Learning to Segment Images using Dynamic Feature Binding

Michael C. Mozer, Richard S. Zemel, Marlene Behrmann

CU-CS-540-91 August 1991
Learning to segment images using
dynamic feature binding

Michael C. Mozer
Department of Computer Science &
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430

Richard S. Zemel
Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A4

Marlene Behrmann
Department of Psychology & Faculty of Medicine &
Rotman Research Institute of Baycrest Centre
University of Toronto
Toronto, Ontario M5S 1A1

University of Colorado at Boulder
Technical Report CU-CS-540-91

August 1991
Learning to segment images using
dynamic feature binding

Abstract

Despite the fact that complex visual scenes contain multiple, overlapping objects, people
perform object recognition with ease and accuracy. One operation that facilitates recognition
is an early segmentation process in which features of objects are grouped and labeled according
to which object they belong. Current computational systems that perform this operation are
based on predefined grouping heuristics. We describe a system called MAGIC that learns how
to group features based on a set of presegmented examples. In many cases, MAGIC discovers
grouping heuristics similar to those previously proposed, but it also has the capability of finding
nonintuitive structural regularities in images. Grouping is performed by a relaxation network
that attempts to dynamically bind related features. Features transmit a complex-valued signal
(amplitude and phase) to one another; binding can thus be represented by phase locking related
features. MAGIC's training procedure is a generalization of recurrent back propagation to
complex-valued units.

Recognizing an isolated object in an image is a demanding computational task. The difficulty is
greatly compounded when the image contains multiple objects because features in the image are not
grouped according to which object they belong. Without the capability to form such groupings,
it would be necessary to undergo a massive search through all subsets of image features. For
this reason, most machine vision recognition systems include a component that performs feature
grouping or image segmentation (e.g., Guzman, 1968; Lowe, 1985; Marr, 1982). Psychophysical and
neuropsychological evidence suggests that the human visual system performs a similar operation
(Duncan, 1984; Farah, 1990; Kahneman & Henik, 1981; Treisman, 1982).

Image segmentation presents a circular problem: Objects cannot be identified until the image
has been segmented, but unambiguous segmentation of the image requires knowledge of what
objects are present. Fortunately, object recognition systems do not require precise segmentation:
Simple heuristics can be used to group features, and although these heuristics are not infallible,
they suffice for most recognition tasks. Further, the segmentation-recognition cycle can iterate,
allowing the recognition system to propose refinements of the initial segmentation, which in turn
refines the output of the recognition system (Hinton, 1981; Hanson & Riseman, 1978; Waltz, 1975).

A multitude of heuristics have been proposed for segmenting images. Gestalt psychologists have
explored how people group elements of a display and have suggested a range of grouping principles
that govern human perception. For example, there is evidence for the grouping of elements that
are close together in space or time, that appear similar, that move together, or that form a closed
figure (Rock & Palmer, 1990). Computer vision researchers have studied the problem from a
more computational perspective. They have investigated methods of grouping elements of an
image based on nonaccidental regularities—feature combinations that are unlikely to occur by
chance when several objects are juxtaposed, and are thus indicative of a single object. Kanade
(1981) describes two such regularities, parallelism and skewed symmetry, and shows how finding
instances of these regularities can constrain the possible interpretations of line drawings. Lowe and
Binford (1982) find nonaccidental, significant groupings through a statistical analysis of images.
They evaluate potential feature groupings with respect to a set of heuristics such as collinearity,
proximity, and parallelism. The evaluation is based on a statistical measure of the likelihood that
the grouping might have resulted from the random alignment of image features. Boldt, Weiss, and Riseman (1989) describe an algorithm for constructing lines from short line segments. The algorithm evaluates the goodness of fit of pairs of line segments in a small neighborhood based on relational measures (collinearity, proximity, and contrast similarity). Well matched pairs are replaced by longer segments, and the procedure is repeated.

In these earlier approaches, the researchers have hypothesized a set of grouping heuristics and then tested their psychological validity or computational utility. In our work, we have taken an adaptive approach to the problem of image segmentation in which a system learns how to group features based on a set of examples. We call the system MAGIC, an acronym for multiple-object adaptive grouping of image components. In many cases MAGIC discovers grouping heuristics similar to those proposed in earlier work, but it also has the capability of finding nonintuitive structural regularities in images.

MAGIC is trained on a set of presegmented images containing multiple objects. By “presegmented”, we mean that each image feature is labeled as to which object it belongs. MAGIC learns to detect configurations of the image features that have a consistent labeling in relation to one another across the training examples. Identifying these configurations allows MAGIC to then label features in novel, unsegmented images in a manner consistent with the training examples.

Representing Feature Labelings

Before describing MAGIC, we must first discuss a representation that allows for the labeling of features. Von der Malsburg (1981; von der Malsburg & Schneider, 1986), Gray et al. (1989), Eckhorn et al. (1988), and Strong and Whitehead (1989), among others, have suggested a biologically plausible mechanism of labeling through temporal correlations among neural signals, either the relative timing of neuronal spikes or the synchronization of oscillatory activities in the nervous system. The key idea here is that each processing unit conveys not just an activation value—average firing frequency in neural terms—but also a second, independent value which represents the relative phase of firing. The dynamic grouping or binding of a set of features is accomplished by aligning the phases of the features.

A flurry of recent work on populations of coupled oscillators (e.g., Baldi & Meir, 1990; Eckhorn et al., 1990; Kappen, Koch, & Holmes, 1990) has shown that this type of binding can be achieved using simple dynamical rules. However, most of this work assumes a relatively homogeneous pattern of connectivity among the oscillators and has not attempted to tackle problems in computer vision such as image segmentation, where each oscillator represents an image feature, and more selective connections between the oscillators are needed to simulate the selective binding of appropriate subsets of image features. A few exceptions exceptions exist (Goebel, 1991a,b; Hummel & Biederman, 1991; Lumer & Huberman, 1991); in these systems, the coupling between oscillators is specified by simple predetermined grouping heuristics.

The Domain

Our initial work has been conducted in the domain of two-dimensional geometric contours, including rectangles, diamonds, crosses, triangles, hexagons, and octagons. The contours are constructed from four primitive feature types—oriented line segments at 0°, 45°, 90°, and 135°—and are laid out on a 15 × 20 grid. At each location on the grid are units, called feature units, that detect each of the four primitive feature types. In our present experiments, images contain two contours.
Figure 1: Examples of randomly generated two-dimensional geometric contours.

We exclude images in which two contours overlap in their activation of the same feature unit. This permits a unique labeling of each feature. Examples of several randomly generated images containing rectangles and diamonds are shown in Figure 1.

The Architecture

The input to MAGIC is a pattern of activity over the feature units indicating which features are present in an image. The initial phases of the units are random. MAGIC’s task is to assign appropriate phase values to the units. Thus, the network performs a type of pattern completion.

The network architecture consists of two layers of units, as shown in Figure 2. The lower (input) layer contains the feature units, arranged in spatiotopic arrays with one array per feature type. The upper layer contains hidden units that help to align the phases of the feature units; their response properties are determined by training. Each hidden unit is reciprocally connected to the units in a local spatial region of all feature arrays. We refer to this region as a patch; in our current simulations, the patch has dimensions 4×4. For each patch there is a corresponding fixed-size pool of hidden units. To achieve uniformity of response across the image, the pools are arranged in a spatiotopic array in which neighboring pools respond to neighboring patches and the weights of all pools are constrained to be the same.

The feature units activate the hidden units, which in turn feed back to the feature units. Through a relaxation process, the system settles on an assignment of phases to the features. One might consider an alternative architecture in which feature units were directly connected to one
Figure 2: The architecture of MAGIC. The lower (input) layer contains the feature units; the upper layer contains the hidden units. Each layer is arranged in a spatiotopic array with a number of different feature types at each position in the array. The grayed hidden units are reciprocally connected to all features in the corresponding grayed region of the feature layer. The lines between layers represent projections in both directions.
another (Hummel & Biederman, in press). However, this architecture is in principle not as powerful as the one we propose because it does not allow for higher-order contingencies among features.

Network Dynamics

Formally, the response of each feature unit i, x_i, is a complex value in polar form, (a_i, p_i), where a_i is the amplitude or activation and p_i is the phase. Similarly, the response of each hidden unit j, y_j, has components (b_j, q_j). The weight connecting unit i to unit j, w_{ji}, is also complex valued, having components (ρ_{ji}, θ_{ji}). The activation rule we propose is a generalization of the dot product to the complex domain:

$$net_j = \mathbf{x} \cdot \mathbf{w}_j = \sum_i x_i w_{ji} = \left[\left(\sum_i a_i \rho_{ji} \cos(p_i - \theta_{ji}) \right)^2 + \left(\sum_i a_i \rho_{ji} \sin(p_i - \theta_{ji}) \right)^2 \right]^{\frac{1}{2}}, \tan^{-1} \left[\frac{\sum_i a_i \rho_{ji} \sin(p_i - \theta_{ji})}{\sum_i a_i \rho_{ji} \cos(p_i - \theta_{ji})} \right]$$

where net_j is the net input to hidden unit j. The net input is passed through a squashing non-linearity that maps the amplitude of the response from the range $0 \to \infty$ to $0 \to 1$ but leaves the phase unaffected:

$$y_j = \frac{net_j}{|net_j|} \left(1 - e^{-|net_j|^2} \right).$$

This function is shown in Figure 3, where the x and y axes correspond to the net input in the complex plane (rectangular coordinates) and the z axis is the resulting amplitude.

The flow of activation from the hidden layer to the feature layer follows the same dynamics, although in the current implementation the amplitudes of the features are clamped, hence the top-down flow affects only the phases. One could imagine a more general architecture in which the relaxation process determined not only the phase values, but cleaned up noise in the feature amplitudes as well.

The intuition underlying the activation rule is as follows. The activity of a hidden unit, b_j, should be monotonically related to how well the feature response pattern matches the hidden unit weight vector, just as in the standard real-valued activation rule. Indeed, one can readily see that if the feature and weight phases are equal ($p_i = \theta_{ji}$), the rule for b_j reduces to the real-valued case. Indeed, even if the feature and weight phases differ by a constant ($p_i = \theta_{ji} + c$), b_j is unaffected. This is a critical property of the activation rule: Because absolute phase values have no intrinsic meaning, the response of a unit should depend only on the relative phases. The activation rule achieves this by essentially ignoring the average difference in phase between the feature units and the weights. The hidden phase, q_j, reflects this average difference.\footnote{To elaborate, the activation rule produces a q_j that yields the minimum of the following expression:

$$d_j = \sum_i (a_i \cos p_i - \rho_{ji} \cos(\theta_{ji} + q_j))^2 + (a_i \sin p_i - \rho_{ji} \sin(\theta_{ji} + q_j))^2.$$}

This is a measure of the distance between the feature and weight vectors given a free parameter q_j that specifies a global phase shift of the weight vector.
Figure 3: The function that maps a complex value to a squashed amplitude, viewed from below.

Learning Algorithm

During training, we would like the hidden units to learn to detect configurations of features that reliably indicate phase relationships among the features. For instance, if the contours in the image contain extended horizontal lines, one hidden unit might learn to respond to a collinear arrangement of horizontal segments. Because the unit's response depends on the phase pattern as well as the activity pattern, it will be strongest if the segments all have the same phase value.

We have experimented with a variety of algorithms for training MAGIC, including an extension of soft competitive learning (Nowlan, 1990) to complex-valued units, recurrent back propagation (Almeida, 1987; Pineda, 1987), back propagation through time (Rumelhart, Hinton, & Williams, 1986), a back-propagation autoencoder paradigm in which patches of the image are processed independently, and an autoencoder in which the patches are processed simultaneously and their results are combined. The algorithm with which we have had greatest success, however, is relatively simple. It involves running the network for a fixed number of iterations and, after each iteration, attempting to adjust the weights so that the feature phase pattern will match a target phase pattern. Each training trial proceeds as follows:

1. A training example is generated at random. This involves selecting two contours and instantiating them in an image. The features of one contour have target phase 0° and the features of the other contour have target phase 180°.

2. The training example is presented to MAGIC by clamping the amplitude of a feature unit to 1.0 if its corresponding image feature is present, or 0.0 otherwise. The phases of the feature
units are set to random values in the range 0° to 360°.

3. Activity is allowed to flow from the feature units to the hidden units and back to the feature units. Because the feature amplitudes are clamped, they are unaffected.

4. The new phase pattern over the feature units is compared to the target phase pattern (see step 1), and an error measure is computed:

\[E = -\left(\sum_i a_i \cos(\bar{p}_i - p_i)\right)^2 - \left(\sum_i a_i \sin(\bar{p}_i - p_i)\right)^2, \]

where \(\bar{p} \) is the target phase pattern. This error ignores the absolute difference between the target and actual phases. That is, \(E \) is minimized when \(\bar{p}_i - p_i \) is a constant for all \(i \), regardless of the value of \(p_i - p_i \).

5. Using a generalization of back propagation to complex valued units, error gradients are computed for the feature-to-hidden and hidden-to-feature weights.

6. Steps 3–5 are repeated for a maximum of 30 iterations. The trial is terminated if the error increases on five consecutive iterations.

7. Weights are updated by an amount proportional to the average error gradient over iterations.

The algorithm is far less successful when a target phase pattern is given just on the final iteration or final \(k \) iterations, rather than on each iteration. Surprisingly, the algorithm operates little better when error signals are propagated back through time. Finally, the algorithm is much faster and more robust when the feature-to-hidden weights are constrained to be symmetric with the hidden-to-feature weights. For complex weights, we define symmetry to mean that the weight from feature unit \(i \) to hidden unit \(j \) is the complex conjugate of the weight from hidden unit \(j \) to feature unit \(i \). (The complex conjugate flips the sign of the phase.) The weight symmetry ensures that MAGIC will converge to a fixed point.\(^2\)

The simulations reported below use a learning rate parameter of .005 for the amplitudes and 0.02 for the phases. On the order of 10,000 learning trials are required for stable performance, although MAGIC rapidly picks up on the most salient aspects of the domain.

Simulation Results

We trained a network with 20 hidden units per pool on examples like those shown in Figure 1. The resulting weights are shown in Figure 4. Each hidden unit attempts to detect and reinstantiate activity patterns that match its weights. One clear and prevalent pattern in the weights is the collinear arrangement of segments of a given orientation, all having the same phase value. When a hidden unit having weights of this form responds to a patch of the feature array, it tries align the phases of the patch with the phases of its weight vector. By synchronizing the phases of features, it acts to group the features. Thus, one can interpret the weight vectors as the rules by which features are grouped.

Whereas traditional grouping principles indicate the conditions under which features should be bound together as part of the same object, the grouping principles learned by MAGIC also indicate

\(^2\)The proof is a generalization of Hopfield's (1984) result to complex units, discrete-time update, and a two-layer architecture with sequential layer updates and no intralayer connections.
Figure 4: Feature-to-hidden weights learned by MAGIC. The area of a circle represents the amplitude of a weight, the orientation of the internal tick mark represents the phase. (The phase spectrum on top shows the ticks corresponding to the range of phase values from 0 to 360 degrees.) The weights are arranged such that the connections into each hidden unit are presented on a light gray background. Each hidden unit has a total of 64 incoming weights—4×4 locations in its receptive field and four feature types at each location. The weights are further grouped by feature type, and for each feature type they are arranged in a 4×4 pattern homologous to the image patch itself. Due to the symmetry constraint, hidden-to-feature weights mirror the feature-to-hidden weights depicted in the Figure.
Figure 5: An example of MAGIC segmenting an image. The "iteration" refers to the number of times activity has flowed from the feature units to the hidden units and back. The phase value of a given feature is represented by the hue of the feature. Unless this figure is made on a color printer, the hue is approximated by a gray level, which nonetheless conveys the basic information.

When features should be segregated into different objects. For example, the weights of the vertical and horizontal segments are generally 180° out of phase with the diagonal segments. This allows MAGIC to segregate the vertical and horizontal features of a rectangle from the diagonal features of a diamond. We had anticipated that the weights to each hidden unit would contain two phase values at most because each image patch contains at most two objects. However, some units make use of three or more phases, suggesting that the hidden unit is performing several distinct functions. As is the usual case with hidden unit weights, these patterns are difficult to interpret.

Figure 5 presents an example of the network segmenting an image. The image contains two rectangles. The top left panel shows the features of the rectangles and their initial random phases. The succeeding panels show the network's response during the relaxation process. The lower right panel shows the network response at equilibrium. Features of each object have been assigned a uniform phase, and the two objects are 180° out of phase. The task here may appear simple, but it is quite challenging due to the illusory rectangle generated by the overlapping rectangles.

Alternative Representation of Feature Labeling

To perform the image segmentation task, each feature unit needs to maintain two independent pieces of information: a measure of confidence in the hypothesis that a given feature is present, and
the label it has assigned to the feature. In MAGIC, these two quantities are encoded by the amplitude and phase of a unit, respectively. This polar representation is just one of many possible encodings, and requires some justification due to the complexity of the resulting network dynamics. An alternative we have considered—which seems promising at first glance but has serious drawbacks—is the rectangular coordinate analog of the polar representation. In this scheme, a feature unit conveys a measure of confidence that the feature is present as part of object A, as well as a measure of confidence that the feature is present as part of object B, where A and B are arbitrary labels. For example, the activities (1, 0) and (0, 1) indicate that the feature is present and belongs to object A or B, respectively, (0, 0) indicates that no feature is present, and intermediate values indicate intermediate degrees of confidence in the two hypotheses. The rectangular and polar representations are equivalent in the sense that one can be transformed into the other.\(^3\)

The rectangular scheme has two primary benefits. First, the activation dynamics are simpler. Second, it allows for the simultaneous and explicit consideration of multiple labeling hypotheses, whereas the polar scheme allows for the consideration of only one label at a time. However, these benefits are obtained at the expense of presuming a correspondence between absolute phase values and objects. (In the rectangular scheme we described, A and B always have phases 0° and 90°, respectively, obtained by transforming the rectangular coordinates to polar coordinates.) The key drawback of absolute phase values is that a local patch of the image cannot possibly determine which label is correct. A patch containing, say, several collinear horizontal segments can determine only that the segments should be assigned the same label. Preliminary simulations indicate that the resulting ambiguity causes severe difficulties in processing. In contrast, the polar scheme allows the network to express the fact that the segments should be assigned the same label, without needing to specify the particular label.

Current Directions

We are currently extending MAGIC in several directions, which we outline here.

- We have not addressed the question of how the continuous phase representation is transformed into a discrete object label. One may simply quantize the phase values such that all phases in a given range are assigned the same label. This quantization step has the extremely interesting property that it allows for a hierarchical decomposition of objects. If the quantization is coarse, only gross phase differences matter, allowing one object to be distinguished from another. As the quantization becomes finer, an object is divided into its components. Thus, the quantization level in effect specifies whether the image is parsed into objects, parts of objects, parts of parts of objects, etc.

This hierarchical decomposition of objects can be achieved only if the phase values reflect the internal structure of an object. For example, in the domain of geometric contours, MAGIC would not only have to assign one contour a different phase value than another, but it would also have to assign each edge composing a contour a slightly different phase than each other edge (assuming that one considers the edges to be the “parts” of the contour). Somewhat surprisingly, MAGIC does exactly this because the linkage between segments of an edge is stronger than the linkage between two edges. This is due to the fact that collinear features occur in images with much higher frequency than corners. Thus, the relative frequency

\(^3\)Yann Le Cun (personal communication, 1991) has independently developed the notion of using the rectangular encoding scheme in the domain of adaptive image segmentation.
of feature configurations leads to a natural principle for the hierarchical decomposition of objects.

- Although MAGIC is trained on pairs of objects, it has the potential of processing more than two objects at a time. For example, with three overlapping objects, MAGIC attempts to push each pair 180° out of phase but ends up with a best constraint satisfaction solution in which each object is 120° out of phase with each other. We are exploring the limits of how many objects MAGIC can process at a time.

- Spatially local grouping principles are unlikely to be sufficient for the image segmentation task. Indeed, we have encountered incorrect solutions produced by MAGIC that are locally consistent but globally inconsistent. To solve this problem, we are investigating an architecture in which the image is processed at several spatial scales simultaneously. Fine-scale detectors respond to the sort of detail shown in Figure 4, while coarser-scale detectors respond to more global structure but with less spatial resolution.

- Simulations are also underway to examine MAGIC's performance on real-world images—overlapping handwritten letters and digits—where it is somewhat less clear to which types of patterns the hidden units should respond.

Acknowledgements

This research was supported by NSF Presidential Young Investigator award IRI-9058450, grant 90–21 from the James S. McDonnell Foundation, and DEC external research grant 1250 to MM, and by a National Sciences and Engineering Research Council Postgraduate Scholarship to RZ. Our thanks to Paul Smolensky, Chris Williams, Geoffrey Hinton, and Jürgen Schmidhuber for helpful comments regarding this work.

References

