.08

Diagnostic Data

Estimated IQ 103.95 (2.26) 94.26 (2.23) t41 = 3.02 0.004

Combined ADHD 1.48 (0.40) 5.68 (0.81) t30.60 = -4.66 <0.001

CD lifetime diagnosis 0/21 14/22 χ2 = 19.82 <0.0001

Aggression2 0/21 21/22 χ2 = 39.18 <0.0001

Impulsivity 5.62 (1.00) 14.68 (1.23) t41 = 5.69 <0.0001

Depression 4.33 (0.78) 10.95 (1.23) t35.12 = 4.50 <0.0001

Lifetime DSM-IV-defined SUD

Alcohol 0 19 χ2 = 32.49 <0.0001

Tobacco 0 10 Fisher’s Exact 0.0005

Cannabis 0 20 χ2 = 35.69 <0.0001

Club Drugs 0 10 Fisher’s Exact 0.0005

Cocaine 0 4 Fisher’s Exact 0.11

Hallucinogens 0 1 Fisher’s Exact 1

Amphetamine 0 4 Fisher’s Exact 0.11

SUMDEP 0.24 (0.24) 13.09 (1.66) Mann-Whitney U <0.0001

Length of substance dependence3 N/A 1.53 years (0.29)

1 For 6 patients, parents did not complete questionnaires (SES and CBCL).
2 Note: all controls had aggression scores of 0 (mean = 0/SE = 0). Twenty-one patients had recorded aggression scores >0 (range: 1-9/mean = 5.73/

SE = 0.55).
3 Length of substance dependence was calculated using these steps for each of the n = 20 patients meeting at least 1 substance dependence diagnosis.

For one subject, considering all 10 drug categories, earliest age of substance dependence onset was subtracted from exact age at assessment.

Abbreviations: CD = conduct disorder; club drugs = ecstasy or MDMA, GHB, ketamine, rohypnol as defined by the CIDI-SAM; Combined

ADHD = DSM-IV-TR defined attention-deficit/hyperactivity disorder raw scores measured using the CBCL or YSR (n = 6) if CBCL unavailable; estimated

IQ = intelligence quotient estimated using the vocabulary and matrix reasoning subtests of the Wechsler Abbreviated Scale of Intelligence;

SEM = standard error of the mean; SES = socioeconomic status measured using the Hollingshead Four-Factor Index; SUD = substance use disorders;

SUMDEP = total number of substance dependence symptoms across 10 drug categories.

doi:10.1371/journal.pone.0152983.t001
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Fig 1. Whole-brain analyses testing for female patient-control differences in cortical thickness in QDEC using a vertex-level threshold of p<0.005
and Monte-Carlo simulation generated cluster level threshold.Medial view of left hemisphere here shows control>patient differences in cortical
thickness of the pregenual rostral anterior cingulate cortex extending to the medial orbitofrontal cortex.

doi:10.1371/journal.pone.0152983.g001

Fig 2. Whole-brain regression analyses within the patient group for correlation between cortical
thickness and BD severity in QDEC (see Methods, Data Analyses and Discussion, ROI vs. Whole
Brain Results for explanation of BD scores).Medial view of left hemisphere here shows positive
correlation between BD scores and cortical thickness of the precuneus.

doi:10.1371/journal.pone.0152983.g002
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depression scores or total externalizing scores from the YSR. The RACC-mOFC finding did
survive, but was smaller, when additionally adjusting for either total anxiety (313.79 mm2) or
total affectivity scores (299.86 mm2) from the YSR.

Testing for sex differences. Using our previously-published male sample [76] for compar-
isons, we found no differences in cortical thickness between male and female patients and no
differences between male and female controls.

Discussion
Our results suggest that adolescent females with serious substance use problems have reduced
cortical thickness in pregenual regions of the left rostral anterior cingulate and medial orbito-
frontal cortex (RACC-mOFC) and that left precuneus cortical thickness is positively associated
with BD scores within patients.

Current Understanding of RACC, mOFC, and Default Mode Network
The anterior cingulate and medial frontal cortices benefit from both a central anatomic loca-
tion and rich interconnections with important regions and circuits, suggesting their potential
importance in information processing and regulation. PET and functional MRI studies suggest
an anatomical division of the anterior cingulate into rostral and caudal portions [77], with the
RACC having dense connections to nucleus accumbens [78], limbic and affective systems,
among other regions [43, 77]. RACC appears to play an important role in limbic regulation
with respect to emotional processing and emotional conflict resolution [79, 80]. RACC is fur-
ther implicated as the region primarily activated by self-referential thought and reflection [81].

A medial-lateral distinction has been proposed in OFC with the lateral OFC evaluating punish-
ments and playing a role in response inhibition, and mOFC subserving monitoring and learning
related to reinforcer valuation [82]. OFC has efferent or reciprocal connections with various brain
regions including ACC, amygdala, caudate, and ventral tegmental area [83]. Through those con-
nections, OFCmay play a role in motivated behavior and assigning emotional valence to possible
actions [84]. Thus together RACC and mOFC can be conceived of as an important hub, integrat-
ing sensory and visceral information, valuing reward of potential choices, and driving emotional
reflection and response; these regions also play important roles in learning from errors, and engag-
ing cognitive control regions (e.g. lateral prefrontal cortex) when necessary [79, 80, 82, 85, 86].

However, as shown in Fig 1, our RACC-mOFC cortical thickness finding from our whole-
brain analyses, covers only a small portion of these regions and based on size and location
appears to implicate an important hub of the Default Mode Network (DMN) [87, 88]. The
DMN activates in task-free periods of rest and is characterized by functional connectivity
between the posterior cingulate/precuneus, inferior parietal cortex, and the ventromedial pre-
frontal cortex [87]. These connections develop with age from a “local to a distributed” network.
Connectivity and activation in DMN regions are seen in children as young as 8 years of age,
and adolescence represents a time of DMNmaturation [89]. The DMN is associated with
intrinsic thought, self-reflection, and emotional processing with instructions such as, “focus on
one’s feelings, one’s character, one’s memories, and one’s aspirations” activating the network
[87]. Thus, the observed group differences in cortical thickness within RACC-mOFC map well
to a hub of the DMN and may indicate patient-control differences in DMN, though resting
state functional data would be required to confirm this.

Relating Our Findings to Female Youths with Substance Use Disorders
Our finding of control>patient cortical thickness in the left pregenual RACC-mOFC is consis-
tent with two complementary lines of research. First, available neuroimaging work on
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substance use disordered populations implicates patient-control differences in this important
region. Second, available data on roles subserved by RACC and OFC fit with phenotypic
descriptions of female youths with SUD.

Past MRI studies of both healthy and SUD populations point to this medial prefrontal
region. For example, in normative populations, past work has suggested a link between chil-
dren’s anterior cingulate volume with performance on a Go/No-Go task [43]. A negative rela-
tionship has been demonstrated between OFC cortical thickness and impulsivity in adults [90],
and also between RACC cortical thickness and impulsive aggression in children [41]. Studies
of SUD populations compared to controls have shown significant hypoactivity of RACC during
Go/No-Go tasks [39, 40] and less grey matter concentration in mOFC and ACC, among other
regions, in cocaine-dependent adults [91, 92]. Studies of grey matter volume have also linked
smaller OFC volume and conduct disorder [38], though other studies implicate other frontal
[37] or temporal [35] regions. Compellingly, cannabis and ecstasy users show reduced deacti-
vation in DMN during Go/No-Go task performance compared to healthy controls indicating a
failure to inhibit default-mode circuitry [93]. Thus, several lines of research link hypoactivity,
less grey matter volume, and less cortical thickness within the region identified in our whole-
brain analyses as affected or altered in SUD.

As described above (see Discussion, Current Understanding of RACC, mOFC, and Default
Mode Network) RACC-OFC has been proposed as one important hub for integration of emo-
tional, sensory and visceral information, aiding in valuation of expected rewards for competing
potential choices. Therefore, individuals with deficits in these regions might be hypothesized to
have difficulty with affective control. Relating this with our sample of adolescent females, we
see a phenotypic link with emphasis placed on emotional dysregulation. Congruent with this
idea, development of SUD in females is associated with negative affectivity and emotional reac-
tivity, along with externalizing behavior problems, while in adolescent males SUD is mainly
associated with externalizing problems [47]. Patients with depression have a blunted ability to
down-regulate DMN activity compared to controls, associating abnormal DMN activity with
depressive rumination [94, 95]. Our patient group indeed showed significantly greater depres-
sion scores compared with controls (see Table 1).

SUD involves compulsive pursuit of the drug along with craving. Such characteristics have
been hypothesized to be related to OFC and its strong connections with limbic and reward
pathways [84]. Individuals with lesions to ACC/OFC may exhibit externalizing behaviors,
including problems of inhibition and poor behavioral control [84], problems often seen in
youths with or at risk for SUD [3, 16, 20]. Patients like ours may display emotional dysregula-
tion [96], problems of executive control and inhibition [29], impulsiveness [20, 97], problems
with error processing, and difficulty learning from punishment [98]. ACC and OFC dysfunc-
tion can be reasonably related to all of these traits.

We attempted to test empirically whether our patient-control cortical thickness difference
in left pregenual RACC-mOFC was better explained by problems of affect regulation or exter-
nalizing behavior problems. However, we found that controlling for both depression severity
and severity of externalizing behavior problems eliminated the patient-control difference.
While this result is not simple or straightforward and does not link one co-morbidity to our
brain finding, it suggests that risk for SUD in female adolescents may be complex, implicating
both depression and externalizing problems.

Sex Differences from Secondary Analyses
We unexpectedly found no differences in cortical thickness between our prior male and current
female samples (see Results, Secondary Analyses). Although sex differences have been
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demonstrated in regions relevant to the current study (e.g., medial oribitofrontal cortex)
[99,100], sex differences in cortical thickness appear much less prominent than sex differences
in cortical volume and surface area [100]. Males and females differ in cortical thickness devel-
opmental trajectories [99] but in many instances those trajectories appear to decussate in the
adolescent years (see Figure 4 in publication [99]). For these reasons, detection of sex differ-
ences for cortical thickness in SUD populations may require larger samples than those utilized
here and perhaps a focus on younger or older populations; in other words, the lack of sex dif-
ferences demonstrated here may be because of limited power and our adolescent focus. These
results might support that future studies focusing on brain cortical thickness in this population
might consider studying males and females together. However, we would suggest caution in
this approach. Our male and female patients differed significantly in the prevalence of conduct
disorder. Thus, as expected from the extant literature, the pattern of co-morbidity in adolescent
males and females with SUD differed and prior authors suggest important potential phenotypic
differences in males and females (see Introduction, A Female-Only Sample). Studying females
specifically allowed examining the unique contributions of internalizing and externalizing
scores on our cortical thickness finding. As mentioned above, our analyses may have missed
important but smaller male:female differences in cortical thickness due to our modest sample
sizes (see Discussion, Limitations).

The Meaning of Cortical Thinning in Relation to Function
Although we demonstrate that patients compared to controls had thinner cortex in a portion
of the RACC/OFC, it is not clear what the functional relevance of such “thinning” represents.
There are certainly normative age related changes in cortical thickness, including both synapto-
genesis and then thinning in the adolescent years. That thinning is hypothesized to be related
to important maturational changes that improve synaptic efficiency such as increased myelina-
tion and synaptic pruning [101, 102]. Therefore, in some instances cortical thinning has been
associated with improved function, (e.g., with improved general verbal intellectual functioning;
[103]), and failure of normative cortical thinning has also been linked to problems of emotional
control and behavioral regulation [104]. In many other instances, cortical thinning is associ-
ated with neurological decline [105–107]. Differences seen here could relate to developmental
differences in synaptogenesis, early or more extensive synaptic pruning, substance-related
injury, among other possible explanations. Longitudinal imaging designs of this important
population are needed to better place such findings in a developmental context.

ROI vs. Whole Brain Results
It is important to note that while our whole brain analyses demonstrated patient-control differ-
ences in left RACC/OFC, our region of interest analyses (which also looked at ACC and OFC)
did not yield significant group differences. While this appears contradictory on first blush, the
two approaches have many important differences. Our whole brain analyses search for areas of
group difference where each vertex differs in cortical thickness (at a vertex-level p<0.005)
while also requiring a Monte-Carlo-simulation-determined minimum number of contiguous
vertices meeting the vertex-level requirement (250 mm2). This approach allows us to find
smaller focal regions of greater patient-control differences and allows identified brain regions
of group differences to cross boundaries (e.g. different Brodmann Areas or different gyri). Our
region of interest analyses test for group differences in average cortical thickness across larger
pre-defined brain regions. This approach, compared to our whole brain analyses, can identify
less extreme patient-control differences in cortical thickness (p<0.05 at the ROI level vs.
p<0.005 at each vertex) within these regions. Hence, the two approaches are complementary.
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Regression Analyses and Cortical Thickness
We completed regression analyses between cortical thickness with recency of drug use and sep-
arately with severity of externalizing behavior problems (BD scores) on a whole-brain vertex-
level and within the left RACC-mOFC region identified in our primary patient-control com-
parisons. The purpose of this was to examine whether there was a significant component of
cortical thinning secondary to direct substance effects that recovered with abstinence. Alterna-
tively, we expected a correlation between BD severity and cortical thinning in the setting of pre-
disposing brain differences. The utilization of BD scores, a measure that has been shown in the
past to effectively capture a strongly heritable component of externalizing behaviors, allows us
to propose the potential meaning of this correlation [28].

In performing these analyses at the whole-brain level we demonstrate no association with
recency of use and one cluster showing a positive correlation between BD severity and cortical
thickness within the left precuneus. This region is considered as the “functional core” of the
DMN playing a “pivotal role” in the appropriate functioning of the network [108, 109]. Prior
work has found increased precuneus connectivity with DMN regions in depressed subjects
[110], which aligns with the hypothesis that our findings in our adolescent female population
are associated with problems of affective control. We see both increased cortical thickness in
the precuneus (in association with BD) and decreased thickness in the pregenual RACC-
mOFC (between groups). Both are regions critical to the DMN, suggesting this network may
be important to understanding patient-control differences in SUD risk in adolescent females.

Strengths and Limitations
This study provides the opportunity to add to our understanding of brain morphometry related
specifically to SUD in adolescent females. Studying adolescents conveys some advantages.
These adolescent patients have substance problems severe enough to merit treatment entry
early in life (see Table 1). But unlike adult studies of samples with many more years of chronic
substance exposure, these youths had relatively few years of heavy substance exposure (see bot-
tom row Table 1); if the brain differences identified in this study are substance induced, such
brain changes occur with relatively few years of heavy exposure in adolescence. Studying only
females is another strength of this work. As highlighted in section 1.2, there is mounting evi-
dence of important sex differences at the phenotypic level that may play a role in SUDs.

Our study also has several limitations. To our knowledge, this is one of the first studies test-
ing differences in cortical thickness in SUD female youths, but our sample of 22 patients and
21 controls may have relatively modest power to detect whole-brain cortical thickness differ-
ences [111]. For example, Pardoe and colleagues [111] estimate under certain assumptions
(e.g., alpha 0.05, two-sided test, 10mm surface-based smoothing, etc.) that 20 subjects per
group has 80% power to detect mean cortical thickness differences of about 0.4–0.5 mm, with
some variability based on lobe of interest. Therefore, regions with modest between-group dif-
ferences may not have been identified in our current analyses. Future studies with larger sam-
ples will reduce these concerns. Also, we study female adolescents, and our results should not
be extrapolated to male adolescents or to adults with serious substance problems. Additionally,
although we describe less cortical thickness in patients versus controls, the functional relevance
of such cortical thinning is not fully understood (as described in Section 4.3). Finally, as is
apparent from our inclusion/exclusion criteria, we did not clean our sample of comorbid men-
tal health concerns, broadly including female adolescents with SUD. By taking this “broad”
approach, we are able to recruit a sample that is more representative of the treatment popula-
tion of interest. Given that SUD, externalizing behavior problems, as well as problems of
impulsivity and/or high novelty seeking tend to cluster within individuals [65, 97] in a highly
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heritable fashion [11, 14, 19, 28], removing all comorbidity would lead to an atypical, less
severely affected sample [112]. Nevertheless, our “broad” approach does result in some limita-
tions, most notably that we cannot assess the contributions of specific diagnosis to a specific
finding. However, our “broad” approach provides complementary information to studies
employing a “narrow” strategy to recruit subjects with a single SUD and no other co-morbid
disorders.

Future Directions
Various studies of brain morphometry in SUD youths, or similar phenotypes, now suggest
either cortical thinning [48, 113–117] or less grey matter volume [35, 37, 38] in such youths,
with some important exceptions [118]. Many of these studies further implicate various frontal
regions important to decision-making and executive control. Unfortunately, no brain morpho-
metric changes appear clearly pathognomonic. Future studies could benefit from larger sample
sizes to identify group differences with smaller effect sizes. Longitudinal designs may also better
separate predisposing from substance-induced changes and identify patient-control differences
in developmental trajectories. If clear and replicable brain differences associated with SUD are
identified, approaches such as transcranial direct current stimulation might be employed to
test potential mitigation of such behavior problems.
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