ENHANCEMENTS OF METHANE, BENZENE, AND N-PENTANE BY OIL AND GAS FIELDS
OBSERVED FROM THE DC-3 AIRCRAFT CAMPAIGN: A CASE STUDY

by

CAROLYN MICHELLE FARRIS

B.S., University of Portland, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Master’s of Science

Department of Atmospheric and Oceanic Science

2013
This thesis entitled:

Enhancements of methane, benzene, and n-pentane by oil and gas fields observed from the DC-3 aircraft campaign: A case study

written by Carolyn Michelle Farris

has been approved for the Department of Atmospheric and Oceanic Science

__

Dr. Katja Friedrich

__

Dr. Julie Lundquist

Date ______________

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.
Enhancements of methane, benzene, and n-pentane by oil and gas fields observed from the DC-3 aircraft campaign: A case study

Abstract

Observations in the boundary layer from the 1 June flight in Colorado of the 2012 Deep Convective Clouds and Chemistry campaign shows enhancements of n-pentane, methane, and benzene near oil and gas wells that are not correlated with enhancements in carbon monoxide. To further investigate the source of methane emissions, an i-pentane:n-pentane ratio is compared to surface measurements from the Denver-Julesberg Basin and found to be similar. Measurements of n-pentane, methane, benzene and CO are also shown with proximity to Denver to compare an urban signature with an oil and gas well emissions signature. Elevated n-pentane, methane, and benzene mixing ratios without enhancements in CO from the 1 June flight are considered to be strongly influenced by emissions from oil and natural gas fields located near the sampling locations.
CONTENTS

CHAPTER

1. **INTRODUCTION**

 1.1 Motivation

 1.2 Background

2. **INSTRUMENTS AND METHODS**

 2.1 Deep Convective Clouds and Chemistry (DC-3) Experiment

 2.2 Instruments

 2.2.1 Picarro G1301f Carbon Dioxide and Methane Analyzer

 2.2.2 Aero-laser AL5002 VUV Resonance Fluorescence CO Monitor

 2.2.3 HIAPER-TOGA (Trace Organic Gas Analyzer)

 2.2.4 Ozone Chemiluminescence Instrument

3. **RESULTS**

 3.1 DC-3 GV spatial distribution of i-C₅/n-C₅, methane, n-pentane, benzene, CO, and O₃ boundary layer data

 3.1.1 Determining the boundary layer height for each GV flight and discussion of tracer gases

 3.1.2 Cattle and landfills as other sources of methane

 3.1.3 Tracer and well proximity correlation plots for GV measurements within the boundary layer

 3.1.4 Testing for correlation between proximity to wells and tracer
data

3.2 1 June 2012 (GV-RF8), Colorado low altitude leg case study 44

3.2.1 Tracer and nearby well correlation plots for research flight 8 case study 50

3.2.2 Testing for correlation for research flight 8 case study 57

4. CONCLUSION 60

WORKS CITED 64

APPENDIX

A. Potential temperature soundings from GV flights 70

B. NEXRAD plots for flight legs with convection 76

C. HYSPLIT plots for flight legs within the boundary layer 78
TABLES

Table

1. Flight times, location, and wind data for flights with sampling time within the boundary layer. Wind measurements are for times indicated by time of sampling in the second column. 18

2. Number of nearby wells for GV boundary layer samples 33

3. Student’s t-test results for correlation between tracers and proximity to active oil and gas wells. Individual flight test results for legs that flew near more than one active well 42

4. Hypothesis test results for case study. Tracers are tested for correlation with proximity to wells and to Denver 58
FIGURES

Figure

1. Shale basins in the US 2
2. Gulfstream-V sounding profile of potential temperature taken from 21:09 to 21:34 UTC on 26 May 2012 15
3. i-Pentane:n-Pentane and flight track spatial distribution 19
4. Spatial distributions of GV flight tracks, methane, n-pentane, benzene, CO, and O₃ 23
5. Map of methane emissions of landfills using 2002 data 28
6. Map of cattle inventory from 2007 29
7. Example of number of "nearby" wells calculation for a flight with highly variable wind direction (2σ > 90°) 31
8. Example of number of "nearby" wells calculation for a flight with less variable wind direction (2σ < 90°) 32
9. Iso-Pentane vs. n-Pentane for GV flights within the boundary layer 34
10. CO vs. methane measurements for GV flights within the boundary layer 36
11. Methane vs. benzene and CO vs. benzene for GV flights within the boundary layer 37
12. Methane vs. n-Pentane and CO vs. n-Pentane for GV flights within the boundary layer 38
13. GV RF8 leg 1 sounding 45
14. Denver station sounding 2 June, 2012 at 00:00 UTC 46
15. GV forward camera showing the cloud base, picture taken during research flight 8 on June 1 at 22:36 UTC [51] 46
16. Flight track for 1 June 2012 (GV research flight 8). 47
17. HYSPLIT back trajectories using GDAS archive data for GV research flight 8. Ensemble plots are made for the start, middle, and end of the low altitude leg used in the 1 June case study.

18. HYSPLIT back trajectories using GDAS archive data for GV research flight 8. Ensemble plots are made for the start, middle, and end of the low altitude leg used in the 1 June case study with altitudes at 1500 m.

19. i-Pentane:n-Pentane ratios for research flight 8 in Colorado

20. CO vs. methane, CO vs. benzene, and methane vs. benzene for research flight 8 in Colorado

21. CO vs. n-Pentane and methane vs. n-Pentane for research flight 8 in Colorado
Enhancements of methane, benzene, and n-pentane by oil and gas fields observed from the DC-3 aircraft campaign: A case study

1. Introduction

1.1 Motivation

North America has the largest natural gas market, making up 29% of the global demand [1]. In the U.S., about a quarter of the energy supply is provided by gas, used primarily for residential heating and cooking, commercial heating and cooling, electricity generation, and for numerous industrial applications [1]. Since 2009, the amount of gas reserves in the U.S. rose by 39% because hydraulic fracturing and new horizontal drilling technologies allow the acquisition of gas stored in shale formations [1]. Within the U.S., 37% of the natural gas industry is located in Texas, Oklahoma, and Kansas while about 25% is located in the Gulf of Mexico [2]. Locations of basins in the U.S. are shown in Figure 1.
Natural gas is considered by some to be a viable alternative energy source to coal for significantly reducing CO$_2$ emissions as carbon emissions from natural gas power plants are about half that of coal plants per unit of electricity produced [3]. It is also regarded as the cleanest of all fossil fuels, emitting carbon dioxide, water vapor, and small amounts of nitrogen oxides, sulfur dioxide, carbon monoxide, and reactive hydrocarbons [1]. Other benefits include a reduction in smog and acid rain because natural gas emits low levels of nitrogen oxides and sulfur dioxide, and virtually no particulate matter [1]. Methane is a greenhouse gas and a main constituent of natural gas (about 60-90% CH$_4$ by molecule) and studies by the Environmental
Protection Agency (EPA) and the Gas Research Institute (GRI) find that reduction in emissions from using natural gas outweighs the added methane emissions [4] [1].

Despite these benefits, research from ground based measurements in Colorado, and Texas and Oklahoma report that methane emissions in the U.S. from natural oil and gas (ONG) wells may be greater than EPA estimate of 6 ± 2 Tg per year [5] [2]. Enhancements of benzene and light alkanes (C$_2$ – C$_5$) have also been detected in air masses near natural oil and gas fields [5] [4]. High wintertime ozone levels in Wyoming and Utah are also attributed to emissions of VOCs and NO$_X$ from natural oil and gas fields [4].

The following study presents data from the Deep Convective Clouds and Chemistry Project (DC-3) to compare the concentrations of ONG and anthropogenic tracers to a measurement’s proximity to active wells. Samples near oil and gas wells are inspected for the enhancement of known oil and gas field emissions: methane, n-pentane and benzene, without an enhancement in the combustive tracer, CO. The hypotheses that will be tested here are:

1. The concentration of methane in the boundary layer increases in the vicinity of oil and gas wells.
2. The concentration of n-pentane in the boundary layer increases in the vicinity of oil and gas wells.
3. The concentration of benzene in the boundary layer increases in the vicinity of oil and gas wells.
4. The boundary layer concentrations of urban tracers, ozone and CO, do not increase in the vicinity of oil and gas wells.
The data set used is from a flight campaign conducted in Colorado, Oklahoma, and Alabama with several hours of data collected within the boundary layer and near oil and gas wells. Strengths of the data set include spatial coverage over Oklahoma and northeastern Colorado near the Anadarko, Fort Worth, and Denver Basins in the boundary layer. Most research in oil and gas field emissions are conducted at the surface. However, because the flight campaign’s intention was to study the chemistry of convective storms rather than focus source apportionment, the data collected was not always near high concentrations of active wells, and the atmospheric tracers may have been diluted when measured near convective systems. In addition, the plane, a Gulfstream V, that held the instruments measuring methane, CO, and other atmospheric tracers analyzed in this study flew primarily in the outflow of convective storms in the free troposphere. In nine of twenty-two flights during the campaign, the GV flew into the boundary layer, with many of the measurement samples occurring near active oil and gas wells.

1.2 Background

Methane has a globally averaged lifetime of about 9 years in the troposphere [6] and is the second most important long-lived greenhouse gas (GHG) behind CO$_2$ in both radiative forcing and in abundance, with an average concentration of 1,774.62 ± 1.22 ppb [7]. Concentrations of methane have increased since industrialization beginning at about 1750, giving an estimate of anthropogenic emissions of 340 ± 50 Tg CH$_4$ yr$^{-1}$ [7]. Since the 1980s, however, methane growth rates slowed to almost zero from 1999 to 2005 [7]. Some theories for the slowing rate are (1) a reduction in the photochemical production of the methane sink, OH, after the Mount Pinatubo eruption in 1991, (2) slowing methanogenesis in wetlands during Northern Hemisphere cooling after the Mount Pinatubo eruption, and (3) the economic collapse of the
Soviet Union leading to its dissolution in 1991 [8]. Although there are some theories, there is no consensus on the reason for the decline [9]. Despite its importance in climate forcing and a global warming potential of 25 for 100 years [5], methane sink and source strengths are still poorly constrained [10]. Lelieveld, et al. [11] estimates 600 ± 80 Tg of methane is added and removed from the atmosphere per year. Of that estimate, anthropogenic sources include energy (120 ± 40 Tg yr\(^{-1}\)), landfills (145 ± 30 Tg yr\(^{-1}\)), domestic ruminants (80 ± 20 Tg yr\(^{-1}\)), rice agriculture (80 ± 50 Tg yr\(^{-1}\)), and biomass burning (40 ± 30 Tg yr\(^{-1}\)) [11]. Natural sources include wetlands (145 ± 30 Tg yr\(^{-1}\)), termites (20 ± 20 Tg yr\(^{-1}\)), oceans (10 ± 5 Tg yr\(^{-1}\)), and hydrates (10 ± 5 Tg yr\(^{-1}\)) [9] [11]. Atmospheric methane loss rates are influenced primarily (about 90%) by oxidation with hydroxyl radicals (OH), while minor sinks include photolysis in the stratosphere (7-11%), and bacterial consumption in soils (1-10%) [11].

Studies in the Denver-Julesberg Fossil Fuel Basin (DJB) in Northeastern Colorado and in the Anadarko Basin of Texas and Oklahoma reveal oil and natural gas field emissions of methane that may be currently underestimated by industry inventories [5] [2]. During a 2002 study in the southwestern United States, methane emissions from oil and gas fields in Kansas, Texas, and Oklahoma are estimated to be 4-6 Tg per year, indicating that the previous approximation by the EPA of total US oil and gas emissions of 6 ± 2 Tg is underestimated [2]. Similarly, measurements in the DJB imply methane emissions may be twice as large as expected from natural gas systems in Colorado [5]. During gas production, methane can be released during flow-back of hydraulic fracturing fluids, drill-out of plugs, equipment leaks, processing, transport, storage, and distribution [10]. Howarth et al. [10] reports that a well loses 3.6% - 7.9% of methane from shale gas production through venting and fugitive emissions over the course of the well’s lifetime. Comparing shale gas to coal, the GHG footprint for shale gas is at least 20%
greater than that of coal on a twenty year time horizon, but the energy sources’ footprints are
about equal for 100 years due to the shorter residence time of methane to CO₂ [10]. Although a
100 year time horizon is more commonly used, the 20 year time scale is crucial for monitoring
methane to avoid accelerating climatic positive feedback loops [12].

Benzene is a known carcinogen with significant concentrations in ambient air due
primarily to vehicle emissions [13]. The atmospheric lifetime for benzene is 57 hours and is
removed from the atmosphere largely through reactions with OH [14] as benzene reacts too
slowly with O₃ and NO₃ radicals to make them important removal mechanisms in the atmosphere
(rate constant for O₃ reaction <1 x 10⁻²⁰ cm³ molec⁻¹ s⁻¹ and 10⁻¹⁶ to 10⁻¹⁷ cm³ molec⁻¹ s⁻¹ for
NO₃ reaction at room temperature) [15]. Because removal of benzene is dominated by reactions
with OH, concentrations of benzene are lowest in the summer months when more solar radiation
and higher temperatures allow for greater production of OH, as well as more mixing with
background air that is lower in benzene concentrations [14]. Other sources of benzene include
solvent evaporation, industrial process emissions, service stations for motor vehicles, and oil and
natural gas fields [13] [14] [5].

In addition to emitting methane and light alkanes, oil and natural gas fields can also emit
benzene at various stages of production: during glycol regeneration at glycol dehydrators, while
venting and flaring, through engine exhaust, and at condensate tanks, compressors, processing
plants [5]. Hydraulic fracturing fluid, used to further fragment shale formations and carry
proppants to hold open fractures, can also contain varying amounts of benzene depending on the
site [16]. Diesel fuel is used in the slurry of some gelled fracturing fluids that increase the
viscosity to better transport proppants to fractures, making up 30%-100% of the thickener [16].
When diesel fuel is used, the EPA finds that benzene exceeds the maximum contaminant level at the point of injection in the well when benzene makes up 0.000026 to 0.001% by weight in diesel fuel [16]. Though few service companies currently use diesel fuel, a study by Petron et al. [5] in the DJB estimates top-down benzene emissions of 639-1145 tonnes/yr from oil and gas production compared to 3.9 tonnes/yr estimated by reporting facilities to the EPA.

Due to their short lifetimes ranging from a couple months to a few days, concentrations of light alkanes are highly variable due to meteorology and are strongly influenced by nearby sources. Sources of n-alkanes include fossil fuel combustion, biomass burning, suspension of pollen, micro-organisms, and bacteria [17]. Cattle feedlots also emit lighter n-alkanes, but do not substantially affect levels of n-butane or n-pentane [5]. Iso-alkanes are emitted from evaporation of liquefied petroleum gas and automobile fuel, and biomass burning [17]. Natural gas also emits n- and iso-alkanes during production, storage, and transport, and enhancements of C2-C5 alkanes were found during ground measurements in the southwestern US as well as northeastern Colorado near oil and gas fields [18] [2] [5]. Photochemistry and reactions with OH are the dominate sinks for both n- and iso-alkanes [17] [18].

Carbon monoxide is also analyzed in this study as a tracer for air masses influenced by combustion. Major sources of carbon monoxide are fossil fuel combustion, biomass burning, and the oxidation of hydrocarbons [19]. Carbon monoxide’s primary sink is oxidation by OH and its lifetime can range between a few weeks to several months in the troposphere depending on the amount of solar radiation, with its shortest lifetime occurring in the summer months [19]. CO is not a greenhouse gas itself, but it does affect the lifetime of methane as both are oxidized by OH.
As CO increases, more OH is used in the oxidation of carbon monoxide, lengthening the lifetime of methane [20].

Ozone is measured onboard the GV and included in the following analysis. Although ozone absorbs biologically active UV-B radiation in the stratosphere, tropospheric ozone near the surface is damaging to human health, specifically affecting the respiratory system, and can reduce crop yield [21] [22]. With a global radiative forcing of $0.35 \pm 0.15 \text{ W/m}^2$, ozone is a significant greenhouse gas behind the longer-lived greenhouse gases like CO$_2$ and CH$_4$ [7]. In-situ photochemical reactions of methane, VOCs, and NO$_X$ produce the majority of tropospheric ozone with production rates dependent on the concentration of NO$_X$, and a minor amount (about 10%) is from stratospheric intrusions [23]. A small amount of ozone can also be produced naturally from the photolysis of O$_2$, resulting in ozone mixing ratios of 10–40 ppb in pristine unpolluted air [22]. Ozone is removed from the troposphere primarily through dry deposition [23].

2. Instruments and Methods

2.1 Deep Convective Clouds and Chemistry (DC-3) Experiment [24]

In May and June of 2012, the National Oceanic and Atmospheric Association (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF) conducted a field campaign to characterize inflow and outflow of midlatitude convective storms in the regions of northeastern Colorado, west Texas to central Oklahoma, and northern Alabama. The Deep Convective Clouds and Chemistry Project (DC3) campaign used
three aircraft: the NASA DC-8, the NSF/NCAR Gulfstream V (GV) and the DLR (Deutsches Zentrum für Luft- und Raumfahrt) Falcon operating out of the Salina, Kansa airport. The GV primarily flew in the upper troposphere at about 10 to 12 km to measure convective outflow, complementing DC-8 flights at lower altitudes to measure inflow. The campaign targeted three types of continental convective storms: air mass, multicell and supercell thunderstorms, and mesoscale convective systems.

The GV is a High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft with a maximum altitude of about 15 km. Most GV flights lasted five to eight hours, usually taking off and landing in Salina, Kansas. Intercomparison legs with the DC-8 occurred in some flights to harmonize measurements of species sampled on both aircraft to test instrument precision and accuracy. The GV typically sampled outflow, but for the case flight investigated in this study, the GV flew between 2.4 and 2.7 km for 80 minutes. The GV’s instrument payload had over ten instruments, including a Picarro G1301f measuring CO₂ and methane, an Aero-Laser AL5002 measuring CO, and the Trace Organic Gas Analyzer which measured i-pentane, n-pentane, and benzene, and an ozone chemiluminescence instrument. These chemical species are considered in this study.

2.2 Instruments

The GV flew at a ground speed of about 200 m/s for most flights. The Picarro, Aero-Laser and ozone chemiluminescence instrument made measurements once per second, corresponding to one measurement every 200 m relative to the ground. TOGA sampled once every two minutes, with a spatial resolution of 24 km relative to the ground.
2.2.1 Picarro G1301f Carbon Dioxide and Methane Analyzer [25] [26]

A Picarro G1301f onboard the GV measured CO$_2$ and methane using Wavelength-Scanned Cavity Ring Down Spectroscopy (WS-CRDS) [25]. In WS-CRDS, a cavity is first filled with analyte gas from ambient air during flight. A tunable diode laser aims into the cavity, tunes across several different wavelengths, and reflects multiple times between three mirrors within the cavity, increasing the path length up to 20 km which enhances sensitivity to trace gas absorption of infrared light. A photodetector behind one of the mirrors detects the amount of light that leaks through the mirror, and this signal is proportional to the intensity of light inside the cavity. Once an intensity threshold is reached, the laser shuts off and the signal decays due to imperfections in the mirrors and gas species that absorb the light. Concentrations of CO$_2$ and methane are proportional to the difference in decay times at wavelengths where gases are strongly absorbing and wavelengths where they do not absorb. A long effective path length, high precision wavelength monitor, and temperature and pressure controls enable the analyzer to maintain high accuracy, precision, and linearity over a range of environmental conditions and long periods of time. The G1301f has a precision of 250 ppbv and 3 ppbv for CO$_2$ and methane, respectively, for a 0.2 second averaging time and can measure within a range of 0-1000 ppmv for CO$_2$ and 0-20 ppmv for methane. The instrument uses an inlet compressor shared with a VUV CO instrument on the GV, and an external compressor.

In-flight calibrations were conducted using a working standard. A series of NOAA ESRL/GMD primary standard compressed gases were used in lab measurements to quantify the concentration of the working standard cylinder. Two to three replicates of these standardizations were conducted prior to and after the intensive field phase of the experiment.
2.2.2 Aero-Laser AL5002 VUV Resonance Fluorescence CO Monitor [27] [28]

The GV payload also included an Aero-Laser AL5002 CO Monitor to measure CO concentrations in ambient air [27] [28]. In situ measurements with the CO Monitor are made using resonance fluorescence (RF) in the fourth positive band of CO. Light emitted from a CO resonance lamp excites the electronic transition of \(X^1\Sigma \rightarrow A^1\Pi \) in vacuum ultraviolet (VUV). A wavelength of about 151 ± 5 nm is selectively chosen by an optical filter and directed into a fluorescence chamber to excite CO in the analyte gas. A fraction of the molecules in the excited state return to ground through the light emitting transition, \(A \rightarrow X \), and a photomultiplier detects the corresponding fluorescence.

The Aero-Laser AL5002 instrument has a time resolution of one second, a 3 ppbv lower detection limit, and an overall uncertainty estimate of ± (3 ppbv + 5%). In-flight calibrations consisted of a single calibration gas and a zero measurement using a catalytic scrubber to remove CO quantitatively from either ambient or standard gas. A full calibration cycle was conducted approximately twice hourly using Scott Marrin Inc. secondary standard gas. The secondary standard concentration was verified several times throughout the experiment in ground comparisons against two NOAA CMDL primary standard gases. To operate over the full HIAPER altitude range (0 to 15 km), ambient air was sampled through an inlet compressor which had been confirmed to be leak-tight in pre-mission ground tests. During ground calibrations, standard gas was introduced both upstream and downstream of the inlet compressor giving confidence that the compressor did not modify the CO mixing ratio prior to analysis.
2.2.3 HIAPER-TOGA (Trace Organic Gas Analyzer) [29]

To measure up to 30 various volatile organic compounds (VOCs), the TOGA instrument employed fast online gas chromatography with mass spectrometry during the DC3 campaign on the GV aircraft [29]. The instrument is composed of an inlet, a preconcentration system, the gas chromatograph, and a mass spectrometer as the detector. Once air enters the inlet for zeroing, calibration, or ambient air sampling, water is removed in the cryogenic preconcentration system before gas chromatography. Helium gas then carries the air sample through the chromatograph where VOC species elute from the chromatography column into the mass spectrometer. The compounds are ionized, separated, and detected using mass spectrometry. Using a combination of gas chromatography with mass spectrometry allows for unambiguous detection of VOCs with low limits of detection and low uncertainties.

Species measured by TOGA include n-butane, iso-butane, n-pentane, iso-pentane, and benzene. Measurements were made throughout the HIAPER altitude range with a frequency of two minutes, a sensitivity of a ppt or lower, an accuracy of 15% or better, and a precision of less than 3%. System blanks and calibrations were made with accurate (±1%) and precise (±1%) calibration gas delivery from a catalytic-clean air generator/dilution system.

2.2.4 Ozone Chemiluminescence Instrument [30]

In ozone chemiluminescence, ambient air entering a reaction vessel in the instrument is mixed with pure NO reagent gas. Ozone within ambient air reacts with NO to form NO₂, a fraction of which is in an activated state. As the activated NO₂ returns to a lower energy state, it
luminesces at wavelengths in the visible and infrared (600 nm < \lambda < 2800 nm). Integrated chemiluminescence intensity (CI) is dependent on the flow rate, the intrinsic chemiluminescence efficiency, the concentration of ozone in the ambient air sample, and the gas residence time. The residence time, flow rate (temperature and pressure dependent), and intrinsic chemiluminescence (also temperature and pressure dependent) are known values and the CI is proportional to a photomultiplier response which measures the light emitted within the highly reflective reaction vessel. Therefore, the concentration of the ozone can be calculated from CI derived from the photomultiplier response.

The ozone chemiluminescence instrument has a detection limit of 0.02 ppbv for 1 second integration. A TECO 49PS was used to calibrate the ozone instrument sensitivity. The sensitivity parameter from successive calibrations were constant to better than 2%. The overall measurement uncertainty for the ozone instrument was ± 3% of the instrument reading. A sensitivity correction based on the water vapor mixing ratio in the reaction vessel has been applied.

3. Results

3.1 DC-3 GV spatial distribution of i-C3/n-C5, methane, n-pentane, benzene, CO, and O3 boundary layer data

Spatial distributions of lower tropospheric VOC and tracer data from GV 1-minute merge data were plotted from altitudes within the boundary layer for all research flights. Data were plotted to (1) determine if there was a spatial trend in the measurements and (2) to visually
inspect for interesting or anomalous cases. A case study was chosen using the spatial distribution plots and was selected for having high n-pentane and high methane to test the correlation between active wells and the enhancement of these species. Only data within the boundary layer are plotted. The spatial resolution plots are not intended to show spatial trends that are statistically significant, but rather only flight data collected during the DC3 campaign within the boundary layer. The GV merge data used are the most recent merge data, but they are still preliminary field data from the campaign. Final merge data have not yet been released as of April 25, 2013.

The following sections include: a description of how the boundary layer was determined, meteorological data for flight legs that were within the boundary layer, commentary on landfill and cattle methane emissions, and an explanation of how oil and gas wells were identified as being nearby a flight track. Concentrations of the aforementioned species are also plotted for the entire campaign, with respect to the geographical location where they were measured, and in correlation plots with other species to inspect for a trend in the emissions of two species.

A test is then performed on the concentrations and proximity to active well sites to evaluate for the possibility of a correlation. This section is then followed by a case study from the DC-3 campaign.

3.1.1 Determining the boundary layer height for each GV flight and discussion of tracer gases

Boundary layer heights were determined from in situ GV profiles into or out of lower altitude legs by finding the height of the sharpest change in potential temperature with height...
[31]. A GV sounding, here, is defined as an in situ altitude greater than 1 km, as the plane descended into or ascended out of a flight leg. Measurements of potential temperature, time, altitude, latitude, and longitude are taken on board the GV. A sounding from GV research flight 5 is shown in Figure 2 as an example.

![Gulfstream-V sounding profile of potential temperature taken from 21:09 to 21:34 UTC on 26 May 2012. The top of the boundary layer (dotted red line) is the height of the fastest change in potential temperature with height [31].](image)

All other flights listed in Table 1 flew into the boundary layer and the soundings are provided in Appendix A. Typical vertical profiles in the DC-3 data set show boundary layers of about 2.6 km with a change in potential temperature of about 3 K.

Table 1 shows which flight data are used in the spatial distribution plots (Figure 3 and Figure 4). Total sampling time in the boundary layer for the GV was about 8.6 hours. Take-off
and landing at Salina were not included in the following plots or analyses because the aircraft did not fly at a constant altitude in the boundary layer in take-off or landing which could complicate the samples collected. RF11 flew at a constant altitude after take-off and was included in the data set as an exception to this rule. In addition, the GV flights considered in this study all took off and landed at the Salina airport and were not included in an effort to avoid influencing the statistical analyses (except for RF11). The possibility of convection affecting a flight track was determined from NEXRAD (Next-Generation Radar) plots provided on the DC-3 campaign database [32] or flight track movies also within the database when NEXRAD plots were not available. NEXRAD plots were analyzed starting at sunrise for local sunrise times, or typically around 11:00 UTC, up to the time of sampling. Reflectivity over 40 dBZ was considered convective for this study [33], and convection was assumed to affect the sampling region if it occurred within 20 km, the upper limit of the horizontal scale for thunderstorms [34]. The convection column in Table 1 lists whether measurements taken during a flight leg were taken during convection (yes/no). Hours given in the convection column indicate approximately how long before sampling convection started. Information is provided on convection to show that measurements occur during varying meteorological conditions, possibly affecting the concentrations of atmospheric tracers analyzed in this study. NEXRAD plots for flights with convection are provided in Appendix B.

Other columns in the table include G-V in situ flight measurements of wind speed, wind direction and vertical wind speed within the boundary layer. Wind data is from NCAR’s Research Aviation Facility instruments onboard the G-V. Wind speed is the magnitude of zonal and meridional wind vectors, and vertical wind speed is the magnitude of only the vertical component. Wind direction as the angle of the zonal and meridional wind vectors. Wind
direction from GV measurements was found to generally agree within about 45° of the average HYSPLIT model ensembles.

Further meteorological data are provided in Appendix C with HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) back trajectories for flight legs listed in Table 1. Back trajectories are included to show how air samples may have been influenced prior to measurement. HYSPLIT plots were used primarily to assess whether air that was measured by the GV originated over an urban site and were possibly influenced by convection. Three-hourly National Centers for Environmental Prediction Global Data Assimilation System (NCEP GDAS) archives were used to produce the ensemble trajectories. GDAS was chosen among the HYSPLIT data archives because the mixed layer depths recorded from GDAS data by HYSPLIT were closest to the boundary layer depths determined from GV soundings. Heights used for the starting locations were the average height of the boundary layer leg (the GV typically flew at a constant altitude for each leg) and locations were the middle of each leg (except in the case of RF22 leg 1 where a matrix was used instead because the leg is over an hour long and the track crosses back and forth between longitudes). Mixed layer depths from HYSPLIT are found from “endpoints” file produced as the text dump for each trajectory plot, and are averaged over the 27 trajectories plotted in each output HYSPLIT ensemble plot. For original GDAS files, the planetary boundary layer height is average at 00, 06, 12, and 18 UTC [35]. Grid resolution for GDAS is 1° latitude by 1° longitude [36].
Table 1. Flight times, location, and wind data for flights with sampling time within the boundary layer. Wind measurements are for times indicated by time of sampling in the second column.

<table>
<thead>
<tr>
<th>Flight Date</th>
<th>Location/Time of Sampling (UTC)</th>
<th>Duration of Sampling (minutes)</th>
<th>Boundary Layer Height (m)</th>
<th>Convection (time prior to sampling)</th>
<th>Wind Speed (m/s)(^a)</th>
<th>Wind Direction (degrees from north)(^a)</th>
<th>Vertical Wind Speed (m/s)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF4 (leg 1) 25 May</td>
<td>Oklahoma 21:10-21:25</td>
<td>15</td>
<td>2778</td>
<td>No</td>
<td>13.90 (1.56)</td>
<td>187.69 (12.98)</td>
<td>0.55 (1.01)</td>
</tr>
<tr>
<td>RF4 (leg 2) 25 May</td>
<td>Kansas 26:24-26:25</td>
<td>3</td>
<td>2174</td>
<td>No</td>
<td>23.31 (3.12)</td>
<td>168.06 (12.06)</td>
<td>0.20 (1.04)</td>
</tr>
<tr>
<td>RF5 26 May</td>
<td>Missouri 20:48-21:13</td>
<td>25</td>
<td>1572</td>
<td>No</td>
<td>7.88 (1.89)</td>
<td>195.56 (14.87)</td>
<td>-0.21 (0.73)</td>
</tr>
<tr>
<td>RF6 29 May</td>
<td>Oklahoma 20:46-21:13</td>
<td>49</td>
<td>3770</td>
<td>No</td>
<td>8.20 (2.78)</td>
<td>220.74 (63.03)</td>
<td>-0.18 (1.14)</td>
</tr>
<tr>
<td>RF8 (leg 1) 1 June</td>
<td>Colorado 21:34-22:55</td>
<td>81</td>
<td>3762</td>
<td>No</td>
<td>3.84 (1.69)</td>
<td>22.84 (66.57)</td>
<td>0.19 (1.38)</td>
</tr>
<tr>
<td>RF8 (leg 2) 1 June</td>
<td>Oklahoma/Texas 25:15-25:48</td>
<td>33</td>
<td>2943</td>
<td>No</td>
<td>11.43 (1.87)</td>
<td>228.42 (28.52)</td>
<td>-0.38 (0.45)</td>
</tr>
<tr>
<td>RF10 6 June</td>
<td>Colorado/Nebraska 23:20-23:56</td>
<td>36</td>
<td>3147</td>
<td>Yes (1 hr)</td>
<td>12.82 (1.34)</td>
<td>150.03 (9.63)</td>
<td>0.02 (0.97)</td>
</tr>
<tr>
<td>RF11 7 June</td>
<td>Kansas 22:48-23:28</td>
<td>40</td>
<td>1958</td>
<td>No</td>
<td>4.47 (1.08)</td>
<td>136.43 (24.86)</td>
<td>0.01 (0.96)</td>
</tr>
<tr>
<td>RF14 16 June</td>
<td>Oklahoma/Texas 22:10-22:46</td>
<td>36</td>
<td>1405</td>
<td>Yes (2 hr)</td>
<td>6.25 (1.22)</td>
<td>161.44 (19.66)</td>
<td>-0.32 (0.64)</td>
</tr>
<tr>
<td>RF17 22 June</td>
<td>Colorado 20:39-21:14</td>
<td>35</td>
<td>3181</td>
<td>Yes (0 hr)</td>
<td>12.44 (2.46)</td>
<td>193.73 (20.03)</td>
<td>-0.43 (1.70)</td>
</tr>
<tr>
<td>RF22 (leg 1) 30 June</td>
<td>Texas 18:08-19:56</td>
<td>108</td>
<td>2827</td>
<td>No</td>
<td>5.76 (3.06)</td>
<td>167.40 (89.50)</td>
<td>0.02 (1.46)</td>
</tr>
<tr>
<td>RF22 (leg 2) 30 June</td>
<td>Oklahoma 20:21-21:23</td>
<td>62</td>
<td>2178</td>
<td>No</td>
<td>8.01 (1.32)</td>
<td>161.52 (23.49)</td>
<td>0.00 (1.46)</td>
</tr>
</tbody>
</table>

\(^a\) Standard deviation in parenthesis
A plot of the flight tracks is shown in Figure 3 and can be used as a key in interpreting from the tracer plots which measurements are associated with which flights. The following scatter plots show GV measurements taken throughout the entire DC-3 campaign within the boundary layer (Table 1). Pink dots reveal locations of active oil and gas wells that use hydraulic fracturing [37] and were overlain in the following plots to show the proximity of well sites to the location of observed oil and natural gas field emission tracers.

![Figure 3](image)

Figure 3. i-Pentane:n-Pentane (right) and flight track (left) spatial distribution. Purple dots in pentane plot show locations of active well sites [37]

According to two gas composition studies of the Fort Worth Basin (Figure 1), an i-Pentane:n-Pentane (i-C_5/n-C_5) ratio of about 1.03 ($n = 33$) is measured by *Hill, et al* [38] and a ratio of 1.16 ($n = 32$) is measured by *Rodriguez, et al* [39] at well sites in the Barnett Shale gas fields in Texas. *Rodriguez, et al* [39] reports a maximum ratio of 1.83 from the sites sampled and a minimum ratio of 0.76. Measurements by *Hill, et al* [38] range from 0.88 to 1.03. Similarly, gas samples collected near Anadarko Basin (Figure 1) have a mean ratio of 1.1 [38]. While ratios between oil and natural gas fields differ due to changing compositions during reservoir depletion and the type of reservoir itself [39], *Gilman, et al* [4] notes that i-C_5/n-C_5 can be similar for
different basins. The Wattenberg Basin, for example, in northern Colorado has a ratio of 0.86 [4], while measurements from other basins in the U.S. give ratios near 1, for example Palo Duro (1.0), Permian (0.9), Green River (1.3) [40], and the Cherokee Basin (1.1) [38].

For i-C₅/n-C₅ ratios from vehicular emissions, the average is higher than that from oil and gas wells. From measurements made in Pasadena, CA, a ratio of about 2.4 would be indicative of emissions from gas-fueled vehicles [4]. Based on information from the California Air Resources Board from 1979, updated to consider the introduction of catalyst-equipped cars using fuel sales of 1987, Harley, et al [43] gives i-C₅/n-C₅ ratios of 1.95 for non-catalyst cars and 2.33 for catalyst-equipped cars. In a more recent study on tailpipe emissions from nine different test vehicles, the ratio is 2.63 for non-catalyst cars and 3.21 for catalyst-equipped cars [41]. According to a study by Balzani Lööv, et al [42], the summer background concentrations in Europe for i-pentane and n-pentane are 19 ± 13.6 pptv and 6 ± 4.3 pptv, respectively. The background i-C₅/n-C₅ ratio is therefore 3 ± 3 pptv/pptv, or 0 to 6 pptv/pptv. Considering the range of background values for i-C₅/n-C₅ can be between 0 and 6 pptv, using a ratio near 1 as an indicator of oil and natural gas fields may result in mistakenly identifying background ratios as ratios influenced by oil and gas wells. Other oil and natural gas tracers should therefore be taken into consideration.

The i-pentane vs. n-pentane plot in Figure 3 shows ratios near 1 over large regions of the DC-3 domain, particularly west of Oklahoma City near large clusters of active wells (RF22 leg 1 and 2, RF4 leg 1 and 2, RF6, RF 8 leg 2, RF14), and north of Denver near active wells (RF8 leg 2, RF17, RF10). These regions may be influenced by oil and gas emissions. Higher values south of Denver (RF8 leg 1), and northeast and east of Salina (RF11 and RF5) imply the boundary layer was likely influenced more by vehicle exhaust with ratios closer to 2.
RF10 (the northernmost flight track with Lat: 40° to 42°N, Lon: 104°W to 102°W) shows an i-C₅/n-C₅ ratio near 1 as well, but is not surrounded by active wells. A HYSPLIT back trajectory provided in Appendix C presents a trajectory coming from the southwest into the area sampled during RF10. The wells to the southwest (north of Denver) correspond to the Denver-Julesberg Basin and their emissions may have influenced the measurements taken during RF10. The mixed layer depth (about 1600 m) estimated by GDAS via HYSPLIT, however, does not agree with the depth found from GV potential temperature soundings (3147 m). It is therefore possible the trajectory may be incorrect for the initial height given (3147 m) and the air originated from somewhere else.

Similarly, RF8, leg 2 (horizontal track at Lat: 33.7°N to 34.2°, Lon: 102° to 98°W) is also not surrounded by many wells but shows a ratio near 1 for i-C₅/n-C₅. The HYSPLIT trajectory for this flight (Appendix C) has a trajectory from the southwest with a mixed layer depth from 545 to 1163 m according to values recorded by the GDAS back trajectory. The starting height given to the HYSPLIT model of 2198 m (the average height of the low altitude leg for this flight) is only within the boundary layer from GV sounding data and not the GDAS estimation, so the trajectory may be erroneous. The Fort Worth basin lies south of the sampling location of RF8 with a large cluster of wells to the southwest (Lat: 32° to 33°N, Lon: 105°W to 100°W). These wells may have influenced the air measured during this leg to give a ratio of 1.

Because iso-pentane (i-C₅) and n-pentane (n-C₅) have comparable vapor pressures, boiling points, and reaction rates with OH, their concentrations will be similarly affected as the two compounds are emitted and mixed into the boundary layer [4]. Therefore, the i-C₅/n-C₅ is assumed to be influenced more by the sources that influence a sample’s concentrations rather than photochemistry. The ratio also does not show individual changes in concentration of iso-
pentane and n-pentane if their changes are proportional. Conversely, the following plots for the atmospheric tracers examined in this study show one species, which may be impacted by photochemistry or meteorology, such as wind speed, vertical winds, etc. These plots are shown together in Figure 4 to more readily compare tracers with similar sources, different sources, or tracers that imply the photochemical age of the air.
Figure 4. Spatial distributions of (A) GV flight tracks, (B) Methane, (C) n-Pentane, (D) Benzene, (E) CO, and (F) O₃. Purple dots show locations of active well sites [37].

Figure 4B shows the spatial distribution of methane concentrations for the GV at altitudes within the boundary layer. A study by A. K. Baker et al. [43] defines background and urban
mixing ratios for 2004 as 1.84 ppmv and 1.90 ppmv, respectively. Values greater than this urban mixing ratio of 1900 ppbv are considered elevated for this study. In addition to methane, n-pentane can also be emitted from oil and gas wells, but concentrations are not enhanced by feedlots [5]. Other sources include fossil fuel combustion and biomass burning, though a study by Baker, et al. [43] finds that n-pentane is highest in cities near oil and gas wells. For benzene, the major sources are fossil fuel combustion, but oil and gas wells may also contribute [5]. Fossil fuel combustion also significantly enhances concentrations of CO, but unlike benzene, oil and gas wells do not also emit CO and is thus used as an urban tracer for this study. CO mixing ratios (plotted in Figure 4E) range from 40 to 200 ppb in the free troposphere with an average of about 120 ppb at 45°N [22]. Elevated CO implies strong contributions from incomplete combustion of fossil fuels, biomass burning, or the oxidation of hydrocarbons. Finally, ozone is plotted as a tracer for air photochemically aged air, although enhancements may also be due to stratospheric exchange. In the remote troposphere, ozone concentrations in unpolluted air range from 10 – 40 ppb [22], while average tropospheric air in the northern midlatitudes ranges from 20 – 65 ppb with an average of 40 ppbv [42]. Ozone concentrations greater than 40 ppbv are considered elevated.

Elevated methane northeast of Salina (RF11, Figure 4) also showed i-C₅/n-C₅ ratios between about 1.4 and 2 (Figure 3) that implied influence from urban sources. N-pentane for this flight leg has an average 32 pptv, much less than the average n-pentane concentration for GV boundary layer data (217 pptv). Benzene for RF11 is also low (average = 30 pptv) compared to the campaign average of 40 pptv. CO values of about 137 ppbv are measured, exceeding the average of 120 ppbv measured at 45°N [22]. Ozone also exceeds the midlatitude average of 40 ppbv, with values sampled at an average of 68 ppbv for RF11. With i-C₅/n-C₅ ratios between
about 1.4 and 2, low n-pentane, low benzene, and elevated CO and ozone, it is likely the air sampled in RF11 is photochemically aged and influenced by fossil fuel combustion.

Tracer concentrations measured in RF5 also indicate air that is influenced by urban sources, though data for methane are missing for this particular leg. Lower than average n-pentane (83 pptv) for the campaign suggest that the air is not influenced by oil and gas wells. Though benzene can be emitted by oil and gas wells, it also has a strong combustive source and benzene values of about 44 pptv measured in RF5 are slightly higher than the campaign average of 40 pptv. CO is elevated at 136 ppbv and ozone averages at 42 ppbv, about equal to the midlatitude average for ozone. With low n-pentane, average benzene and ozone, and elevated CO, RF5 measurements indicate that the air is not photochemically aged and may be influenced by combustive sources.

RF10 shows methane (average = 1875 ppbv), n-pentane (47 pptv), benzene (20 pptv), and CO (119 ppbv) values that are not elevated compared to previous studies or other values measured in the boundary layer for the campaign. Ozone, however, is elevated with an average of about 60 ppbv. Similar to RF10, RF17 does not have enhanced methane (1848 ppbv), n-pentane (42 pptv), benzene (34 pptv), or CO (116 ppbv), but does show elevated ozone (62 ppbv). Because CO is average for these flight and ozone is elevated, the air may be photochemically aged with some influence of combustion. The air sampled could also be affected by stratospheric intrusions that would enhance ozone, but not CO.

RF8 leg 1 also does not show elevated methane (1855 ppbv), but n-pentane and benzene values are higher than the campaign averages for these tracers north of Denver with values as high as about 980 pptv and 76 pptv, respectively. CO and ozone concentrations increase with
proximity to Denver (investigated further in the next section), as do i-C₅/n-C₅ ratios (Figure 3). With high n-pentane and benzene, and low CO values north of Denver near several wells, the air may be influenced more by oil and gas fields than combustion. Closer to Denver, however, CO and ozone increases, suggesting that Denver may be the source of these urban tracers.

RF22 leg 1 and RF4 leg 2 have elevated or higher than average, methane (1904 and 1886 ppbv), n-pentane (420 and 411 ppbv), benzene (67 and 61 pptv), CO (140 and 139 ppbv), and ozone (65 and 55 ppbv). The air sampled during these flight tracks, therefore, show a complicated signature and more tracers would be needed to better speculate on the sources that influence the two sets of measurements.

West of 100°W, RF6 has a similar tracer signature to RF22 leg 1 and RF4 leg 2. For samples east of 100°W, measurements show elevated methane (1900 ppbv), less than average n-pentane (204 pptv), higher than average benzene (45 pptv), enhanced CO (130 ppbv), and elevated ozone (72 ppbv). The air east of -100°W may be photochemically aged with contributions from combustive sources. The lower n-pentane values suggest there is not a strong contribution from oil and gas fields for concentrations measured in RF6.

RF4 leg 1 shows concentrations of methane that are not elevated (1866 ppbv), below average n-pentane values (149 pptv compared to campaign average of 217 pptv), above campaign average benzene (50 pptv, compared to 40 pptv), and ozone that is not elevated (52 ppbv). Although CO data are missing for this flight leg, the data still suggest that the air is not strongly influenced by oil and gas wells because measurements show low n-pentane and methane.
RF8 leg 2 shows n-pentane values increasing to 700 pptv, methane increasing to 1904 ppbv, and benzene increasing to 69 pptv just west of 100°W. CO and ozone are also elevated in this region with values as high as 129 ppbv and 65 ppbv. As methane, n-pentane, benzene, and CO can all be attributed to urban sources, the air may be photochemically aged and influenced by anthropogenic sources.

Samples from RF14 reveal non-elevated methane (1838 ppbv), n-pentane (182 pptv), benzene (20 pptv), CO (93 ppbv), or ozone (32 ppbv). The average ozone concentration measured in this flight is within the range of values for remote unpolluted free troposphere (10 – 40 ppbv). The air is therefore influenced by neither stratospheric intrusions or photochemical aging. As ozone is removed from the atmosphere primarily by dry deposition and the measurements were taken during active convection, it is possible the air sampled during this leg had been in recent contact with the ground.

Except for having higher ozone around 50 ppbv, RF22 leg 2’s tracer signature south of 34°N is similar to that of RF14. North of 34°N, n-pentane increases to 505 pptv, well above average for the campaign. Methane data north of 34°N are also near concentrations considered elevated for this study (1900 ppbv), with values at about 1891 ppbv. Benzene is below the campaign average at 29 pptv, and CO and ozone are not elevated with averages north of 34°N of 121 ppbv and 53 ppbv. With high n-pentane and near-elevated methane with urban tracers that were not enhanced, the air measured in RF22 leg 2 may have been influenced by oil and gas fields.

After examining tracer plots for the campaign, RF8 leg 1 and RF22 leg 2 were found the flights most likely to be influenced by oil and natural gas fields with high n-pentane and low
urban tracers near wells. RF10 and RF8 leg 2 also have i-C₅/n-C₅ ratios near 1 with back trajectories showing air coming from the Denver-Julesberg Basin and the Fort Worth Basin, respectively. Most methane values were neither elevated nor low for most flights and other sources in the areas that were sampled may also have attributed to high methane and low CO. The following section describes two other sources of methane that may have complicated data.

3.1.2 Cattle and landfills as other sources of methane

Cattle feedlots and landfills are sources of methane that are not also sources of CO. Plots of flight tracks with feedlot and landfill data are provided to acknowledge that these two sets of landmarks may also be a source of methane.

![Figure 5. Map of methane emissions of landfills using 2002 data (courtesy National Renewable Energy Laboratory, http://nrel.gov/gis/biomass.html). Landfill data are overlain with approximate locations of GV boundary layer data.](image)

Figure 5 shows emissions of methane from landfills from data collected by NREL (National Renewable Energy Laboratory). According to the map, methane emissions could impact many of the GV boundary layer legs, especially RF8 leg 1 in northern Colorado. Studies,
however, find the i-C$_5$/n-C$_5$ is generally high (greater than 1.5) for landfill emissions. Eklund, et al [43], for example, finds an i-C$_5$/n-C$_5$ emission ratio of about 3.88 for a New York landfill. Similarly, an i-C$_5$/n-C$_5$ landfill gas composition ratio of 4.07 is measured at a French landfill [44], and 1.88 in Mexico City [45]. I-C$_5$/n-C$_5$ ratios greater than 1.5 were generally found only in RF5 (Missouri) and RF11 (northeast Kansas), and these flights also showed elevated CO (Figure 4). Therefore, it is assumed that the methane measured in the other GV flight tracks is not dominated by landfill emissions, though some of the methane measured could have originated in landfills.

Like landfills, feedlots are also a source of methane and not CO. Locations of feedlots are shown in Figure 6.

Figure 6. Map of cattle inventory from 2007 (courtesy United States Department of Agriculture, http://agcensus.usda.gov/Publications/2007). One dot indicates 10,000 cattle and calves. Cattle data are overlain with approximate locations of GV boundary layer data.

The GV flew near sites with greater than 10,000 cattle and calves during almost every flight (Figure 6). It can therefore be assumed that some of the methane measured in GV
boundary layer runs could have been emitted from cattle and feedlots. Petron, et al [5], however, notes that although feedlots emit methane, they do not emit a significant amount of n-pentane. For this study, samples with both elevated methane and n-pentane were presumed to not be significantly affected by emissions from feedlots.

3.1.3 Tracer and well proximity correlation plots for GV measurements within the boundary layer

For each sample in the boundary layer, the number of nearby wells to the sampling location were counted. By counting the number of nearby wells, individual concentration measurements could then be evaluated as being more or less likely to be affected by oil and natural gas fields. The case study (research flight 8 leg 1), for example, was chosen because measurements within this low altitude leg were sampled near the most number of wells for the campaign. A well is determined “nearby” based on the average direction of the wind and the average wind speed. Stull [34] defines the boundary layer timescale as an hour or less, and this timescale is used in the approximation of a radius that determines which wells may affect a measurement at a specific location, calculated by:

$$radius = \frac{(\text{wind speed})}{3600}$$

where average wind speed is given in meters per second (Table 1) and 3600 is the number of seconds per hour.

For a flight with highly variable wind direction (two standard deviations of the direction is greater than 90 degrees), wells are counted as “nearby” if they are within a radius calculated as given in the previous equation. An example of this calculation for one sample is shown in Figure
7 from flight 22, leg 1, where the wind speed averaged 5.76 m/s. The blue dots indicate instrument sampling locations and the red circle is the area around the sample of interest with a radius of about 20.7 km. Pink dots are active wells that are not within 20.7 km, whereas the black dots indicate active wells determined as being “nearby.”

Figure 7. Example of number of "nearby" wells calculation for a flight with highly variable wind direction (2σ > 90°). Blue dots indicate sampling locations. The red circle defines an area around the sampling location where wells may be counted as being nearby. Pink dots are wells not considered “nearby.” Black dots are wells considered “nearby.”

For a flight with less variable wind direction (two standard deviations does not exceed 90 degrees), a semi-circle of 180° instead defines the boundary of where wells can be considered nearby. The radius of the semi-circle is the average wind speed in m/s multiplied by 3600 s to calculate a distance out from the sampling location that could affect the measurement within one hour. The semi-circle is oriented so that it is directed along the average wind direction measured on the GV for that leg. Figure 8, for example, shows data from research flight 8, leg 2. The flight
had an average wind speed of 11.43 m/s and an average wind direction of 228.42°, or from the southwest.

Figure 8. Example of number of "nearby" wells calculation for a flight with less variable wind direction (2σ < 90°). Blue dots indicate sampling locations. The red semi-circle defines an area around the sampling location where wells may be counted as being nearby. Pink dots are wells not considered “nearby.” Black dots are wells considered “nearby.”

Results from the procedure described above are shown in Table 2.
Table 2. Number of nearby wells for GV boundary layer samples

<table>
<thead>
<tr>
<th>Research Flight</th>
<th>Number of samples</th>
<th>Min. Number of Wells</th>
<th>Max. Number of Wells</th>
<th>Average ± 2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 leg 1</td>
<td>15</td>
<td>0</td>
<td>29</td>
<td>4 ± 17</td>
</tr>
<tr>
<td>4 leg 2</td>
<td>2</td>
<td>24</td>
<td>27</td>
<td>25 ± 3</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>0</td>
<td>127</td>
<td>40 ± 75</td>
</tr>
<tr>
<td>8 leg 1</td>
<td>80</td>
<td>0</td>
<td>930</td>
<td>79 ± 425</td>
</tr>
<tr>
<td>8 leg 2</td>
<td>32</td>
<td>0</td>
<td>42</td>
<td>12 ± 32</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>0</td>
<td>1</td>
<td>0 ± 1</td>
</tr>
<tr>
<td>11</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>14</td>
<td>35</td>
<td>0</td>
<td>8</td>
<td>2 ± 4</td>
</tr>
<tr>
<td>17</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>0 ± 1</td>
</tr>
<tr>
<td>22 leg 1</td>
<td>107</td>
<td>0</td>
<td>296</td>
<td>23 ± 110</td>
</tr>
<tr>
<td>22 leg 2</td>
<td>61</td>
<td>0</td>
<td>141</td>
<td>18 ± 61</td>
</tr>
</tbody>
</table>

The following tracer plots were made to compare various atmospheric constituents with their proximity to active oil and gas wells. Positive slopes in correlation plots indicate that the two species may have been co-emitted. For the following correlation plots, data are shown from all GV flights within the boundary layer Table 1. The color of each point in the plots corresponds to the number of wells that are nearby that sampling location and is plotted on a logarithmic scale.
Figure 9. Iso-Pentane vs. n-Pentane for GV flights within the boundary layer. Black line shows slope of the Wattenberg Field in the Denver-Julesberg Basin (m = 0.86) [4]. Green line shows slope of Ft. Worth Basin (m = 1.16) [46]. Color of each point corresponds to the number of wells that were nearby the sampling location.

Figure 9 shows the iso-Pentane:n-Pentane ratio for GV boundary layer measurements during the DC-3 campaign. Iso-Pentane (i-C₅) and n-Pentane (n-C₅) have comparable vapor pressures, boiling points, and reaction rates with OH, so their concentrations will be similarly affected as the two compounds are emitted and mixed into the boundary layer [4]. By plotting i-C₅ vs. n-C₅, the importance of the effect of photochemistry of i-C₅ and n-C₅ concentrations is minimized [4]. A slope of 0.86 pptv/pptv from the Gilman et al. [4] study sampled at Wattenberg Field in the DJB and a slope of 1.16 pptv/pptv sampled at the Fort Worth Basin are plotted for comparison to the measured values from the DC3 campaign. These two slopes are chosen as many DC-3 GV flights flew near the DJB and the Fort Worth Basin and these slopes are the maximum and minimum values considered for the two basins. The ratio, i-C₅:n-C₅, for different reservoirs in the DC3 observation regions range from about 0.86 to 1.16 (Gilman et al. [4], Hill
et al. [49], Rodriguez [48]), whereas air strongly influenced by gasoline-related emissions will
have a higher ratio near 2.3-3.8.

Iso-pentane vs. n-pentane is shown here to compare the ratio to the sample’s proximity to
oil and gas wells. The data from the DC3 campaign show a strong correlation for all flights with
a correlation of $r^2 = 0.98$. Dark red markers showing measurements close to over 100 active oil
and gas wells fall on the DJB slope and are from research flight 8 leg 1 near Denver and
northeast Colorado. Other measurements that are close to about 10 wells generally fall between
the two slopes. Points with slopes greater than 1.16 have lower concentrations of n-Pentane (less
than 400 pptv) and are near 10 or fewer active oil and gas wells. There are, however, points with
fewer than 10 active oil and gas wells that fall within the two slopes and some closer to 0.86
pptv/pptv. More research would need to be conducted on these samples, but it suggests that the
ratio is not a definitive way to identify oil and gas field emissions influence on a measurement.
Figure 10. CO vs. Methane measurements for GV flights within the boundary layer. Gray line indicates correlation slope for all measurements. Color of each point corresponds to the number of wells that are nearby the sampling location.

CO and methane measurements are compared in Figure 10 to investigate the possibility of the two species being co-emitted. Sources of tropospheric methane include release from coal mining and fossil fuel usage (110 ± 45 Tg yr⁻¹) [11]. Methane could be correlated with CO, also a potential product of fossil fuel combustion, so a positive correlation implies that the air sampled is strongly influenced by combustion. Figure 10 shows some structure to the methane/CO ratio with a correlation of $r^2 = 0.54$ and a positive slope of 1.40. Measurements near over 20 wells generally show enhancements in methane that are not seen in CO, like the red points at 105 ppbv CO corresponding to RF8 leg 1 in Colorado, the yellow points around 130 ppbv CO corresponding to RF6 in Texas, or the green points around 140 ppbv CO corresponding to RF22 leg 1 in Texas. These three spikes in methane but not in CO sampled near over 20 wells may indicate that the enhanced methane is not co-emitted with CO.
Methane vs. benzene and CO vs. benzene are shown next to each other to compare possible sources of benzene. A major source of methane is emission from natural gas systems, emitting 144.7 Tg CO₂ equivalent [47]. Benzene has also been found to be emitted from oil and natural gas fields, which may be a non-negligible source of benzene in the Colorado Front Range [5]. CO and benzene both have a primary source from vehicular emissions [13] [19]. A strong correlation between the two compounds would therefore indicate that it is likely the species were co-emitted from motor vehicle combustion. As benzene can be emitted by oil and natural gas fields or fossil fuel combustion, benzene is plotted with methane and CO to investigate a possible correlation between the two tracers.

Methane vs. benzene is plotted on the left in Figure 11. The two tracers are positively correlated ($r^2 = 0.33$, slope = 0.38). The six green points around 1925-1975 ppbv of methane and 80-100 pptv of benzene are sampled during research flight 22, leg 1 in northern Texas near over
20 wells. There does not appear, however, to be a pattern for most samples taken near wells, with measurements of over 20 nearby wells falling both below and above the correlation slope.

The CO vs. benzene correlation is shown on the right in Figure 14. The data presented here show a weak positive correlation for all boundary layer data ($r^2 = 0.45$, slope = 0.84), suggesting a source of benzene sampled is the combustion of fossil fuels. The highest benzene of about 97 pptv is measured during research flight 22, leg 1 in northern Texas when the GV flew near over 20 wells. Red points at about 100 ppbv of CO correspond to research flight 8 in Colorado and over 500 nearby wells, and enhancements in benzene here are not seen in CO.

Figure 12. Methane vs. n-Pentane (left) and CO vs. n-Pentane (right) for GV flights within the boundary layer. Gray line indicates correlation slopes for all measurements. Color of each point corresponds to the number of wells that are nearby the sampling location.

N-Pentane with methane and CO is plotted in Figure 15. Methane may also be emitted by feedlots without the emission of CO, so using only methane and CO comparisons may lead to inaccurately identifying sources of methane. N-pentane is further used as a tracer for oil and
natural gas wells here because the study by Petron, et al. [5] finds that feedlots emit lighter alkanes but do not substantially affect the concentrations of n-pentane.

Methane and n-pentane are weakly positively correlated, ($r^2 = 0.37$, slope = 4.7). Samples with the most methane and n-Pentane are measured near about 20 wells in northern Texas in research flight 22. Red points from research flight 8 in Colorado show high levels of n-Pentane, although methane is measured at about 1860 ppbv, which is lower than the 1900 ppbv used as the threshold for this study in determining a concentration to be elevated.

CO vs. n-pentane in Figure 12 has much weaker correlation than methane ($r^2 = 0.05$) suggesting that the n-pentane measured during the DC-3 campaign did not have a strong common source with CO. Red data points corresponding to research flight 8 leg 1 spike at about 100 ppbv of CO. Similarly, green data points spike at about 140 pptv of CO and correspond to research flight 22 leg 1. These measurements sampled in the proximity of over 10 oil and gas wells show enhancements in n-Pentane that are not seen in CO, indicating that the two species are likely not co-emitted for these samples.

3.1.4 Testing for correlation between proximity to wells and tracer data

Boundary layer tracer data from GV flights are tested for correlation with proximity to wells using the method outlined by Guilford and Fruchter [51] using Student’s t distribution. A two-tailed test is performed with a null hypothesis that ρ (the sample correlation) is equal to zero. If ρ=0, then t can be estimated with the formula:
where \(N \) is the sample size, \((N-2)\) is the degrees of freedom with two degrees lost in the two datasets tested for correlation, and \(r \) is defined by the Pearson-r formula:

\[
r_{xy} = \frac{\sum xy}{NS_xS_y}
\]

where \(x \) and \(y \) are the sample deviations from their respective means, \(N \) is the sample size, and \(S_x \) and \(S_y \) are the standard deviations of \(X \) and \(Y \).

Confidence intervals are determined following a method outlined in Hays [52]:

\[
Z - z_{\alpha/2} \sqrt{\frac{1}{N-3}} \leq \zeta_{xy} \leq Z + z_{\alpha/2} \sqrt{\frac{1}{N-3}}
\]

where \(Z \) is the Fisher r-to-Z transformation for a sample, \(z_{\alpha/2} \) is the cut-off value for the upper \(\alpha/2 \) proportion in a normal distribution, \(N \) is the number of samples, and \(\zeta_{xy} \) is the Fisher r-to-Z transformation for the population. The interval is then transformed back to the corresponding interval for \(\rho_{xy} \). The Fisher r-to-Z transformation is given by:

\[
Z = \frac{1}{2} \log_e \left(\frac{1 + r_{xy}}{1 - r_{xy}} \right)
\]

Table 3 shows the two-tailed test results on correlations between CO, methane, n-pentane, and benzene. The “campaign” test uses all boundary layer data. Individual flights with more than one nearby oil well are also tested against these same tracers. \(N \) is the sample size, \(r \)
and t are calculated from the equations shown above, “95%CI” is the 95% confidence interval for r, “%sig” is the level of significance in rejecting the null hypothesis, $\rho = 0$. The null hypothesis is not rejected in tests with significance over 10%, indicated by a blank cell. CO data for RF4 are marked with bad data flags and are not used for hypothesis testing.
Table 3. Student’s t-test results for correlation between tracers and proximity to active oil and gas wells. Individual flight test results for legs that flew near more than one active well

<table>
<thead>
<tr>
<th>Campaign</th>
<th>N</th>
<th>r</th>
<th>t</th>
<th>95% CI</th>
<th>%sig</th>
<th>r</th>
<th>t</th>
<th>95% CI</th>
<th>%sig</th>
<th>r</th>
<th>t</th>
<th>95% CI</th>
<th>%sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF22 leg 2</td>
<td></td>
</tr>
<tr>
<td>RF14</td>
<td>35</td>
<td>0.282</td>
<td>1.688</td>
<td>-0.06 to 0.56</td>
<td>1%</td>
<td>0.223</td>
<td>1.316</td>
<td>-0.12 to 0.52</td>
<td>0.1%</td>
<td>0.211</td>
<td>1.241</td>
<td>-0.13 to 0.51</td>
<td>1%</td>
</tr>
<tr>
<td>RF22 leg 1</td>
<td>107</td>
<td>0.327</td>
<td>3.511</td>
<td>0.14 to 0.49</td>
<td>0.1%</td>
<td>0.107</td>
<td>1.087</td>
<td>-0.09 to 0.29</td>
<td>0.1%</td>
<td>0.252</td>
<td>2.641</td>
<td>0.06 to 0.42</td>
<td>2%</td>
</tr>
<tr>
<td>RF22 leg 2</td>
<td>61</td>
<td>0.059</td>
<td>0.457</td>
<td>-0.20 to 0.30</td>
<td>0.1%</td>
<td>0.024</td>
<td>0.180</td>
<td>-0.23 to 0.27</td>
<td>0.1%</td>
<td>0.150</td>
<td>1.161</td>
<td>-0.11 to 0.39</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO</th>
<th>N</th>
<th>r</th>
<th>t</th>
<th>95% CI</th>
<th>%sig</th>
<th>r</th>
<th>t</th>
<th>95% CI</th>
<th>%sig</th>
<th>r</th>
<th>t</th>
<th>95% CI</th>
<th>%sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF4</td>
<td>15</td>
<td>-0.120</td>
<td>-2.731</td>
<td>-0.20 to -0.03</td>
<td>1.0%</td>
<td>-0.070</td>
<td>1.586</td>
<td>-0.16 to 0.02</td>
<td>1.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF6</td>
<td>48</td>
<td>-0.146</td>
<td>-1.000</td>
<td>-0.41 to 0.15</td>
<td>0.1%</td>
<td>0.139</td>
<td>0.955</td>
<td>-0.15 to 0.41</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF8 leg 1</td>
<td>80</td>
<td>-0.218</td>
<td>-1.973</td>
<td>-0.42 to 0.00</td>
<td>10%</td>
<td>-0.296</td>
<td>2.740</td>
<td>-0.48 to -0.08</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF8 leg 2</td>
<td>32</td>
<td>-0.414</td>
<td>-2.491</td>
<td>-0.67 to -0.08</td>
<td>2%</td>
<td>-0.584</td>
<td>3.941</td>
<td>-0.78 to -0.30</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF14</td>
<td>35</td>
<td>0.088</td>
<td>0.508</td>
<td>-0.25 to 0.41</td>
<td>0.1%</td>
<td>0.264</td>
<td>1.571</td>
<td>-0.08 to 0.55</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF22 leg 1</td>
<td>107</td>
<td>-0.293</td>
<td>-3.107</td>
<td>-0.46 to -0.11</td>
<td>1%</td>
<td>-0.518</td>
<td>1.515</td>
<td>-0.65 to -0.36</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF22 leg 2</td>
<td>61</td>
<td>0.082</td>
<td>0.633</td>
<td>-0.17 to 0.33</td>
<td>0.1%</td>
<td>0.162</td>
<td>1.257</td>
<td>-0.09 to 0.40</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For all GV DC-3 data within the boundary layer, n-pentane is positively correlated with the proximity to natural oil and gas wells. N-pentane has a level of significance at 0.1% while the test on methane failed to reject $\rho=0$. This may be due to n-pentane having shorter lifetimes (about 5 days [48]) than methane (9 years [6]), so gradients in n-pentane are more pronounced. By contrast, benzene and CO resulted in a rejection of the null hypothesis for negative correlations. CO and benzene are primarily emitted from combustion and is not significantly enhanced by oil and gas wells [5]. From the active well plots in Figure 3 and Figure 4, cities like Denver and Oklahoma City are located near clusters of active wells, but within them. For example, the southernmost well in the DJB lies about 26.6 km to the north of Denver, and the closest well to Oklahoma City is 201.4 km. This may explain why CO decreases with decreasing number of nearby wells. In a study by Gilman, et al [4], emissions of VOCs from oil and gas operations have been found to be related to high ambient ozone levels. Ozone, however, failed to reject $\rho=0$. One reason for this, like CO, may be that enhancements in ozone from urban emissions may dominate the measurements near oil and gas wells.

The test is performed on individual flights that flew near more than one well. All flights except research flight 8 leg 1 show correlations that were not expected based on previous studies cited within this paper (positive correlations with n-pentane, methane, and benzene). RF8 legs 1 and 2 and RF22 leg 1, however reject the null hypothesis for the positive correlations of n-pentane, and reject the null for negative correlations with CO and ozone. RF8 leg 1 (the case flight for this study) and RF22 leg 1 measurements occurred near the most wells, with a maximum count of 930 and 296 wells, respectively. This may suggest why these two particular flights show positive correlation of n-pentane with oil and gas wells. RF8, leg 1 is used for the case study because it flew near the most wells. RF22, though it flew near many wells, has
measurements of some of the highest concentrations of CO sampled for the campaign in GV boundary layer, suggesting the air is strongly influenced by combustion, possibly complicating the identification of contributions from oil and gas wells.

3.2 1 June 2012 (GV-RF8), Colorado low altitude leg case study [24]

On 1 June 2012, the GV (RF8) and the DC8 (RF8) deployed from Salina, Kansas to characterize emissions sources in Colorado and a convective storm near Oklahoma and Texas (flight track shown in Figure 16). The GV took off around 19:50 UTC and flew in three intercomparison legs with the DC8 en route to Colorado. After the intercomparisons, the GV flew along the Colorado foothills near Denver to sample urban emissions. The GV’s potential temperature sounding into the lower altitude leg at about 2.8 km shows a boundary layer near 3762 m (Figure 13).
For further evidence that the GV flew within the boundary layer during its low altitude leg at 2.8 km, a sounding from the Denver/Stapleton station was used to estimate the boundary layer height at 3126 m (Figure 14). Cloud base was also analyzed to estimate a boundary height (Figure 15). Although the liquid water content (LWC) did not reach a typical continental cumulus LWC value of 0.35 g m$^{-3}$ [48], a movie from the camera onboard the GV shows the GV was beneath the cloud base for the duration of the low altitude leg (movie still in Figure 15) [49], also suggesting that the GV is within the boundary layer [34]. After the low altitude leg, the GV ascended to 9.4 km and flew to Texas and Oklahoma to sample convective storms with the DC8 before returning to Salina around 2:30 UTC on 2 June.
Figure 14. Denver station sounding 2 June, 2012 at 00:00 UTC [50]. Red dotted line at 3126m indicates the top of the boundary layer.

Figure 15. GV forward camera showing the cloud base (left), picture taken during research flight 8 on June 1 at 22:36 UTC [51]. Liquid water content (right) with arrows indicating start and end of leg 1. Blue line is GV altitude for RF8, green is liquid water content.

The first low altitude leg of the 1 June flight was chosen as a case flight to study oil and gas field emissions because the GV flew near over 500 active oil and gas wells, more than any
other low altitude leg in the campaign by the GV and was likely to have sampled air influenced by oil and gas wells. As noted in Table 1, mean wind speed for RF8 leg 1 was 3.84 m/s with highly variable winds, so wells were counted as “nearby” if they were within a 13.8 km radius of the location of the measurement. Nearby active wells in research flight 8 correspond to the Denver-Julesberg Basin (Figure 1).

![Figure 16. Flight track for 1 June 2012 (GV research flight 8). Green dots show locations of active oil and gas wells [37]. Black line shows the low altitude leg analyzed in the case study. Red line shows the rest of the flight.](image)

The back trajectories in Figure 17 were created by HYSPLIT using the GDAS archive. Heights are 2430 for Figure 17A, 2730 m for Figure 17B, and 2730 for Figure 17C, corresponding to the approximate altitude of the GV and the start, middle and end of low altitude leg. Boundary layer heights are the average heights provided by HYSPLIT for each ensemble.
Figure 17. HYSPLIT back trajectories using GDAS archive data for GV research flight 8. Ensemble plots are made for the start (A), middle (B) and end (C) of the low altitude leg used in the 1 June case study.

Back trajectories show that the air sampled on the GV may be influenced by sources to the northwest of the measurements locations. Basins to the northwest include Greater Green River Basin and Park Basin. The boundary layer heights do not agree with the boundary layer height estimated from the GV sounding (Figure 13) and are at a lower altitude than the GV flew for this leg. Back trajectories are shown in (Figure 18) that have an input altitude within the
boundary layer according to the HYSPLIT model (chosen to be 1500 m here) to determine if the trajectory varies enough to show air influenced from another direction.

Figure 18. HYSPLIT back trajectories using GDAS archive data for GV research flight 8. Ensemble plots are made for the start (A), middle (B) and end (C) of the low altitude leg used in the 1 June case study with altitudes at 1500 m.

Back trajectories shown in Figure 18 still show the air coming from approximately the northwest. Though the boundary layer heights disagree between the Denver sounding and
HYSPLIT, back trajectories for altitudes corresponding to the GV (Figure 17) and altitudes within the HYSPLIT boundary layer (Figure 18) both show air coming from the northwest. For the purposes of this study, it was therefore assumed that the air sampled in research flight 8, leg 1 was influenced by either the surface or sources to the northwest.

3.2.1 Tracer and nearby well correlation plots for research flight 8 case study

Similar plots to section 3.1.2 were made using only data from research flight 8, low altitude leg 1. The GV flew close to Denver and may have sampled air influenced by urban sources. To investigate the possible contributions of urban and oil and gas wells, plots show proximity to active wells as well as proximity to Denver. Data points in Figure 19 and Figure 20 represent the same samples, but the color of each point represents either the proximity to number of wells (plots on left) or proximity to Denver (plots on right). Data shown are measured within the boundary layer along the Colorado Front Range (black line in Figure 16) and boundary layer height is determined from the GV sounding. Correlation slopes are provided for each comparison for measurements near over 291 wells (the average of the number of nearby wells plus one standard deviation) and measurements less than 26 km from Denver (average distance from Denver minus one standard deviation) to show the difference in slopes between two possible sources.
In Figure 19, a slope of 0.86 is plotted as the expected correlation slope for samples from the DJB provided in a study by Gilman, et al. [4]. Measurements near over 291 wells (left) have a correlation slope of about 0.88 pptv/pptv and \(r^2 = 0.99 \). For measurements less than 26 km away from Denver, the slope is higher than that predicted by DJB samples at 1.06 and \(r^2 = 0.79 \).

Gilman, et al. [4] gives an urban ratio of 2.41 measured from a tunnel in Pasadena, California as an example of a combustive signature of \(\text{i-C}_5/\text{n-C}_5 \). A higher ratio is therefore expected for samples near Denver, and this measured slope of 1.06 may indicate that the air near Denver is also mixed with contributions from oil and gas wells. The iso- and n-pentane sampled in research flight 8 shows some consistency with surface measurements in Gilman, et al. [4], but the results do not appear to be conclusive as the slope for urban sources is not as high as expected.

One possible source of methane that is not also a source of CO is landfills. A study by Bogner, et al. [53] finds \(\text{i-C}_5/\text{n-C}_5 \) ratios of 2.5 and 4.1 for two different landfills, with results
comparable to a similar study at a landfill in New York. The maximum \(\text{i-C}_5/\text{n-C}_5 \) value for this leg is found to be 1.42, a lower ratio than what is expected from landfills, suggesting that landfills do not significantly affect the tracer concentrations measured in research flight 8 in Colorado.
CO, methane, and benzene are plotted in Figure 20 to identify possible sources of the three tracers measured in research flight 8 leg 1. The primary source for CO is fossil fuel combustion and biomass burning, while sources of methane include fossil fuel combustion, biomass burning, oil and gas fields, feedlots, landfills, and wetlands [19] [11] [10]. Figure 20A
shows two possible correlation slopes for methane and CO, with one at \(y = 4.59x + 1391 \) \((r^2 = 0.15)\) for samples near over 291 wells (A1), and \(y = 0.19x + 1840 \) \((r^2 = 0.57)\) for samples within 26 km of Denver (A2). The two slopes suggest at least two different sources of methane and/or CO. The spike at about 104 ppbv of CO has enhancements in methane that are not seen with enhancements in CO, which suggests a source of methane that is not a strong source of CO: oil and gas fields, feedlots, landfills, or wetlands. For the CO vs. methane slope more closely associated with the slope given by samples near Denver (A2), enhancements are seen in both CO and methane, indicating a source that emits both of these tracers: biomass burning or fossil fuel combustion.

Figure 20A is plotted next to Figure 20B and C to further attempt to identify a possible source for CO, methane, and benzene. In Figure 20B1, a similar spike is seen at about 104 ppbv of CO as was seen in Fig. 20A1 with many of these measurements taken near over 300 wells. This same spike may indicate that there is a source of methane and benzene that does not also significantly enhance CO. As mentioned in the previous paragraph, possible sources for methane that do not also significantly affect concentrations of CO are oil and gas fields, feedlots, landfills, and wetlands. Sources of benzene, however, include vehicular emissions (also a source for CO) and oil and gas fields [5] [13]. Oil and gas fields, therefore, can emit benzene and methane without emitting CO, suggesting that measurements shown at 104 ppbv CO may be influenced by oil and gas fields and their proximity to over 300 wells further supports this idea.

Figure 20C shows methane vs. benzene to show the correlation of the two tracers. In the plot that shows nearby wells (C1), the two data points with the highest concentration of methane and benzene are near over 1500 wells. In Fig. 20C2, lowest values of benzene are typically furthest away from Denver while highest values are closer (correlation test in Table 3), which
might suggest proximity has some importance in the concentration of benzene, but the spike from Figure 20B at 104 ppbv CO still suggests that the source of the benzene measured in this spike is likely not from a combustive source.

Figure 21. (A) CO vs. n-Pentane and (C) Methane vs. n-Pentane for research flight 8 in Colorado. Measurements sampled in the boundary layer. Color of each data point corresponds to the number of nearby wells (left) or the proximity to Denver (right). Dashed gray line is correlation slope for data near over 291 wells (left) or data within 26km of Denver (right).

CO and methane are plotted against n-pentane in Figure 21 to attempt to exclude feedlots from sources of methane as a major contributor to the concentration of methane measured during research flight 8 leg 1. Sources of n-pentane include fossil fuel combustion and oil and gas fields, but feedlots do not significantly affect the concentrations of n-pentane [5]. Figure 21A shows CO
vs, n-pentane to attempt to identify n-pentane that may be from fossil fuel combustion. The spike at 104 ppbv CO and the group of data points from about 0-400 pptv n-pentane and about 100-135 ppbv CO suggests that there are at least two sources of n-pentane. The spike at 104 ppbv CO has the most nearby wells of the data presented here, and strong enhancements in n-pentane are not seen in CO, indicating that the data at about 104 ppbv CO and over 400 pptv n-pentane are likely not from a combustive source. The less steep slope from 100-135 ppbv CO and 0-400 pptv, however, shows enhancements in CO as well as n-pentane. The increasing proximity to Denver also suggests that the data along this slope are likely influenced by combustive sources.

One possible source of methane that would not also emit CO is feedlots, but a study by Petron, et al. [5] finds that feedlots did not enhance the concentrations of n-pentane. The two data points in Figure 21B1 with over 1500 wells that lie farthest below the best-fit line in B1, for example, have some of the highest methane for this flight leg, but n-pentane is at about 400 pptv, the same value for some samples not collected near any active wells. With enhanced methane, and n-pentane not as enhanced as the other data points near as many wells, these data points may indicated contributions from feedlots. For other data points near over 291 wells, n-pentane values lie close to or above the correlation slope for Fig. 21B1, suggesting that the methane sampled at the same time is likely from a source that also emits n-pentane.

Figure 21 B2 suggests that n-pentane generally increases with proximity to Denver (correlation test in Table 3). Some correlation with CO and Methane in proximity to Denver indicates that some of the n-pentane measured in research flight 8 is from fossil fuel combustion.
3.2.2 Testing for correlation for research flight 8 case study

As in section 3.1.3, a similar hypothesis test is performed on research flight 8, leg 1 for correlation of tracers to the proximity of Denver. T-tests are performed using the null hypothesis, $\rho=0$. Data from 3.1.3 for correlation with wells are shown again here to compare with results from Denver in Table 4. N is the number of samples, r and t are calculated from equations in 3.1.3, 95%CI is the 95% confidence interval for r, and $%\text{sig}$ is the level of significance for the test.
Table 4. Hypothesis test results for case study. Tracers are tested for correlation with proximity to wells and to Denver

<table>
<thead>
<tr>
<th></th>
<th>n-Pentane</th>
<th>Methane</th>
<th>Benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>r</td>
<td>t</td>
</tr>
<tr>
<td>Wells</td>
<td>80</td>
<td>0.760</td>
<td>10.316</td>
</tr>
<tr>
<td>Denver</td>
<td>80</td>
<td>0.289</td>
<td>5.625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>Ozone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>r</td>
</tr>
<tr>
<td>Wells</td>
<td>80</td>
<td>-0.218</td>
</tr>
<tr>
<td>Denver</td>
<td>80</td>
<td>0.656</td>
</tr>
</tbody>
</table>
The null hypothesis is rejected for a positive correlation between wells and n-pentane, methane, and benzene. CO and ozone reject the null hypothesis for a negative correlation between the tracers and oil and gas wells. This indicates that oil and gas wells may be a significant source of n-pentane, methane, and benzene but not CO or ozone. The results here agree with the results expected from other studies cited within this paper.

With respect to Denver, all tests reject the null hypothesis for a positive correlation. N-pentane is correlated with proximity to Denver with a correlation coefficient of 0.07 to 0.48. This is weaker than the interval for wells, 0.65 to 0.84, suggesting that oil and gas wells may be a more significant source of n-pentane than urban sources. Methane is also found to likely be correlated with proximity to Denver, but with a correlation coefficient near that of active wells (0.66 and 0.56, respectively), indicating that both sources may be significant. Correlation with benzene also rejects the null hypothesis with a confidence interval of 0.67 to 0.85, which is a stronger correlation than that given by proximity to wells (0.17 – 0.55). Urban sources are therefore likely to emit more benzene than oil and gas wells, although Figure 20 suggests that there are at least two sources of benzene for the samples taken with research flight 8.

CO and ozone also rejected the null for a positive correlation for proximity to Denver while the two tracers were found to be negatively correlated with proximity to oil and gas wells. The CO result suggests that Denver is a large source of combustion emissions, and some of the ozone measured is due to in-situ photochemical reactions with VOCs, NOx, and methane as the concentrations of ozone may be correlated with proximity to an urban area [23].
4. Conclusions

This study analyzes oil and gas field tracers as well as urban chemical tracers for measurements taken in the boundary layer on the Gulfstream V in the DC-3 campaign. Data was initially filtered for samples within the boundary layer using in situ measurements of potential temperature taken onboard the GV. Proximity to wells was also considered in assessing the possibility of influence from oil and gas field emissions on the air sampled. Finally, the study presents a case study of a flight on 1 June 2012 from the DC3 campaign. Measurements presented here are from instruments onboard the GV, sampling at altitudes of 2.4 km to 2.7 km over an area of oil and gas fields of the Denver-Julesberg Basin in northern Colorado. Comparisons between urban and oil and gas field tracers suggest the air sample during this flight is influenced by oil and gas fields.

Hypothesis testing of both the case study and flights that sampled near the most wells in the campaign suggest that it cannot be concluded that high methane and high pentane were not elevated by oil and gas field emissions. For all GV data sampled in the boundary layer, n-pentane was found to be positively correlated with the proximity to natural oil and gas wells, whereas methane yielded inconclusive results. It is possible that the shorter lifetime of n-pentane compared to methane (about five days compared to nine years) would cause there to be a stronger correlation between n-pentane and its source. Benzene and CO resulted in a rejection of the null hypothesis for negative correlations for GV flights. CO and benzene are primarily urban tracers that are not significantly enhanced by oil and gas wells, and oil and gas fields in the region studied are not located within urban centers, which may suggest why benzene and CO decrease in concentration as the proximity of the sample to wells increases. Ozone also failed to reject the null hypothesis. Emissions from oil and gas wells can be related to high ozone
concentrations [4], but ozone is also influenced by urban sources, and these urban sources may be more significant in enhancing the concentration of ozone than oil and gas wells.

Hypothesis testing for individual flights reveal that only RF8 leg 1 and 2, and RF22 leg 1 reject the null for negative correlations between proximity to wells and CO and ozone. RF8 leg 1 and RF22 leg 1 were the two flight legs with the highest number of nearby oil and gas wells (maximum: 930 and 296 wells, respectively) and may be why results from the two flights indicate a positive correlation between n-pentane and active wells.

To select a case study, concentrations for i-C₅/n-C₅, methane, n-pentane, benzene, CO, and ozone were plotted along flight tracks. Flights with high methane and high n-pentane were considered for the case study. RF8 leg 1 and RF22 leg 2 were found to have high n-pentane. RF10 and RF8 leg 2 also had i-C₅/n-C₅ ratios near one and back trajectories that showed air coming from the Denver-Julesberg Basin and the Fort Worth basin, respectively, also suggesting possible influence from oil and natural gas wells. Next, research flights are further analyzed to find the flights near the most oil and gas wells for better statistical analysis. RF8 leg 1 was chosen as the case study because it had high n-pentane. The G-V flew near the most oil and gas wells and an urban area in RF8 leg 1, which further allowed for the comparison of concentrations of oil and gas tracers and urban tracers along the flight track.

For the low level transect of the 1 June flight (RF8 leg 1), the i-C₅/n-C₅ ratio had a slope of 0.88 for samples near over 291 wells, and 1.04 for samples within 26 km of Denver. The slope for proximity to Denver is much less than the ratio for gasoline related sources (slope = 2.3 – 3.0) [4], but the oil and gas slope falls close to surface measurements of the Denver-Julesburg Basin (0.86). Benzene, a known carcinogen with surface sources primarily from vehicular
sources or oil and gas fields, correlated well with CO but there were also enhancements in benzene that were not seen in CO, indicating that some benzene sampled did not originate from a combustive source [5]. Similarly, methane, a compound emitted from oil and gas fields and the combustion of fossil fuels, showed at least two slopes when plotted against CO: one slope with samples near more oil and gas wells, and another with samples closer to Denver. This also suggests that there may be at least two sources of methane within the region sampled.

Enhancements of n-pentane, also an oil and gas tracer, further suggest the influence of oil and gas wells on the air sampled with high concentrations in n-pentane near oil and gas fields. A i-C$_5$/n-C$_5$ ratio near that of the DJB and enhancements of methane, n-pentane, and benzene not seen with enhancements in CO near oil and gas wells suggest that the air sampled in research flight 8 is strongly influenced by the emissions of these oil and gas wells.

Ground measurements near Texas, Oklahoma and Kansas oil and gas fields have reported emissions of methane that may exceed estimates from the EPA [2]. In another study in Colorado with ground and tower measurements, not only are methane emissions from oil and gas fields likely to be underestimated, but it is reported that benzene from oil and gas operations may be underestimated by more than 200 Mg/yr in the DJB [5]. The data presented here further support this research with enhancements in methane and benzene that may be influenced by oil and gas operations. This study also differs from previous research of ground based measurements in Colorado and the southwestern US by providing data from aircraft measurements, suggesting that emissions from oil and gas fields not only affect air near the surface, but can reach higher altitudes in the troposphere and possibly the stratosphere during deep convection [52].

The data presented here are from a case study with 80 minutes of flight time during an inflow transect uniquely sampled by the GV. GV soundings revealed a definitive boundary layer
and a camera onboard that showed the flight leg occurring beneath the cloud base. It is therefore likely that the flight leg was conducted within the boundary layer and its location over the Denver-Julesberg basin suggests that the air sampled may have been influenced by oil and gas wells.

Because the GV usually flew in outflow regions, there are a relatively small number of research flights from the DC3 with boundary layer measurements from the GV. The DC8, however, flew several legs in inflow regions at low altitudes, likely within the boundary layer. Instruments onboard the DC8 also measured other alkanes, such as ethane and propane, which can be used as other tracers for oil and gas fields [5]. Further research into the emissions of methane and benzene from oil and natural gas fields measured during the DC3 campaign could therefore investigate measurements made during DC3 flights.

Other future work may involve source apportionment for enhancements of methane observed during the DC3 campaign. Higher concentrations of methane sampled over the region of the US covered by the DC3 campaign may also be due to landfills, domestic ruminants, and wetlands. These sources would emit methane without the tracers discussed in this study from combustion or oil and natural gas fields. N-pentane is used in this study to exclude feedlots as a significant source of methane, and the i-C₅/n-C₅ ratio is used in excluding landfills. Stronger conclusions may be made, however, with more tracers or identifying locations of landfills and feedlots and testing against the proximity to these locations. In addition, GV research flight 22 (30 June 2012), flew at less than 1.9 km for 1.75 hours over an area with many active wells and further analysis would be required to investigate the contribution of oil and natural gas emissions on the air sampled. During the 30 June flight, however, measurements of i-pentane, n-pentane, CO, O₃, and CH₄ indicate a complicated mixture of sources.
Works Cited

Appendix A. Potential temperature soundings from GV flights

Research flight 4: leg 1 and 2

Leg 1:

![Graph showing potential temperature sounding for Leg 1 with a top of boundary layer at 2778 m.]

Leg 2:

![Graph showing potential temperature sounding for Leg 2 with a top of boundary layer at 2174 m.]
Research flight 6

![Graph showing data for Research flight 6.]

Top of Boundary Layer (3770 m)

Research flight 8, leg 1

![Graph showing data for Research flight 8, leg 1.]

Top of Boundary Layer (3762 m)
Research flight 8, leg 2

Research flight 10
Research flight 11

Research flight 14
Research flight 17

![Graph showing altitude vs. potential temperature with a note: Top of Boundary Layer (3181 m)]

Research flight 22, leg 1

![Graph showing altitude vs. potential temperature with a note: Top of Boundary Layer = 2927 m]
Research flight 22, leg 2

Top of Boundary Layer (2178 m)
Appendix B. NEXRAD plots for flight legs with convection

Research flight 10, 22:00 UTC (1 hour prior to sampling)

Research flight 14, 20 UTC (1 hour prior to sampling, orange is approx. flight track)
Research flight 17, 2:00 UTC (0 hours prior to sampling)
Appendix C. HYSPLIT plots for flights legs within the boundary layer

Research flight 4

Boundary layer height = 2129 m

Boundary layer height = 1998 m

Boundary layer height = 1821 m
Research flight 5

NOAA HYSPLIT MODEL
Backward trajectories ending at 2100 UTC 26 May 12
GDAS Meteorological Data

Boundary layer height = 1455 m

Boundary layer height = 1511 m

Boundary layer height = 1446 m
Research flight 6

NOAA HYSPLIT MODEL
Backward trajectories ending at 2100 UTC 29 May 12
GDAS Meteorological Data

Boundary layer height = 1550 m

Boundary layer height = 2050 m

Boundary layer height = 1956 m
Research flight 8, leg 2

NOAA HYSPLIT MODEL
Backward trajectories ending at 0100 UTC 02 Jun 12
GDAS Meteorological Data

Boundary layer height = 1163 m

NOAA HYSPLIT MODEL
Backward trajectories ending at 0200 UTC 02 Jun 12
GDAS Meteorological Data

Boundary layer height = 1104 m

Boundary layer height = 504 m
Research flight 10

NOAA HYSPLIT MODEL
Backward trajectories ending at 2300 UTC 06 Jun 12
GDAS Meteorological Data

Boundary layer height = 1649 m

NOAA HYSPLIT MODEL
Backward trajectories ending at 0000 UTC 07 Jun 12
GDAS Meteorological Data

Boundary layer height = 1598 m

Boundary layer height = 1601 m
Research Flight 11

NOAA HYSPLIT MODEL
Backward trajectories ending at 2300 UTC 07 Jun 12
GDAS Meteorological Data

Boundary layer height = 1471 m

NOAA HYSPLIT MODEL
Backward trajectories ending at 2300 UTC 07 Jun 12
GDAS Meteorological Data

Boundary layer height = 1445 m

Boundary layer height = 1666 m
Research Flight 14

NOAA HYSPLIT MODEL
Backward trajectories ending at 2200 UTC 16 Jun 12
GDAS Meteorological Data

Boundary layer height = 1174 m

NOAA HYSPLIT MODEL
Backward trajectories ending at 2300 UTC 16 Jun 12
GDAS Meteorological Data

Boundary layer height = 1473 m

Boundary layer height = 1863 m
Research Flight 17

NOAA HYSPLIT MODEL
Backward trajectories ending at 2100 UTC 17 Jun 12
GDAS Meteorological Data

Boundary layer height = 3585 m

Boundary layer height = 3614 m

Boundary layer height = 3574 m
Research Flight 22, leg 1
Average GDAS mixed layer depth at starting locations: 2286m

NOAA HYSPLIT MODEL
Backward trajectories ending at 1900 UTC 30 Jun 12
GDAS Meteorological Data

Job ID: 1790 Job Start: Mon Jul 15 04:55:36 UTC 2013
Source 1 lat.: 35.480000 lon.: -101.800000 height: 1846 m AGL

Trajectory Direction: Backward Duration: 12 hrs
Vertical Motion Calculation Method: Model Vertical Velocity
Meteorology: 0000Z 29 Jun 2012 - GDAS1
Research flight 22, leg 2

NOAA HYSPLIT MODEL
Backward trajectories ending at 2000 UTC 30 Jun 12
GDAS Meteorological Data

Source: lat: 32.54 lon: -99.8 height: 1845 m AGL
Trajectory Direction: Backward Duration: 12 hrs
Vertical Motion Calculation Method: Model Vertical Velocity
Meteorology: 0002 29 Jun 2012 - GDAS1

Boundary layer height = 2127 m

NOAA HYSPLIT MODEL
Backward trajectories ending at 2100 UTC 30 Jun 12
GDAS Meteorological Data

Source: lat: 33.95 lon: -97.58 height: 1845 m AGL
Trajectory Direction: Backward Duration: 12 hrs
Vertical Motion Calculation Method: Model Vertical Velocity
Meteorology: 0002 29 Jun 2012 - GDAS1

Boundary layer height = 1761 m

NOAA HYSPLIT MODEL
Backward trajectories ending at 2100 UTC 30 Jun 12
GDAS Meteorological Data

Source: lat: 35.75 lon: -97.97 height: 1235 m AGL
Trajectory Direction: Backward Duration: 12 hrs
Vertical Motion Calculation Method: Model Vertical Velocity
Meteorology: 0002 29 Jun 2012 - GDAS1

Boundary layer height = 1659 m