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Abstract 

Aitken, Matthew Lawrence (Ph.D., Physics) 

Wind Turbine Wake Characterization with Remote Sensing and Computational Fluid 

Dynamics 

Dissertation directed by Assistant Professor Julie K. Lundquist 

 

 Because of the dense arrays at most wind farms, the region of disturbed flow 

downstream of an individual turbine leads to reduced power production and increased 

structural loading for its leeward counterparts. Currently, wind farm wake modeling, 

and hence turbine layout optimization, suffer from an unacceptable degree of 

uncertainty, largely because of a lack of adequate experimental data for model 

verification. Accordingly, wake measurements were taken in two separate experiments, 

(1) using the ground-based High Resolution Doppler Lidar (HRDL) developed by the 

National Oceanic and Atmospheric Administration (NOAA) in the Turbine Wake and 

Inflow Characterization Study (TWICS) at the National Renewable Energy Laboratory 

(NREL), and (2) using nacelle-based long-range lidar at a wind farm in the western 

United States. The vantage point from the nacelle is favorable in that scans can more 

consistently transect the central part of the wake. 
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The work presented here outlines a set of quantitative procedures for determining 

critical parameters from these extensive datasets—such as the velocity deficit, the size 

of the wake boundary, and the location of the wake centerline—and the results are 

categorized by ambient wind speed, turbulence, and atmospheric stability. Despite 

specific reference to lidar, the methodology is general and can be applied to extract 

wake characteristics from other remote sensor datasets, as well as output from 

numerical simulations. 

In an effort to help advance computational fluid dynamics (CFD) models of wind 

turbine wake dynamics, experimental results are compared to a large eddy simulation 

(LES) of a turbine operating in the stable boundary layer using the actuator disk 

parameterization in the Weather Research and Forecasting (WRF) Model. With the 

wake characteristics described above as metrics for model verification, the simulations 

show good agreement with the observations. Moreover, new features—namely rotor tilt 

and drag from the nacelle and tower—are added to the existing actuator disk framework 

in WRF. The inclusion of rotor tilt causes the vertical location of the wake center to 

shift upward, as confirmed by experimental measurements. Continued improvement to 

the actuator disk model in WRF will help lead to optimized turbine siting and controls 

at wind farms. 



 

 

Dedication 

 

 

 

 

 

 

 

To my family 

 דור הלך ודור בא והארץ לעולם עמדת

Je me souviens 



vi 

 

Acknowledgments 

No member of a crew is praised for the rugged individuality of his rowing. 

–Ralph Waldo Emerson 

 

I would like to start by thanking my adviser, Julie Lundquist, for her continuous 

guidance and support throughout my tenure at the University of Colorado. It would not 

be an exaggeration to say that this undertaking would have been impossible without her 

vision, leadership, and expertise. I am grateful to Michael Ritzwoller, Robert Banta, 

Judah Levine, and Dmitri Uzdensky for agreeing to serve on my committee and for their 

discerning commentary, which was instrumental in improving the text contained herein. 

Thanks also to my fellow students in the Lundquist group, particularly my officemates 

Brian Vanderwende and Michael Rhodes, for enduring frequent brainstorming sessions 

and for helping to shape my thinking in many areas. 

I would also like to recognize NRG Systems, Inc.—and Evan Osler, in 

particular—for their technical support of the Windcube lidar. Special thanks also to the 

research group led by Gene Takle at Iowa State University (ISU) for their assistance in 

Iowa, and to both ISU and Jerry Hatfield of the National Laboratory for Agriculture 

and the Environment for supplying various flux station measurements. 

It is my distinct honor to thank Yelena Pichugina, Alan Brewer, Raul Alvarez, 

and Scott Sandberg of the National Oceanic and Atmospheric Administration (NOAA) 



vii 

 

for their efforts in collecting, processing, and interpreting the High-Resolution Doppler 

Lidar (HRDL) data from the Turbine Wake and Inflow Characterization Study 

(TWICS). Much credit goes to Kelley Hestmark, a recent graduate of the University of 

Colorado, for her assistance with the initial TWICS data analysis. I am also immensely 

grateful for the help of Balaji Rajagopalan from the University of Colorado, who 

graciously offered indispensable advice regarding parameter estimation and inverse 

problems. Many thanks also to Neil Kelley, formerly of the National Renewable Energy 

Laboratory (NREL), for helping to design TWICS and to Andrew Clifton at NREL for 

several valuable conversations along the way. The work presented here benefited 

tremendously from the keen scientific insight of both Branko Kosović at the National 

Center for Atmospheric Research (NCAR) and Jeffrey Mirocha at Lawrence Livermore 

National Laboratory (LLNL). 

Regarding the nacelle-based lidar campaign, I wish to thank the wind farm 

operator for their generosity in collecting and sharing the data and for many helpful 

discussions during the analysis. The simulations corresponding to this experiment 

utilized the Janus supercomputer, which is supported by the National Science 

Foundation (award number CNS-0821794), the University of Colorado Boulder, the 

University of Colorado Denver, and the National Center for Atmospheric Research. The 

Janus supercomputer is operated by the University of Colorado Boulder. Support for the 



viii 

 

work presented here was generously provided by the U.S. Department of Energy’s Wind 

and Hydropower Technologies Program, under the direction of the Office of Energy 

Efficiency and Renewable Energy. 

With the exception of my parents, nobody has had more of an outsize influence 

on my personal and professional development than my uncle, Ronald Rudolph, whose 

own example—along with my father’s—helped to inspire my passion in cleantech and 

sustainability. His lending of A Brief History of Time by Stephen Hawking and The 

Making of the Atomic Bomb by Richard Rhodes served to initiate my original interest 

in physics. He also persuaded me to attend the University of Colorado and proceeded to 

introduce me to Julie, in addition to various other luminaries in the energy space. As a 

chip off the avuncular block, albeit an imperfect one, I am greatly indebted for his 

inspiration and unremitting encouragement. 

Mom and Dad, thank you for always being there for me and for affording me 

both the ability and opportunity to choose my own path. I’d be lucky to be half the 

parents that you are. I am fortunate to have two brothers, Myles and Graham, who are 

the funniest and most genuinely pure-hearted people I know, and whose standard I 

constantly strive to follow. It gives me great pleasure to thank my grandparents for 

their endless support and sagacious advice throughout my life and academic career. 

Thanks so much to all of the wonderful and valuable friends I have made in Colorado—



ix 

 

Adam Kaufman, Brandon Ruzic, Lisa McCormick, Ian Jaray, Emily Leedom-Hearst, the 

poker crew, and so many others—for reminding me how to have fun and stay sane. And 

thank you, Dana, for your devoted care and for managing to somehow put up with me. 

Of the many discoveries during grad school, you were easily the best.  



x 

 

Contents 

 

List of Tables ............................................................................................................... xiii 

List of Figures .............................................................................................................. xiv 

1. Introduction: Climate Change and Energy .................................................................. 1 

1.1 Economics ...........................................................................................................10 

1.1.1 Market-based mechanisms ...........................................................................11 

1.1.2 Energy subsidies ..........................................................................................16 

1.1.3 Achieving grid parity ..................................................................................20 

1.2 Policy ..................................................................................................................26 

1.2.1 Public policy landscape ...............................................................................29 

1.2.2 Politics and social change ............................................................................ 34 

1.3 Technology ..........................................................................................................42 

2. Wind Lidar Physics ....................................................................................................48 

2.1 The optical Doppler effect ...................................................................................48 

2.2 Lidar performance ...............................................................................................50 

2.3 System architecture and measurement techniques ...............................................52 

2.4 Scanning techniques and vector wind estimation ................................................54 

2.5 Measurement resolution and precision .................................................................58 

3. Wind Lidar Performance ............................................................................................60 

3.1 Introduction ........................................................................................................60 

3.2 Background and previous work ...........................................................................61 

3.3 Data and methods ...............................................................................................65 

3.4 Results .................................................................................................................69 

3.4.1 Aerosol backscatter .....................................................................................69 

3.4.2 Atmospheric refractive turbulence ...............................................................76 

3.4.3 Humidity and precipitation .........................................................................77 

3.4.4 Summary of data availability ......................................................................80 



xi 

 

3.5 Conclusion ...........................................................................................................82 

4. Wind Turbine Wake Characterization with Scanning Remote Sensors ......................85 

4.1 Introduction ........................................................................................................85 

4.2 Background and previous work ...........................................................................87 

4.2.1 Wind turbine wake dynamics ......................................................................87 

4.2.2 Velocity deficit ............................................................................................88 

4.2.3 Wake size and expansion rate .....................................................................90 

4.3 Data and methods ...............................................................................................92 

4.3.1 High-resolution Doppler lidar ......................................................................97 

4.3.2 Windcube lidar .......................................................................................... 105 

4.3.3 Meteorological tower ................................................................................. 106 

4.3.4 HRDL data processing .............................................................................. 108 

4.3.4.1 One-dimensional PPI algorithm ........................................................ 109 

4.3.4.2 Two-dimensional PPI algorithm ....................................................... 113 

4.3.4.3 RHI algorithm ................................................................................... 116 

4.3.4.4 Model acceptance criteria .................................................................. 120 

4.4 Results ............................................................................................................... 121 

4.4.1 Velocity deficit profile ............................................................................... 121 

4.4.2 Velocity deficit attenuation ....................................................................... 123 

4.4.3 Wake boundary expansion ........................................................................ 131 

4.4.4 Vertical wake structure ............................................................................. 136 

4.5 Summary and conclusions ................................................................................. 138 

5. Utility-Scale Wind Turbine Wake Characterization with Nacelle-based Long-range 

Scanning Lidar ............................................................................................................. 141 

5.1 Introduction ...................................................................................................... 141 

5.2 Data and methods ............................................................................................. 142 

5.2.1 Instrumentation......................................................................................... 142 

5.2.2 Wake detection procedure ......................................................................... 147 

5.3 Results ............................................................................................................... 151 

5.3.1 Wake detection ......................................................................................... 151 



xii 

 

5.3.2 Velocity deficit .......................................................................................... 153 

5.3.3 Wake meandering and yaw error ............................................................... 156 

5.3.4 Wake width ............................................................................................... 161 

5.4 Summary and conclusions ................................................................................. 163 

6. Large Eddy Simulation of Wind Turbine Wake Dynamics in the Stable Boundary 

Layer ............................................................................................................................ 166 

6.1 Introduction ...................................................................................................... 166 

6.2 Data and methods ............................................................................................. 169 

6.2.1 Field experiment ....................................................................................... 169 

6.2.2 Case study ................................................................................................. 169 

6.2.3 Simulation setup ....................................................................................... 171 

6.2.4 Modifications to the actuator disk model in WRF-LES ............................ 174 

6.3 Results ............................................................................................................... 177 

6.4 Conclusion ......................................................................................................... 186 

7. Conclusion ................................................................................................................ 190 

References ..................................................................................................................... 193 

 

  



xiii 

 

List of Tables 
 

Table 1.1. Estimated average unsubsidized LCOE (2011 $/MWh) of new generation 

resources for plants entering service in 2018. Reprinted from U.S. Energy Information 

Administration (2013a). .................................................................................................21 

Table 1.2. Regional variation in unsubsidized LCOE (2011 $/MWh) of new generation 

sources for plants entering service in 2018. Reprinted from U.S. Energy Information 

Administration (2013a). ................................................................................................. 22 

Table 4.1. High Resolution Doppler Lidar technical specifications. ................................94 

Table 4.2. Wind turbine technical specifications. ...........................................................94 

Table 4.3. Windcube technical specifications. ............................................................... 105 

  



xiv 

 

List of Figures 
 

Fig 1.1. Historic impact of PTC expiration on annual U.S. wind installation. Source: 

American Wind Energy Association. ..............................................................................18 

Fig. 1.2. Cumulative (left) and annual average (right) federal energy subsidies in billions 

of 2010 dollars since 1918. Reproduced from The Pew Charitable Trusts (2013). ..........19 

Fig 1.3. Deployment and cost of U.S. wind power 1980–2012. Reproduced from 

Tillemann et al. (2013). ..................................................................................................24 

Fig 1.4. The Swanson effect: price of crystalline silicon photovoltaic cells in dollars per 

Watt. Reproduced from Carr (2012). .............................................................................25 

Fig. 1.5. History of U.S. R&D funding by function, in billions of 2012 dollars. Reprinted 

courtesy of the American Association for the Advancement of Science (AAAS). ........... 43 

Fig. 2.1. Representation of an original (solid) and wind-shifted (dotted) frequency 

distribution. A narrow spike due to aerosols is superimposed upon the broad molecular 

peak. Reprinted from Werner (2005). .............................................................................51 

Fig. 2.2. Schematic of a heterodyne-detection Doppler lidar. Reprinted from Werner 

(2005). ............................................................................................................................ 53 

Fig. 2.3. Schematic of Doppler lidar scanning techniques. Reprinted from Werner 

(2005). ............................................................................................................................55 

Fig. 2.4. Example fit to LOS velocity measurements for the determination of wind speed 

and direction. Reprinted from Werner (2005). ...............................................................56 

Fig. 3.1. Theoretical estimate of CNR reduction factor vs.     for the Windcube at 40 

m AGL; see Eqs. (3.2) and (3.3). ....................................................................................65 

Fig. 3.2. Measurement heights for the experimental setup in Boulder. Dashed lines 

indicate laser beam directions, while solid lines indicate altitudes at which 

measurements were collected. .........................................................................................67 

Fig. 3.3. Flux station measurements in Iowa. .................................................................67 



xv 

 

Fig. 3.4. Scatterplot of CNR vs. backscatter at 100 m AGL. Data are for 22–29 August 

2010. ...............................................................................................................................70 

Fig. 3.5. Average level of backscatter corresponding to each MAA for August 2010 in 

Boulder, Colorado. Error bars indicate the standard deviation of each set. ...................71 

Fig. 3.6. Modeled Windcube collection efficiency vs. altitude. ........................................72 

Fig. 3.7. Average ceilometer backscatter vs. average Windcube CNR and modeled 

collection efficiency for each maximum available altitude. The best-fit line is also shown.

 .......................................................................................................................................72 

Fig. 3.8. Average CNR at 40 m AGL corresponding to each level of PM2.5 for the first 

two weeks of August 2010 in Boulder, Colorado. Error bars indicate the standard 

deviation of each set. ...................................................................................................... 73 

Fig. 3.9. Average MAA corresponding to each level of PM2.5 for the first two weeks of 

August 2010 in Boulder, Colorado. Error bars indicate the standard deviation of each 

set. ..................................................................................................................................74 

Fig. 3.10. Average CNR diurnal cycle at 40 m AGL for August 2010 in Boulder, 

Colorado. ........................................................................................................................75 

Fig. 3.11. Average diurnal cycle of MAA for August 2010 in Boulder, Colorado. ..........76 

Fig. 3.12. Scatter plot of CNR at 40 m AGL vs.     at 9 m from 1 to 4 July 2010 at a 

wind farm near Ames, Iowa. ...........................................................................................77 

Fig. 3.13. Scatter plot of CNR at 40 m AGL vs. RH at 9 m AGL. Data are from 28 

June to 9 July 2010, excluding periods of measurable precipitation, at a wind farm near 

Ames, Iowa. The bold black line indicates the best-fit curve. ........................................78 

Fig. 3.14. Comparison of (top) Windcube-measured vertical wind speed at 40 m AGL 

and (bottom) precipitation during the Iowa field deployment. Positive vertical winds are 

toward the ground. Each tick mark on the horizontal axis corresponds to midnight of 

the respective date. .........................................................................................................80 

Fig. 3.15. Histogram comparing data availability at different altitudes for the Boulder 

and Iowa field deployments. ...........................................................................................81 

Fig. 3.16. Histogram comparing maximum available Windcube altitude for the Boulder 

and Iowa field deployments. ...........................................................................................82 



xvi 

 

Fig. 4.1. Velocity deficit as a function of downstream distance, as measured by previous 

field experiments. ...........................................................................................................89 

Fig. 4.2. Wake width as a function of downstream distance, as measured by previous 

field experiments. ...........................................................................................................92 

Fig. 4.3. Map of the NWTC, with the instrumentation and turbine indicated by the 

symbols described in the legend. Courtesy of Joe Smith and Steve Haymes at NREL. .. 93 

Fig 4.4. Site wind resource characteristics for the NWTC during the period 5 April 2011 

to 3 May 2011, as measured at 80 m by the Windcube: (a) wind speed, (b) wind 

direction, (c) wind rose, and (d) turbulence intensity. ...................................................96 

Fig. 4.5. Sample pseudocolor plot of HRDL-measured LOS velocity for a single PPI 

sweep. The wake is visible as the streak of blue behind the turbine, which is located 

outside the figure at the point (0,0). The scan here was taken from 18:20:18 to 18:20:37 

LT on 14 April 2011 with a beam elevation angle of 3.5 deg. ........................................98 

Fig. 4.6. Sample pseudocolor plot of HRDL-measured LOS velocity for a single RHI 

sweep. The wake is visible as the streak of blue behind the turbine, which is located at 

x´ – dHRDL = 0. The scan here was taken from 16:49:38 to 16:49:52 LT on 14 April 2011 

with a beam azimuth angle of 0.3 deg to the left of the x´-axis. .....................................99 

Fig. 4.7. (a) The inflow to the turbine in the same PPI scan as that depicted in Fig. 4.5 

and (b) the best-fit model of the measured LOS velocity, assuming uniform wind speed 

and direction. ............................................................................................................... 101 

Fig. 4.8. (a) The inflow to the turbine in the same RHI scan as that depicted in Fig. 4.6 

and (b) the best-fit model of the measured wind speed profile, which is assumed to be 

logarithmic. .................................................................................................................. 103 

Fig. 4.9. Elevation profile along the LOS from HRDL to the turbine. ......................... 104 

Fig. 4.10. Distribution of spatial turbulence intensity measurements throughout the 

course of the TWICS campaign for the PPI (red) and RHI (blue) scans. .................... 105 

Fig. 4.11. Distribution of RiB for the duration of the TWICS campaign. ..................... 108 

Fig. 4.12. Plan view of the coordinate systems used for the PPI models. ..................... 109 



xvii 

 

Fig. 4.13. The one-dimensional PPI model of the flow at a downstream distance of 2D in 

the scan of Fig. 5. The discrete points and the line indicate actual HRDL measurements 

and the curve of best-fit, respectively. .......................................................................... 113 

Fig. 4.14. The two-dimensional PPI model (b) of the flow in the scan of Fig. 5, which is 

repeated here for comparison (a). The black line in the top panel denotes the location of 

the wake centerline as captured by the one-dimensional PPI algorithm. ..................... 116 

Fig. 4.15. Side view of the coordinate systems used for the RHI model. ...................... 118 

Fig. 4.16. The RHI model of the flow at a downstream distance of 1D in the scan of Fig. 

6. The discrete points and the line indicate actual HRDL measurements and the curve 

of best-fit, respectively.................................................................................................. 120 

Fig. 4.17. Percentage of scans for which a physical wake was modeled with sufficient 

goodness-of-fit by (a) the one-dimensional PPI algorithm and (b) the RHI algorithm, as 

a function of downwind distance. ................................................................................. 123 

Fig. 4.18. Velocity deficit versus downwind distance, as determined by the one-

dimensional PPI algorithm. In each subplot, the bold central lines indicate median 

values, while the symmetric shaded error bars represent the standard deviation of the 

measurements. TWICS results are compared to those of previous studies (see Fig. 1) in 

(a), while velocity deficit measurements are further categorized by (b) ambient wind 

speed, (c) spatial turbulence, and (d) atmospheric stability. ........................................ 125 

Fig. 4.19. Velocity deficit versus downwind distance, as determined by the two-

dimensional PPI algorithm. In each subplot, the bold central lines indicate median 

values, while the symmetric shaded error bars represent the standard deviation of the 

measurements. TWICS results are compared to those of previous studies (see Fig. 1) in 

(a), while velocity deficit measurements are further categorized by (b) ambient wind 

speed, (c) spatial turbulence, and (d) atmospheric stability. ........................................ 126 

Fig. 4.20. Velocity deficit versus downwind distance, as determined by the RHI 

algorithm. In each subplot, the bold central lines indicate median values, while the 

symmetric shaded error bars represent the standard deviation of the measurements. 

TWICS results are compared to those of previous studies (see Fig. 1) in (a), while 

velocity deficit measurements are further categorized by (b) ambient wind speed, (c) 

spatial turbulence, and (d) atmospheric stability. ........................................................ 127 

Fig. 4.21. Comparison of (a) wind direction and (b) wind speed measured by the 

Windcube at hub height and the corresponding ambient values determined by the two-



xviii 

 

dimensional PPI algorithm. The correlation coefficients for both measurements are given 

in the upper left of each plot, while the 1:1 line is shown in green. .............................. 130 

Fig. 4.22. Wake width versus downwind distance, as determined by the one-dimensional 

PPI algorithm. In each subplot, the bold central lines indicate median values, while the 

symmetric shaded error bars represent the standard deviation of the measurements. 

TWICS results are compared to those of previous studies (see Fig. 2) and to the Park 

wake model in (a), while wake width measurements are further categorized by (b) 

ambient wind speed, (c) spatial turbulence, and (d) atmospheric stability. ................. 133 

Fig. 4.23. Wake width versus downwind distance, as determined by the two-dimensional 

PPI algorithm. In each subplot, the bold central lines indicate median values, while the 

symmetric shaded error bars represent the standard deviation of the measurements. 

TWICS results are compared to those of previous studies (see Fig. 2) and to the Park 

wake model in (a), while wake width measurements are further categorized by (b) 

ambient wind speed, (c) spatial turbulence, and (d) atmospheric stability. ................. 134 

Fig. 4.24. Wake height versus downwind distance, as determined by the RHI algorithm. 

In each subplot, the bold central lines indicate median values, while the symmetric 

shaded error bars represent the standard deviation of the measurements. Overall results 

are shown in (a), while wake height measurements are further categorized by (b) 

ambient wind speed, (c) spatial turbulence, and (d) atmospheric stability. ................. 135 

Fig. 4.25. Terrain offset versus downwind distance, as determined by the RHI algorithm. 

The bold central line indicates median values, while the symmetric shaded error bars 

represent the standard deviation of the measurements. ................................................ 136 

Fig. 4.26. Vertical location of the wake center relative to the base of the turbine 

(normalized by the hub height H) versus downwind distance, as determined by the RHI 

algorithm. The bold central line indicates median values, while the symmetric shaded 

error bars represent the standard deviation of the measurements. ............................... 137 

Fig. 5.1. Map of the wind farm, to scale. ...................................................................... 143 

Fig. 5.2. Wind resource characteristics of the site from 14 September 2011 to 12 October 

2011, as measured at hub height by the met tower: (a) wind speed, (b) wind direction, 

and (c) turbulence intensity. ........................................................................................ 145 

Fig. 5.3. Coordinate systems and variable definitions. .................................................. 148 

Fig. 5.4. Sketch of the velocity deficit profiles in the (a) near and (b) far wake. ......... 150 



xix 

 

Fig. 5.5. Number of detected wakes versus downwind distance. ................................... 152 

Fig. 5.6. Velocity deficit versus downwind distance. In each subplot, the bold central 

lines indicate median values, while the symmetric shaded error bars represent the 

standard deviation of the measurements. Overall results are shown in (a), while velocity 

deficit measurements are further categorized by (b) ambient wind speed, (c) turbulence 

intensity, and (d) time-of-day. ...................................................................................... 155 

Fig. 5.7. Modeled wind direction relative to the longitudinal axis of the turbine versus 

downwind distance. In each subplot, the bold central lines indicate median values, while 

the symmetric shaded error bars represent the standard deviation of the measurements. 

Overall results are shown in (a), while wind direction measurements are further 

categorized by (b) turbulence intensity and (c) time-of-day. ........................................ 158 

Fig. 5.8. Wake centerline versus downwind distance. In each subplot, the bold central 

lines indicate median values, while the symmetric shaded error bars represent the 

standard deviation of the measurements. Overall results are shown in (a), while wake 

centerline measurements are further categorized by (b) turbulence intensity and (c) 

time-of-day. .................................................................................................................. 160 

Fig. 5.9. Wake width versus downwind distance. In each subplot, the bold central lines 

indicate median values, while the symmetric shaded error bars represent the standard 

deviation of the measurements. Overall results are compared to the Park wake model in 

(a), while wake width measurements are further categorized by (b) turbulence intensity 

and (c) time-of-day. ...................................................................................................... 162 

Fig. 6.1. (a) Wind speed and (b) direction measured at hub height by the onsite met 

tower during the case study period on 2 October 2011. (c) The offsite temperature 

reading at hub height, as well as the 2-m temperature measurement and corresponding 

line of best fit. .............................................................................................................. 171 

Fig. 6.2. Diagram of the coordinate system convention and components of the force 

acting on the actuator disk. Axes and angles are shown in black, forces in red, and the 

disk in blue. (a) The view upwind of the rotor along the longitudinal axis, (b) a bird’s-

eye view looking down at the rotor along the vertical axis, and (c) a side view of the 

rotor along the transverse axis. .................................................................................... 176 

Fig. 6.3. Histograms of the simulated hub height (a) wind speed and (b) direction at a 

point located 2.5D upwind of the turbine. .................................................................... 179 



xx 

 

Fig. 6.4. Instantaneous contours of wind speed in the (a) x-y plane and (b) x-z plane at 

the center of the disk at hour 12 in the simulation. The turbine is located at x = y = 0.

 ..................................................................................................................................... 180 

Fig. 6.5. (a) Velocity deficit and (b) wake width versus downwind distance. In each 

subplot, the blue central lines indicate median measured values, whereas the symmetric 

shaded error bars represent the standard deviation of the measurements. Simulation 

results are plotted in red. ............................................................................................. 183 

Fig. 6.6. Percentage of wakes detected from the measured data versus downwind 

distance. ....................................................................................................................... 185 

Fig. 6.7. Vertical location of the wake centerline versus downwind distance for 

simulations with and without rotor tilt. ....................................................................... 186 

 



1 

 

Chapter 1 

Introduction: Climate Change and Energy 
 

Everything needs to change, so everything can stay the same. 

–Giuseppe Tomasi di Lampedusa 

 

 In this chapter, I aim to illuminate what has been termed the “super wicked” 

nature of the issues surrounding climate change (Levin et al. 2012), yet still inspire hope 

in practical solutions that will allow us to avoid its most dire consequences. In a 

deviation from standard scientific practice, I will occasionally include my own personal 

opinions, where appropriate. In addition to direct attributions, I would like to note that 

my perspective has been shaped by writers such as David Roberts of Grist, Paul Komor 

and Roger Pielke, Jr. of the University of Colorado, Michael Shellenberger and Ted 

Nordhaus of the Breakthrough Institute, Kevin Bullis of MIT Technology Review, 

Thomas Friedman, Eduardo Porter, Andy Revkin, and Matthew Wald of The New York 

Times, and many others. Moreover, with typical American arrogance, I will focus the 

discussion mainly on the United States, which, as the world’s wealthiest country and 

second-largest emitter of greenhouse gases, has a moral obligation to lead when it comes 

to climate change mitigation and adaption. Nevertheless, there is an implicit 
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understanding that climate change is a global problem that requires engagement from 

multiple actors in all countries. 

With these caveats in mind, let us begin by adopting the main conclusions 

reached in the Fourth Assessment Report (AR4) published by the Intergovernmental 

Panel on Climate Change (IPCC) in 2007, namely that (1) “warming of the climate 

system is unequivocal, as is now evident from observations of increases in global average 

air and ocean temperatures, widespread melting of snow and ice and rising global 

average sea level,” (2) “most of the observed increase in global average temperatures 

since the mid-20th century is very likely due to the observed increase in anthropogenic 

greenhouse gas (GHG) concentrations,” (3) “unmitigated climate change would, in the 

long term, be likely to exceed the capacity of natural, managed and human systems to 

adapt,” and (4) “many impacts [of climate change] can be reduced, delayed or avoided 

by mitigation” (Pachauri and Reisinger 2007). There is no single solution to the adverse 

implications of climate change, but rather a large set of appropriate responses generally 

categorized by two distinct, yet complementary, strategies: mitigation—or protecting 

nature from society—and adaptation—or protecting society from nature (Stehr and von 

Storch 2005). In both areas, immediate and aggressive action is urgently needed to 

minimize the risk of severe climate change impacts. 
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Despite the paramount importance of adaptation, this introductory chapter will 

focus on mitigation, i.e., actions that limit the magnitude and rate of long-term global 

warming through the stabilization or reduction of atmospheric GHG concentrations. 

Amongst several climate change mitigation strategies—such as energy efficiency and 

conservation, advanced biofuels, forest management, landfill methane recovery, 

sustainable agricultural techniques, carbon dioxide removal, geoengineering, and 

population control—I shall concentrate specifically on the switch to low-carbon energy 

sources in the electricity sector, to provide context and justification for the wind energy 

research presented in subsequent chapters. An emphasis will be placed on renewable 

energy (in general, the phrase “renewable energy” here will tend to exclude 

hydroelectric), with tacit recognition that renewables are to be complemented by an 

extensive portfolio of technologies, including responsibly-produced natural gas, advanced 

nuclear power, energy storage, and the smart grid, among others. 

 Happily, most—if not all—of the costs associated with mitigation may be offset 

by supplementary benefits, such as improved public health and environmental quality as 

a result of reduced air and water pollution, increased energy security, reduced pressure 

on water resources and natural ecosystems, provision of modern energy services to 

populations currently without access, and job creation in a variety of sectors and at 

multiple skill levels. (Note that the best way to build support for action to combat 
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global warming may in fact be the emphasis of such tangible and immediate benefits for 

local communities, which provided the underpinning for early successes in the 

environmental movement, such as the Clean Air Act, the Clean Water Act, the 

Superfund Act, and the establishment of the Environmental Protection Agency itself.) 

By definition, renewables are inexhaustible (practically speaking), unlike finite resources 

such as coal and natural gas. Moreover, the adoption of renewable energy technologies 

would result in local tax revenue to support public services and in more stable energy 

prices because of reduced vulnerability to fossil fuel price fluctuations. The grid could 

potentially be more reliable and resilient because renewable energy systems tend to be 

distributed and modular, and therefore less prone to extensive failure than large, 

centralized power plants. Distributed renewables would also mean avoided investments 

in and energy losses from transmission (EPA 2011). 

In addition to carbon dioxide, the combustion of fossil fuels results in the 

emission of sulfur oxides, nitrogen oxides, and particulates, harmful pollutants that 

contribute to a variety of public health and environmental problems, such as acid rain, 

smog, and other air quality concerns. Various other environmental problems, e.g. 

methane leakage and mining runoff, can be traced to fossil fuel extraction. The 

inequitable distribution of fossil fuels—Asia has 56 percent of the world’s population but 

just 30 percent of total recoverable coal reserves, for example—has led to international 
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tensions and constraints on economic development in resource-scare nations. Many 

countries and regions are known to exhibit the so-called “resource curse,” in which 

dependence on revenue from natural resources, particularly fossil fuels, results in a 

considerable decline in economic development and political freedom. While 

geographically limited of course, renewable “fuels,” e.g. wind, sunlight, water, biomass, 

are much more evenly distributed than fossil fuels. Therefore, switching to renewables 

would reduce—although not eliminate—the problems associated with access to and 

availability of energy (Komor 2004). 

 Then again, there are several obstacles preventing the diffusion of clean energy 

technologies (cleantech), the most significant being cost and intermittency. Currently, 

no renewable energy technology can compete strictly on an economic basis with 

traditional energy sources, mainly because renewable energy is still an emerging 

industry and because the market has failed to internalize the hidden costs associated 

with fossil fuels. Accordingly, for a wholesale shift in generation to alternative energy 

sources, either (1) cleantech prices must decrease because of economies of scale or 

technological improvements from R&D, or (2) fossil fuels must become more expensive 

because of supply constraints or a price on carbon, whether via a carbon tax or cap-and-

trade system. According to the most recent estimates, proved coal (gas) reserves—i.e., 

resources that are economically recoverable under existing conditions—are expected to 
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be sufficient for meeting about 110 (60) years of global demand (BP 2013). Because 

reserves may change as a result of new discoveries or technological advances and 

because consumption is not constant, there is considerable uncertainty in predicting the 

end of the fossil fuel age. Nevertheless, the fact remains that coal and natural gas 

reserves are unlikely to be depleted any time in the immediate future. (Alert readers 

may have noticed that petroleum, conspicuous by its absence, was intentionally 

excluded from the preceding discussion, as an insignificant fraction of electricity is 

generated from oil, especially in the United States.) Moreover, setting a meaningful 

price on carbon is likely to prove exceedingly difficult, at least in the near term. Voters 

and businesses, and therefore their elected (or purchased, as the case may be) 

representatives, have resisted, and almost certainly will continue to resist, measures 

designed to raise energy prices, especially if it means paying now to solve distant 

problems for the benefit of future generations and electorates. 

Still, even if grid parity—the point at which the levelized cost of alternative 

energy sources (see Section 1.1.3) is less than or equal to that of power already on the 

grid—were realized, the inherent value of renewables is constrained by intermittency, an 

additional challenge that must be overcome through the development of economical 

energy storage technologies, improvements in weather forecasting, and integration of 

capacity over large regions. Furthermore, because renewable “fuels” are free, renewable 
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energy projects will still be more difficult to finance even at grid parity, owing to their 

comparatively higher upfront capital costs (Beck and Martinot 2004). 

Unfortunately, most political efforts to date, on both the federal and 

international level, have fallen short of curbing growth in GHG emissions and 

encouraging sufficient deployment of renewable energy. As noted by the World Bank 

(2009), the existing “global regime has so far failed to spur countries to cooperate on 

research and development or to mobilize significant funding for the technology transfer 

and deployment needed for low-carbon development.” Adopted in 1997, the Kyoto 

Protocol to the United Nations (UN) Framework Convention on Climate Change set 

binding international limits on the GHG emission of industrialized countries. Yet, 

because Kyoto did not require emission commitments from emerging economies—

including larger countries such as China and India—the U.S. Senate, fearing serious 

harm to the domestic economy, failed to ratify the treaty. To date, the European Union 

Emission Trading Scheme (EU ETS)—created in response to Kyoto—has done little to 

curb emissions because an over-allocation of permits has depressed carbon prices, 

thereby providing little incentive to invest in cleaner technologies. Accordingly, Kyoto 

has failed to lower global emissions, which actually increased 25% in the dozen years 

after its ratification (World Bank 2009). The 2009 UN climate change conference in 

Copenhagen, intended to develop a wider-ranging successor to Kyoto, was an 
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unmitigated disaster, in which the collapse of negotiations yielded an inconsequential 

accord “taken note of” by the participating nations. And as evidenced by the failure of 

the U.S. Senate to pass the American Clean Energy and Security Act of 2009, which 

would have established a cap-and-trade system similar to the EU ETS, the passage of 

climate change legislation or a comprehensive national energy policy (or any other 

meaningful legislation, for that matter) is nearly impossible in today’s deeply divided 

U.S. Congress. 

 There are several reasons for the lack of substantive action on climate to date. 

Power is concentrated in the hands of wealthy individuals and organizations with a 

vested interest in maintaining the status quo. (The author Upton Sinclair once 

proclaimed, “It is difficult to get a man to understand something when his salary 

depends upon his not understanding it.”) The U.S. is paralyzed by political polarization 

and international climate negotiations by distrust and dysfunction. Human beings 

evolved to respond to immediate danger, and not incremental threats such as climate 

change. We are poor judges of risk, particularly over the long term. The ubiquitous 

availability of cheap fossil fuels is the foundation of the global economy, so switching to 

alternative energy sources will be neither quick nor easy. As noted by David Roberts of 

Grist, “we are stuck between the impossible and unthinkable” (Roberts 2013b), meaning 

that without ambitious action on a massive scale we are quite likely to face calamitous 
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consequences, and yet such action does not seem particularly plausible given the current 

state of affairs. To make matters worse, every year of delay in implementing measures 

to limit the global temperature rise to about 2 °C adds $500 billion to the cost of 

mitigation, according to estimates by the International Energy Agency (2009). Similarly, 

a recent study found that the transitional costs for keeping warming below 2 °C would 

be three times higher if efforts began in 2030 as opposed to 2015 (Luderer et al. 2013). 

Yet, despite procrastination by the world at large, and the U.S. in particular, 

there has still been progress. Brilliant innovations and a marked shift in public opinion 

are by no means guaranteed, but there is still room for fierce, pragmatic optimism even 

in light of the many stumbling blocks, as I hope to demonstrate in the following 

sections. For example, carbon dioxide emissions in the United States are at a 20-year 

low and fell 12% in a span of just five years after peaking in 2007 as a result of fuel-

switching (i.e., coal to gas), renewables, efficiency, and the recent recession (Zindler et 

al. 2013). In 2012, coal—easily the dirtiest source of energy—represented 37% of 

electricity generation in the U.S., down from a share of 52% in 1998 and 48% as 

recently as 2008 (U.S. Energy Information Administration 2013b). The eminently 

quotable Winston Churchill might as well have been speaking about climate change 

when he quipped, “the United States invariably does the right thing, after having 

exhausted every other alternative.” 
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Although the division of this chapter into distinct sections would seem to 

indicate otherwise, the economic, political, and technological aspects of climate change 

mitigation are interdependent challenges with a large degree of overlap. Progress in any 

one area makes progress easier in the other two. As noted by David Roberts, “if clean 

energy technology becomes cheaper and more powerful, it broadens support for more 

ambitious policy; properly constructed policy can accelerate clean energy tech 

development and/or deployment, which in turn creates political constituencies; and 

sufficiently smart and powerful political constituencies can scare politicians and 

investors away from dirty energy and toward clean energy” (Roberts 2013a). Moreover, 

the ordering of these sections is no accident: fundamentally, the resistance to action on 

climate change is about money. To overcome this opposition, a sustained and persistent 

political movement is needed to push governments into developing policies that will 

accelerate the transition to inexpensive and sustainable energy systems. Careful 

triangulation and wishful thinking are not acceptable solutions. To paraphrase Andy 

Revkin of The New York Times, what we need is nothing short of an energy revolution. 

1.1 Economics 

If you want to understand opposition to climate action, follow the money. 

–Paul Krugman 
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Negative externalities—the costs associated with economic activity incurred by 

uninvolved parties—often lead to market failures in which scarce resources are no longer 

efficiently allocated, thereby justifying the case for possible government intervention. 

Corrective measures may include taxes to discourage unwanted behavior or subsidies for 

alternative activities with fewer adverse effects. It is important to recognize that the 

externalities associated with the burning of fossil fuels, like all externalities, are 

reciprocal in nature: the emission of carbon and other pollutants is certainly harmful for 

a variety of reasons, but emitters are also penalized if pollution is prohibited. If actors 

were entirely rational and free from constraints, any such problem could technically be 

resolved through the negotiation of private agreements. However, because private 

negotiations are often impractical, especially in the case of large-scale environmental 

pollution, intervention by the state is the best (and really, only) way to achieve 

economically efficient outcomes (Coase 1960). 

1.1.1 Market-based mechanisms 

Because the free market has failed to internalize the social cost associated with 

GHG pollution, a price on carbon—either via a tax or cap-and-trade scheme—would be 

needed to create the financial incentive for consumers to switch to environmentally 

preferable energy technologies. A carbon tax imposes a direct fee on each unit of 

emissions; setting the proper tax level is crucial: too low and it is easier to simply opt 
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for paying the tax and continuing to pollute, but too high and economic growth may be 

severely constricted. By contrast, a cap-and-trade system sets a maximum level of 

pollution and distributes emissions permits among firms. After an initial allocation or 

auction, firms that need to produce more emissions must purchase permits from those 

that produce less. Effectively, buyers pay a charge for polluting, while sellers are 

rewarded for reducing emissions. Theoretically, emission reduction is achieved by firms 

that can do so most cheaply, and in this way, the price on carbon is established by the 

market (Goulder and Schein 2013). 

 As market-based mechanisms, both taxes and cap-and-trade schemes are 

generally regarded as more economically efficient than subsidies or command-and-

control regulations in achieving environmental goals (Metcalf 2009). Both approaches 

are different means to the same end, at least hypothetically, with each characterized by 

its own advantages and disadvantages. A carbon tax provides certainty about emission 

prices, whereas cap-and-trade provides certainty about emission quantity. Historically, 

taxes have proved harder to enact, but would likely be easier to implement. A carbon 

tax raises revenues, which can be used to lower other taxes or to invest in cleantech 

R&D. Conversely, most emissions permits to date have been freely allocated, or 

grandfathered, to persuade firms to accept emissions controls (Taschini et al. 2013), 

leading to windfall profits and perhaps explaining the supposed political favorability of 
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cap-and-trade. [Note that a carbon tax may be more workable than conventional 

wisdom would indicate: Rex Tillerson, the chairman and chief executive of ExxonMobil, 

which previously funded organizations advocating climate change skepticism, threw his 

support behind a carbon tax of at least $20/ton (Mufson 2012).] One disadvantage of a 

carbon tax is that it is extraordinarily difficult to accurately measure the social costs of 

externalities and in turn determine the optimum tax level. And unlike a carbon tax, 

cap-and-trade inherently adjusts to inflation and swings in economic activity without 

additional legislative or regulatory action; for example, during recessions or periods of 

slow economic growth, the emissions cost automatically decreases under a cap-and-trade 

scheme. On the other hand, without a price floor or ceiling, the price of carbon may be 

subject to wild volatility—as has been the case with the EU ETS—making long-term 

planning difficult for businesses and reducing the incentive for behavioral change 

(Goulder and Schein 2013). 

 Political factors complicate the implementation of both approaches, in that the 

price of carbon will not be set at the most efficient level according to economic theory, 

but rather at a level that is politically feasible. Governments tend to write complex tax 

laws filled with loopholes and exemptions, and trading schemes are similarly subject to 

manipulation and profiteering by companies seeking to game the system. Moreover, 

both approaches suffer from the issue of additionality, i.e., whether emissions reductions 
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are attributable solely to the tax or cap, or to other factors, such as an economic 

recession (Bento et al. 2012). Nevertheless, imposing some sort of price on carbon is 

certainly preferable to the status quo. 

 In theory, this price, whether determined by a carbon tax or cap-and-trade 

system, would be equal to the so-called social cost of carbon (SCC), a measure of the 

benefits gained by avoided emissions. Typically, the SCC is stated in terms of a 

marginal cost, i.e., the cost (in dollars) of emitting an additional metric ton of carbon at 

a given point in time. Monetizing the benefits of environmental regulation is inherently 

difficult, especially when trying to determine the cost of damages well into the future. 

SCC estimates are determined using complex models encompassing various assumptions, 

choices, and value judgments about climate science, economics, and technological 

development. Not surprisingly, a review of over 100 studies found estimates of the SCC 

to be highly variable, ranging from $10 to $350 per metric ton, with a mean value of $43 

and standard deviation of $83 per metric ton (Parry et al. 2007). Although certainly not 

an exact measure of climate change damages, the SCC can still be useful in assessing 

the benefits associated with emissions reductions. 

While most studies roughly agree on the magnitude of climate change impacts, 

the discrepancy in SCC estimates stems largely from the assumed discount rate, which 

determines the present value of future benefits resulting from contemporary 
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investments. Usually, the rate is set somewhere between 3–6% to account for the fact 

that money is worth more today than tomorrow because people tend to get richer with 

time (The Economist 2006). Low rates give greater weight to future generations, while 

higher rates imply more uncertainty about the realization of future benefits, making 

funding for the project less likely. Low discount rates are sometimes used to justify the 

moral stance that our generation should do almost whatever it takes to eliminate GHG 

emissions (Stern 2006). On the other hand, high discount rates on the order of 5% or 

greater reflect a certain type of business-oriented logic, namely that spending to 

mitigate climate change should yield at least the same rate of return as any other 

capital investment. In other words, the SCC should represent the opportunity cost of 

alternative investments, such as education or healthcare. [The U.S. federal government 

currently estimates the SCC in 2015 as between $12 and $58 per metric ton in 2007 

dollars, assuming discount rates of 5% and 2.5%, respectively (Interagency Working 

Group on Social Cost of Carbon 2013).] Given limited resources, the current state of 

politics, and recent history, this business logic is likely to prevail, at least in the 

foreseeable future, resulting in an accepted SCC value on the lower end of the spectrum, 

if anything (Porter 2013b). 

 Indeed, any determination of the SCC is subject to what Roger Pielke, Jr. has 

termed the iron law of climate policy: “when policies focused on economic growth 
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confront policies focused on emissions reductions, it is economic growth that will win 

out every time” (Pielke, Jr. 2010). Climate policies must be made compatible with 

economic growth as a precondition for their success; calls for austerity and sacrifice will, 

with limited exceptions, fall on deaf ears. People may be willing to pay some price for 

achieving emissions reductions, but they are only willing to go so far. Especially in the 

U.S., the iron law will likely limit the politically viable price on carbon and prevent 

complete internalization of the negative impacts of carbon emissions. Still, even a 

politically constrained carbon price could raise up to $60 billion in annual revenues to 

fund investment in cleantech innovation or otherwise subsidize the deployment of low-

carbon energy technologies (Aldy et al. 2008). 

1.1.2 Energy subsidies 

In the absence of market-based control mechanisms, subsidization may be a more 

politically workable, yet less economically efficient, alternative. Subsidies support 

certain technologies which may not be the least expensive method for reducing external 

costs. For example, subsidies for wind and solar tend to reduce the price of energy and 

therefore increase demand and ultimately consumption, counteracting initiatives for 

energy efficiency. Moreover, subsidies effectively add to the deficit if the government 

does not raise taxes or reduce spending in other areas. With subsidies, the market could 
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also potentially be rewarded for decisions that may have been made independently 

(Kosmo 1987). 

These drawbacks notwithstanding, the federal government has long provided 

financial support for the development and production of energy technologies in the form 

of tax preferences, grants, loan guarantees, and direct spending programs. Subsidies 

have been used to enhance national security by reducing dependence on foreign oil 

imports and to minimize environmental damage from energy consumption. From 1916 

to 1970, federal energy tax policy was devoted almost entirely to increasing production 

from domestic oil and gas reserves, and there were no incentives promoting the use of 

renewables or energy efficiency. In light of large budget deficits, heightened awareness of 

environmental issues, and the oil crisis resulting from the embargo in 1973 and Iranian 

Revolution in 1979, tax preferences for fossil fuels were reduced and a number of 

incentives were implemented to promote alternative energy and efficiency. Nevertheless, 

the overwhelming majority of tax expenditures continued to benefit the oil and gas 

industry well into the 1980s, and most of the tax incentives for renewables enacted 

under the Energy Tax Act of 1978 were allowed to expire during the Reagan 

administration. Support for renewables was revived in the 1990s, however, with the 

Energy Policy Act of 1992 establishing a production tax credit (PTC) for electricity 

generated from wind and biomass. Unfortunately, the PTC has been allowed to expire 
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several times only to be extended again for a short period, leading to boom-and-bust 

cycles of aid and withdrawal (see Fig. 1.1). Currently, other clean energy technologies, 

such as solar, also enjoy temporary tax credits of their own, and the majority of federal 

incentives now go to renewables, although permanent tax provisions continue to benefit 

fossil fuels and nuclear (Sherlock 2011; Dinan and Webre 2012). 

 

 

Fig 1.1. Historic impact of PTC expiration on annual U.S. wind installation. Source: 

American Wind Energy Association. 
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Fig. 1.2. Cumulative (left) and annual average (right) federal energy subsidies in billions 

of 2010 dollars since 1918. Reproduced from The Pew Charitable Trusts (2013). 

 

 Given historical support for conventional energy sources, then, cleantech 

subsidies therefore represent a shift in priorities and not an unprecedented intervention. 

Because the overwhelming majority of total tax incentives have gone to benefit fossil 

fuels, energy subsidies should be shifted away from mature and established industries 

toward the cleantech sector to help level the playing field. According to the 

International Energy Agency (2011), “subsidies in green energy technologies that are not 

yet competitive are justified in order to give an incentive to investing into technologies 

with clear environmental and energy security benefits.” Rather than set at fixed 
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amounts with short time horizons, subsidies ought to last long enough to provide 

sufficient certainty for investments by the private sector—say, 5–10 years—and 

gradually phase out as renewables achieve cost competitiveness with conventional 

energy technologies. Well-designed policies should drive technological innovation and 

industry maturation to advance clean energy toward subsidy independence. 

1.1.3 Achieving grid parity 

Because subsidies cannot (and should not) last forever, renewables must succeed 

in a competitive market. A convenient measure for summarizing the overall 

competitiveness of various generating technologies is the levelized cost of energy 

(LCOE), 

 
     

∑ (        )(   )   
   

∑   (   )   
   

   (1.1) 

where Ii represents the investment expenditures in year i, Mi the operations and 

maintenance (O&M) expenditures in year i, Fi the fuel expenditures in year i, Ei the 

electricity generation in year i, r the discount rate, and n the lifetime of the system in 

years. For renewable technologies, which have no fuel costs and relatively small O&M 

costs, the LCOE is most sensitive to the overnight capital cost of generation capacity. 

On the other hand, fuel costs can significantly affect the LCOE for conventional 

generation sources, especially natural gas (U.S. Energy Information Administration 

2013a). Table 1.1 lists the estimated U.S. average unsubsidized LCOE of new generation 
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resources for plants entering service in 2018 (a year chosen because of the long lead time 

for some technologies to come on line), while Table 1.2 denotes the regional variations 

in those levelized costs. Despite historically low natural gas prices, onshore wind is 

nearly cost-competitive with gas even without tax credits, making it perhaps the most 

promising renewable energy technology, at least in the near term. Still, substantial 

investment in R&D is needed for clean energy technologies to reach grid parity with 

conventional sources on an unsubsidized basis. 

 

Table 1.1. Estimated average unsubsidized LCOE (2011 $/MWh) of new generation 

resources for plants entering service in 2018. Reprinted from U.S. Energy Information 

Administration (2013a). 

 

Plant type Capacity 

factor (%) 

Capital 

cost 

Fixed 

O&M 

Variable O&M 

(including 

fuel) 

Transmission 

investment 

Total 

LCOE 

Dispatchable technologies 

Coal 85 65.7 4.1 29.2 1.2 100.1 

Natural gas 

combined cycle 

87 15.8 1.7 48.4 1.2 67.1 

Natural gas 

combustion 

turbine 

30 44.2 2.7 80.0 3.4 130.3 

Nuclear 90 83.4 11.6 12.3 1.1 108.4 

Geothermal 92 76.2 12.0 0.0 1.4 89.6 

Biomass 83 53.2 14.3 42.3 1.2 111.0 

Non-dispatchable technologies 

Wind – onshore 34 70.3 13.1 0.0 3.2 86.6 

Wind – offshore 37 193.4 22.4 0.0 5.7 221.5 
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Solar PV 25 130.4 9.9 0.0 4.0 144.3 

Solar thermal 20 214.2 41.4 0.0 5.9 261.5 

Hydro 52 78.1 4.1 6.1 2.0 90.3 

 

Table 1.2. Regional variation in unsubsidized LCOE (2011 $/MWh) of new generation 

sources for plants entering service in 2018. Reprinted from U.S. Energy Information 

Administration (2013a). 

 

Plant type Minimum Average Maximum 

Dispatchable technologies 

Coal 89.5 100.1 118.3 

Natural gas – combined cycle 62.5 67.1 78.2 

Natural gas – combustion turbine 104.0 130.3 149.8 

Nuclear 104.4 108.4 115.3 

Geothermal 81.4 89.6 100.3 

Biomass 98.0 111.0 130.8 

Non-dispatchable technologies 

Wind – onshore 73.5 86.6 99.8 

Wind – offshore 183.0 221.5 294.7 

Solar PV 112.5 144.3 224.4 

Solar thermal 190.2 261.5 417.6 

Hydro 58.4 90.3 149.2 

 

 

It is important to note that direct comparison of LCOE across all technologies 

may be somewhat misleading, as plant investment decisions are affected by various 

regional characteristics, such as the existing load profile and resource mix. Another 

important consideration is power plant capacity factor, which is the ratio of actual 

energy output over a given time period to the maximum potential output were the plant 
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to operate continuously at full nameplate capacity. Because load must always be 

balanced to follow demand, dispatchable technologies with high capacity factors tend to 

be more valuable to a system than non-dispatchable ones that depend on the 

availability of intermittent resources. Moreover, utilities may pursue portfolio 

diversification because of the inherent uncertainty in future fuel prices, as well as tax 

credits and other policies. For these reasons, a perhaps more appropriate metric for 

economic decisions regarding capacity additions is avoided cost, or the cost a utility 

incurs to generate electricity that is otherwise displaced by a new generation project. A 

comparison of levelized cost and avoided cost indicates whether or not the value of 

project exceeds the cost; such comparisons can also be used to determine the most 

economical project amongst multiple technologies. Notably, in its most recent proposal 

to the Colorado Public Utility Commission, Xcel Energy identified 450 MW of wind and 

170 MW of solar as the most cost-effective resources (including subsidies), representing 

the first time renewables were chosen strictly on an economic basis rather than to 

simply meet the state renewable portfolio standard (U.S. Energy Information 

Administration 2013a; LaMonica 2013). 

Much progress has been made in recent years to drive down the cost of 

renewables, particularly wind and solar. Through economies of scale and research 

sponsored by the government and private sector, the (subsidized) price of wind has 
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plummeted by an order of magnitude in the past three decades, from $550/MWh in 

1980 to about $50/MWh in 2012. Historically, wind power capacity in the United States 

has doubled about every 2.5 years. In 2012, wind energy became the primary source of 

newly added generation capacity in the U.S. for the first time, representing 43% of all 

new electric additions (Tillemann et al. 2013). 

 

 

Fig 1.3. Deployment and cost of U.S. wind power 1980–2012. Reproduced from 

Tillemann et al. (2013). 

 

Moreover, rooftop solar panels today cost about 1% of what they did 35 years 

ago, and in just the past five years alone, solar photovoltaic (PV) module prices have 

fallen from $3.40/W to $0.80/W. Similar to Moore’s law for integrated circuits, 

Swanson’s law says that solar PV module prices tend to drop 20% for every doubling of 
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cumulative shipped volume; effectively, solar prices are cut in half about every three 

years. There is also tremendous potential, particularly in the U.S., to bring down so-

called balance-of-system (BOS) costs, which derive from permitting and installing solar 

PV systems. The U.S. Department of Energy SunShot Initiative aims to streamline 

building codes, zoning laws, permitting rules, and business processes for installing solar 

systems, in an effort to reduce BOS costs, which, at $3.34/W, are more than five times 

that in Germany. If recent price trends persist, wind and solar could reach grid parity 

by the end of this decade, if not before (Tillemann et al. 2013; Swanson 2006). 

 

 

Fig 1.4. The Swanson effect: price of crystalline silicon photovoltaic cells in dollars per 

Watt. Reproduced from Carr (2012). 

 



26 

 

1.2 Policy 

Men argue. Nature acts. 

–Voltaire 

 

 In theory, the free market is the most powerful and efficient system for allocating 

resources because competition arising from aggregate supply and demand ensures that 

superior goods and services are provided to consumers at the lowest possible cost. 

However, even a perfunctory reading of history would show that the free market often 

fails to protect the well-being of the general public as well as that of the environment. 

Just a few examples of market failures include slavery; child labor; monopolies; the 

exploitation of workers via low wages, long hours, and hazardous labor conditions in the 

late 19th and early 20th centuries; ozone depletion; and pollution in general (Cowen 

1988). The Stern Review on the Economics of Climate Change commissioned by the 

British government labeled climate change as the “greatest market failure the world has 

seen” (Stern 2006). Indeed, the uncertain and distant impacts of climate change are 

unlikely to significantly sway decision-making in the private sector, which is concerned, 

for the most part, with maximizing short-term profits. 

Of course, government regulation is no more perfect than the free market, and 

centralized control can often lead to unintended consequences despite good intentions. 

Subsidies and other supportive policies reduce the incentive for cost reduction and are 
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inconsistent with the general trend in industrialized countries toward the restructuring 

of electricity markets. Moreover, subsidies reflect the outcome of political negotiations 

and not actual costs; improperly designed policies can lead to insufficient supply or 

windfall profits for producers. While helpful in initially scaling up nascent industries, 

subsidies are not sustainable over the long term, nor should they be. Market 

intervention can create dependent and powerful constituencies, and indefinite subsidies 

could lead to the perception of the cleantech industry as just another despised special 

interest (Komor 2004). 

The key, then, is striking the right balance between free markets and regulatory 

oversight, allowing private business to flourish while still protecting public interests. As 

noted by Komor (2004), “There exists a natural tension between policy and markets—

policy defined as explicit government actions in pursuit of a specific outcome, and 

markets defined as the functioning of a competitive and lightly regulated or unregulated 

economic system. The challenge for renewable energy policy is to devise policies that 

work with the market and intervene as little as possible while still successfully 

promoting the outcome of increased use of renewables. The ideal choice is not between 

one or the other, but rather the right spot on the continuum from complete central 

control to a totally unregulated market.” Above all else, policy must be stable to provide 
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the certainty necessary for businesses to make long-term investments that will 

ultimately drive down costs. 

 It is also important to recognize that the electricity sector, as it exists today, is 

anything but a free market. The production, transmission, and distribution of electricity 

are already regulated in most countries, and most energy sources have long received 

subsidies in the form of R&D funding and direct tax credits (Komor 2004), as noted in 

Section 1.1.2. Programs to promote renewable energy technologies therefore represent a 

shift in priorities and not an unprecedented intervention. There are several possible 

policy approaches, each of which has its own strengths and weaknesses. With no clear 

single best option, a combination of mechanisms may in fact prove to be the most 

effective. Policies should help to create and support markets for renewable energy and 

should be tailored for individual technologies. For example, applied research and policies 

that stimulate deployment may be more suitable for fairly mature technologies, such as 

hydropower and onshore wind, whereas more basic R&D may prove more appropriate 

for less advanced or completely new technologies. 

This point may be further illuminated by considering both the urgency and scale 

of mitigating climate change. To wit, fossil fuels are the bedrock of the modern global 

economy, but business-as-usual is likely to result in ruinous consequences. And there 

simply are not enough remaining resources to raise living standards for the billions of 
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people living in extreme poverty with fossil fuels alone. In light of this reality, we must 

quickly transition to scalable and sustainable energy systems, meeting the basic needs of 

the global population while simultaneously driving carbon emissions as close to zero as 

possible. While technically achievable with existing technologies, these technologies are 

still too expensive to be practical at large scale. Yet, we also do not have time to wait 

for completely new technological breakthroughs to be successfully commercialized. We 

must rapidly install existing technologies, while also improving those technologies and 

developing newer, better ones. We need both deployment and innovation. 

To be fair, deployment policies may be effective yet inefficient, in that they result 

in considerable new renewable capacity, but potentially at a high cost to the consumer. 

Moreover, public investment in R&D is no panacea, as breakthrough technologies are 

impossible to predict in advance, especially by a central authority. This is not to say, 

however, that renewable energy policy has no place. Despite the disadvantages of 

government intervention, the cost of inaction would be far greater. 

1.2.1 Public policy landscape 

Similar to previous restructuring of the telecommunications and airline 

industries, the U.S. electricity sector has enjoyed increasing deregulation since the 

Energy Policy Act of 1992. Although still heavily regulated in much of the U.S., 

electricity markets in fifteen states and the District of Columbia have replaced a 
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monopoly system of utilities with competing sellers, the goal being to reduce both 

wholesale and retail electricity prices (U.S. Energy Information Administration 2013c). 

While the promotion of social or environmental goals may prove more difficult with 

reduced regulatory control, newly opened markets have allowed for differentiated retail 

products and branding opportunities for utilities. 

In fact, electricity deregulation has paved the way for so-called green power 

marketing, in which renewable energy is sold in the competitive marketplace amongst 

multiple suppliers and service offerings. By allowing consumer preferences for 

environmentally preferred sources to be reflected in market transactions, green power 

marketing has the potential to expand the availability of those sources without 

governmental intrusion and despite cost considerations (Komor 2004). The voluntary 

renewable energy market in the U.S. more than tripled in size from 2006–2011, with 

total sales approaching 40 million MWh in 2011 (Heeter et al. 2012). However, even 

with surveys indicating 80% support for renewable energy, just one quarter of 

respondents would spend $5–10 extra each month to partially power their home with 

renewable energy. And only one in six consumers is aware of the green power options 

from their electricity provider, even though such options are available to almost one half 

of the population. In actuality, just 7% of the population reports buying at least some 

renewable energy for their home (Natural Marketing Institute 2011). With support for 
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environmental goals broad yet shallow, sound policy is essential for promoting cleantech 

deployment and driving down costs. 

One of the more popular and successful policy approaches, especially in the U.S, 

has been the renewable portfolio standard (RPS), which establishes a compliance 

market by requiring utilities to provide a specified fraction of their electricity from 

renewable sources (Komor 2004). Colorado, for example, has one of the strongest RPS 

mandates in the country, in which 30% of electricity sales must derive from renewable 

generation by 2020. Portfolio standards are simple and enjoy extensive political support 

from environmentalists and free market enthusiasts alike; although there is no national 

clean energy standard, 30 states and the District of Columbia have adopted RPS 

mechanisms (DSIRE 2013). (Politicians often prefer regulations with obvious benefits 

and hidden costs to those with hidden benefits and obvious costs, perhaps explaining 

the attractiveness of this approach.) The RPS establishes a guaranteed demand for 

renewable electricity, while relying almost entirely on private markets for its 

implementation, leading to lower costs through competition, efficiency, and innovation. 

Cheaper technologies (e.g., wind) tend to be favored over more expensive ones (e.g., 

solar), which, depending on perspective, may be considered an advantage or 

disadvantage. To counteract this effect, some states include carve-outs in their RPS, 
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requiring that a small percentage of electricity be generated with specific technologies 

(DSIRE 2013). 

Similarly, feed-in tariffs spur investment in clean energy technologies by requiring 

utilities to purchase electricity from renewable generators at a set price, guaranteed by a 

long-term contract (usually 15–20 years) and thus ensuring a reasonable rate of return. 

More common internationally, feed-in tariffs are mandated by law in just a handful of 

states in the U.S. (Komor 2004). Although well-designed feed-in tariffs have proved 

generally effective in promoting renewable energy in Europe, Spain suspended its feed-in 

tariff program for new projects in 2012 because excessively generous premiums led to far 

more investment than intended, and thus unmanageable costs for consumers (Wang 

2012). 

Additional policy approaches at the state level include the Regional Greenhouse 

Gas Initiative (RGGI), a cap and trade system established by nine northeastern states 

for reducing GHG emissions 10% below 1990 levels by 2020 (Holt et al. 2007). Twenty 

states and the District of Columbia have established long-term GHG emissions targets. 

In particular, an executive order issued by Governor Bill Ritter in 2008 sets the GHG 

emissions goal for the state of Colorado at 20% below 2005 levels by 2020 and 80% 

below 2005 levels by 2050 (EPA 2013). To help achieve this goal, the Clean Air–Clean 

Jobs Act passed in 2010 mandates the replacement of 900 MW of coal-based power 
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generation with facilities fueled by natural gas or other low-emitting sources by 2017 

(Proctor 2012). In just one example of action at the municipal level, the city of Boulder 

has committed to adhere to the GHG emissions goals established by the Kyoto Protocol, 

and in 2006, Boulder voters passed the first tax in the U.S. exclusively designated for 

climate change mitigation. Moreover, the city council has called for reducing GHG 

emissions 80% by 2050 (City of Boulder 2013). 

On the federal side, the Department of Energy has been authorized to offer more 

than $10 billion in loan guarantees for renewable energy, energy efficiency, and 

advanced transmission projects, in an effort to encourage early commercial use of new or 

significantly improved technologies. As mentioned in Section 1.1.2, several federal tax 

credits are also in place to support corporate investment in clean energy: a production 

tax credit (PTC) in the amount of 2.3 cents/kWh for wind, biomass, and geothermal 

and 1.1 cents/kWh for landfill gas, municipal solid waste, qualified hydroelectric, 

marine, and hydrokinetic energy; and also an investment tax credit (ITC) equal to 30% 

of expenditures for solar, fuel cells, and small wind and 10% for geothermal and 

combined heat and power (DSIRE 2013). 

In the absence of comprehensive legislation from Congress on climate or clean 

energy, President Obama has directed the Environmental Protection Agency (EPA) to 

use its existing authorities under the Clean Air Act to develop GHG emission standards 
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for electricity generation. With the average gas (coal) plant emitting about 1200 (1800) 

pounds of carbon dioxide per MWh, EPA has proposed limiting new gas-fired (coal-

fired) power plants to 1000 (1100) pounds of carbon dioxide per MWh. EPA is also 

scheduled to propose guidelines for existing generation facilities by June 2014 and to 

finalize them a year later (McCarthy 2013; Shear 2013). The rules are expected to 

effectively outlaw the construction of new coal-fired power plants and would likely 

require existing fossil fuel stations to install costly carbon capture and sequestration 

systems. In addition, President Obama’s climate action plan unveiled in June 2013 

“commits to expand major new and existing international initiatives, including bilateral 

initiatives with China, India, and other major emitting countries” for reducing GHG 

emissions (Executive Office of the President 2013). Although market-based mechanisms 

are generally considered to be more efficient than command-and-control regulation, the 

measures undertaken by the Obama White House are entirely justified and appropriate 

given current political gridlock—on both the domestic and international level—and the 

urgency of the climate crisis. 

1.2.2 Politics and social change 

 Political power is the fulcrum upon which the lever of public policy rests. Top-

down laws and regulations are frequently catalyzed by people working for change from 

the bottom up. From abolition to women’s suffrage to civil rights to environmentalism 
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to marriage equality, history clearly demonstrates that social transformation is built 

upon a vibrant foundation of grassroots activism. The widespread shift to clean energy 

similarly depends on popular demand by a broad base of various constituencies—young 

people, colleges, cleantech companies, religious institutions, farmers and ranchers, 

utilities, businesses, the military, and environmental organizations. Auspiciously, in 

addition to advocacy by various environmental organizations to facilitate civic 

engagement and collective action—e.g., the National Resources Defense Council, 

350.org, the Union of Concerned Scientists, the Sierra Club, Ceres, the Environmental 

Defense Fund, the Center for Climate and Energy Solutions, and Friends of the Earth—

there is ample evidence of support for renewable energy among the general population. 

For instance, six U.S. colleges and universities, along with several cities—

including Seattle, San Francisco, Portland, and Boulder—and the United Church of 

Christ, have committed to pursue fossil fuel divestment (Fossil Free 2013). While 

unlikely to directly impact the valuation of financial markets, divestment does help to 

erode corporate reputations, raise public awareness, and build support for legislation. 

Moreover, freed up capital can be reinvested in energy efficiency measures and clean 

energy stocks (Ansar et al. 2013). Almost 700 schools are signatories to the American 

College and University Presidents’ Climate Commitment (ACUPCC), which provides 

the higher education community with a framework for implementing carbon emission 
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reductions. In particular, my almae matres, the University of North Carolina and North 

Carolina State University, have climate action plans to achieve carbon neutrality by 

2050, while the University of Colorado has committed to reducing carbon emissions 80% 

by that same year (ACUPCC 2013). 

Such college initiatives reflect the views of young people in general: a poll 

conducted for the League of Conservation Voters found that three-quarters of 

Americans under the age of 35 have negative perceptions of climate change deniers and 

that four-fifths support President Obama’s recently announced climate action plan. 

Even a majority of young Republicans would be less likely to vote for a politician who 

opposed the president’s plan (Goldenburg 2013). In addition to shifting conservative 

values, the Global Climate Coalition (GCC)—a group of companies from the oil, 

automotive, and manufacturing industries which led an aggressive lobbying and public 

relations campaign to undermine the validity of climate science—disbanded in 2002, and 

many previously skeptical corporations have since changed their position. In fact, 

several major oil and automobile companies—including former members of the GCC, 

such as BP, General Motors, and Shell Oil—have partnered with the Center for Climate 

and Energy Solutions (C2ES) to actually back efforts for climate change mitigation 

(Revkin 2009). As eroded opposition from previously resistant groups leads to 

acquiescence and eventual support, the values behind social movements often become 



37 

 

unopposed elements of mainstream politics after prolonged struggles, and climate action 

seems to be following a similar course. 

What is more, the World Business Council for Sustainable Development 

(WBCSD), an association of about 200 major multinational companies, advocates 

halving worldwide GHG emissions by 2050 based on 2005 levels (WBCSD 2013). 

Insurers, particularly the reinsurance companies that bear much of the ultimate risk in 

the industry, have taken a similar position (Porter 2013a). In its climate change policy 

statement, the trade group Reinsurance Association of America (RAA) notes that, 

“With a fundamental role in assisting individuals and businesses to manage risk, it is 

prudent for the insurance industry to acknowledge the changing climate as well as the 

risks it poses to all areas of its business. Furthermore, policymaking and corporate risk 

management strategies should include consideration of measures for adaptation to, and 

mitigation of, the potential adverse impacts of climate change” (RAA 2008). 

Indeed, sustainability initiatives are becoming standard practice for some of the 

largest and most profitable companies in the world, with 60% of the Fortune 100 and 

Global 100 setting a renewable energy commitment, a GHG emissions reduction target, 

or both (David Gardiner & Associates 2012). Businesses may adopt clean energy and 

energy efficiency measures to reduce costs, increase return on investment, pursue 

branding opportunities, and avoid the uncertainty associated with volatile fossil fuel 
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prices. In just one example, Walmart has improved its fleet fuel efficiency by 69% since 

2005 and reduced GHG emissions 13% between 2005 and 2010. Currently, 21% of 

Walmart’s electricity is generated from renewable sources, and the company aims to 

eventually be supplied 100% by renewables. As the world’s largest retailer, Walmart has 

also put pressure on its 100,000 suppliers to improve their environmental performance 

(Walmart 2013). In what is probably the most striking and noteworthy act of all in the 

business community, News Corporation—the parent company of Fox News Channel and 

The Wall Street Journal headed by the not-so-progressive Rupert Murdoch—achieved 

carbon neutrality in 2011 for the claimed benefit of its bottom line and corporate image 

(Rudolf 2011). (John Locke is well known for having claimed, “the actions of men are 

the best interpreters of their thoughts.”) Of course, greenwashing—falsely spinning a 

perception of environmental friendliness—is a legitimate concern, and many supposedly 

green companies may donate money to political candidates who vote in opposition to 

environmental issues, yet trends still point towards increasing corporate sustainability 

and social responsibility. 

Of the 126 teams in the five major professional sports—football, basketball, 

baseball, hockey, and soccer—38 use renewable energy for at least some of their needs 

and 68 have energy efficiency programs. Eighteen venues have installed solar panels, the 

most notable of which is Pocono Raceway, meeting 100% of its energy needs with an 
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onsite solar facility consisting of 40,000 solar panels. Lincoln Financial Field, the home 

of the Philadelphia Eagles, covers about 30% of its energy usage with 11,000 onsite solar 

panels and offsets the rest by purchasing renewable energy credits. The St. Louis 

Cardinals have reduced energy consumption at Busch Stadium by 24% in just three 

years, and the Seattle Mariners have realized $1 million in annual savings by decreasing 

energy use at Safeco Field. The sports industry is big business and one of the most 

culturally influential sectors in the country, with teams serving as role models for 

individuals and other businesses to emulate (Mihoces 2013). 

As the largest single consumer of energy in the United States, the federal 

government is also leading by example to shape the energy landscape for the country as 

a whole. The Energy Policy Act of 2005 required federal agencies to obtain 7.5% of 

electricity from renewable energy sources by 2013. Executive Order 13423 signed by 

President Bush in 2007 requires federal agencies to reduce energy intensity 30% by 2015 

as compared to 2003 levels. The Energy Independence and Security Act of 2007 

mandates that new federal buildings and major renovations to existing buildings must 

be completely carbon-neutral by the year 2030. In 2009, President Obama signed 

Executive Order 13514, which, among a variety of sustainability goals, calls for reducing 

government GHG emissions 28% by 2020 as compared to 2008 levels (ACORE and AEE 
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2012). These government initiatives create substantial demand for clean energy 

technologies, helping to provide a vital anchor for the industry. 

Similarly, with the capacity to make long-term investments and absorb large 

upfront capital costs, the military has a unique ability to create mass markets and drive 

innovation in cleantech. Viewing fossil fuel dependence as a strategic risk, the 

Department of Defense (DoD) is deeply committed to transforming its energy system. 

Protecting fuel convoys is one of the most dangerous jobs in the military, with one 

casualty for every 24 missions in Afghanistan in 2007. Moreover, volatile fuel prices 

make planning difficult and the cost of transporting gasoline into remote areas can be as 

high as $400 per gallon (Roberts 2012). By contrast, renewable energy offers concrete 

functional advantages for military operations by reducing supply chain vulnerability and 

eliminating commodity costs. In fact, the military has begun to adopt energy efficiency 

measures and renewable technologies, such as portable solar panels, in an effort to 

replace diesel generators that would ordinarily supply power to outposts, thus 

precluding the need for regular fuel convoys (Department of Defense 2010). DoD has 

committed to fulfill 25% of its energy needs with renewables by 2025, aiming to attract 

$7 billion in private sector investment over the next decade for the construction of 

renewable energy power plants. These types of strong public-private partnerships are 

crucial for the rapid deployment of cleantech at scale. As an early adopter, DoD can 
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help create a market for the next generation of technologies needed to support the 

nation’s energy infrastructure, much in the same way it has served to catalyze the 

development of other fundamental innovations in the past, such as jet engines, GPS, 

microchips, and the Internet (ACORE and AEE 2012). 

Moreover, the United States military, as an institution under civilian control in a 

representative democracy, is a reflection of domestic society as a whole. The armed 

forces represent the norms and values that a country seeks to project to the outside 

world. Because the military tends to be slightly more conservative than civilian society, 

changes to military culture are often indicative of deep-rooted progressive movements 

and inevitable societal transformation. Whether ending racial segregation as per 

President Truman’s executive order in 1948 (Garamone 2008), authorizing full gender-

integrated basic training in 1994 (Chapman 2008), openly integrating homosexuals in 

2011, or allowing women to serve in combat roles starting in 2015 (CBS 2013), the 

evolution of values within the military has often mirrored broader changes in civilian 

customs. Furthermore, as one of the few remaining institutions to still receive bipartisan 

political support and the trust of the American populace, the military has inimitable 

potential to impact public opinion by championing clean energy. With advocacy of the 

military an almost sacrosanct principle in American politics, especially amongst 
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conservatives, general enthusiasm for conventional energy sources may begin to wane as 

the military’s interests diverge away from fossil fuels and towards renewables. 

1.3 Technology 

We are like tenant farmers chopping down the fence around our house for fuel when we 

should be using nature’s inexhaustible sources of energy—sun, wind, and tide. I’d put 

my money on the sun and solar energy. What a source of power! I hope we don’t have 

to wait until oil and coal run out before we tackle that. 

–Thomas Edison 

 

In a practical sense, low-carbon energy sources will only be deployed at a 

meaningful scale once unsubsidized costs fall below that of fossil fuels. With 

stabilization of GHG concentrations requiring considerable reductions in global carbon 

intensity, there is tremendous need for expanded research and development in clean 

energy technologies. Unfortunately, worldwide public funding of energy research has 

been, for the most part, flat or declining for the past few decades and currently sits at 

about half of 1980 levels (Metz et al. 2007). U.S. energy R&D funding, in particular, 

averages just over $4 billion per year, far less than R&D investments in other areas 

popularly considered to be national priorities, such as health ($34 billion), defense ($81 

billion), and space ($19 billion)—see Fig. 1.5. Numerous leaders, such as the President’s 

Council of Advisors on Science and Technology and 34 Nobel laureates, have called for 

energy R&D funding to be doubled or even tripled above current levels (Jenkins et al. 
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2012). In a similar vein, the electricity sector, which is heavily regulated and capital 

intensive, also tends to avoid risk and innovation: utility spending on R&D averages 

just 0.1% of revenues compared to 3.5% for private firms across all industries 

(Augustine et al. 2011). 

 

 

Fig. 1.5. History of U.S. R&D funding by function, in billions of 2012 dollars. Reprinted 

courtesy of the American Association for the Advancement of Science (AAAS). 

 

With little incentive for privately financed research, then, public support for 

clean energy R&D is of paramount importance, especially in early stages. Direct 

government investments have fueled the development of various revolutionary 

technologies, such as interchangeable parts in manufacturing, railroads, hybrid crops, jet 

engines, microchips, the Internet, GPS, and many pharmaceutical drugs (Jenkins et al. 

2010). Although certainly guilty of having backed its fair share of failures, most notably 

Solyndra, the government similarly has a long history of investing in cutting-edge 



44 

 

energy technologies. For example, initial demonstration of hydraulic fracturing in shale 

by DOE in the late 1970s and the federal production tax credit for unconventional gas 

from 1980–2002 helped spur the current shale gas bonanza (Shellenberger et al. 2012). 

Moreover, nuclear power was also developed with strong and consistent government 

support: the boiling water reactor was first demonstrated at Idaho National Laboratory 

and the pressurized water reactor at Oak Ridge National Laboratory. Financial 

incentives, such as loan guarantees and limitations on liability in the case of serious 

accidents, have served to further buoy the nuclear industry (Jenkins et al. 2010). 

In terms of renewable energy, the Department of Energy invests in both 

incremental improvements to existing technologies and the development of more original 

innovations. The Office of Energy Efficiency and Renewable Energy (EERE) distributes 

funds for research to advance traditional clean energy sources, such as biomass, 

geothermal, hydropower, solar, and wind (EERE 2013). On the other hand, the 

Advanced Research Projects Agency-Energy (ARPA-E) is tasked with funding and 

commercializing transformational energy technologies that might not otherwise be 

pursued by industry because of a high risk of failure. ARPA-E helps bridge the valley of 

death—the funding gap between initial concept and working prototype—for a variety of 

clean energy technologies, from solid-state energy harvesting to carbon capture to power 

flow controllers. By nature, many of the ventures backed by ARPA-E will eventually 
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flop, but innovation often means a series of failures punctuated by occasional triumphs. 

As Winston Churchill said, “success is often nothing more than moving from one failure 

to the next with undiminished enthusiasm.” To date, ARPA-E has funded almost 300 

projects, five of which have generated spin-off companies or successful initial public 

offerings. A group of 11 projects have leveraged $39 million of ARPA-E funding into 

$200 million of private investment (ARPA-E 2013). 

Barring unexpected breakthroughs, however, wind and solar are the two 

technologies poised for the biggest growth based on recent trends in volume and price. 

Although certainly geographically constrained, wind and solar resources are also far 

more ubiquitous than, say, geothermal and hydropower, for which most of the best sites 

have already been developed. With countless markets in which to grow, from rooftop to 

utility-scale generation, solar will most likely dominate over the long term owing to its 

modular nature. Solar has a unique advantage in that it can leverage improvements in 

other sectors—such as materials, computing, and nanotechnology—and solar generation 

also peaks at midday when energy demand is greatest. Still, a number of technological 

advances and steep cost reductions will need to be realized for solar to reach true grid 

parity. In the meantime, wind is the most cost-effective renewable energy technology 

and foremost challenger to fossil fuels. In fact, Jacobson (2009) placed wind first among 

nine electric power sources in a ranking of solutions to climate change, environmental 
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pollution, and energy security, with additional consideration given to impacts on water 

supply, land use, wildlife, and resource availability. Although revolutionary discoveries 

are unlikely at this point, further research is still required to improve efficiencies and 

drive down costs for wind to compete on an unsubsidized basis. 

In addition to aerodynamic loads, electrical conversion and generation, grid 

integration, manufacturing, and materials, current R&D priorities for wind include 

resource characterization, turbine-to-turbine interactions at utility-scale wind farms, 

computational fluid dynamics (CFD) modeling, control systems, and forecasting. In 

particular, light detection and ranging (lidar), a remote sensing technology made 

increasingly viable with advances in optical fibers and other components by the 

telecommunications industry (Harris et al. 2006), has a broad array of applications in 

wind energy research. For example, the accuracy of numerical weather prediction 

models may be improved by assimilating lidar observations of wind speed and direction 

(Frehlich 2013). Moreover, the incorporation of lidar in turbine control systems is 

expected to both increase energy output and reduce structural fatigue damage (Harris et 

al. 2006). Compared to conventional techniques, resource assessment campaigns using 

laser anemometry reduce the uncertainty in annual energy production, thereby lowering 

borrowing costs and increasing the return on investment for wind farm developers 

(Boquet et al. 2010). Following a brief introduction to wind lidar, subsequent chapters 
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will focus specifically on the use of lidar measurements in wind turbine wake 

characterization and in CFD wake model verification, with the ultimate goal being to 

limit turbine-to-turbine interactions, thus optimizing plant power performance and 

minimizing the cost of energy.  
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Chapter 2 

Wind Lidar Physics 
 

You don’t need a weatherman to know which way the wind blows. 

–Bob Dylan 

 

 Developed in the 1960s shortly after the invention of the laser, light detection 

and ranging (lidar) has only recently become practical for widespread use in wind 

energy thanks to the improvement of laser and fiber optic technologies pioneered by the 

telecommunications industry over the past few decades (Cariou 2011). The following 

chapter serves to introduce the theory and principles of lidar operation to provide 

context for the applications presented in subsequent chapters. 

2.1 The optical Doppler effect 

The basis of wind lidar is the Doppler effect, whereby the speed of an object is 

determined by measuring the frequency shift between a transmitted and received wave. 

If the object does not move directly toward or away from the observer, then the 

measured speed is the component along the line-of-sight (LOS) connecting the observer 

and object. In particular, wind speed can be determined by reflecting electromagnetic 

radiation from particles advected by moving air masses, a process known as backscatter. 
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In the case of a monostatic lidar system, the relative frequency shift is proportional to 

u/c, the ratio of the wind speed u to the speed of light c = 3 ☓ 108 m s-1. Because wind 

speeds near the surface of the Earth are on the order of 1–10 m s-1, sophisticated 

techniques are required to accurately measure the Doppler shift of scattered radiation. 

Even in the case of powerful sources, the diffuse reflection due to scattering yields very 

weak return signals, which must be analyzed for both frequency and distance traveled 

(Werner 2005). 

 If the emitted light has frequency f0 and the relative speed between the lidar 

transmitter and aerosol particle along the LOS is u, then the apparent frequency of the 

light on the aerosol particle is given by 

     (     )  (2.1) 

The light is reemitted, or backscattered, at this frequency, and then is detected by the 

lidar receiver to be shifted to frequency 

     (      ) (2.2) 

because the particle is moving while scattering. The wind velocity is usually defined 

such that movement toward (away from) the lidar leads to a positive (negative) 

frequency shift, and therefore positive (negative) LOS velocity (Werner 2005). 
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2.2 Lidar performance 

 Superimposed upon the collective movement of air masses are the random 

thermal motions of molecules and aerosols. At standard temperatures near the Earth’s 

surface, the thermal velocity of molecules is widely distributed and, on average, much 

greater than typical wind speeds, owing to their relatively small mass. On the other 

hand, aerosol particles with higher masses and diameters on the order of 1–10 μm are 

characterized by narrow thermal velocity distributions with peaks several orders of 

magnitude below typical wind speeds. Relative to the widths of the respective 

distributions, the frequency shift of a lidar signal is much greater in the case of aerosol 

scattering, and therefore more amenable to measurement (see Fig. 2.1). Because the 

aerosol contribution to the return signal is better suited for frequency analysis, the 

choice of lidar wavelength λ depends not just on the expected magnitude of the return 

signal, but also on the expected ratio of aerosol-to-molecular backscatter. Whereas the 

molecular signal is proportional to λ-4, the aerosol signal is proportional to something 

between λ-2 and λ-1, depending on the chosen wavelength and particle properties. Thus, 

although the aerosol return generally decreases with increasing wavelength, higher 

wavelengths result in a more favorable aerosol-to-molecular backscatter ratio (Werner 

2005). 
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Fig. 2.1. Representation of an original (solid) and wind-shifted (dotted) frequency 

distribution. A narrow spike due to aerosols is superimposed upon the broad molecular 

peak. Reprinted from Werner (2005). 

 

Consequently, wind lidar typically employs lasers operating in the near-infrared 

part of the spectrum at wavelengths between 1.4 and 2.2 μm. Whereas molecular 

number densities are mostly stable and uniform, aerosol concentration—and therefore 

aerosol backscatter—is much more variable, being influenced by weather, pollution, and 

other environmental factors (Fujii and Fukuchi 2005), as will be explored further in 

Chapter 3. Lidar performance is also affected by extinction, which is a function of both 

aerosol and molecular absorption and scattering and the concentration of these 

atmospheric constituents. Molecular absorption tends to be fairly negligible for 

wavelengths in the near infrared (Fujii and Fukuchi 2005). 

Because the signal-to-noise ratio (SNR) is inversely proportional to the beam 

area, the lidar should be focused to minimize the beam diameter over the entire 
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measurement range to ensure the best possible accuracy. Atmospheric turbulence causes 

wave distortion that degrades heterodyne efficiency, and therefore the telescope aperture 

must be smaller than the coherence diameter of the beam, which limits the size of the 

telescope to about 10 cm at ground level in most areas (Cariou 2011). In coherent 

detection, which is described in the section below, noise originates from three sources: 

shot noise (statistical fluctuations due to the particle nature of light when the optical 

intensity is fairly low), detector noise (dark current, thermal noise, etc…) and relative 

intensity noise (RIN) resulting from the instability in the power level of the laser 

(Cariou 2011). 

2.3 System architecture and measurement techniques 

 Although there exist several approaches for the remote optical measurement of 

wind speed, only pulsed Doppler lidar with coherent (or heterodyne) detection—being 

the method of choice in the work that follows—shall be elaborated here. In heterodyne 

detection, the return signal is mixed with that of a local oscillator (LO), and the 

resulting beat frequency is a measure of the Doppler shift. In general, heterodyne-

detection lidar consists of a high-power pulsed transmitter laser (TE) with frequency f0, 

a continuous-wave local oscillator with frequency fLO, a locking loop (LL) connecting the 

two lasers, two heterodyne detectors in which the LO signal is mixed with the outgoing 

pulse (D1) and with the incoming return signal (D2), and signal processing system. A 
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schematic is shown in Fig. 2.2. Pulses are typically normally distributed and last on the 

order of several hundred nanoseconds. The return signal contains speckle resulting from 

constructive and destructive interference of waves scattered by randomly distributed 

particles in the atmosphere. Performance is improved by fixing the laser beam and 

accumulating the signal from several thousand shots to average out this speckle (Werner 

2005). 

 

 

Fig. 2.2. Schematic of a heterodyne-detection Doppler lidar. Reprinted from Werner 

(2005). 

 

To distinguish the difference between positive and negative Doppler shifts, an 

offset, or intermediate, frequency fi is added to the LO signal: fbeat = |f – (f0 + fi)| = |(f0 

+ Δf) – (f0 + fi)| = |Δf – fi|, such that Δf = fi ± fbeat. Note that without the offset 

frequency, the beat frequency would be equal to the absolute value of the Doppler shift 

Δf, precluding the determination of the sign of the LOS velocity. The maximum 

downshift is limited by the value of fi since negative frequencies obviously cannot be 
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measured, while the maximum upshift is limited by the Nyquist frequency, equal to one-

half the sampling frequency of the signal processing system (Cariou 2011). 

2.4 Scanning techniques and vector wind estimation  

By assuming homogeneity of the wind field over the sensed volume, the three-

dimensional wind vector can be inferred by employing appropriate scanning techniques 

with a single lidar. (Of course, the most accurate approach for obtaining a vector wind 

measurement is to view a given point in space from at least three directions, although 

the use of multiple lidar systems is often impractical because of cost and other logistics.) 

For example, the velocity-azimuth display (VAD) technique involves taking many 

measurements at very fine azimuthal resolution while scanning the beam in a conical 

fashion, as depicted in the lower part of Fig. 2.3. 
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Fig. 2.3. Schematic of Doppler lidar scanning techniques. Reprinted from Werner 

(2005). 

 

Fig. 2.4 shows an example of the LOS velocity signal for a particular range gate 

plotted as a function of azimuth angle. In the case of a homogenous atmosphere, the 

measurements approximate a sinusoid because only the LOS component of the flow is 

resolved by the lidar at each point in space. 
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Fig. 2.4. Example fit to LOS velocity measurements for the determination of wind speed 

and direction. Reprinted from Werner (2005). 

 

Assuming homogeneity, the LOS measurement is given by 

                                   (2.3) 

where u is the west-east component of the wind vector, v is the south-north component, 

w is the vertical component, θ is the azimuth angle of the beam measured clockwise 

from north, and φ is the elevation angle of the beam. By fitting a function of the form 

            (    )   (2.4) 

the three-dimensional wind vector is obtained as 

   (     )  (                                 )   (2.5) 

yielding the horizontal wind speed (u2 + v2)1/2 = b/cosφ and horizontal wind direction 

θ0. A separate fit is performed for each range gate so that the wind speed and direction 
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may be calculated at multiple height intervals. The goodness-of-fit of the statistical 

model depends not only on instrumental parameters—such as the pulse repetition 

frequency and pulse width—but also on environmental factors such as turbulence, 

surface roughness, and atmospheric stability (Werner 2005). 

 At least three independent LOS velocity measurements are necessary for 

constructing the three-dimensional wind vector from a conical scan. As opposed to the 

VAD technique, Doppler beam swinging (DBS) involves the use of a small number of 

measurements (3–4 perhaps) in each scan. The DBS scan in Fig. 2.3, for example, shows 

two measurements separated by 90° in azimuth, along with a third along the vertical 

(Werner 2005). (The vertically-profiling Windcube lidar designed by Leosphere and used 

in Chapters 3 and 4 takes four measurements at azimuthal intervals of 90°.) For both 

VAD and DBS scans, the choice for the elevation angle of the beam is a tradeoff 

between accuracy and homogeneity. The assumption of a uniform wind field—which is 

also important for the detection of wind turbine wakes, as discussed in later chapters—

is more valid the narrower the cone, yet the projection of the wind vector along each 

beam is less representative of the actual flow since the wind is usually more or less 

horizontal (Cariou 2011). 
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2.5 Measurement resolution and precision 

 In pulsed systems, the laser delivers cyclic bursts of high energy whose duration 

Δt determines the spatial resolution. The delay between the transmitted and 

backscattered pulses from an object at range r is given by t = 2r/c. Differentiating this 

equation shows that the minimum discernible depth interval is Δr = cΔt/2. With pulse 

durations of some several hundred nanoseconds, spatial resolution is typically on the 

order of 10–100 m. Ideally, the pulse repetition frequency should be as high as possible, 

but the time between pulses must be at least the round trip time of flight to and from 

the maximum range of the instrument, to avoid ambiguity between successive return 

signals (Cariou 2011). 

 The precision with which the frequency, and therefore velocity, can be measured 

is a function of the backscattered power collected by the receiver, which depends on 

various instrument and environmental parameters, such as optical efficiency, pulse 

energy, aperture size, target range, atmospheric extinction, aerosol concentration, and 

number of averaged shots N. In a well-designed receiver, the SNR approaches the 

quantum limit governed by fluctuations in the signal itself (Fujii and Fukuchi 2005). 

Assuming that the time for which the backscatter from an ensemble of atmospheric 

aerosol particles remains coherent is infinite, the minimum velocity precision for a lidar 

of wavelength λ is given by the Cramér-Rao lower bound (CRLB) 
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In an actual lidar, additional uncertainty arises from the finite correlation time τc 

 
     

 

 √     

   (2.7) 

such that the total velocity precision is 

 
  √     

      
    (2.8) 

The CRLB is used in Chapter 4 to determine the velocity precision of the High 

Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric 

Administration (NOAA). In the chapter that follows, we examine the performance of 

the commercially-available Windcube lidar and the corresponding relevance to wind 

energy.  
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Chapter 3 

Wind Lidar Performance 
 

If we knew what it was we were doing, it wouldn’t be called “research,” would it? 

–Albert Einstein 

 

3.1 Introduction 

The importance of reliable vertical wind profiles for both resource assessment and 

evaluation of turbine performance continues to rise with the rapidly escalating use of 

wind power in both domestic and worldwide energy production. Meteorological towers 

used to collect wind data, however, are usually constructed no higher than 60 m in the 

United States for reasons concerning structural stability, cost, and zoning regulations. 

With hub heights of 80 to 100 m and rotor diameters of 80 m or more, modern wind 

turbines are so tall that in situ instrumentation mounted on met towers can rarely 

probe the atmosphere across even the lower half of the rotor disk. And while turbine 

nacelles may be equipped with cup and sonic anemometry, hub-height point 

measurements are not representative of the wind speeds over the entire swept area of 

the rotor (Wagner et al. 2009). As a result, remote sensing techniques, such as lidar and 

sodar, will play an increasingly prominent role in the measurement of atmospheric 
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conditions at wind farms. In particular, the Leosphere Windcube, a pulsed coherent 

Doppler wind lidar, is capable of measuring wind speeds within a claimed uncertainty of 

0.1 m s-1 at ten different altitudes greater than 40 m above ground level (AGL). Yet the 

availability of wind speed measurements, quantified by the carrier-to-noise ratio (CNR) 

of the instrument, is dependent upon weather conditions such as aerosol backscatter, 

turbulence, humidity, and precipitation. By examining the impact of these four 

parameters on CNR, this work presented here aims to determine the most appropriate 

circumstances for implementing wind lidar in the assessment of turbine performance. 

Despite particular reference to the Windcube, the results presented here may serve to 

guide characterization of other lidar systems, such as Natural Power’s ZephIR and 

SgurrEnergy’s Galion, as well. 

3.2 Background and previous work 

In optical remote sensing, it is possible to image features on the order of the 

signal wavelength or larger. Typically operating in the visible or near-infrared range, 

lidar is highly sensitive to aerosols and has many applications in atmospheric research 

and meteorology. Wind lidar, in particular, relies on deflection by small airborne 

objects, a process known as backscattering. In coherent detection lidar, e.g. the 

Windcube, a portion of the scattered radiation is collected by the lidar receiver, and the 

returned signal is mixed with a local oscillator beam and then detected with a 
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photodetector. The resulting beat signal is a radio frequency (RF) photocurrent whose 

frequency is a direct measure of the Doppler shift, which in turn is used to calculate 

wind speed. Lidar data availability is specified by CNR, defined as the ratio of the mean 

RF signal power to the mean noise power (Fujii and Fukuchi 2005). In the case of very 

weak signal strength, velocity estimates are dominated by random outliers and 

consequently subject to significant estimation error. If CNR falls below a pre-determined 

threshold, the uncertainty in the velocity estimate is deemed too large for the data to be 

useful and no measurement is recorded (Frehlich 1996). For example, the Windcube 

automatically disregards all measurements for which CNR is less than -22 dB, although 

this default setting may be adjusted in the expert version of the controlling software. 

Henceforth, Windcube data is considered to be “available” if CNR is greater than -22 

dB. Schematics and details concerning Windcube operation can be found in brochures 

published by the manufacturer, available at 

http://www.leosphere.com/file/leosphere_windcube.pdf and 

http://www.lidarwindtechnologies.com/pdf/windcube.pdf. 

 Neglecting the loss due to atmospheric refractive turbulence, the parameter 

dependence of coherent lidar CNR is derived from the lidar equation in Fujii and 

Fukuchi (2005) 

 
     

    

   

  

 

  

  
 (3.1) 
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where η represents an overall efficiency factor, T is atmospheric extinction, Ex is laser 

pulse energy, h is Planck’s constant, ν is the transmitted laser beam frequency, B is the 

receiver noise-equivalent bandwidth, c is the speed of light, β is backscatter coefficient 

as measured by the lidar, Ar is aperture area, and R is target range. The collection 

efficiency of a coherent focused lidar, such as the Windcube, is maximized for scattering 

at the focus point and falls off with distance as the target is moved away from this 

location. Although UV (infrared) extinction may be dominated by ozone (carbon 

dioxide and water vapor) absorption, extinction is much weaker at selected infrared 

wavelengths—the wavelength of the Windcube laser is 1.54 µm, for example—that avoid 

molecular absorption features. In fact, the one-way near-infrared extinction is on the 

order of 0.2 dB km-1 in the planetary boundary layer (Fujii and Fukuchi 2005). At a 

given height, then, Windcube CNR is expected to be linearly proportional to aerosol 

backscatter since all other parameters are approximately constant. 

 While extinction due to molecular absorption is mostly negligible, the additional 

loss due to refractive turbulence can be quite severe. The reduction factor ψ is defined 

as the ratio of CNR in the presence of turbulence to CNR in the absence of turbulence. 

Yura (1979) found that, for a focused coaxial system, the reduction factor is given by 

 
  [  (

  

  
)
 

]

  

 (3.2) 
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where a2 is the 1/e
2
 intensity radius (the distance at which the beam intensity has 

dropped by a factor of 1/e2 from its center value) and ρR is the round-trip coherence 

length, defined as 

         (    
  )     (3.3) 

for uniform turbulence conditions. Here, k is the wavenumber of the signal,   
  is the 

refractive index structure parameter, and z is propagation distance. High values of   
  

on the order of 10-13 to 10-12 m-2/3 are indicative of a strongly turbulent atmosphere; for 

lower values on the order of 10-16 to 10-15 m-2/3, atmospheric optical turbulence is 

considered negligible over optical paths of less than 2 km (Tunick 2003). Fig. 3.1 shows 

the theoretical reduction factor vs.   
  for the Windcube at 40 m AGL. Although nearly 

unaffected for weak and moderate turbulence levels, CNR can be reduced by 20 to 80 

percent in the strong turbulence regime. 
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Fig. 3.1. Theoretical estimate of CNR reduction factor vs.   
  for the Windcube at 40 m 

AGL; see Eqs. (3.2) and (3.3). 

 

Aerosol scattering is a complex function of refractive index and particle size, both 

of which depend on relative humidity (RH). Although the refractive index tends to 

decrease with increasing humidity, this effect is small and is dominated by the swelling 

of hygroscopic particles near the saturation point. Wulfmeyer and Feingold (2000) found 

that scattering remains nearly constant for low to moderate levels of humidity and 

increases rapidly for RH > 0.8. It is also possible for the lidar signal to scatter from 

water droplets, enhancing CNR during precipitation events but also causing a false 

indication of vertical wind speed. 

In summary, the primary atmospheric conditions expected to influence CNR, and 

thus lidar performance, are aerosol backscatter, atmospheric refractive turbulence, 

relative humidity, and precipitation. The effects of each are examined using the two 

datasets described in the following section; observations are presented in Section 3.4. 

3.3 Data and methods 

 A Windcube lidar was deployed in late summer 2010 as part of the Skywatch 

Observatory, a set of meteorological instruments on the roof (approximately 15 m AGL) 

of the Duane Physics building at the University of Colorado at Boulder, elevation 1663 

m. Backscatter was measured at a vertical resolution of 10 m from ground level to 7690 
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m AGL using a Vaisala CL31 ceilometer, which has an operational wavelength of 910 

nm and was also located on the roof, approximately 5 m east of the Windcube. Similar 

to the Windcube, the ceilometer consists of a vertically-pointing laser and a co-located 

receiver. Short laser pulses are sent through the atmosphere, and a small component of 

the light is scattered by aerosols, water droplets, and low-level clouds and then returned 

to the receiver. The strength of the returned signal is recorded and its timing is 

transformed into a spatial range using the speed of light, thus producing a vertical 

profile of backscatter within the atmosphere. Measurements of lidar CNR and 

ceilometer backscatter were collected at heights of 40, 50, 60, 80, 100, 120, 140, 160, 

180, and 200 m throughout August 2010; see Fig. 3.2. (Please note that all further 

references to backscatter measurements should be understood to come from the 

ceilometer.) Lidar and ceilometer data were taken at rates of 1 Hz and 0.0625 Hz, 

respectively, and then averaged over two-minute intervals for comparison. 
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Fig. 3.2. Measurement heights for the experimental setup in Boulder. Dashed lines 

indicate laser beam directions, while solid lines indicate altitudes at which 

measurements were collected. 

 

 In addition, a second dataset was collected with the Windcube at the same 

altitudes during a deployment at a wind farm in central Iowa in late June and early 

July 2010. A flux station 142 m due west of the Windcube collected measurements of 

wind speed, temperature, and absolute humidity at 20 Hz. Wind speed and temperature 

were measured at 6.45 m AGL with a Campbell Scientific CSAT3 sonic anemometer, 

while absolute humidity measurements were collected by a LI-COR LI-7500 gas analyzer 

at this same height. Precipitation and relative humidity were also measured at this 

same flux station with a Campbell Scientific TE525 tipping bucket rain gauge at 3 m 

AGL and a Vaisala HMP45 probe at 9 m AGL, respectively. A sketch of the flux 

station measurements is provided in Fig. 3.3. 

 

 

Fig. 3.3. Flux station measurements in Iowa. 
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These data were used to determine momentum flux, heat flux, and latent heat 

flux over thirty-minute averaging periods; in turn, the refractive index structure 

parameter was then calculated and compared to the lowest-available CNR measurement 

at 40 m AGL. Following Andreas (1988),   
  is given by 

   
       (       )

  ( ) (3.4) 

where z is altitude, A and B are wavelength-dependent coefficients, and ζ = z/L is the 

stability parameter. Here, the length scale is the Obukhov length 

 
  

  
  ̅
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     ̅

       ̅
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where γ is the acceleration of gravity, κ = 0.4 is von Kármán’s constant,  ̅ and  ̅ are 

representative values of temperature and absolute humidity in the surface layer, and ρ is 

the density of moist air. The temperature and humidity scales are defined as 
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respectively, where *u  is the friction velocity, w is vertical wind velocity, and primes 

indicate turbulent fluctuations from the mean, while the similarity function is 

 
 ( )  {

   (      )                
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 (3.8) 
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3.4 Results 

As discussed previously, lidar performance is expected to be influenced by aerosol 

backscatter, atmospheric refractive turbulence, humidity, and precipitation. The effects 

of these parameters are examined in the following subsections. 

3.4.1 Aerosol backscatter 

From Section 3.2, CNR is expected to be linearly proportional to the backscatter 

coefficient at fixed altitude in the absence of turbulence. In Fig. 3.4, CNR and β at 100 

m AGL are compared for the week 22 August 2010 to 29 August 2010 in Boulder; note 

the logarithmic scale on the horizontal axis, as CNR is measured in dB. The correlation 

coefficient is 0.7, indicating a fairly high degree of linear dependence between the 

variables. Outliers are likely due to variations in atmospheric conditions, such as 

turbulence and humidity. 
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Fig. 3.4. Scatterplot of CNR vs. backscatter at 100 m AGL. Data are for 22–29 August 

2010. 

 

Accordingly, the maximum available altitude (MAA) of the Windcube, defined as 

the highest altitude for which CNR > -22 dB at a given measurement time, should be 

influenced by the amount of aerosol backscatter. For each Windcube measurement 

during the month of August 2010, the MAA was determined along with the 

corresponding backscatter coefficient at that height. The points in Fig. 3.5 represent the 

average level of backscatter corresponding to each MAA, and the error bars indicate the 

standard deviation of each set; the rightmost point actually represents all altitudes 

greater than or equal to 200 m, thus the larger standard deviation for this point than 

the rest. To verify the trend in Fig. 3.5, one must consider both the average CNR at 

each MAA and the range-dependent collection efficiency of the Windcube (see Fig. 

3.6)—which Lindelöw (2007) modeled using the results of Sonnenschein and Horrigan 
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(1971)—since from Eq. (3.1) backscatter varies as β ∼ (CNR/η)R
2
. Indeed, Fig. 3.7 

shows that the left- and right-hand sides of this proportionality are linearly related for 

the ten distinct MAAs, with a correlation coefficient of 0.932. 

 

 

Fig. 3.5. Average level of backscatter corresponding to each MAA for August 2010 in 

Boulder, Colorado. Error bars indicate the standard deviation of each set. 
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Fig. 3.6. Modeled Windcube collection efficiency vs. altitude. 

 

 

Fig. 3.7. Average ceilometer backscatter vs. average Windcube CNR and modeled 

collection efficiency for each maximum available altitude. The best-fit line is also shown. 

 

To relate lidar performance to air quality assessments, note that optical 

backscatter and PM2.5, a measurement of the concentration of atmospheric particles less 

than 2.5 μm in diameter, have been found to be highly correlated in the lowest 200 m of 

the boundary layer (Charles et al. 2007). A similar relationship is thus expected between 

CNR and PM2.5. Hourly measurements of PM2.5 at a resolution of 1 μg m-3 were 

available for the first two weeks of August in Boulder from an air monitoring station 

located approximately 500 m due north of the Windcube and operated by the Colorado 

Department of Public Health and Environment. Indeed, as indicated in Fig. 3.8, greater 

concentrations of particulate matter correspond to higher levels of CNR, in general. 
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Notably, Fig. 3.9 shows that, on average, a concentration of just 2-3 μg m
-3
 is required 

for a maximum range of 120 m, a height corresponding to the top of the rotor disk of a 

typical modern wind turbine. By comparison, the average annual PM2.5 concentration 

for 766 monitoring stations across the United States has hovered between 11 and 13 μg 

m-3 over the last decade, and just 10% of sites measured average annual concentrations 

of less than 8 μg m
-3
  in that time span (U.S. Environmental Protection Agency 2010). 

While particulate matter concentrations obviously vary with location and time, these 

results suggest that the Windcube is generally well-suited for wind energy applications 

throughout much of the United States. 

 

 

Fig. 3.8. Average CNR at 40 m AGL corresponding to each level of PM2.5 for the first 

two weeks of August 2010 in Boulder, Colorado. Error bars indicate the standard 

deviation of each set. 
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Fig. 3.9. Average MAA corresponding to each level of PM2.5 for the first two weeks of 

August 2010 in Boulder, Colorado. Error bars indicate the standard deviation of each 

set. 

 

Also noteworthy is that the Boulder dataset exhibits a regular diurnal cycle in 

CNR, inducing a diurnal pattern in the MAA of the Windcube. The diurnal variation of 

CNR at 40 m AGL was averaged over the days of August 2010 in Boulder and can be 

seen in Fig. 3.10. Typically reaching a local minimum in early morning around 06:00 

LT, CNR increases as aerosols are lifted with the development of convective conditions 

after sunrise. Countering this effect is the increase of the boundary layer height, which 

tends to lower aerosol concentration with the entrainment of cleaner air from above, 

and thus CNR reaches a peak in mid- to late-morning. The local maximum around 

15:00 LT is due to rain, a common occurrence in mid-afternoon for the local climate. 

The last local maximum near 17:30 LT is likely the result of increased vehicular aerosol 
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emissions during rush hour. Although the height of the boundary layer diminishes after 

sunset, anthropogenic aerosol production also decreases and aerosols close to the surface 

are lost by sedimentation, leading to lower CNR. This diurnal cycle—due to variations 

in local anthropogenic activity, meteorological conditions, boundary layer height, and 

removal mechanisms—is typical of urban areas (Gomes 2008). A similar pattern is 

apparent for the average diurnal variation of MAA in Fig. 3.11, which indicates how 

high the Windcube can be expected to operate throughout the course of the day. On 

average, the MAA in summertime Boulder ranges from about 140 m AGL in early 

morning to about 180 m AGL just before noon, well above the reach of modern turbine 

blades. 

 

 

Fig. 3.10. Average CNR diurnal cycle at 40 m AGL for August 2010 in Boulder, 

Colorado. 
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Fig. 3.11. Average diurnal cycle of MAA for August 2010 in Boulder, Colorado. 

 

3.4.2 Atmospheric refractive turbulence 

While aerosol backscatter exerts the primary influence on CNR, strong levels of 

atmospheric refractive turbulence can cause signal degradation. Unfortunately, 

independent flux measurements for quantifying the effect of atmospheric refractive 

turbulence on lidar performance were only available during the field campaign in Iowa. 

From Fig. 3.1, CNR should only noticeably decrease in strongly turbulent conditions, 

say   
  > 5×10-14 m-2/3, a situation that occurred less than one percent of the time in 

Iowa. Because refractive turbulence levels were most often weak or moderate, there is no 

discernible relationship between the two variables, as indicated in Fig. 3.12. Despite the 

fact that the lowest-available CNR measurement at 40 m AGL is compared to   
  at 9 
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m, refractive turbulence is expected to be even weaker at 40 m based on several 

boundary layer models (Lawson and Carrano 2006). 

 

 

Fig. 3.12. Scatter plot of CNR at 40 m AGL vs.   
  at 9 m from 1 to 4 July 2010 at a 

wind farm near Ames, Iowa. 

 

3.4.3 Humidity and precipitation 

 Fig. 3.13 shows the effect of RH on CNR during the Iowa field deployment. The 

bold black line is a nonlinear regression of the form CNR = a(1 – RH)b, following the 

regression for backscatter vs. RH used in Im et al. (2001). Here, a = -16 and b = 0.07. 

There is almost no correlation for RH < 0.8, but CNR does increase above this level of 

humidity, thus confirming the results in Wulfmeyer and Feingold (2000); the increase is 

especially sharp near saturation. During August 2010 in Boulder, which has a high 
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desert climate, RH was never greater than 0.9 even during precipitation events: CNR 

and RH were almost completely uncorrelated for this time period. 

 

 

Fig. 3.13. Scatter plot of CNR at 40 m AGL vs. RH at 9 m AGL. Data are from 28 

June to 9 July 2010, excluding periods of measurable precipitation, at a wind farm near 

Ames, Iowa. The bold black line indicates the best-fit curve. 

 

 One possible advantage of lidar over sodar technologies is that sodar is known to 

collect erroneous measurements during precipitation events. Although the manufacturer 

suggests that the Windcube is capable of taking measurements during periods of rain, 

Fig. 3.14 indicates that measurements of vertical velocity are likely invalid; horizontal 

velocity measurements may be uncontaminated (Albers and Janssen 2008). During 

precipitation events, w ranges between 1 to 5 m s-1, which is of the same order as the 

terminal velocity of a raindrop (Foote and du Toit 1969) and almost certainly too large 

to be actual vertical wind speed, as no microbursts or similar type of meteorological 
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phenomena were reported to be in the area at the time according to forecast discussions 

released by the National Weather Service. Similarly, previous studies, such as Gottschall 

and Courtney (2010), have found it necessary to filter out Windcube data in the 

presence of rain. Thus, rain may interfere with operation of the Windcube, and 

measurements of vertical velocity during precipitation events must be evaluated with 

caution. 
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Fig. 3.14. Comparison of (top) Windcube-measured vertical wind speed at 40 m AGL 

and (bottom) precipitation during the Iowa field deployment. Positive vertical winds are 

toward the ground. Each tick mark on the horizontal axis corresponds to midnight of 

the respective date. 

 

3.4.4 Summary of data availability 

 A comparison of data availability at different heights for the Boulder and Iowa 

field deployments can be seen in Fig. 3.15; note that the data availability in Iowa is 

higher at all altitudes. Additionally, the fractional occurrence of a particular MAA was 

calculated by dividing the number of measurements for which that height was the 

maximum available by the total number of Windcube measurements in the given 

dataset. Fig. 3.16 compares the occurrence of each MAA in Boulder and Iowa. The 

Windcube could “see” at or above 200 m only about 20% of the time in Boulder, 

whereas measurements were available at or above this height over half the time in Iowa. 
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Fig. 3.15. Histogram comparing data availability at different altitudes for the Boulder 

and Iowa field deployments. 

 

 The mean PM2.5 concentrations during the month of August 2010 in Boulder and 

during the Iowa field deployment were 5.7 μg m-3 and 8.2 μg m-3, respectively, 

suggesting that the improved Windcube performance in Iowa can probably be explained 

by higher concentrations of particulate matter. While humidity was also higher in Iowa 

than in Boulder, PM2.5 is expected to be the dominant influence on optical backscatter, 

and hence on CNR. The greater amount of data availability in Iowa cannot necessarily 

be attributed to the effects of humidity with such a limited dataset, especially since 

PM2.5 and humidity tend to be negatively correlated (Sharma et al. 2005). 
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Fig. 3.16. Histogram comparing maximum available Windcube altitude for the Boulder 

and Iowa field deployments. 

 

3.5 Conclusion 

To determine situations of acceptable data availability, the theoretical parameter 

dependence of lidar CNR has been investigated in the field using a Windcube. The four 

most significant factors found to influence lidar performance are: aerosol backscatter, 

atmospheric refractive turbulence, humidity, and precipitation. In summary, Windcube 

CNR tends to be higher during the day than at night and is linearly proportional to 

aerosol backscatter, which is highly correlated to PM2.5 in the lowest part of the 

boundary layer. Because CNR is proportional to the inverse of the square of 

propagation distance, more backscatter is needed at higher altitudes for suitable data 

return. Accordingly, it should be possible to monitor Windcube performance during 
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future field deployments by using a ceilometer to measure vertical aerosol 

concentrations and the height of the boundary layer. Although the loss due to 

atmospheric refractive turbulence can be quite severe in theory, such strongly turbulent 

conditions did not occur in the present datasets even though data were taken in mid-

summer daytime, and therefore this effect could not be discerned. While practically 

uninfluenced by low levels of humidity, CNR increases sharply near the saturation 

point. Windcube performance is adversely affected by precipitation, as rainfall is 

measured instead of vertical wind speed. 

Overall, the results show that lidar can be expected to reliably provide profiles of 

wind speed, direction, and turbulence intensity at altitudes within a typical wind 

turbine rotor disk. The average hub height and rotor diameter of wind turbines installed 

in 2009 in the United States was 78.8 m and 81.6 m, respectively (Wiser and Bolinger 

2010), meaning that measurements between about 40 to 120 m above the surface will be 

required for accurate resource assessment and evaluation of turbine performance at 

modern wind farms. In particular, for the Windcube considered in this study, data was 

available up to 120 m AGL more than 90% of the time both in Boulder and at a wind 

farm in the Great Plains. Given that the mean PM2.5 concentrations during both 

experiments were below the national annual average, this type of lidar seems a 
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promising candidate for widespread use in the wind energy industry, especially at humid 

sites characterized by relatively high concentrations of particulate matter. 
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Chapter 4 

Wind Turbine Wake Characterization with 

Scanning Remote Sensors  
 

All models are wrong, but some are useful. 

–George E. P. Box 

 

4.1 Introduction 

Wind turbines convert energy from the freestream, resulting in a volume of 

disturbed flow behind the rotor characterized by reduced wind speed and increased 

turbulence. The velocity deficit (VD) in this wake region diminishes with distance, as 

faster-moving air outside is gradually entrained. Even so, a turbine in the lee of and 

proximate to another produces less power and experiences higher fatigue loads than it 

would otherwise. As utility-scale turbines rarely exist in isolation, detailed knowledge of 

the mean flow and turbulence structure inside wakes is necessary for correctly modeling 

both power production and turbine loading at modern wind farms; see, for example, 

Porté-Agel et al. (2011), Churchfield et al. (2012), and Fitch et al. (2012). 

To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was 

conducted in the spring of 2011 to quantify various wake features downstream of a 
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multi-MW turbine located at the National Wind Technology Center (NWTC), a 

research and development facility operated by the U.S. Department of Energy’s 

National Renewable Energy Laboratory (NREL) just south of Boulder, Colorado. Full-

scale measurements of wake dynamics are hardly practical or even possible with 

conventional sensors, such as cup anemometers mounted on meteorological (met) masts. 

Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the Earth 

System Research Laboratory (ESRL) of the National Oceanic and Atmospheric 

Administration (NOAA) was employed to investigate wake characteristics under various 

atmospheric conditions. HRDL remotely senses line-of-sight (LOS) wind velocities uLOS 

and has been used in several previous studies of boundary layer dynamics (Grund et al. 

2001; Banta et al. 2002; Newsom and Banta 2003; Tucker et al. 2009; Pichugina et al. 

2012). Note that complementary TWICS analysis is provided in Smalikho et al. (2013), 

in particular a study of the relationship between turbulent energy dissipation rate and 

wake length. 

Due in large part to the limited availability of field test data for model 

verification, wind farm wake modeling—and hence the optimization of wind turbine 

layouts—has suffered from an unacceptable degree of uncertainty to date, particularly 

in complex terrain (Barthelmie et al. 2010). The advent of innovative measurement 

techniques involving scanning remote sensors (Käsler et al. 2010; Bingöl et al. 2010; 
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Trujillo et al. 2011; Clive et al. 2011; Hirth et al. 2012; Hirth and Schroeder 2013; Iungo 

et al. 2013) suggests the need for new approaches to identify and characterize wind 

turbine wakes. Here, a set of quantitative procedures is developed for determining 

various wake features—such as the velocity deficit, the size of the wake boundary, and 

the location of the wake centerline—that are designed to be broadly applicable to other 

remote sensor datasets and also to output from computational fluid dynamics (CFD) 

simulations of wind turbines. In what follows, Section 4.2 provides a brief overview of 

the theory and empirical observation of wind turbine wake aerodynamics. In Section 4.3, 

the experimental setup and post-processing wake detection algorithms are described. 

Main results are presented in Section 4.4, in which wake characteristics are categorized 

by ambient wind speed, atmospheric stability, and ambient turbulence. A summary and 

recommendations for future studies are offered in Section 4.5. 

4.2 Background and previous work 

4.2.1 Wind turbine wake dynamics 

Studies of wind turbine wakes often distinguish between the near and far wake 

regions, with the dividing line loosely taken to be a few rotor diameters (D) downstream 

(Vermeer et al. 2003). In the near wake, the velocity deficit profile in the transverse and 

vertical directions depends on the amount of lift produced along the span of the blade. 

Very little lift is generated at the blade root because of a suboptimal airfoil cross-section 
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and the connection to the hub, and also at the end of the blade because of tip vortices. 

Maximum lift, on the other hand, is generated near 75% blade span, and consequently 

the velocity deficit profile contains two local minima that correspond roughly to these 

points along the blades. Farther downwind, in the far wake, turbulent mixing results in 

the merging of the two troughs to form a single trough, which is approximately 

Gaussian in shape (Magnusson 1999). 

4.2.2 Velocity deficit 

Results from previous field experiments vary because of differences in inflow 

conditions, atmospheric stability, and surface roughness, but in general, velocity deficits 

are greatest in the near wake and gradually diminish downstream from the turbine in 

the far wake. Wakes tend to dissipate more rapidly when the ambient flow is turbulent 

because of more efficient mixing between the wake and the surrounding air (Baker and 

Walker 1984; Magnusson and Smedman 1994). Additionally, velocity deficits are 

greatest when the wind speed is below rated because of variation in the turbine thrust 

coefficient (Elliott and Barnard 1990; Magnusson and Smedman 1994; Helmis et al. 

1995; Barthelmie et al. 2007). Previous measurements of the velocity deficit versus 

longitudinal distance downstream of the turbine, henceforth denoted by x, are 

summarized in Fig. 4.1. The fit to the data is made assuming that VD follows a power 

law (Högström et al. 1988; Frandsen et al. 2006), 
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with VD0 = (56 ± 4)% being the velocity deficit at x = 1D and n = -0.57 ± 0.05 an 

exponent controlling the attenuation of the velocity deficit with downstream distance. 

Interestingly, the aggregate best-fit value n = -0.57 nearly matches the value of the 

scaling exponent predicted by classical fluid mechanics similarity theory at infinite 

Reynolds number, which says the deficit should scale as (x/D)-2/3 (Johansson et al. 

2003). 

 

 

Fig. 4.1. Velocity deficit as a function of downstream distance, as measured by previous 

field experiments. 

 

Crespo et al. (1988) observed both numerically and experimentally that the point 

of maximum velocity deficit is located below the turbine axis, because of tower shadow, 

shear of the incoming flow, and the presence of the ground. Other investigators have 
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asserted that maximum velocity deficits occur below hub height (Elliott and Barnard 

1990), at hub height (Kambezidis et al. 1990), and above hub height (Magnusson and 

Smedman 1994; Helmis et al. 1995); the velocity deficit profile has a maximum “near” 

hub height in Barthelmie et al. (2003). This discrepancy probably arises from differences 

in rotor tilt, stability conditions, and terrain among the experiments. It will be shown in 

this chapter and in Chapter 6 that the rotor tilt of modern utility-scale turbines causes 

the vertical location of the wake centerline to shift upward with downstream distance, 

similar to the way the wake is deflected horizontally in the case of yaw error. 

4.2.3 Wake size and expansion rate 

In addition to velocity deficit, optimal siting of individual turbines within wind 

farms hinges on accurately characterizing wake size and expansion rate. From now on, 

width (w) and height (h) indicate the size of the wake in the lateral and vertical 

directions, respectively. In the near wake, the wake enlarges because of mass continuity, 

as the velocity deficit reaches a maximum at some nonzero distance behind the turbine. 

Farther downstream, turbulent mixing induces entrainment of the faster ambient flow, 

and the resulting momentum transfer causes the velocity deficit to decrease and the 

wake to expand. Here, the wake growth rate depends upon not just mechanical 

turbulence generated by the rotor, but also upon atmospheric buoyant and shear-
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generated turbulence. Moreover, due to the presence of the ground, the growth rate of 

the wake in the vertical direction is less than that in the lateral direction. 

The term “wake width” is subjective, and various definitions exist within the 

literature. Here, the wake width is taken to be the 95% confidence interval of the 

Gaussian velocity deficit profile, which is analogous to the definition in Hansen et al. 

(2012) using power deficits. Wake width observations from previous field experiments 

can be seen in Fig. 4.2. Elliott and Barnard (1990) base their estimation of wake width 

on the wind speed profile in some cases, and on the turbulence intensity profile in 

others. The wake widths for Magnusson and Smedman (1994) and Trujillo et al. (2011) 

are inferred from figures in those papers using the 95% confidence interval criterion. The 

fit to the data is made assuming that w follows a power law (Högström et al. 1988; 

Frandsen et al. 2006), 

  ( )    (
 

 
)
 

   (4.2) 

with w0 = (1.3 ± 0.1)D being the wake width at x = 1D and m = 0.33 ± 0.05 an 

exponent controlling the expansion of the wake with downstream distance. Again, it is 

interesting to note that the aggregate best-fit value m = 0.33 closely matches the value 

of the scaling exponent predicted by similarity theory at infinite Reynolds number, 

which says the boundary should scale as (x/D)1/3 (Johansson et al. 2003). 
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Fig. 4.2. Wake width as a function of downstream distance, as measured by previous 

field experiments. 

 

4.3 Data and methods 

Covered mostly with short grasses, the NWTC is located near the base of the 

foothills of the Rocky Mountains, to the east-southeast of Eldorado Canyon. During the 

winter and spring, the canyon funnels strong winds directly to the site, with a 

predominant wind direction of about 290° (Banta et al. 1995; Banta et al. 1996; Clifton 

and Lundquist 2012). The strong directionality of the flow justified the use of HRDL, 

which measures LOS velocities and remained at a fixed location during the experiment. 

Positioned 880 m at a bearing of approximately 310° from the turbine of interest, HRDL 

could best resolve winds blowing from this direction. In addition to HRDL, a 

Leosphere/NRG Windcube v1 vertically-profiling lidar (see Chapter 3) provided 
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supplementary measurements of the turbine inflow conditions, and observations from an 

80-m met tower were used to calculate the bulk Richardson number RiB, a metric of 

atmospheric stability. The layout of the instrumentation is depicted in Fig. 4.3, and 

specifications for HRDL and the wind turbine are given in Tables 4.1 and 4.2, 

respectively. Note that the turbine rotor diameter D = 101 m and the hub height H = 

80 m. Nearly 100 hours of wake measurements were collected over a period spanning 

from 5 April 2011 to 3 May 2011. 

 

 

Fig. 4.3. Map of the NWTC, with the instrumentation and turbine indicated by the 

symbols described in the legend. Courtesy of Joe Smith and Steve Haymes at NREL. 
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Table 4.1. High Resolution Doppler Lidar technical specifications. 

Wavelength 2.0218 μm 

Pulse energy 1.5 mJ 

Pulse rate 200 Hz 

Pulse width 200 ns 

Scan Upper hemisphere 

Range resolution 30 m 

Time resolution 0.02 s 

Velocity precision 5 cm s-1 

Minimum range 0.2 km 

Maximum range 2- 9 km (typically 3 km) 

Laser Tm:Lu, YAG diode-pumped, injection-seeded laser 

 

Table 4.2. Wind turbine technical specifications. 

Diameter (D) 101 m 

Hub height (H) 80 m 

Rated power 2.3 MW 

Cut-in wind speed 34 m s-1 

Rated power at 1213 m s-1 

Cut-out wind speed 25 m s-1 

Rotor tilt 6 deg 

 

Wind resource characteristics for the site, as measured at 80 m by the Windcube 

over the course of the field campaign, are shown in Fig. 4.4. The Weibull fit to the wind 

speed distribution (Justus et al. 1978) in Fig. 4.4a has scale parameter λ = 7.20 and 
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shape parameter k = 1.46. The histogram and wind rose in Figs. 4.4b and 4.4c indicate 

that most of the strong winds came from the west-northwest, corresponding nearly to 

the line-of-sight from HRDL to the turbine; the fit to the wind direction data in Fig. 

4.4b is a finite von Mises mixture distribution (Masseran et al. 2013) with three modes 

at 7°, 175°, and 287°. In Fig. 4.4d, the turbulence intensity I is defined as the ratio of 

the horizontal wind speed standard deviation to the mean horizontal wind speed, taken 

over a 10-min interval. Turbulence intensity was calculated only for wind speeds greater 

than 4 m s-1. The log-normal fit to the turbulence intensity distribution (Larsen 2001) 

has location parameter μ = -1.73 and scale parameter σ = 0.49. The mean wind speed 

and turbulence intensity during the course of the experiment were 6.5 m s-1 and 0.20, 

respectively. By comparison, Elliott et al. (2009) measured 80-m turbulence intensities 

between 0.090.13 at seven sites in the midwestern United States, where much of the 

nation’s wind power capacity is located. 
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Fig 4.4. Site wind resource characteristics for the NWTC during the period 5 April 2011 

to 3 May 2011, as measured at 80 m by the Windcube: (a) wind speed, (b) wind 

direction, (c) wind rose, and (d) turbulence intensity. 
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4.3.1 High-resolution Doppler lidar 

The signature instrument in TWICS was HRDL, a pulsed coherent Doppler lidar 

with 30-m range resolution and 5 cm s-1 velocity precision, depending on atmospheric 

and operating conditions. Following the terminology used in radar display, sweeping the 

azimuth angle of the beam while holding the elevation angle fixed is known as a plan 

position indicator (PPI) scan. In contrast, a range-height indicator (RHI) scan involves 

sweeping the elevation angle while holding the azimuth angle fixed. At low elevation 

angles, PPI scans yield close approximations of horizontal wind speed near the surface, 

while RHI scans provide vertical cross sections of the radial wind field. By employing a 

well-collimated beam, HRDL does not suffer from antenna side lobe contamination, 

allowing wind profile measurements to be taken very close to the surface and to other 

obstacles (Grund et al. 2001). 

These scanning techniques were used to examine the structure of the wake 

behind the turbine. Sample pseudocolor plots of HRDL-measured LOS velocity for both 

PPI and RHI scans, in which wakes appear as regions of cooler colors, are shown in 

Figs. 4.5 and 4.6, respectively. During the study, a PPI scan typically involved holding 

the elevation angle constant at a value between 34°, while sweeping the azimuth 

through an angle of about 30°, centered on the turbine, at a rate of roughly 1.5° s-1. 

Normally lasting approximately 20 s, a full sector sweep usually included measurements 
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at about 30 discrete azimuth angles. By contrast, a typical RHI scan involved holding 

the azimuth angle constant at a value within ±3° from the line connecting HRDL to the 

turbine, while sweeping the elevation angle at a rate slightly less than 1° s-1 from 0° to 

between 1015°. Because of the geometry of ground-based remote sensing, the altitude 

at which PPI scans sample the flow increases with range, such that measurements are 

eventually taken above the wake at some distance far behind the turbine, depending on 

the elevation angle. Moreover, RHI scans may not always intersect the wake, especially 

at longer range gates, because of wake meandering and variations in wind direction and 

turbine yaw. The scans were, however, designed to capture as much of the wake as 

possible, given these geometric constraints. 

 

 

Fig. 4.5. Sample pseudocolor plot of HRDL-measured LOS velocity for a single PPI 

sweep. The wake is visible as the streak of blue behind the turbine, which is located 

outside the figure at the point (0,0). The scan here was taken from 18:20:18 to 18:20:37 

LT on 14 April 2011 with a beam elevation angle of 3.5 deg. 
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Fig. 4.6. Sample pseudocolor plot of HRDL-measured LOS velocity for a single RHI 

sweep. The wake is visible as the streak of blue behind the turbine, which is located at 

x´ – dHRDL = 0. The scan here was taken from 16:49:38 to 16:49:52 LT on 14 April 2011 

with a beam azimuth angle of 0.3 deg to the left of the x´-axis. 

 

In addition to measuring properties of the wake, HRDL was well-positioned to 

quantify the variability of the inflow to the turbine. The spatial turbulence intensity 

Ispace is defined as the ratio of the wind speed standard deviation to the mean wind 

speed, calculated over a given region of space, which is taken here to be the annular 

sector of each scan with radii spanning from 4D to 2D upwind of the turbine. These 

distances are chosen to correspond to the standard range for measuring freestream 

winds in the determination of wind turbine power performance (International 

Electrotechnical Commission 2005). Fig. 4.7a shows an example of the LOS velocity 



100 

 

measurements within this region, using the same PPI scan as the one depicted in Fig. 

4.5. To estimate Ispace in the case of the PPI scans, horizontal homogeneity of the wind 

field over the sensed area is assumed, with uniform wind speed u and direction φ, as is 

typical for wind lidar; see, for example, Chapter 2 and Frehlich et al. (2006). When the 

LOS velocity signal is displayed as a function of azimuth angle θ, a plot like the one 

shown in Fig. 4.7b is obtained, since uLOS = ucos(θ – φ). A weighted nonlinear 

regression scheme (Box et al. 2005) is used to fit this equation to the data, in which 

each weight is equal to the reciprocal of the variance of the measurement. Velocity 

precision is estimated using the Cramér-Rao lower bound (Rye and Hardesty 1993), 

because HRDL operates close to this theoretical limit in both high and low signal-to-

noise ratio (SNR) conditions (Grund et al. 2001). The spatial turbulence intensity is 

then calculated by dividing the root mean square deviation (RMSD) of the fit by the 

modeled wind speed u. In this particular example, RMSD = 5.24 m s-1 and u = 15.4 m 

s-1, such that Ispace = 34%. To be clear, the fit here is intended to establish an average 

wind speed within the inflow region, so that the variation about that average may be 

quantified, analogous to the way turbulence intensity is normally calculated over a 

temporal interval. In addition to indicating the turbulence within the flow, the 

amplitude of the spatial wind fluctuations is an important factor in determining the 
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minimum velocity deficit that can be captured by the wake detection algorithms 

described in Section 4.3.4. 

 

 

Fig. 4.7. (a) The inflow to the turbine in the same PPI scan as that depicted in Fig. 4.5 

and (b) the best-fit model of the measured LOS velocity, assuming uniform wind speed 

and direction. 

 

A similar procedure was used to determine the spatial turbulence from the inflow 

measurements of the RHI scans (see, for example, Fig. 4.8a), whereas in this case the 

wind speed is assumed to increase logarithmically with height: 
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where δ is the beam elevation angle, *u  is the friction velocity, k = 0.4 is the von 

Kármán constant, z0 is the roughness length (Stull 1988), and d is an offset factor to 

account for the complex terrain. The vertical coordinate z is measured with respect to 

the ground elevation at HRDL, where z = 0. From the wind speed profiles measured by 

the met tower, z0 was empirically determined to be 0.01 m for west-northwesterly winds 

at the site. After a series of trial and error, the inclusion of stability corrections to the 

logarithmic profile was rejected because they were found to be particularly ill-suited for 

describing the flow at the NWTC. The incorporation of the parameter d essentially 

allows the model to control the height at which the wind speed goes to zero, since the 

flow often did not neatly conform to the terrain. As shown in the elevation profile of 

Fig. 4.9, the slope along the line-of-sight from HRDL to the turbine is quite modest, but 

afterward there exists a sequence of steep gullies. To be clear, the parameter d is 

traditionally included to account for obstacles, such as trees or buildings, to the flow, 

but this is not the sense in which it is used here. With k and z0 as fixed constants and 

*u  and d as adjustable parameters, nonlinear regression is used to acquire the best fit to 

the measured wind speed profile, an example of which is given in Fig. 4.8b. In the case 

of the RHI scans, the spatial turbulence intensity is calculated by dividing the RMSD of 

the fit by the modeled wind speed at hub height, which also corresponded roughly to 
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the average measurement height of the scans. For the example in Fig. 4.8, RMSD = 

1.58 m s-1 and u = 8.24 m s-1 at hub height, such that Ispace = 19%. 

 

 

Fig. 4.8. (a) The inflow to the turbine in the same RHI scan as that depicted in Fig. 4.6 

and (b) the best-fit model of the measured wind speed profile, which is assumed to be 

logarithmic. 
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Fig. 4.9. Elevation profile along the LOS from HRDL to the turbine. 

 

The distributions of spatial turbulence intensity for the PPI and RHI scans over 

the duration of the experiment are shown in Fig. 4.10. The RHI scans feature relatively 

lower spatial turbulence according to the definition given herenote that the 

distribution peaks around Ispace = 30% for the PPI scans, and Ispace = 10% for the RHI 

scans. In the following discussion, low (high) spatial turbulence intensity is defined as 

being less (greater) than 30% for the PPI scans, whereas Ispace = 10% is taken to be the 

value separating these two categories for the RHI scans. 
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Fig. 4.10. Distribution of spatial turbulence intensity measurements throughout the 

course of the TWICS campaign for the PPI (red) and RHI (blue) scans. 

 

4.3.2 Windcube lidar 

Positioned about 300 m to the west-northwest of the turbine, the Windcube 

collected wind speed and direction profiles from 40 m up to 200 m above ground level 

(AGL), depending on atmospheric conditions (Cariou 2011; Chapter 3). Technical 

specifications are given in Table 4.3. Windcube measurements were used to seed and 

check the accuracy of the wake detection algorithms described in Section 4.3.4. 

 

Table 4.3. Windcube technical specifications. 

Laser wavelength 1.54 μm 

Pulse energy 10 μJ 

Pulse rate 20 kHz 

Data output frequency 1 Hz 
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Range min-max 40200 m 

Probed volume 20 m 

Measurement heights 10 

Scanning cone angle 30° 

Speed accuracy 0.2 m s-1 

Direction accuracy 1.5° 

 

4.3.3 Meteorological tower 

 The met tower is located about 1 km to the west-northwest of the turbine, as 

shown in Fig. 4.3. Wind speed and direction data were collected at 2, 5, 10, 20, 50, and 

80 m AGL on the met tower using Met One SS-201 cup anemometers and Met One SD-

201 wind vanes, respectively. Wind speeds were measured with an accuracy of the 

greater of 2% of reading or 0.5 m s-1, while wind directions were measured with an 

accuracy of 3.6°. Additionally, air temperature was measured with an accuracy of 0.1 °C 

using Met One T200A platinum resistance thermometers at 2, 50, and 80 m AGL. 

Measurements of dew point and barometric pressure were also taken at 2 m AGL. At 

each measurement height, data were collected at 1 Hz and then stored as 10-min 

averages (Johnson and Kelley 2000). The met tower data and instrumentation 

documentation are publicly available and can be downloaded from 

<http://www.nrel.gov/midc/nwtc_m2/>. 

 Met tower observations were used to calculate the bulk Richardson number, 

defined as 
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where g is gravitational acceleration, v  is mean virtual potential temperature, Δθv is 

the virtual potential temperature difference across a layer of thickness Δz, and Δu is 

the change in horizontal wind speed across that same layer (Stull 1988). Atmospheric 

stability was determined using calculations of RiB between 2 and 80 m AGL, with RiB < 

-0.03, |RiB| < 0.03, and RiB > 0.03 indicating unstable, neutral, and stable conditions, 

respectively (see Fig. 4.11 for the distribution of RiB during the experiment). Given the 

accuracy of the temperature and wind speed sensors, the uncertainty in RiB is estimated 

to be about 0.02 on average. The stability classifications were chosen to divide the 

amount of data roughly into thirds and to avoid overlap between the unstable and 

stable categories arising from the uncertainty in RiB. The 2–80 m layer—as opposed to 

the 2–50 m or 50–80 m layers—was chosen to maximize the Δθv measurement (and 

therefore minimize the uncertainty in RiB) and because measurements of conditions near 

the surface are important for characterizing atmospheric stability. 
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Fig. 4.11. Distribution of RiB for the duration of the TWICS campaign. 

 

4.3.4 HRDL data processing 

HRDL LOS velocity measurements were disregarded when the corresponding 

SNR was less than -15 dB. In addition, for each scan, measurements that did not lie 

within three standard deviations of the median were identified as outliers and removed 

from the analysis (W. A. Brewer 2011, personal communication). Most outliers were the 

result of hard target strikes—such as the laser beam hitting the wind turbine tower or 

rotor blades—or signal drop off. Expanding upon the work of Bingöl et al. (2010) and 

Trujillo et al. (2011), a set of statistical models is developed below to extract various 

wake attributes from the HRDL measurements using weighted nonlinear regression, in 

which observation weights are specified using the Cramér-Rao lower bound, as discussed 

previously. 
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4.3.4.1 One-dimensional PPI algorithm 

As depicted in Fig. 4.12, a coordinate system centered at HRDL is defined with 

longitudinal axis x  pointing from HRDL to the turbine and transverse axis y  , which 

is perpendicular to the x -axis. The polar coordinates of a point in the field are specified 

by (r,θ), with 22 yxr   as the HRDL range gate and )/arctan( xy   as the 

HRDL azimuth angle, whereby θ > 0 (θ < 0) for clockwise (counterclockwise) rotations. 

 

 

Fig. 4.12. Plan view of the coordinate systems used for the PPI models. 

 

To determine the horizontal structure of the wake from the PPI scans, the 

ambient wind is modeled with uniform speed u and direction φ, an angle with the same 

conventions as θ. Because the angle between the HRDL LOS and the vector describing 
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the flow field at a given point is |θ – φ|, the HRDL-measured LOS velocity is the actual 

wind speed modified by the function cos(θ – φ), which can be rewritten as 
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The wake itself is modeled as either a single- or symmetric double-Gaussian function 

subtracted from the uniform background flow, in an attempt to account for the 

difference between the shape of the VD profile in the near and far wake. For each sweep 

of the beam, and at each range gate r, three models were fit to the LOS velocity data to 

identify the wake, if any: a wake-free model 
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a single-Gaussian wake model 
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and a double-Gaussian wake model 
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In both Eqs. (4.7) and (4.8), a denotes the amplitude of the Gaussian and sw is a 

parameter controlling the width of the wake. In Eq. (4.7), yc denotes the location of the 
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wake center, whereas yl and yr are used to distinguish the locations of the left and right 

local minima in Eq. (4.8), respectively. For a given range gate r, y   is the only 

independent variable. All other variables appearing on the right-hand sides of Eqs. 

(4.64.8) are parameters, whose best-fit values were obtained using nonlinear regression. 

An extra sum-of-squares F-test was used to determine the simplest model (i.e., the 

model with the least number of parameters) to fit the data, in which the threshold p-

value was set to 0.05. If the p-value was less than 0.05, the simpler model was rejected 

and the more complicated model was deemed to fit the data significantly better 

(Kleinbaum et al. 2007). 

 Traditionally, the velocity deficit has been defined as the percentage difference 

between the ambient wind speed and that inside the wake (Vermeer et al. 2003): 
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For the single-Gaussian wake, uwake = u – a, so the velocity deficit is given by 
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In addition, the single-Gaussian wake width is defined to be the size of the 95% 

confidence interval of the velocity deficit profile, 

         (4.11) 
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as mentioned in Section 4.2.3. On the other hand, for the double-Gaussian wake, VD is 

calculated by taking uwake to be the minimum modeled wind speed inside the wake, 

while the wake width is calculated as 

   (      )  (      )              (4.12) 

Using the subscript “0” to denote initial coefficient estimates, seeding for the 

regression algorithm proceeded for each range gate r as follows: φ0 was set to correspond 

to the median Windcube-measured wind direction at hub height (80 m) over the 

duration of the beam sweep (∼20 s), u0 to the median HRDL-measured LOS velocity for 

the range gate of interest, a0 to the difference between u0 and the minimum HRDL-

measured LOS velocity, yc0 to the y-coordinate of the minimum HRDL-measured LOS 

velocity (in the double-Gaussian case, yl0 and yr0 were set to the y-coordinates of the 

two smallest HRDL-measured LOS velocities), and sw0 to 0.25D (a value corresponding 

to a wake width of one rotor diameter). 

An example model fit at a distance of 2D behind the turbine is shown in Fig. 

4.13, in which the parameters were estimated as φ = -26.6 deg, u = 14.5 m s-1, a = 7.2 

m s
-1
, yc = -0.99D, and sw = 0.42, such that VD = 49.6% and w = 1.7D. Furthermore, 

the ability of the one-dimensional PPI algorithm to capture the meandering of the wake 

centerline is demonstrated in the top panel of Fig. 4.14, in which the black line indicates 

the estimates of yc for all range gates included in the scan. 



113 

 

 

 

Fig. 4.13. The one-dimensional PPI model of the flow at a downstream distance of 2D in 

the scan of Fig. 5. The discrete points and the line indicate actual HRDL measurements 

and the curve of best-fit, respectively. 

 

4.3.4.2 Two-dimensional PPI algorithm 

A quicker (but perhaps less robust) method for determining the horizontal wake 

structure from the PPI scans is to fit all of the LOS measurements from a single beam 

sweep to a two-dimensional model, in which the ambient flow is assumed to have 

uniform speed u and direction φ, as before. Letting dHRDL = 880 m = 8.8D be the 

distance between HRDL and the wind turbine, a new unprimed coordinate system is 

defined to be related to the primed coordinate system of the previous section through 

the following transformation 
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Note that the unprimed coordinate system is centered at the turbine and rotated from 

the primed system by the angle φ, such that, ignoring yaw misalignment and wake 

meandering, the x-axis is aligned with the wake centerline (see Fig. 4.12). As before, the 

wake is represented as having a Gaussian profile, with the velocity deficit and width 

following the power laws 

   ( )     (
 

 
)
 

     (4.14) 

  ( )    (
 

 
)
 

   (4.15) 

where VD is written as a decimal and not a percentage, and VD0, s0, n, and m are 

parameters. Similar to the one-dimensional PPI case, two models were fit to the LOS 

velocity data to identify the wake, if any: a wake-free model 
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Note that )/arctan( xy   is an implicit function of x and y, since the primed 

coordinates are related to the unprimed coordinates via the inverse of Eq. (4.13) 
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so that x and y are the independent variables in Eq. (4.17). As before, an extra sum-of-

squares F-test was used to determine the most appropriate model to fit the data, with 

the threshold p-value = 0.05. 

 As in the one-dimensional PPI model, for each beam sweep, φ0 was set such that 

the wake centerline was aligned with the median Windcube-measured wind direction at 

80 m during the duration of the sweep, and u0 was set to the median HRDL-measured 

LOS velocity. The other initial coefficient estimates were VD00 = 0.56, s00 = 0.33D, n0 

= -0.57, and m0 = 0.33, values corresponding to the fits of previous wake measurements 

from Section 4.2. An example model fit is shown in Fig. 4.14b, in which the parameters 

were estimated as φ = -28.3 deg, u = 15.6 m s-1, VD0 = 0.81, s0 = 0.37D, n = -0.79, and 

m = 0.37. While of course not capturing any wake meandering, the model reasonably 

estimates the mean features of the ambient flow and wake. 
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Fig. 4.14. The two-dimensional PPI model (b) of the flow in the scan of Fig. 5, which is 

repeated here for comparison (a). The black line in the top panel denotes the location of 

the wake centerline as captured by the one-dimensional PPI algorithm. 

 

4.3.4.3 RHI algorithm 

A diagram of the coordinate systems used to analyze the vertical structure of the 

wake from the RHI scans is shown in Fig. 4.15. As before, r denotes the HRDL range 

gate, while δ specifies the HRDL elevation angle. Similar to the one-dimensional PPI 

case, the wake is modeled as either a single- or symmetric double-Gaussian function 

subtracted from the background flow, which is taken to follow the logarithmic profile of 
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Eq. (4.3). For each sweep of the beam, and at each range gate r, three models were fit 

to the LOS velocity data to determine the structure of the wake, if any: a wake-free 

model 
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a single-Gaussian wake model 
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and a double-Gaussian wake model 
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Similar to the PPI models, a denotes the amplitude of the Gaussian and the parameter 

sh controls the height of the curve. In the single-Gaussian case, zc denotes the vertical 

location of the wake center, whereas zl and zu are used to distinguish the locations of the 

lower and upper local minima for the double-Gaussian case, respectively. Here, z is the 

independent variable, whereas all other variables appearing on the right-hand sides of 

Eqs. (4.194.21) are parameters, with the exception of k and z0, which are fixed. An 

extra sum-of-squares F-test was used to determine the simplest model to fit the data, 

again with the threshold p-value = 0.05. 
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Fig. 4.15. Side view of the coordinate systems used for the RHI model. 

 

 For each beam sweep, the initial estimate for *u  was set equal to the modeled 

value as determined by the HRDL freestream measurements (see Section 4.3.1), and d0 

was set equal to -10 m, which corresponds roughly to the elevation of the terrain at the 

turbine relative to HRDL. Furthermore, a0 was set to the difference between the median 

and minimum HRDL-measured LOS velocities, zc0 to H = 0.8D = 80 m (in the double-

Gaussian case, zl0 and zu0 were set to H – 0.25D = 0.55D = 55 m and H + 0.25D = 

1.05D = 105 m, respectively), and sh0 to 0.25D = 25 m. 

 Similar to the PPI case, the velocity deficit for the RHI scans is calculated using 

Eq. (4.9), in which 
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is the estimated ambient wind speed at the vertical location of the wake center. For the 

single-Gaussian wake, uwake = uambient – a, so the velocity deficit is given by 

    
 

        
        (4.23) 

In addition, the single-Gaussian wake height is defined to be the size of the 95% 

confidence interval of the velocity deficit profile: 

         (4.24) 

On the other hand, for the double-Gaussian wake, the velocity deficit is calculated by 

taking uwake to be the minimum modeled wind speed inside the wake, while the wake 

height is defined as 

   (      )  (      )            (4.25) 

The effective vertical location of the wake center in the double-Gaussian case is taken to 

be zc = (zl + zu)/2. 

 An example model fit at a distance 1D behind the turbine is shown in Fig. 4.16, 

in which the parameters were estimated as *u  = 0.493 m s-1, d = 35.9 m, a = 8.10 m s-1, 

zc = 40.4 m = 0.505H, and sh = 38.4 m, such that VD = 70% and h = 154 m = 1.54D. 

Note that zc is normalized by H, since the maximum velocity deficit is expected to occur 

near hub height, and that h is normalized by D, to facilitate comparison to the wake 

width. 
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Fig. 4.16. The RHI model of the flow at a downstream distance of 1D in the scan of Fig. 

6. The discrete points and the line indicate actual HRDL measurements and the curve 

of best-fit, respectively. 

 

4.3.4.4 Model acceptance criteria 

Using the above algorithms, wake parameters were determined for every beam 

sweep in the HRDL dataset. In addition to the extra sum-of-squares F-test used to find 

the best-fit models, some models were rejected for having unusual parameter estimates. 

If, for a particular model fit, any parameter or confidence interval fell outside three 

standard deviations of the respective median value, the fit was deemed an outlier and 

disregarded. Moreover, model fits with unphysical parameter estimates were also 

eliminated from the analysis. Specifically, in both the one-dimensional PPI and RHI 

algorithms, a wake is necessarily characterized by 0 < a < uambient because 0% < VD < 
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100% by definition. Because of unusually large ambient variability, undetected hard 

target strikes, or signal dropout, the algorithms could occasionally determine a to be 

outside of the valid range; such unphysical model fits were excluded from consideration. 

4.4 Results 

4.4.1 Velocity deficit profile 

A total of 5971 (3926) beam sweeps were evaluated using the one-dimensional 

PPI (RHI) algorithms. Figs. 4.17a and 4.17b show, as a function of downwind distance, 

the percentage of scans for which a physical wake was modeled with sufficient goodness-

of-fit—as determined by the F-test—by these respective algorithms. (As an aside, the 

two-dimensional PPI algorithm detected a wake in about 20% of the scans.) In both 

cases, the number of detected wakes decreased with downwind distance, as the velocity 

deficit scaled more with the variability in the ambient flow. The scans, moreover, 

eventually sampled the flow outside the wake at longer range gates due to the 

geometrical constraints mentioned earlier, so wakes were detected on average out to 

about x = 7D, although longer wakes were certainly identified on an individual basis. 

Surprisingly, the PPI algorithm detected far more single-Gaussian than double-Gaussian 

wakes even at short distances just behind the turbine, suggesting that the azimuth scan 

rate was slightly too fast to resolve the double-Gaussian structure of the near wake in 

many cases. This deficiency could perhaps be corrected in a future study by slowing the 
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PPI scan azimuth rate, such that more measurements are taken in a single beam sweep. 

Because the beam azimuth had to be more or less aligned with the wake centerline for 

an RHI scan to capture a meaningful portion of the wake, the RHI algorithm detected 

relatively fewer overall wakes than the PPI algorithm. With finer angular resolution, 

however, the RHI scans seem to do a better job of detecting the double-Gaussian shape 

in the near wake. In general, the ratio of single- to double-Gaussian wakes was 

measured to generally increase with downwind distance, as turbulent mixing caused the 

two troughs in the initial velocity profile to later merge into a single trough. A well-

defined demarcation of the near and far wake was not observed, and a small number of 

double-Gaussian wakes are detected at longer range gates. Again, the shape of the 

velocity deficit profile in both the near and far wake is expected to be better resolved by 

slowing the lidar scan rate. 
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Fig. 4.17. Percentage of scans for which a physical wake was modeled with sufficient 

goodness-of-fit by (a) the one-dimensional PPI algorithm and (b) the RHI algorithm, as 

a function of downwind distance. 

 

4.4.2 Velocity deficit attenuation 

In Figs. 4.184.20, velocity deficit is plotted as a function of downwind distance, 

as determined by the one-dimensional PPI, two-dimensional PPI, and RHI algorithms, 
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respectively. Here, the shaded error bars in each plot encompass both (1) inherent inter-

individual variability in the parameter estimates, since lidar scans were taken under a 

range of wind speeds, turbulence levels, and stability conditions, and (2) error in the 

estimation procedure itself. This stipulation is true of the error bars in later figures, as 

well. In general, the deficit was found to decrease as faster moving air was entrained 

within the wake, as expected. Notably, significant velocity deficits were still apparent 

even as far as 67D behind the turbine. The RHI scans measured a somewhat lower 

velocity deficit than the PPI scans, presumably because the RHI scans did not transect 

the central part of the wake as often. 
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Fig. 4.18. Velocity deficit versus downwind distance, as determined by the one-

dimensional PPI algorithm. In each subplot, the bold central lines indicate median 

values, while the symmetric shaded error bars represent the standard deviation of the 

measurements. TWICS results are compared to those of previous studies (see Fig. 1) in 

(a), while velocity deficit measurements are further categorized by (b) ambient wind 

speed, (c) spatial turbulence, and (d) atmospheric stability. 
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Fig. 4.19. Velocity deficit versus downwind distance, as determined by the two-

dimensional PPI algorithm. In each subplot, the bold central lines indicate median 

values, while the symmetric shaded error bars represent the standard deviation of the 

measurements. TWICS results are compared to those of previous studies (see Fig. 1) in 

(a), while velocity deficit measurements are further categorized by (b) ambient wind 

speed, (c) spatial turbulence, and (d) atmospheric stability. 
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Fig. 4.20. Velocity deficit versus downwind distance, as determined by the RHI 

algorithm. In each subplot, the bold central lines indicate median values, while the 

symmetric shaded error bars represent the standard deviation of the measurements. 

TWICS results are compared to those of previous studies (see Fig. 1) in (a), while 

velocity deficit measurements are further categorized by (b) ambient wind speed, (c) 

spatial turbulence, and (d) atmospheric stability. 
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Despite significant overlap between subgroups when categorizing the results by 

ambient conditions, it is perhaps instructive to qualitatively examine the median results. 

As seen in Figs. 4.184.20b, wind speed—as measured at 80-m by the Windcube—had 

the most pronounced effect on controlling the magnitude of the velocity deficit, 

especially in the near wake, with differences of 1020% between Region II (below rated 

power; 4 < u < 12 m s
-1
) and Region III (at rated power; u > 12 m s

-1
) of the power 

curve. The initial velocity deficit is a function of the amount of momentum extracted by 

the turbine from the ambient flow, and therefore of the turbine thrust coefficient, which 

is usually highest at cut-in and decreases with wind speed (Emeis 2013). In the case of 

turbulence (Figs. 4.184.20c), there are two competing influences: higher turbulence 

levels should (1) cause the velocity deficit to recover more quickly, but (2) preclude the 

detection of relatively small velocity deficits. These two effects seem to more or less 

cancel out. The influence of stability on the rate of velocity deficit attenuation (Figs. 

4.184.20d) is similarly difficult to discern from the results here, likely because of the 

physical setup at the site: typically, flow originating at a glacier passes down a 

mountain over a forest, and then spends just a few minutes of transit time over some 

rolling grassland before landing at the NWTC. The effect of local stability on the flow is 

probably rather weak in this situation. 
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Simply to check the accuracy of the ambient wind direction and speed estimates 

by the two-dimensional PPI algorithm (and to perhaps inspire confidence in the 

estimated wake parameters), the corresponding Windcube measurements at hub height 

are compared in Fig. 4.21. Here, an individual dot represents the measurements for a 

single beam sweep. The abscissa is the average Windcube measurement over the 

duration of the sweep (∼20 s), while the ordinate is the corresponding parameter, as 

estimated by the algorithm, for that sweep. Given the algorithm’s assumption of flow 

uniformity and, moreover, the spatial separation between the different regions of flow 

sampled by HRDL and the Windcube, the parameter estimates agree quite well with the 

Windcube measurements: the correlation coefficient for wind direction (speed) is 0.90 

(0.79). 
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Fig. 4.21. Comparison of (a) wind direction and (b) wind speed measured by the 

Windcube at hub height and the corresponding ambient values determined by the two-

dimensional PPI algorithm. The correlation coefficients for both measurements are given 

in the upper left of each plot, while the 1:1 line is shown in green. 
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4.4.3 Wake boundary expansion 

Figs. 4.224.24 illustrate the growth of the wake boundary with downwind 

distance, as determined by the one-dimensional PPI, two-dimensional PPI, and RHI 

algorithms, respectively. Median wake width observations agree well with previous 

experiments. It is interesting to note that the wake width prediction by the industry-

standard Park model (Barthelmie et al. 2006)—using the onshore value for the wake 

decay constant k = 0.075—is not in good agreement with TWICS median results nor 

those of previous field experiments. Although wind speed did not seem to exhibit much 

influence on the expansion of the wake, higher turbulence levels and unstable conditions 

modestly increased the rate at which the wake width expanded in an average sense, 

owing to more effective mixing between the wake and ambient flow and greater wake 

meandering. 

The standard deviation of the wake width is a result of (1) inherent variability, 

(2) measurement uncertainty, and (3) wake meandering. For more turbulent conditions 

and for regions in the far wake, the wake boundary is more diffuse and its detection is 

therefore less precise. In addition, because each scan took almost one-half minute to 

complete, the wake width estimate is somewhat influenced by meandering, in which the 

wake oscillates randomly with amplitude proportional to the magnitude of atmospheric 
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turbulence (España et al. 2011). Accordingly, the standard deviation of the wake width 

is greater for high spatial TI and unstable conditions and also increases with x. 

Because of the presence of the ground and because of smaller velocity 

fluctuations—and therefore less meandering—in the vertical plane, the expansion of the 

wake in the vertical direction was very slight and certainly much less pronounced than 

in the horizontal. Turbulence and stability did not have as much impact on the wake 

height, because the wake was not able to expand much at all in the vertical direction. 
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Fig. 4.22. Wake width versus downwind distance, as determined by the one-dimensional 

PPI algorithm. In each subplot, the bold central lines indicate median values, while the 

symmetric shaded error bars represent the standard deviation of the measurements. 

TWICS results are compared to those of previous studies (see Fig. 2) and to the Park 

wake model in (a), while wake width measurements are further categorized by (b) 

ambient wind speed, (c) spatial turbulence, and (d) atmospheric stability. 
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Fig. 4.23. Wake width versus downwind distance, as determined by the two-dimensional 

PPI algorithm. In each subplot, the bold central lines indicate median values, while the 

symmetric shaded error bars represent the standard deviation of the measurements. 

TWICS results are compared to those of previous studies (see Fig. 2) and to the Park 

wake model in (a), while wake width measurements are further categorized by (b) 

ambient wind speed, (c) spatial turbulence, and (d) atmospheric stability. 
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Fig. 4.24. Wake height versus downwind distance, as determined by the RHI algorithm. 

In each subplot, the bold central lines indicate median values, while the symmetric 

shaded error bars represent the standard deviation of the measurements. Overall results 

are shown in (a), while wake height measurements are further categorized by (b) 

ambient wind speed, (c) spatial turbulence, and (d) atmospheric stability. 
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4.4.4 Vertical wake structure 

 Fig. 4.25 shows the estimate of the terrain offset by the RHI algorithm decreasing 

with distance behind the turbine and following the average overall slope of the terrain. 

The elevation of the actual terrain was slightly underestimated by the model; a series of 

simulated RHI scans determined that the model underestimates (overestimates) the 

elevation of the ground when the wind shear is low (high). Here, the terrain elevation 

was underestimated on average because the median wind shear exponent, as measured 

by the Windcube, was just 0.085, less than the value of 1/7 = 0.14 generally considered 

to represent neutral conditions. 

 

 

Fig. 4.25. Terrain offset versus downwind distance, as determined by the RHI algorithm. 

The bold central line indicates median values, while the symmetric shaded error bars 

represent the standard deviation of the measurements. 
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 The vertical location of the wake center relative to the base of the turbine, as 

determined by the RHI algorithm, is shown in Fig. 4.26. As expected, the maximum 

velocity deficit occurred very close to hub height immediately behind the turbine. 

Similar to the observation in Trujillo et al. (2011), an upward shift in the center of the 

wake deficit was measured, which can be attributed to a superposition of the effects on 

the flow by the tilt of the rotor and the grade of the terrain. With the upward rotor tilt 

being 6 deg and the average downward slope of the ground being less than 1 deg, the 

result was a net upward shift of the wake centerline. 

 

 

Fig. 4.26. Vertical location of the wake center relative to the base of the turbine 

(normalized by the hub height H) versus downwind distance, as determined by the RHI 

algorithm. The bold central line indicates median values, while the symmetric shaded 

error bars represent the standard deviation of the measurements. 
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4.5 Summary and conclusions 

 A set of statistical models has been developed for the characterization of wind 

turbine wakes from scanning remote sensor measurements, with particular reference here 

to the TWICS experiment performed at NREL near Boulder, Colorado using the High 

Resolution Doppler Lidar developed by NOAA. The models are parameterized to 

discern the dependence of various wake features—such as the velocity deficit, the lateral 

and vertical dimensions of the wake, and the horizontal and vertical locations of the 

wake centerline—on variations in atmospheric conditions. TWICS observations, which 

were classified according to ambient wind speed, turbulence, and atmospheric stability, 

agree well with those from previous field experiments. Initially about 5060% 

immediately behind the turbine, the velocity deficit decreased with downwind distance 

to a value of 1525% at x = 6.5D. The wake also expanded as it moved downwind of 

the turbine, albeit less so in the vertical direction because of the presence of the ground: 

initially the same size as the rotor immediately behind the turbine, the extent of the 

wake swelled to 2.7D in the horizontal at x = 6.5D, but only to 1.2D in the vertical at 

the same distance. Although the ambient wind speed was not seen to significantly 

influence the expansion of the wake, the difference in velocity deficit between Regions II 

and III of the power curve was found to be 1020% on average, depending on downwind 

distance. 
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 Improved understanding of wake formation and propagation is essential for 

optimizing wind turbine layouts, and in turn, power production and profits at wind 

farms. Although turbines are conventionally spaced at about 610D along the prevailing 

wind direction and 1.53D along the crosswind direction (Ammara et al. 2002), 

computational studies based on large eddy simulation have found that optimal turbine 

spacing—in terms of power production and overall cost—may be considerably higher, on 

the order of 15D (Meyers and Meneveau 2012). Still, comparison with data from field 

tests is necessary to verify the quality of such CFD models, as discussed in Chapter 6. 

 Whereas the approach developed here can be generally applied to extract wake 

characteristics from both scanning remote sensor datasets and CFD model output, the 

specific quantitative results presented in this paper are unique to the turbine, site, and 

inflow conditions considered herein. To expand upon these results and those of previous 

studies, additional wake experiments will need to be conducted for a variety of locations 

and turbine models. In particular, long-range Doppler lidar units would ideally be 

mounted on the nacelles of utility-scale turbines in future field tests, as in the following 

chapter. Such an arrangement is advantageous because PPI scans can sample the wake 

at a zero elevation angle and, moreover, RHI scans would more often transect the wake 

centerline because the lidar yaws, along with the turbine, according to the ambient wind 

direction. Preferably, these experiments would be conducted in low-turbulence 
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environments, where the assumption of ambient flow uniformity would apply and where 

velocity deficits in the wake would scale with ambient variability farther behind the 

turbine. In addition, the lidar scan rate should likely be reduced to better resolve the 

shape of the velocity deficit profile and therefore to determine a clearer distinction 

between the near and far wake. The procedure would ideally incorporate dual- or triple-

Doppler lidar to map the vector, and not LOS, velocities in the flow field (Newsom et 

al. 2005). Future researchers may also wish to include additional features in the 

statistical wake models, such as the speed-up around the edge of the wake boundary 

resulting from flow blockage by the rotor (Bingöl et al. 2010; Rajewski et al. 2013) 

and/or stability corrections to the logarithmic vertical wind speed profile (Stull 1988). 

The basic procedure developed here is well-suited to quantify wake characteristics from 

experiments that incorporate these suggested modifications. 
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Chapter 5 

Utility-Scale Wind Turbine Wake Characterization 

with Nacelle-based Long-range Scanning Lidar 
 

If I have seen further, it is by standing on the shoulders of giants. 

–Isaac Newton 

 

5.1 Introduction 

Because of the inherent limitations of conventional anemometry, full-scale 

measurements of wind turbine wake dynamics are only possible with scanning remote 

sensors. Previously, ground-based long-range systems with maximum ranges of several 

kilometers have been used to study the wakes of utility-scale turbines (Käsler et al. 

2010; Hirth et al. 2012; Hirth and Schroeder 2013; Iungo et al. 2013; Smalikho et al. 

2013; Chapter 4) with hub heights ranging from 80–102 m and rotor diameters from 71–

116 m. In addition, Bingöl et al. (2010) and Trujillo et al. (2011) collected wake 

measurements by mounting a continuous wave ZephIR lidar with a maximum range of 

200 m on the nacelle of a stall-regulated 95-kW test turbine with a 29-m hub height and 

19-m rotor diameter. Such nacelle-based systems are advantageous over ground-based 

ones in that scans can more closely transect the wake centerline. Yet, while scaled 
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models are informative, a comprehensive understanding of wake losses at modern wind 

farms necessitates observations from pitch-regulated multi-MW turbines. To the best of 

my knowledge, the work outlined here represents the first analysis in the published 

literature of a utility-scale wind turbine wake using nacelle-based long-range scanning 

lidar. 

In particular, results are presented for a field experiment conducted in the fall of 

2011 at a wind farm in the western United States, in which a Galion G4000 Lidar with 

a maximum range of 4000 m was used to sample wakes from the nacelle of a utility-

scale wind turbine. (Because of confidentiality requirements, certain details about the 

wind farm and turbine cannot be disclosed.) To quantify wake attributes—such as the 

velocity deficit (VD), centerline location, and wake width—we apply the procedure 

described in detail in Section 4.3.4.1. In what follows, Section 5.2 provides an overview 

of the experimental setup and methodology. Results and a summary are presented in 

Sections 5.3 and 5.4, respectively. 

5.2 Data and methods 

5.2.1 Instrumentation  

Located in the western United States, the wind farm under consideration 

comprises turbines with rotor diameter D ≈ 100 m and hub height H ≈ 80 m, in addition 

to cut-in, rated, and cut-out speeds of about 4 m s-1, 13 m s-1, and 25 m s-1, respectively. 
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With strong winds typically channeled from the south-southwest, the wind farm is 

arranged in a series of rows spaced 15D along the prevailing wind direction (north-

south) and 3D along the transverse direction (east-west), as seen in Fig. 5.1. 

 

 

Fig. 5.1. Map of the wind farm, to scale. 

 

During the experiment, wind speed and direction data were collected at hub 

height with a Risø P2546A cup anemometer and Met One 020C wind vane mounted on 

a meteorological (met) tower located in the southernmost row of turbines. Wind speed 

was measured with an accuracy of 1% of reading and wind direction with an accuracy of 

3°. As illustrated in Fig. 5.2a, most winds were fairly light during the experiment, with 
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a median wind speed of about 5 m s
-1
, just above cut-in. The Weibull fit to the wind 

speed distribution (Justus et al. 1978) has scale parameter λ = 5.87 and shape 

parameter k = 1.70. The histogram in Fig. 5.2b shows a bimodal wind direction 

distribution, the fit to which is a finite von Mises mixture distribution (Masseran et al. 

2013) with one mode at 17° and another, more prominent mode at 190°. In Fig. 5.2c, the 

turbulence intensity (TI) is defined as the ratio of the horizontal wind speed standard 

deviation to the mean horizontal wind speed, taken over a 10-min interval. The log-

normal fit to the TI distribution (Larsen 2001) has location parameter μ = -2.34 and 

scale parameter σ = 0.51. The median TI during the experiment was 0.096, similar to 

values measured in the midwestern United States (Elliott et al. 2009), where much of 

the nation’s wind power capacity is located. Turbulence intensity can be used as a 

measure of atmospheric stability, with lower (higher) values generally indicating stable 

(unstable) conditions (Wharton and Lundquist 2012), and the effect of stability on wake 

characteristics is examined in Section 5.3. 
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Fig. 5.2. Wind resource characteristics of the site from 14 September 2011 to 12 October 

2011, as measured at hub height by the met tower: (a) wind speed, (b) wind direction, 

and (c) turbulence intensity. 

 

The Galion—a pulsed laser device for wind speed and direction measurement— 

was placed on the nacelle of one of the turbines adjacent to the met tower in the 
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southernmost row. Pulsed lidar is advantageous in that multiple measurements can be 

taken simultaneously along a single line-of-sight. Moreover, pulsed systems are well-

suited for long-distance measurements, as the probe length is constant at all range 

gates. By comparison, continuous wave systems tend to be limited to ranges well below 

1 km because the probe length scales as the square of the focus distance (Werner 2005). 

Lidar data were collected continuously from 14 September 2011 to 12 October 2011, up 

to a maximum range of 4000 m and with a velocity precision as great as 0.1 m s-1, 

depending on atmospheric conditions. The signal-to-noise ratio (SNR) of the lidar 

depends on various environmental factors, such as atmospheric extinction and aerosol 

concentration, which in turn affects the maximum range and velocity precision (Rye and 

Hardesty 1993; Chapter 3). Lidar data was recorded when the SNR exceeded a preset 

threshold of -20 dB. Plan position indicator (PPI) scans—in which the azimuth angle of 

the beam is swept while holding the elevation angle fixed—were used to sample the flow 

field in and around the wake, with measurements taken at 67 range gates r separated 

from one another by 60 m. In each scan, the azimuth was swept through an angle of 

84°—symmetric about the longitudinal axis of the turbine—with azimuthal resolution 

Δθ = 3°, while holding the elevation angle fixed at 0°. Each scan lasted approximately 4 

min, which is long enough for meandering to influence estimation of the wake 

characteristics, as discussed in Section 5.3. 
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5.2.2 Wake detection procedure 

The procedure used to determine wake parameters from the line-of-sight (LOS) 

velocity measurements uLOS is based on Section 4.3.4.1. As depicted in Fig. 5.3, the 

ambient wind is modeled as having uniform speed u and uniform direction. An 

unprimed coordinate system is centered at the turbine and defined such that the x-axis 

is aligned with the ambient wind direction. A second, primed coordinate system has the 

x'-axis (y'-axis) perpendicular (parallel) to the turbine rotor plane and is related to the 

unprimed system via a rotation matrix 

 [
  
  

]  [
        
         

] [
 
 ] (5.1) 

to account for the possibility of yaw error. In this formulation, φ is an unknown 

parameter, whereby φ = 0 when the rotor plane is perpendicular to the flow and φ ≠ 0 

in the case of yaw error. Nominally, the lidar beam should point along the x'-axis when 

the scanning head is in neutral position, i.e. not rotated. LOS velocity measurements are 

taken at discrete points in the field, each of which is described by range gate r = (x' 2 + 

y' 2)1/2 and azimuth angle θ = arctan(y'/x'). For both θ and φ, counterclockwise 

(clockwise) rotations are defined to be positive (negative). Because the angle between 

the lidar beam and the vector describing the flow field at a given point is |θ + φ|, the 

measured LOS velocity is the actual wind speed multiplied by the function cos(θ + φ), 

which can be rewritten as 
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Fig. 5.3. Coordinate systems and variable definitions. 

 

As described in Section 4.2.1, the horizontal cross-section of the velocity deficit 

profile in the near wake is expected to have a double-Gaussian shape, i.e., the profile 

contains two local minima corresponding to the points of maximum lift along the 

blades. On the other hand, in the far wake, turbulent mixing causes the two troughs 

from the near wake to merge and form a single local minimum, and the profile is 

Gaussian in shape (Magnusson 1999). The two profiles are sketched in Fig. 5.4. 

Accordingly, the wake is modeled as either a single- or symmetric double-Gaussian 

function subtracted from the uniform background flow, in an attempt to account for the 
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difference between the shape of the VD profile in the near and far wake. For each sweep 

of the beam, and at each range gate r, three models were fit to the LOS velocity data to 

identify the wake, if any: a wake-free model 
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and a double-Gaussian wake model 
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In Eqs. (5.3)–(5.5), the variables denote the same physical quantities as in Section 

4.3.4.1. For a given range gate r, y' is the only independent variable. All other variables 

appearing on the right-hand sides of Eqs. (5.35.5) are parameters, whose best-fit values 

are obtained using nonlinear regression. An extra sum-of-squares F-test is used to 

determine the simplest model (i.e., the model with the least number of parameters) to 

fit the data, in which the threshold p-value is set to 0.05. That is, if the p-value is less 

than 0.05, the simpler model is rejected and the more complicated model is deemed to 
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fit the data significantly better (Kleinbaum et al. 2007). See Section 4.3.4.4 for further 

details regarding model acceptance criteria. 

 

 

Fig. 5.4. Sketch of the velocity deficit profiles in the (a) near and (b) far wake. 

 

For the single-Gaussian wake, the velocity deficit is given by Eq. (4.10) and the 

wake width by Eq. (4.11). On the other hand, for the double-Gaussian wake, VD is 

calculated by taking uwake in Eq. (4.10) to be the minimum modeled wind speed inside 

the wake, while the wake width is calculated using Eq. (4.12). Using the subscript “0” to 

denote initial coefficient estimates, seeding for the regression algorithm proceeded for 

each range gate r as follows: φ0 was set to zero, u0 to the median measured LOS velocity 

for the range gate of interest, a0 to the difference between u0 and the minimum 
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measured LOS velocity, yc0 to zero, yl0 and yr0 to -0.25D and +0.25D (where lift, and 

therefore the velocity deficit, are expected to be maximum), and sw0 to 0.25D (a value 

corresponding to a wake width of one rotor diameter). 

5.3 Results 

5.3.1 Wake detection 

A total of 11,323 PPI scans were taken over the course of the experiment. 

Periods for which the turbine was not operating were excluded from the analysis, as 

determined from the turbine power data. Fig. 5.5 shows, as a function of distance 

downstream of the turbine x, the percentage of scans for which a wake was determined 

to be statistically significant in comparison to the background flow. For a wake to be 

detected, both the entire width of the wake w and an adequate number of points in the 

ambient flow outside the wake must be sampled. In the case of an 84° sector, the arc 

length is just 1.8D for the range gate r = 120 m = 1.2D, and yet the wake width w is 

expected to be about 1.4D at this distance behind the turbine, based on Eq. (4.2). The 

relatively low number of detected wakes at the first two range gates suggests that, close 

to the turbine, the lidar field-of-view (FOV) was not wide enough for both the full 

width of the wake w and a sufficient portion of the background flow outside the wake to 

be seen in the scanned velocity profile. However, as the FOV increases, so does the 

overall number of detected wakes until x = 3D, after which wakes are detected with 
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diminishing frequency because (1) the amplitude of the velocity deficit decreases and 

therefore scales increasingly with the variability in the ambient flow and (2) velocity 

measurements become less precise, with lidar SNR falling off as 1/r2 (Fujii and Fukuchi 

2005). Although a better distinction between the single- and double-Gaussian profiles 

could likely be made by employing finer azimuthal resolution—Δθ = 3° seems to be too 

coarse—the fraction of double-Gaussian wakes does decrease with downwind distance 

past x = 1.8D, in accordance with expectations. 

 

 

Fig. 5.5. Number of detected wakes versus downwind distance. 

 

Related to the FOV issue in the near wake, the lateral spacing of the turbines 

influences the maximum distance to which the wake from an individual machine can be 

reliably discerned. As turbulent mixing causes the wake to expand with downstream 
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distance, the wakes from lateral-neighbor turbines will eventually merge at some point. 

Based on the average wake expansion rate from Eq. (4.2) and the lateral spacing of 3D 

at this particular wind farm, the wake boundaries from lateral-neighbors should 

intersect at about x ≈ 8D. But, similar to the near wake, a sufficient portion of the 

background flow must also be sampled in the far wake for the wake to be reliably 

distinguished. Accordingly, wakes were detected on average out to x = 6D in this 

particular arrangement. Interestingly, the wake detection rate at intermediate range 

gates—about 40% on average—agrees quite well with the rejection rate of 60% noted in 

España et al. (2011), in which instantaneous wakes from porous disks in a wind tunnel 

were identified using particle image velocimetry. 

5.3.2 Velocity deficit 

In Fig. 5.6, VD is shown to decrease with x, as faster-moving ambient air is 

entrained within the wake. From basic one-dimensional momentum theory, the 

maximum velocity deficit is expected to be 67% at the Betz limit, whereby the turbine 

operates at peak efficiency (Manwell et al. 2010). On average, then, the initial velocity 

deficit was quite high, presumably because the average wind speed was just above cut-

in, meaning that the turbine was often operating at or near maximum thrust. Notably, 

a substantial velocity deficit of about 40% was apparent as far as 6D behind the 

turbine. As in Chapter 4, wind speed had the most pronounced effect on the magnitude 
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of the velocity deficit, with a consistent difference of about 20%, on average, between 

Region II (below rated power; 4 < u < 13 m s-1) and Region III (at rated power; 13 m s-

1 < u < 25 m s-1) of the power curve. In Fig. 5.6c, low TI corresponds to TI < 7.5% and 

high TI corresponds to TI > 12.5%; the categories were chosen to divide the data 

roughly into thirds and to provide a buffer zone about the median value of 10%. In Fig. 

5.6d, “day” (“night”) corresponds to 10:00 to 16:00 (21:00 to 6:00) local daylight time, 

with the intention of capturing periods with unstable (stable) stratification in lieu of 

detailed temperature profiles that could provide more accurate stability metrics, such as 

the bulk Richardson number (Friedrich et al. 2012). The average velocity deficit was 

modestly lower for high TI and daytime conditions, presumably because of more 

effective mixing between the wake and ambient flow. Let it be noted that there are two 

competing influences when it comes to turbulence: higher turbulence levels should cause 

the wind speed inside the wake to recover more quickly, but also preclude the detection 

of smaller velocity deficits. These two effects seem to more or less cancel out here, and 

more data will need to be collected in future experiments to reliably discern the 

influence of turbulence on the wake decay rate. 
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Fig. 5.6. Velocity deficit versus downwind distance. In each subplot, the bold central 

lines indicate median values, while the symmetric shaded error bars represent the 

standard deviation of the measurements. Overall results are shown in (a), while velocity 

deficit measurements are further categorized by (b) ambient wind speed, (c) turbulence 

intensity, and (d) time-of-day. 
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5.3.3 Wake meandering and yaw error 

In addition to yaw error, the estimate of the parameter φ is influenced by other 

factors, such as wake meandering and variations in the ambient wind direction. 

Moreover, misalignment of the lidar beam, which should nominally point perpendicular 

to the rotor plane when the scanning head is not rotated, also induces systematic error 

in the estimate of φ. For range gates nearer the turbine, φ should closely approximate 

the yaw error. As r increases, however, the estimate of φ may gradually diverge 

somewhat from the actual yaw error because of decreasing correlation between the 

ambient wind direction at r and that at the turbine. In the case of no yaw error, the 

effect of meandering is such that the estimate of φ should be zero on average and the 

variability in φ should be greater when the flow is unstable, i.e., more turbulent, 

because wake oscillations are random and governed by scales of atmospheric turbulence 

on the order of the dimension of the wake (España et al. 2011). 

As depicted in Fig. 5.7a, the median estimate of φ was found to be slightly 

negative, presumably because the measured yaw error α—defined here to be the 

difference between the turbine yaw angle and the hub height wind direction measured 

by the met tower—had a median value of -0.3° taken over the entire experiment. The 

median estimate of φ is more negative for low TI and nighttime conditions because the 

median measured yaw error was -0.5° during these periods, whereas the median α was 
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almost zero for high TI and daytime conditions. Although there is a small discrepancy 

between the median values of α and φ at the range gates closest to the turbine—likely 

explained by the effects of meandering, ambient variability, calibration errors, and lidar 

misalignment—the wake detection procedure seems capable of quantifying yaw error 

with reasonable accuracy. Because the standard deviation of α was about 10° during 

both the day and night, the greater variability in φ for high TI and daytime conditions 

can be attributed to the larger turbulent structures—and therefore the larger amplitude 

of wake meandering—experienced during these periods. 
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Fig. 5.7. Modeled wind direction relative to the longitudinal axis of the turbine versus 

downwind distance. In each subplot, the bold central lines indicate median values, while 

the symmetric shaded error bars represent the standard deviation of the measurements. 

Overall results are shown in (a), while wind direction measurements are further 

categorized by (b) turbulence intensity and (c) time-of-day. 

 

Note that the yaw error is a function of wind direction variability, which in turn 

depends on both wind speed and atmospheric stability, as noted in Mahrt (2011). Wind 
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direction variability decreases with increasing wind speed because sub-mesoscale 

motions (on scales of minutes or tens of minutes) significantly enhance wind direction 

variability for low winds, but cause only small changes of the wind direction for high 

winds.  Moreover, for a given wind speed, wind direction variability is generally larger 

during the day because of wind direction changes associated with large convective 

eddies. Mahrt (2011) found greater wind direction variability at night, with the effect of 

weaker nocturnal winds overwhelming that of daytime convective eddies. Similarly, here 

the median wind speed measured by the met tower was 7.5 m s-1 and 5.4 m s-1 during 

the day and night, respectively. Thus, weaker nocturnal winds are likely responsible for 

greater wind direction variability, and therefore the larger yaw error observed at night. 

The estimate of the horizontal location of the wake centerline yc is related to the 

yaw error and the parameter φ. Given the definitions in Section 5.2.2, the force 

imparted by the turbine on the flow has a component in the +y-direction when the yaw 

error is negative. The median trajectory of the centerline shown in Fig. 5.8a corresponds 

to a yaw error of about -1°, which agrees fairly well with the median measured value of -

0.3°. Similar to φ, the median estimate of yc trends away from zero for low TI and 

nighttime conditions because of nonzero yaw error during these periods. Moreover, the 

variability in yc is relatively lower for these conditions because the turbulence length 

scale, and therefore the amplitude of the wake oscillations, is reduced in magnitude. 
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Fig. 5.8. Wake centerline versus downwind distance. In each subplot, the bold central 

lines indicate median values, while the symmetric shaded error bars represent the 

standard deviation of the measurements. Overall results are shown in (a), while wake 

centerline measurements are further categorized by (b) turbulence intensity and (c) 

time-of-day. 
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5.3.4 Wake width 

Fig. 5.9 illustrates the increase in wake width with downwind distance from 1.5D 

at x = 1.8D to 2.5D at x = 6D. Note that, as in Chapter 4, the industry-standard Park 

model (Barthelmie et al. 2006)—with the typical onshore value for the wake decay 

constant k = 0.075—underestimates the extent of the wake boundary in comparison to 

the median value. The expansion rate is greater under more turbulent conditions, as 

represented by TI and time-of-day in Figs. 5.9b and 5.9c, respectively, because of more 

effective mixing between the wake and ambient flow. The standard deviation of the 

wake width is a result of: (1) inherent variability, (2) measurement uncertainty, and (3) 

wake meandering. For more turbulent conditions and regions in the far wake, the wake 

boundary is more diffuse and its detection is therefore less precise. In addition, because 

each scan takes several minutes to complete, the wake width estimate is somewhat 

influenced by the meandering of the wake. Accordingly, the standard deviation of the 

wake width is greater for high TI and daytime conditions and increases with x. 
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Fig. 5.9. Wake width versus downwind distance. In each subplot, the bold central lines 

indicate median values, while the symmetric shaded error bars represent the standard 

deviation of the measurements. Overall results are compared to the Park wake model in 

(a), while wake width measurements are further categorized by (b) turbulence intensity 

and (c) time-of-day. 
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5.4 Summary and conclusions 

 A nacelle-mounted long-range scanning lidar was used to measure wakes from a 

utility-scale wind turbine, and wake characteristics from the resulting dataset were 

quantified with the statistical model developed in Section 4.3.4.1. To the best of my 

knowledge, this effort represents the first such dataset in the published literature. The 

wake velocity deficit was observed to depend on ambient wind speed, with the deficit 

differing by about 20% between Regions II and III of the power curve. The average 

deficit was large—decreasing from 60% at x = 1.8D to 40% at x = 6D—as a result of a 

low average wind speed and therefore high average turbine thrust coefficient. Moreover, 

the wake width was measured to expand from 1.5D at x = 1.8D to 2.5D at x = 6D. 

Both the wake growth rate and the amplitude of wake meandering were observed to be 

greater for high ambient turbulence intensity and daytime (unstable) conditions. The 

model is capable of tracking the wake centerline and capturing the yaw error of the 

turbine with reasonable accuracy. 

 Up to now, wind farm wake simulations, and hence turbine layout optimization, 

have suffered from an unacceptable degree of uncertainty, largely because of a lack of 

adequate experimental data for model verification. To expand upon the results here, 

additional measurements will need to be taken for a variety of locations and turbine 

models. Nacelle-based remote sensors are particularly well-suited for such experiments 
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because scans can more closely transect the wake centerline, as compared to ground-

based systems. For future studies involving nacelle-mounted systems, distinct scanning 

strategies, in which the sensor field-of-view is varied depending on the range of interest, 

are recommended: the scanned sector should be wider when sampling the near wake, 

such that the entire extent of the wake can be seen against the background flow, while a 

relatively narrower sector can be used for scans of the intermediate and far wake. 

Similarly, the azimuthal resolution ought to be finer for scans of the near wake to 

facilitate the detection of the velocity deficit profile in that region, while coarser 

resolution may be more appropriate for scans of the far wake. In addition, faster scan 

rates would allow for more instantaneous representations of the flow. For studies of the 

far wake, the turbine of interest should also be relatively isolated, to avoid interference 

from the wakes of neighboring turbines or other obstacles. Range-height indicator (RHI) 

scans conducted from the nacelle would provide insight as to the vertical structure of 

the wake. Methods for quantifying atmospheric stability, such as measurements of both 

wind speed and temperature at two distinct vertical levels to calculate the Richardson 

number, would be valuable for categorizing wake characteristics based on stability 

conditions. The procedure developed in Chapter 4 and applied here should prove useful 

in the analysis of wind turbine wakes in future field campaigns. 
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Chapter 6 

Large Eddy Simulation of Wind Turbine Wake 

Dynamics in the Stable Boundary Layer 
 

If it disagrees with experiment, it is wrong. 

–Richard Feynman 

 

6.1 Introduction 

At utility-scale wind farms, turbine power output and fatigue loading are 

determined by aerodynamic forces acting on the blades, which vary because of 

heterogeneity in the ambient flow and because of wakes produced by neighboring 

turbines. Although often capable of directly resolving large turbulence scales, 

computational fluid dynamics (CFD) models generally lack many of the important 

physical processes that influence turbulence dynamics, such as radiation transfer 

between the surface and the atmosphere, the formation and evolution of clouds, as well 

as vegetation and soil moisture, which can include snow cover and sea ice. In an effort 

to predict wind turbine wake behavior in realistic atmospheric boundary layers, a 

rotating actuator disk model (Mirocha et al. 2014) was recently implemented in the 

large eddy simulation (LES) package within the Weather Research and Forecasting 



167 

 

(WRF) Model (Skamarock et al. 2008), a numerical weather prediction system with 

diverse meteorological applications. The actuator disk method incorporates both the 

conservation of momentum and blade element theory—in which lift and drag are 

calculated at various sections of the blades—to describe the airflow through the rotor 

and the resulting wake behind the turbine. By representing the dynamics of the real 

atmosphere with higher fidelity than current industry standards, the turbine model in 

WRF-LES, once fully verified, should help to advance the simulations used in wind farm 

design and operation, leading to more efficient and cost-effective turbine layouts and 

controls. 

The nature of the atmospheric boundary layer varies over a wide range of 

timescales, including, but not limited to, diurnal, seasonal, and annual cycles. While 

unstable conditions—typically occurring during the day—are often characterized by 

convective cells, stable conditions—typically occurring at night—frequently feature 

strong shear and intermittent turbulence associated with Kelvin-Helmholtz waves 

(Blumen et al. 2001; Mahrt 2014). Given the strong dependence of wind turbine 

performance on turbulence and stability (Kelley et al. 2006; Wagner et al. 2009; 

Barthelmie and Jensen 2010; Wharton and Lundquist 2012; Churchfield et al. 2012; 

Hansen et al. 2012; Vanderwende and Lundquist 2012; Sathe et al. 2013), comprehensive 

verification of the actuator disk model in WRF-LES requires simulating an extensive set 
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of atmospheric conditions. Whereas Mirocha et al. (2014) evaluated simulations of a 

wind turbine wake against a subset of ground-based lidar measurements taken in 

convective conditions during the Turbine Wake and Inflow Characterization Study 

(Smalikho et al. 2013; Chapter 4), the present work compares simulations to nacelle-

based lidar wake measurements of a different turbine operating in a stable boundary 

layer (SBL) during a separate field experiment described in Chapter 5. Moreover, new 

features—namely, rotor tilt and drag from the nacelle and tower—are added to the 

existing actuator disk framework. 

Of course, the SBL is important to study but also notoriously difficult to 

simulate (Mahrt 2014). The length scale of turbulent motions is relatively small in 

stable conditions, such that higher grid resolution is required in comparison to neutral 

and convective conditions. In LES, the effects of sub-filter scale (SFS) motions on the 

resolved scales are represented with a turbulence closure scheme, which must be selected 

carefully to sustain resolved turbulence. Coarse grid resolution and dissipative SFS 

models can cause boundary layer turbulence to collapse in SBL simulations, resulting in 

a false laminar flow field and runaway cooling at the surface. Because of the challenges 

involved, LES of the SBL has been mostly limited to idealized conditions with high 

geostrophic forcing or weak to moderate stability (Saiki et al. 2000; Kosović and Curry 

2000; Basu and Porté-Agel 2006; Mirocha and Kosović 2010; Zhou and Chow 2011; Park 
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et al. 2014). Here, a preliminary study of a wind turbine operating in an idealized SBL 

is presented, to lay the groundwork for the addition of more realistic features—such as 

terrain and inflow conditions from parent mesoscale models—in future work. 

In what follows, Section 6.2 provides an overview of both the experimental and 

computational methodology. Results and conclusions are presented in Sections 6.3 and 

6.4, respectively. 

6.2 Data and methods 

6.2.1 Field experiment 

Results from the LES were compared to the observations from Chapter 5, which 

outlines the experimental details. In addition to the onsite measurements described in 

Section 5.2.1, atmospheric stability was determined using temperature data at 2 m and 

at hub height from another offsite met tower located approximately 10 km to the north 

of the onsite tower. Temperature was measured using Met One 083E-1-35 sensors to an 

accuracy of 0.1 K. 

6.2.2 Case study 

The dataset was searched for a time period of sufficient duration and featuring 

quasi-steady flow conditions—i.e., nearly constant wind speed and direction—to allow 

representative averages of the wake parameters to be determined. One such interval 

occurred on 2 October 2011 between 02:30 and 07:30 local daylight time (LDT). Fig. 6.1 
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shows the wind speed and direction measured at hub height by the onsite tower, as well 

as the two temperature readings from the offsite tower, from this period. Note that the 

wind speed fluctuated between 4 and 8 m s-1 with an average value of 6.5 m s-1, while 

the wind direction varied over a range of about 20 degrees. The time-of-day, 

temperature profile, and surface cooling are consistent with stable atmospheric 

conditions, and there was no cloud cover or precipitation according to National Weather 

Service records. Whereas temperature exhibited a decreasing trend with time, the lack 

of corresponding trends in the wind speed and direction suggests relatively constant 

large-scale forcing. When a line of best fit is applied to the 2-m temperature 

measurements (Fig. 6.1c), the slope indicates that the average cooling rate over the 5-

hour period was about 0.2 K h-1. 
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Fig. 6.1. (a) Wind speed and (b) direction measured at hub height by the onsite met 

tower during the case study period on 2 October 2011. (c) The offsite temperature 

reading at hub height, as well as the 2-m temperature measurement and corresponding 

line of best fit. 

 

6.2.3 Simulation setup 

Following Mirocha et al. (2014), the simulation was carried out using the 

idealized LES framework within WRF, with a fine-scale inner domain (2400 m × 1000 
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m) nested one-way within a coarser outer domain (3600 m × 1500 m). Lateral grid 

spacing was set as dx = dy = 15 m on the outer domain and dx = dy = 5 m on the 

inner domain. The pressure-based vertical coordinate in WRF allows for an approximate 

specification of the vertical mesh resolution dz, which was set to 5 m up to a height of 

200 m and then stretched by 5% per grid level up to the model top (650 m) for both 

domains. The actuator disk was placed 7.5D (16.5D) from the inflow (outflow) 

boundary of the inner domain and centered in the transverse direction. The setup was 

designed to allow smaller turbulence structures consistent with the finer grid spacing to 

develop upstream of the turbine. Furthermore, with velocity deficits usually observed to 

be almost negligible once the wake is 10–12D downwind of the turbine (Vermeer et al. 

2003; Smalikho et al. 2013), the entire wake ought to be contained within the inner 

domain, a fact confirmed upon examination of the WRF-LES output files. 

The computational setup was simplified by orienting the predominant inflow 

direction at hub height to be parallel to the x-axis. A geostrophic wind with u = 6.80 m 

s-1 and v = -3.17 m s-1 was specified to yield an average wind speed at hub height 

approximately equal to the mean value of 6.5 m s-1 measured by the onsite met tower 

over the case study period. In addition, a uniform initial potential temperature profile 

was specified, with θ = 300 K for z < 150 m and dθ/dz = 0.01 K m-1 for z > 150 m, 

creating a capping inversion to prevent turbulence from reaching the model top. 
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Random perturbations were imposed at the outset on the mean temperature field up to 

z = 150 m to initiate the turbulent motion. 

The simulation was initialized dry with zero latent flux. No cloud, radiation, or 

land surface models were used, and surface boundary conditions were specified using 

Monin-Obukhov similarity theory. Basu et al. (2008) demonstrated that the surface 

cooling rate—as opposed to the surface heat flux—should be prescribed as the lower 

boundary condition when simulating the SBL under moderate to strong stratification. 

Accordingly, the surface cooling rate was set uniformly in both space and time to the 

measured value of 0.2 K h-1 to simulate the stable conditions. A Rayleigh damping layer 

with a coefficient of 0.003 s-1 was applied to the upper 150 m of each domain to avoid 

spurious wave reflection from the model top. Because the excessive mean dissipation of 

the Smagorinsky model limits its applicability in SBL simulations (Kosović and Curry 

2000; Zhou and Chow 2011), the nonlinear backscatter and anisotropy (NBA) model 

(Kosović 1997; Mirocha et al. 2010) was chosen as the sub-grid scale closure scheme. 

Periodic lateral boundary conditions were specified for the outer domain, which 

was run for 9 hours to spin-up turbulence consistent with the geostrophic wind and 

surface forcing. After starting the inner domain with the actuator disk at the beginning 

of hour 9, the simulation continued to run for another 5.5 hours, with the first half hour 

of the inner domain solution discarded due to spin-up of turbulence. Instantaneous 
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velocity fields were saved at an interval of 8 s, corresponding to the discretization of the 

measured lidar data. 

6.2.4 Modifications to the actuator disk model in WRF-LES 

Lookup tables for the blade characteristics and control schedule were changed in 

the actuator disk module to correspond to the turbine in Chapter 5. In addition, the 

effects on the flow by the nacelle and tower were added to the existing wind turbine 

formulation. Namely, the nacelle is represented as a permeable disk normal to the inflow 

with radius Rnac and area Anac = πRnac
2. The drag force exerted by the nacelle on the 

flow is given by 

 
     

 

 
               

    (6.1) 

where CD,nac is the drag coefficient of the nacelle, ρ is air density, and Vnac is the 

component of the incident wind velocity normal to the face of the nacelle. Following El 

Kasmi and Masson (2008), CD,nac is set to 1. A similar approach is taken to model the 

effect of the tower, which has a cylindrical shape with radius Rtower and area Atower = 

2RtowerH normal to the flow. The drag coefficient of the tower CD,tower is set to 1.2, after 

Wu and Porté-Agel (2011). 

Additionally, the effect of rotor tilt was also added to the model, following the 

approach in Mikkelsen (2003). In blade element momentum (BEM) theory, the 

freestream wind speed V0 used to calculate the lift and drag forces along the blades is 
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taken to be the component of the flow normal to the rotor plane of rotation. Following 

the coordinate system convention in Mirocha et al. (2014)—cf. Fig. 6.2—the vector 

normal to the rotor plane amounts to a rotation of the unit vector  ̂   = [1 0 0]T by the 

yaw angle Φ about the z''-axis: 

 
 ̂  [

          
         

   
] [

 
 
 
]  [

    
    

 
]   (6.2) 

If the rotor plane is also tilted—taken to be a rotation by the angle δ about the y'-

axis—then the normal vector to the rotor plane becomes 

 
 ̂  [

         
   

          
] [

    
    

 
]  [

        
    

         
]   (6.3) 

With the wind vector at the actuator disk denoted V  = [u v w]T, the freestream wind 

speed to be used in BEM theory is given by 

       ̂                              (6.4) 
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Fig. 6.2. Diagram of the coordinate system convention and components of the force 

acting on the actuator disk. Axes and angles are shown in black, forces in red, and the 

disk in blue. (a) The view upwind of the rotor along the longitudinal axis, (b) a bird’s-

eye view looking down at the rotor along the vertical axis, and (c) a side view of the 

rotor along the transverse axis. 
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In the case of no rotor tilt, the components of the force F exerted on the actuator 

disk by the flow were found in Equations (A20–A22) of Mirocha et al. (2014) by 

applying successive rotations, one by the angle -ζ about the x'''-axis and another by the 

angle Φ about the z''-axis: 

 
  [

          
         

   
] [

   
         
          

] [
  

 
   

]  [

                 
                 

       
]   (6.5) 

where Fn and Ft are the normal and tangential forces, respectively, acting at a point on 

the disk. In the case of nonzero rotor tilt, on the other hand, a third rotation by the 

angle δ about the y'-axis must be applied to the vector in Eq. (6.5): 

 
  [
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]   

(6.6) 

Simulations were performed after incorporating the above modifications and results are 

presented below. 

6.3 Results 

Prior to verifying the simulated wake characteristics, the WRF-LES inflow must 

first be compared to the observations. Statistics for the simulated inflow were gathered 

by sampling the hub height wind speed and direction over the course of the 5-hour run 
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at a point located 2.5D upwind of the turbine, which corresponds to the recommended 

distance for measuring freestream winds in the determination of wind turbine power 

performance (International Electrotechnical Commission 2005). As seen in the 

histograms in Fig. 6.3, the wind speed varies over a range of 4 to 8 m s-1 with an 

average of 6.4 m s-1, and almost all of the wind direction values are contained within a 

20° range about the predominant value of 270°, very closely matching the measured 

inflow conditions in both cases. Note that, as mentioned previously, the computational 

setup was simplified by orienting the predominant inflow direction at hub height to be 

parallel to the x-axis, such that individual simulated wind direction values are not 

meant to match their measured counterparts. The relative wind direction ranges, 

however, are in very good agreement, as intended. 
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Fig. 6.3. Histograms of the simulated hub height (a) wind speed and (b) direction at a 

point located 2.5D upwind of the turbine. 

 

The instantaneous contours of wind speed in Fig. 6.4 indicate the turbulent 

nature of the both the background flow field and the wake itself. Close to the turbine, 

the wake is relatively coherent and the wind speeds inside the wake are noticeably 

smaller than in the surrounding flow. Farther downwind, on the other hand, the wake is 

more diffuse and the wind speeds inside the wake are comparable to that of lulls in the 

ambient flow. Moreover, meandering behavior is apparent in the far wake region of Fig. 

6.4a as ambient turbulence causes the wake to move randomly about the prevailing 

wind direction. 
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Fig. 6.4. Instantaneous contours of wind speed in the (a) x-y plane and (b) x-z plane at 

the center of the disk at hour 12 in the simulation. The turbine is located at x = y = 0. 

 

To enable the comparison between computational and experimental results, the 

procedure outlined in Section 5.2.2 for quantifying wake characteristics was adopted, in 

which unknown parameters in a nonlinear statistical model are estimated using 

successive wind speed profiles. The procedure is justified when the residuals are 

independent, which is certainly true in the real world where various forcings—such as 
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terrain features and obstacles, as well as heterogeneous land cover and surface 

conditions—serve to break up correlations in the turbulence structure. In the case of the 

measured data, a model fit is made to each lidar scan, which can be thought of as a 

quasi-instantaneous representation of the flow. On the other hand, the idealized setup in 

the simulations includes flat terrain along with uniform forcing at the surface and in the 

geostrophic wind, leading the turbulence structure to contain more robust correlations 

than would otherwise occur in nature. As a result, the wake detection algorithm cannot 

be applied to the instantaneous WRF-LES output in this case, or else the estimated 

wake parameters would be biased, and—more concerning—the model could potentially 

mistake a lull in the ambient flow for a wake. To avoid these issues, the WRF-LES 

output is first averaged in time before performing the model fit. The wake detection 

procedure will be applied to instantaneous WRF-LES output in future simulations that 

incorporate terrain and more realistic boundary conditions, facilitating the comparison 

between measured and simulated results. 

With these caveats in mind, a comparison of the velocity deficit (VD) as a 

function of downwind distance x is shown in Fig. 6.5a. The blue central line depicts the 

median measured value, and the shaded region indicates one standard deviation on 

either side. The red line, on the other hand, indicates VD values computed from the 

mean LES field. Moreover, a comparison of the wake width w vs. x is shown in Fig. 
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6.5b, which shares the same color scheme as Fig. 6.5a. In the case of the velocity deficit, 

the simulation results are within the uncertainty in the experiment. The simulated wake 

width is also in good agreement with the measurements, aside from the two range gates 

at x = 2.4D and x = 3D. Compared to the wake width measurements taken over the 

entire field campaign (see Section 5.3.4), the average wake width estimates at these two 

range gates were unusually high for the 5-hour period considered here, which could be 

related to the small sample size of the case study. Given the constraints in both the 

experiment and the simulation—including 4-min lidar scans, a limited sample size, and 

an idealized simulation setup—the actuator disk model in WRF-LES adequately 

reproduces the measured wake characteristics. Even closer agreement is expected to be 

seen in future work by making use of higher resolution lidar data and more realistic 

simulations. 
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Fig. 6.5. (a) Velocity deficit and (b) wake width versus downwind distance. In each 

subplot, the blue central lines indicate median measured values, whereas the symmetric 

shaded error bars represent the standard deviation of the measurements. Simulation 

results are plotted in red. 

 

In the near wake—within a few rotor diameters downstream of the turbine—the 

velocity deficit profile is expected to have a double-Gaussian shape, i.e., the profile 

contains two local minima corresponding to the points of maximum lift along the 

blades. On the other hand, in the far wake, turbulent mixing causes the two troughs 

from the near wake to merge and form a single local minimum, and the profile is 

Gaussian in shape (Magnusson 1999; Chapters 4 and 5). Fig. 6.6 shows, as a function of 

x, the percentage of scans for which a wake was determined from the measured data to 

be statistically significant in comparison to the background flow. The total number of 

detected wakes increases from x = 1.8D to x = 3D as the lidar field-of-view increases, 
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allowing a wider portion of the flow to be captured in the scan. However, wakes are 

detected with diminishing frequency after x = 3D because (1) the amplitude of the 

velocity deficit decreases and therefore scales increasingly with the variability in the 

ambient flow and (2) velocity measurements become less precise, with lidar SNR falling 

off as 1/r2 (Fujii and Fukuchi 2005). As expected, a large fraction of the wakes were 

seen to have a double-Gaussian velocity deficit profile close to the turbine, and hardly 

any double-Gaussian wakes were detected after x = 3D, which may be considered the 

division between the near and far wake. Interestingly, x = 3D is the same distance at 

which the average simulated flow field transitions from a double-Gaussian to a single-

Gaussian velocity deficit profile, indicating that the actuator disk model in WRF-LES is 

also capable of representing a realistic progression from the near wake to the far wake. 
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Fig. 6.6. Percentage of wakes detected from the measured data versus downwind 

distance. 

 

One of the new contributions to the turbine model in WRF-LES is the inclusion 

of rotor tilt, which affects the vertical location of the wake centerline zc, defined to be 

the height at which the velocity deficit inside the wake is maximum. The evolution of 

this parameter, which was determined using the vertical scan (or RHI) algorithm from 

Section 4.3.4.3, appears in Fig. 6.7 as simulated both with and without rotor tilt. With 

the rotor thought of as an actuator disk, the net force on the flow by the turbine has a 

small component in the +z-direction when the rotor is tilted away from vertical (see 

Fig. 6.2c, noting that the force on the flow is equal to and opposite that on the disk), 

resulting in an upward shift of the wake center comparable to the horizontal 

displacement of the wake in the case of yawed flow. This upward shift is qualitatively 

similar to that measured in Fig. 4.26. 
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Fig. 6.7. Vertical location of the wake centerline versus downwind distance for 

simulations with and without rotor tilt. 

 

6.4 Conclusion 

To expand upon the convective case study in Mirocha et al. (2014), numerical 

simulations of a wind turbine wake using the actuator disk model in WRF-LES were 

compared to nacelle-based scanning lidar measurements taken in stable atmospheric 

conditions. Moreover, new features—namely rotor tilt and drag from the nacelle and 

tower—were added to the existing actuator disk framework. Using the velocity deficit 

and wake width as metrics for model verification, the simulations show good agreement 

with the observations. Notable results include a high average velocity deficit, decreasing 
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from 73% at x = 1.2D to 25% at x = 6.6D, resulting from a low average wind speed and 

therefore high average turbine thrust coefficient, in addition to the low background 

turbulence characteristic of stable conditions. Moreover, the wake width was seen to 

expand from 1.4D at x = 1.2D to 2.3D at x = 6.6D. Compared to the rotor, the effect of 

the tower and nacelle on the flow is relatively small but nevertheless important for an 

accurate representation of the entire wake. The inclusion of rotor tilt in the model 

causes the vertical location of the wake center to shift upward, which has important 

implications for the design of turbine layouts and controls at wind farms. It would be 

interesting to study in future experiments and simulations how this upward shift is 

influenced by atmospheric stability. 

Further verification of the actuator disk model in WRF-LES will require that 

simulations of various types of turbines and atmospheric conditions be evaluated against 

corresponding experimental data. In addition to comparison with wake observations 

aloft, LES results should also be compared to the measured effects of turbines on wind 

speed, turbulence, and temperature at the surface (Rajewski et al. 2013). An extension 

of the stable boundary layer case presented here would be to simulate a turbine 

operating in a low-level jet (Blackadar 1957; Bonner 1968; Banta et al. 2002; Lundquist 

and Mirocha 2008). Moreover, future simulations ought to incorporate both terrain 

features and more realistic inflow from mesoscale models to better represent turbulence. 
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Several turbulence closure schemes—such as the dynamic reconstruction model (Chow 

et al. 2005) and the locally averaged scale-dependent dynamic model (Basu and Porté-

Agel 2006)—should be tested under various atmospheric conditions to determine the 

most appropriate model for each scenario. Using the actuator disk model developed in 

Mirocha et al. (2014) and expanded upon here, more detailed features may be added, 

such as the blade coning angle (Mikkelsen 2003). Once computing resources allow WRF-

LES to be run at sufficiently high resolution, actuator line techniques (Mikkelsen 2003; 

Churchfield et al. 2012) may eventually be implemented to complement the existing 

actuator disk model in cases requiring higher fidelity representations of turbine physics. 

Still, there are many practical applications for the current framework in the 

meantime. For example, modeling an array of turbines within a single domain could be 

used to verify the mesoscale wind farm parameterization in WRF (Fitch et al. 2012) 

under changing stability conditions (Fitch et al. 2013). Furthermore, the actuator disk 

model could be used to study optimal turbine configurations within wind farms, as in 

Meyers and Meneveau (2012) and Archer et al. (2013), helping to minimize wake effects 

and thus the cost of energy. 
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Chapter 7 

Conclusion 
 

There are those who look at things the way they are and ask, “Why?” I dream of things 

that never were and ask, “Why not?” 

–Robert Kennedy 

 

Climate change is one of the foremost challenges of our time, and common sense 

demands action. Just as insurance is used to hedge against the risk of contingent and 

uncertain losses, developing new technologies and improving existing ones to mitigate 

the potential adverse effects of climate change would appear to be the prudent choice. 

At its core, climate change mitigation is fundamentally about economics: currently, 

clean energy technologies are simply too expensive in comparison to fossil fuels. To be 

viable, renewables must be made more valuable than conventional energy sources via 

economies of scale, research and development, expanded transmission, and energy 

storage. Because the free market tends to be unable to solve large-scale environmental 

problems, sound policy support is of paramount importance. 

Out of the many technological options for mitigating climate change, wind—as 

the most mature and cost-effective source of renewable energy—appears poised to be the 

primary challenger to fossil fuels, at least in the near term. Although revolutionary 
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discoveries are unlikely at this point, further research is still required to improve 

efficiencies and drive down costs for wind to compete on an unsubsidized basis. 

Specifically, one area of improvement involves limiting turbine-to-turbine interactions at 

wind farms resulting from wake effects. To optimize turbine layouts and controls, 

computational fluid dynamics models of wind turbine wake dynamics must be developed 

and then verified using experimental data. With the ability to sample winds over large 

areas at high temporal and spatial resolution, remote sensing technology is particularly 

well-suited for the purpose of model verification. 

The work presented here has demonstrated a procedure for quantifying wind 

turbine wake characteristics, including the velocity deficit, the extent of the wake 

boundary, and the location of the wake centerline. The methodology is intended to be 

general, in that it can be applied to extract wake characteristics from remote sensor 

measurements, as well as computational output. Here, experimental results were 

compared to a large eddy simulation (LES) of a turbine operating in the stable 

boundary layer using the actuator disk parameterization in the Weather Research and 

Forecasting (WRF) Model, and simulations showed good agreement with the 

observations. Continuing work in this area will help lead to improved turbine siting and 

controls at wind farms, with the ultimate goal being to limit turbine-to-turbine 
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interactions, thus optimizing plant power performance and minimizing the cost of 

energy.  
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