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Antarctic-wide ice-shelf firn emulation
reveals robust future firn air depletion
signal for the Antarctic Peninsula

Check for updates

Devon Dunmire 1 , Nander Wever 1,2, Alison F. Banwell 3 & Jan T. M. Lenaerts 1

Antarctic firn is critical for ice-shelf stability because it stores meltwater that would otherwise pond on
the surface. Ponded meltwater increases the risk of hydrofracture and subsequent potential ice-shelf
collapse. Here, we use output froma firnmodel to build a computationally simpler emulator that uses a
random forest to predict ice-shelf effective firn air content, which considers impermeable ice layers
that make deeper parts of the firn inaccessible tomeltwater, based on climate conditions.We find that
summer air temperature andprecipitation are themost important climatic features for predicting firn air
content. Based on the climatology from an ensemble of Earth SystemModels, we find that the Larsen
C Ice Shelf is most at risk of firn air depletion during the 21st century, while the larger Ross and Ronne-
Filchner ice shelves are unlikely to experience substantial firn air content change. This work
demonstrates the utility of emulation for computationally efficient estimations of complicated ice sheet
processes.

Between 1992 and 2020, Antarctic Ice Sheet (AIS) mass loss contributed to
7.4 ± 1.5 mm of global mean sea-level rise1. This mass loss occurs primarily
via changes in ice dynamics and enhanced ice discharge2 onto floating ice
shelves, which surround 75% of the continent3 and regulate the ocean-ward
flow of inland ice4,5. As ice shelves weaken and thin, their buttressing effect
reduces, allowing inland ice to flow faster into the ocean and creating a
positive feedback loop for global sea-level rise6,7.

Several important processes have been identified as key to future ice-
shelf thinning, weakening, and retreat including calving8, ocean-warming-
induced basal melt9–11, and atmospheric-warming-induced surface
melting12–14, the latter of which is of primary concern for this work.
Atmospheric warming may result in ponded surface meltwater, subse-
quently triggering hydrofracture, whereby the hydrostatic pressure of
ponded meltwater propagates fractures through the entire ice shelf15,16.
Hydrofracture has been implicated in the break-up of several Antarctic ice
shelves, including the 2002 near-complete disintegration of Larsen B17–19

and the 2008 partial break-up of Wilkins20. However, hydrofracture is
challenging to directly observe and has not been directly included in Ant-
arctic ice sheet models, thus remaining a major source of uncertainty for
assessing future sea level rise contributions from the Antarctic ice sheet2,21.

Currently, most Antarctic meltwater (94%) is retained within the
porous firn layer22,23. However, if meltwater repeatedly refreezes without

sufficient firn replenishment via snowfall, the firn air content (FAC)
decreases, limiting its ability to retain future meltwater, a process known as
firn air depletion. Firn air depletion is a known precursor to hydrofracture,
and thus plays an important role in ice-shelf stability24. There are many
processes and factors that have been demonstrated or hypothesized to
contribute to ice-shelf instability and potential collapse, including sea ice
loss25, ice-shelf-fragment capsizing26, ice-shelf geometry27, föhn wind
events28, atmospheric rivers29, hydrofracture17,18, and firn air depletion24.

As AIS melt is expected to increase nonlinearly with rising surface air
temperatures throughout the 21st century30–32, the process of firn air
depletion will become increasingly relevant on Antarctic ice shelves. This
study addresses critical uncertainties related to hydrofracture by examining
future firn depletion across all Antarctic ice shelves, providing insight into
regions at risk of firn air depletion and the consequent heightened sus-
ceptibility to hydrofracture in a warming climate. Our multi-step metho-
dology utilizes output from a physics-based firn model (SNOWPACK),
which was forced with meteorological output from an Earth SystemModel
(ESM), to train a statistical emulator using machine learning methods
(Random Forest). Our emulator enables large-scale spatiotemporal FAC
predictions.

First, for capturing surface melt and the impact of meltwater perco-
lation on firn structure, we use the physics-based firn model
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SNOWPACK33,34, which has been widely used in the polar regions35–39.
Studies that use an an almost identical “polar” SNOWPACKsetup35–39 show
that the model exhibits good agreement with observed FAC across various
climate regimes inGreenland38, aswell as near-surface density profiles in the
cold and dry Antarctic interior35, and agree will with satellite observations
and regional climate models on melt extent and volume on Antarctic ice
shelves39. At 168 different ice-shelf sites (Fig. 1a), we force SNOWPACK
with historical and future meteorological output from the Community
Earth System Model version 2 (CESM2)40 (see Sections 5.1.1 and 5.1.2).

In a warming climate, we expectmeltwater, and thus ice lenses formed
from refrozen meltwater, to become increasingly prevalent. In reality, ice
lenses impede vertical meltwater percolation, and reduce FAC that can
effectively be used for meltwater retention24,41. In SNOWPACK, water
percolation is calculated using the ‘bucket scheme’, which has been regularly

used inmodel setups that reproduce density variations and ice layers in firn
on theGreenland Ice Sheet in accordancewith observations38,42–44. Currently
however, there is no satisfying simulation approach for the effect of ice layers
on water percolation in firn models42, which prevents us from directly
assessing the impact of ice lenses on FAC. In our approach, we consider the
impact of ice lenses on the ability of surfacemeltwater to access deeper parts
of the firn by computing an effective FAC (FACe) from the SNOWPACK
model output (see Section 5.1.3). By including a relationship between ice
lens thickness and permeability, FACe describes the reduction in FAC that
can effectively be used for meltwater retention when ice lenses are present.
We base this ice lens thickness-permeability relationship (TP1) on field
observations of meltwater percolation through ice lenses on the Greenland
Ice Sheet45,46. To assess remaining uncertainties regarding how thick ice
lenses and slabs can grow before they limit the downward percolation of

Fig. 1 | Evaluation of emulator performance vs. SNOWPACK at ice-shelf sites.
aMap of 168 ice-shelf sites where the SNOWPACK model was forced with CESM2
historical and future output. The yellow dot represents the site featured in Fig. 2.
b For each ice-shelf site, historical and future summer air temperature and annual
precipitation, found by the emulator to be the most important parameters for
determining future FACe c SNOWPACK-predicted FACe vs. emulator-predicted

FACe for our independent testing dataset (includes data from both historical and
future scenarios). Points are colored according to point density within 2 m FACe

segments along the x-axis, beginning at 0 m. The red line represents the line of best
fit. d 21st century 4FACe at each site from SNOWPACK and as predicted by our
emulator, both forced with CESM2 climate output from the SSP1-2.6 (blue dots),
SSP3-7.0 (golden dots), and SSP5-8.5 (red dots) future emission scenarios.
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meltwater47, and the sensitivity this assumed relationship causes in the
calculation of ice-shelf FACe, we define two alternative ice lens thickness-
permeability relationships (TP2 and TP3), which are modified from TP1.
Unless otherwise stated, we discuss results from the TP1 relationship.

Physical firn models such as SNOWPACK are computationally
expensive to run, thus limiting our ability to comprehensively assess future
firn conditions and associated uncertainties under a range of climate for-
cings. Therefore, we use the SNOWPACK-calculated FACe to build a firn
emulator, i.e. a fast, statistically-driven approximation of a more sophisti-
catedmodel48,49 (seeSection5.2).Weuse aRandomForest regressor (RF) for
our emulator because RFs have demonstrated good performance in emu-
lating model processes50,51, can learn nonlinear behavior, and are quick to
train and implement. Additionally, RFs provide out-of-bag estimates, a
useful validation metric, and feature importance measures, allowing us to
assess which climate conditions aremost important for FACe predictions

52.
Our emulator was trained to predict annual FACe, using 10-year

moving means of current and future, widely availably ice-shelf climate
variables (mean annual and summer air temperature, total annual pre-
cipitation, and mean annual wind speed) from CESM2 model output (see
Sections 5.2.1 and 5.2.2). We used 10-year moving means of these climate
variables to effectively account for temporal dependencies related to firn
memory and to largely remove interannual variability. After training our
emulator, we first apply it to estimate historical (1985–2015) ice-shelf FACe
from ERA5 global reanalysis output53 (see Section 5.3.1). To predict 21st

century change in FACe (ΔFACe), we run our emulator with changes in
these climate variables from 35 different ESMs from the recent Coupled
Model Intercomparison Project (CMIP6)54 following 3 future (SSP) sce-
narios. The ESM-derived changes are added to the ‘current-state’ ERA5
climate (ERA5+ΔESM, see Section 5.3.2). The emulated FACe predictions
reveal long-term changes related to 21st century climate change. In this
manuscript, we specifically focus on FACe changes over climatological time
scales (as opposed to interannual FACe variability).

Recently, Veldhuijsen et al. (2023)55 investigated future AIS FAC
throughout the 21st century; however, they only use climatological forcing
from CESM2, an ESM that has been demonstrated to have a relatively high
climate sensitivity56. The authors highlight that future work should address
this limitation by using an ensemble of ESMs. Here, our emulator allows for
highly efficient ensembles of FACe predictions at large spatiotemporal scales
using myriad readily available climate model output. We predict that by
2100, Larsen C Ice Shelf is most at risk of firn air depletion, while Ross and
Ronne-Filchner, which buttress more upstream ice, are likely to experience
little ΔFACe. We further quantify uncertainties in our predictions of future
ice-shelf firn air depletion and find that variability in ESMprojections is the
largest source of uncertainty, with the CMIP6-model range of ΔFACe
predictions for a given SSP greater than the spread between SSP scenarios.

Results
Emulator evaluation
After randomly selection 80% of our data for training, our emulator
demonstrates good performance at predicting FACe on the remaining 20%.
On this independent testing dataset, the emulator-predicted FACe explains
96% of the simulated SNOWPACK FACe variance, with a root mean
squared error (RMSE) of 1.14m and a mean bias of 14.8mm (Fig. 1c). Our
emulator also has an out-of-bag score of 0.955, indicating the high accuracy
of the model performs on previously un-seen data samples. The emulator
also generally doeswell at reproducing the total 21st centuryΔFACe (Fig. 1d)
and follows the abrupt FACe changes observed in the SNOWPACK
modeling (e.g. Fig. 2a). However, because the emulator is trained using 10-
year moving averages of climate variables and SNOWPACK FACe, it does
not simulate FACe changes as abruptly as SNOWPACK at a given site.
Supplementary Fig. 1 shows that our emulator also reproduces total 21st

centuryfirn air depletion at an ice-shelf and regional scale aswell, compared
to that simulated by SNOWPACK (Emulator vs. SNOWPACK
ΔFACe R

2 = 0.97).

A key advantage of using a random forest is that it provides relative
feature importance scores57, expressed by the so-called “Gini Index.” The
Gini Index scores sum to 1 across all input features and provide information
aboutwhich features aremost important for themodel predictions52. For the
input features used in this study, our emulator calculates the following Gini
Index scores: 0.442 formean summer air temperature, 0.327 for total annual
precipitation, 0.122 for mean annual wind speed, and 0.109 for annual
summer air temperature, indicating that summer air temperature and total
precipitation are themost important climate features for predicting ice-shelf
FACe. Summer air temperature influences FACe because it affects melt-
water production in a strongly non-linear fashion39,58. Excessive surface
meltwater refreezes in the firn to form ice lenses that impact vertical water
percolation and severely deplete FAC24,41. With sufficient surface melt, thin
ice layers can quickly merge to form thicker, impermeable ice slabs59–61, a
process we observe in our SNOWPACK output forced with the CESM2
SSP5-8.5 scenario (Fig. 2). Counteracting the firn air depletion is firn
replenishment via snowfall38,62, which constitutes themajority of the annual
precipitation over Antarctic ice shelves, even in future warming scenarios63.

Substantial reductions in FACe, as depicted in Fig. 2a, are a direct
outcome of the ice lens thickness-permeability relationship (TP1) we
introduce to determine FACe as ice lenses develop, grow, and merge. For
example, at the site shown in Fig. 2, we observe the formation of substantial
ice lenses following the 2074 summer season (Fig. 2d), marked by higher-
than-average summer air temperatures (Fig. 2a) and intensified melt.
Despite relatively milder conditions during the 2075 melt season, these
newly formed ice lenses inhibit the downward percolation of meltwater,
which results in the formation of a larger ice slab (Fig. 2e) that continues to
grow throughout the 21st century as meltwater repeatedly freezes on top of
the ice slab (Fig. 2f). The abruptFACe depletion event that occurs in2075 is a
consequence of our assumption that ice lenses > 0.5m thick are fully
impermeable (based on the work of ref. 46).

21st century changes in FACe predicted by the emulator
To discuss predicted changes in FACe here, we focus on the CMIP6model-
median FACe: The CMIP6model-spread for each ice shelf can be found in
Fig. 3 and Supplementary Table 1, and ice-shelf locations can be found in
Supplementary Fig. 3. Using historical (1985–2015) ERA5 data, emulated
ice-shelf FACe ranges from 9.4 ± 2.3 m for Scar Inlet to 25.5 ± 0.7m for
Venable, with a mean FACe for all Antarctic ice shelves (FACe) of
16.3 ± 2.9m (± 1 standard deviation across all ice shelves; Fig. 4a). In
comparison, Medley et al.23 and Veldhuijsen et al.64 found mean ice-shelf
FAC values of 17.0m between 1980 and 2021 and 15.9mbetween 1979 and
2020, respectively. In East Antarctica, areas of relatively lower FACe occur
near the ice-shelf grounding line, coinciding with observed surface melt-
water ponds65 (Supplementary Fig. 4). By the end of the century
(2090–2100), our emulator predicts no Antarctic-wide ΔFACe under the
SSP1-2.6 scenario (FACe of 16.3 ± 3.0m) due to end-of-century summer air
temperatures that have not increased sufficiently for substantial meltwater
production and ice lens formation to occur (Supplementary Fig. 5a). For the
SSP3-7.0 scenario, our emulator predicts a 0.7 ± 5.0 m (4%) decrease (FACe
of 15.6 ± 4.0m), and for the SSP5-8.5 scenario, a 1.3 ± 5.4m (8%) decrease
(FACe of 15.0 ± 4.6 m, Fig. 4b).

Looking at ice shelves individually, for the low-emission SSP1-
2.6 scenario, very littleΔFACe is predicted acrossmost ice shelves. The only
ice shelf projected to see a > 10% decrease in FACe is Wilkins, with
ΔFACe = 2.7 m (an 18% decrease). However, Wilkins also has the largest
CMIP6 model-spread in ΔFACe projections for this scenario (−11.0 to
+3.2 m). A decline in FACe is more pronounced in the SSP3-7.0 scenario,
where 18 of 43 ice shelves are projected to experience > a 10% decrease in
FACe. Further, using SSP3-7.0, there are 9 ice shelves where FACe decreases
by > 25% and 2 that decrease by > 50% (Wilkins and Scar Inlet). While a
FACe decline is found across nearly all ice shelves in this scenario (with the
exception of Ronne and Jelbart), firn air depletion is predicted to be most
pronounced in the Antarctic Peninsula (AP) (ΔFACe =−6.3 m, a 44%
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Fig. 2 | Example SNOWPACK model result of rapid ice lens development.
aTimeseries of FACe from SNOWPACK forced with SSP5-8.5 CESM2 output (gray
line), 10-year smoothed FACe from SNOWPACK (black line), emulator FACe (red
line), and CESM2mean summer air temperature at this site (blue line). bTimeseries
of ice layer development (blue shading). c–f Vertical density profiles at different
timesteps. Layers > 830 kg m−3 (dashed black line) are considered to be ice lenses

(blue shading). This site is on the Southern Ross Ice Shelf (178.75 °E, 83.403141 °S,
Fig. 1a yellow dot). CESM2 simulates substantially warmer historical temperatures
at this site compared with ERA5 (Supplementary Fig. 2), hence warmer present day
CESM2 air temperatures help promote future ice lens development under the SSP5-
8.5 scenario.
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decrease), with Wilkins, again, projected to experience the largest FACe
decrease (−11.6 m, or 76%).

In the high-emission SSP5-8.5 scenario, substantial firn air depletion is
more widespread for ice shelves outside the AP than in lower emission
scenarios. By 2100, the majority of ice shelves (22 of 43) are expected to
experience a FACe decrease of > 10%, while 13 ice shelves experience > a
25% decrease, and 6 experience > a 50% decrease. At the end of the century,
all AP ice shelves (except for Stange) have <10m FACe, and Scar Inlet,
Wilkins, andLarsenChave the lowest FACe of all Antarctic ice shelves, with
1.0, 2.1, and 3.9m, respectively. Outside the AP, three additional ice shelves
are predicted to have <10m FACe by the end of the century: Mariner and
Drygalski in Victoria Land with 5.7 and 6.7 m, respectively, and Nivlisen in
Dronning Maud Land with 9.1m. Additionally, Venable in the Amundsen
Sea region and Holmes in Wilkes land are predicted to experience a sub-
stantial decrease in FACe (−11.2 and−12.1m, respectively), although these
ice shelves also have a relatively large CMIP6 model-spread in the SSP5-
8.5 scenario (Fig. 3).

Antarctica’s largest ice shelves, Ronne and Ross, are projected to
experience minimal ΔFACe by 2100 under all emission scenarios and
CMIP6 models (Figs. 3 and 4d,i). Under SSP5-8.5, Ronne has a CMIP6
model-median FACe increase of 0.17m (1%) while Ross has a 0.8 m (5.2%)
decrease. Coincidentally, the Amundsen Sea region in West Antarctica,
where the AIS is currently losing most of its mass, is also predicted to have
relativelyminimalΔFACe, even in the high emission scenario. Under SSP5-
8.5, ice shelves in this region are projected to lose 2.1m FACe, and by 2100,
Crosson, Dotson, and Getz have the highest FACe of all ice shelves (24.2,
23.9, and 23.2m, respectively). Thwaites, where FACe increases by 0.2m
(1%), is also one of only three ice shelves in which our emulator predicts a
FACe increase in the high emission scenario (the others being Ronne and
Jelbart).

We find that 21st century ice-shelf ΔFACe is mostly driven by the
absolute end-of-century summer air temperature, rather than the total
change in summer air temperature. In fact, the ice shelves predicted to
experience the largest SSP5-8.5 CMIP6 model-mean summer air

Fig. 3 | Ice-shelf change in FACe. 4FACe change from SSP5-8.5 (a), SSP3-7.0 (b)
and SSP1-2.6 (c) over individual ice shelves using different ice lens thickness-
permeability relationships (TP1, dark blue dot; TP2, medium blue dot; and TP3,
light blue dot) and the CMIP6 model spread using TP1, Eq. (2) (Section 5.2). Box

plots show the 25th to 75th percentile spread (gray box) with whiskers representing
1.5x the interquartile range and outliers indicated by open circles. Ice shelves are
grouped and shaded by region74 (See Supplementary Fig. 3 for ice-shelf regions).
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Fig. 4 | Historical AIS ice-shelf FACe and 21st century ΔFACe. a Present-day
(1985–2015) FACe with boxed ice-shelf regions (See Supplementary Fig. 3 for ice-
shelf regions). bChange in FACe between present-day and SSP5-8.5 end-of-century

(2090–2100). c–j Regional timeseries of 21st century FACe for each region shown in
(a) and from each SSP scenario. The solid line represents the CMIP6 model-median
and shading represents the 25th and 75th percentile range.
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temperature increase (Filchner: +4.1 °C, Ronne: +3.9 °C, and Ross:
+3.8 °C), seeminimal FACe decrease, as described above. In contrast, Bach,
Scar Inlet and Wilkins, which are predicted experience some of the largest
drops in FACe, correspondingly have the smallest predicted summer air
temperature changes (+ 2.4 °C for all three). Instead, these three ice shelves
have some of the highest summer air temperatures expected by 2100: 0.0 °C
for Bach and 0.8 °C for both Larsen B and Wilkins.

Uncertainty in 21st century FACe
The total firn air content available for meltwater storage is impacted by the
permeability of ice lenses, which inhibit vertical water movement. A major
assumption we make in this work is that ice lenses impact FACe related to
their thickness by the relationshipwe introduced in Eq. (1) (TP1).However,
testing two alternative approaches (TP2, TP3, see Section 5.2) was found to
yield similar ΔFACe on both a regional and ice-sheet-wide scale. For SSP5-
8.5, FACe across all ice shelves decreasesby1.3 m forbothTP1andTP2, and
by 1.2musingTP3. Regions that are too cold to produce consistent summer
melt and thus have minimal ice lens formation, such western Dronning
Maud Land and the Ronne-Filchner and Ross regions, see minimal FACe
decrease irrespective of the thickness-permeability relationshipused (Fig. 4).
We find that the thickness-permeability relationship most substantially
impacts FACe when ice lenses are relatively thin. For example, the average
AP ice-shelf FACe during the historical period (1985–2015) changes by
approximately 1m depending on the thickness-permeability relationship
used (14.2 m from TP1, 15.8m from TP2, and 16.6m from TP3). By 2100,
when thicker ice slabs have formed across AP ice shelves in SSP5-8.5, the
thickness-permeability relationship used becomes inconsequential (4.9m
FACe from TP1, 5.2 m from TP2, and 5.1m from TP3). Limited field
observations of ice lens permeability make modeling this process difficult
and lead to unavoidable uncertainty regarding how ice lenses impact
available FAC.

By far the largest source of uncertainty in future ΔFACe lies within
CMIP6 climate model projections. For example, the 2090–2100 mean AIS-
wide ice-shelf summer air temperature varies greatly across all CMIP6
models used in this study (−9.8 to −6.5 °C range in SSP1-2.6, −8.5 to
−4.6 °C in SSP3-7.0, and−8.3 to−3.3 °C in SSP5-8.5). On the AP, end-of-
century SSP5-8.5 CMIP6-modeled summer air temperature ranges from
−2.2 to 3.7 °C, resulting in a wide range of estimated ΔFACe across the
different CMIP6 models (−13.0 to +1.5 m). Similarly, Wilkes Land and
Victoria Land have large ranges of predicted SSP5-8.5 ΔFACe (−11.3 to
+2.4 m for Wilkes Land and −16.5 to +0.5 m for Victoria Land). In con-
trast, the narrower CMIP6 model-spread of predicted ΔFACe for Ronne-
Filcher (−3.5 to +1.0m) and Ross (−3.0 to +0.03m) suggest higher con-
fidence that these larger ice shelves will not experience drastic firn air
depletion by the end of this century.

The future emission scenario used presents another source of uncer-
tainty, the impact ofwhich is discussed throughout Section2.2.However,we
find that CMIP6 model uncertainty, which we define as the spread in
CMIP6modelprojectionsof 21st centuryΔFACe, exceeds the range spanned
by the emission scenarios. For example, for the AP region, where firn air
depletion is expected to be the most drastic, the CMIP6-model-median
ΔFACe ranges from−0.65m for SSP1-2.6 to−9.6 for SSP5-8.5, an 8.95m
spread. In comparison, the CMIP6 model range of ΔFACe for SSP1-2.6,
SSP3-7.0, and SSP5-8.5 is 8.9, 13.4, and 14.5m, respectively, indicating that
the CMIP6model spread, and thus uncertainty, for SSP1-2.6 is comparable
to the uncertainty across all scenarios, and for SSP3-7.0 and SSP5-8.5 is
larger than the uncertainty across scenarios.

Discussion
Our emulator was trained using output from the SNOWPACK firn model;
thus, any biases present in SNOWPACKwill be inherited by our emulator.
Because SNOWPACK is physics-based and therefore not tunedbyor biased
toward observational data, it maymore realistically simulate firn properties
under future climate conditions that are not captured in existing observa-
tions, compared with empirical models35,66,67. SNOWPACK has been

evaluated for both Greenland and Antarctica with a consistent, identical set
of model physics. In the context of this study that focuses on melt and firn
hydrology, it is important tounderstand that SNOWPACKdeterminesmelt
by solving the surface energy balance internally. SNOWPACKdoes not rely
on externally provided melt fluxes, such as in the IMAU Firn Densification
Model (IMAU-FDM)64, or calibrated factors commonly found in so-called
degree-day approaches, such as currently used in the Community Firn
Model (CFM)38. Degree-day models exhibit variable performance between
Greenland and Antarctica23 and the parameterization varies spatially68,
suggesting that substantial uncertainty may arise when extrapolating
degree-day approaches in future projections.

Physically-based SNOWPACKsimulationshavebeen evaluated for ice
shelves39, the AIS interior35, and Greenland38, covering a wide range of
climatological regimes, while relying on the same physics-based principles.
For example, on Antarctic ice shelves, SNOWPACK has demonstrated a
good ability to reproducemelt days andmelt day variability comparedwith
satellite microwave observations, and melt volumes compared with RAC-
MO2.3p2 andMARv3.1239. For theGreenland Ice Sheet, SNOWPACKwas
found to reproduce the observed spread in FAC across the ice sheet over a
range of climate conditions with variable amounts of melt38. Additionally,
SNOWPACK accurately models the location of near-surface ice slabs
compared with those detected in Operation Icebridge radar data38,59.
However, firn physics are not fully understood and knowledge gaps in firn
hydrological processes limit the ability of firnmodels to accurately simulate
processes such as vertical meltwater percolation and lateral flow. As
SNOWPACK is a 1-Dmodel, it cannot simulate the relocation ofmeltwater
via supraglacial and englacial hydrologic routing. Even though lateral
meltwater flow is limited on ice shelves due to their predominantly flat
topography, it may still play a role in the grounding zone regions where
slopes are steeper69. More detailed observations of hydrologic firn processes
are necessary to advance the development of firn models.

Inherently, FAC hasmemory of past conditions, as it is a summarizing
statistic for thefirn layer, which builds-up over time.However, firn has been
demonstrated to have a short response time to warming conditions (less
than 30 years)70. We expect that the near-surface is a relatively more
important contributor to total FAC than deeper parts of the firn38, especially
in awarming climate.As these uppermost firn layers are continuously being
replenished, firn air content may more strongly reflect recent climate con-
ditions, rather than past climate conditions. Our emulator implicitly takes
past climate into account with the incorporation of the 10-year moving
means. While this is sufficient for capturing large, long-term changes in
FACe, which is the focus of this work, our emulator cannot fully capture the
shorter-term interannual FACe variability (as seen in Fig. 2a). Supple-
mentary Fig. 6 demonstrates that our emulator can capture long-termFACe
changes at sites that experience none or only a partial depletion in FACe.
Since our emulator simplifies the approximation of FACe by including 4
only climatological input features it’s utility to represent more intricate,
short-termFACe variability is limited. Emulating this short-termvariability,
in addition to the large, long-term changes presented here, should be a
direction for future work.

The advantage of emulation is in computational efficiency. SNOW-
PACK spinup takes on the order of a full day CPU time per grid point, with
the final simulations taking up to a few hours CPU time per site and per
scenario. In contrast, our emulator provides FACe estimates for 174,361
different gridcells for each of 34 different ESMs (5,928,274 total gridcells) in
under 40minutes for each emission scenario using 1 CPU core. This effi-
ciency has enabled Antarctic-wide FACe investigation with multiple ESM
future climates, allowing us to more fully investigate FAC uncertainty and
spread stemming from both various ESMs and future emission scenarios.
Emulation is a growing technique, providing new opportunities to create
more efficient, statisticalmodels of Earthprocesses. Thiswork demonstrates
the utility of emulation for studying ice sheetfirn air depletion and assessing
future uncertainty stemming from different ESMs and emission scenarios,
and opens avenues for future research to further investigate thresholds for
ice shelf instability.
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Using our emulator, we find that more than 90% of all ice-shelf grid
cells with mean summer air temperatures above 0 °C for any year have
depleted FAC, which we define as less than 5m FACe (Fig. 5b). However,
this summer air temperature threshold for firn air depletion appears to be
lower for ice shelves that receive less precipitation (Fig. 5a), indicating that
dry ice shelves may be more vulnerable to surface meltwater-induced col-
lapse if they undergo substantial warming. This specific finding agrees with
the conclusion of vanWessem et al.71.While theirworkwas done at a higher
horizontal resolution than this study, theirmethodused afixed threshold for
melt over accumulation ratio to assessfirn air depletion.Thisfixed threshold
assumes prescribed and invariable firn properties over the ice shelves71,
while our use of a physics-based, detailed firn model could be expected to
better capture firn properties and melt dynamics in the firn layer in a
changing climate.

While colder and dryer ice shelvesmay be more vulnerable to surface-
melt-induced collapse at colder air temperatures than the warmer and
wetter ice shelves, it is unlikely, even in the high-emission scenario, that
these ice shelves will experience enough warming throughout the 21st
century for substantial firn air depletion to occur. According to ERA5, the
current (1985–2015) mean summer air temperature for Ronne-Filchner
and Ross is −11.8 and −10.7 °C, respectively, indicating that these ice
shelves would need to warm substantially to experience surface meltwater
ponding. In contrast, to reach a mean summer air temperature of 0 °C, the
APWilkins and Larsen C ice shelves need to warm only by 1.6 and 2.2 °C,
respectively, a likely occurrence inmost CMIP6 SSP5-8.5 andmanyCMIP6
SSP3-7.0 models. Areas of high, localized annual melt due to persistent
warm foehn or katabatic winds (e.g. portions of theAmery or Roi Baudouin
ice shelves72,73) are too small to be captured by ERA5 and the ESMs in this
work. Because of this, our emulatormay overestimate FACe in these areas of
high localized melt, implying that these areas may be more vulnerable to
future firn air depletion than our emulator estimates.

Several factors contribute to ice-shelf vulnerability, including accu-
mulation, surface and basal melt rates and stress regimes. Alley et al.74

provides ice-shelf vulnerability indexes based on an observed relationship
between annualmelt days and scatterometry backscatter. In agreementwith
our findings, they show that AP ice shelves are the most vulnerable to
surface-melt-induced firn air depletion and potential collapse, and that
Ronne-Filchner and Ross are least vulnerable. However, not all ice shelves
that we find are likely to experience substantial firn air depletion are sus-
ceptible to hydrofracturing and break up. For example, Lai et al.15 maps ice-
shelf areas where tensile stresses may promote hydrofracturing. They show
that several AP ice shelves which we predict to have substantial firn air
depletion such as Wilkins, Bach and George VI, have low tensile resistive
stresses (including compressive stresses for George VI75), making them
more resilient to hydrofracture, despite the fact that these three ice shelves
usually experience widespread meltwater ponding each summer76. Addi-
tionally, ice shelves in Victoria Land, such asMariner and Drygalski, which
we projectwill experience substantial firn air depletion in the high-emission
scenario, do not buffer substantial inland ice15, and thus would be less
impactful thanmany other ice shelves if theywere to break up.We conclude
that Larsen C is the most vulnerable ice shelf to a surface-melt-induced
collapse event this century due to its high likelihood of depleted FACe and
sufficiently high tensile stresses for fracture15. Further, if Larsen C does
break-up, a large volume of upstream ice would be impacted because of its
higher buttressing capacity compared to other ice shelves projected to
experience similar firn air depletion5,15.

Conclusions
Ice-shelf firn plays a pivotal role in preserving the stability of ice shelves,
serving as a crucial reservoir formeltwater thatmight otherwise pondon the
surface and impact ice-shelf stability. In this work, we employ the sophis-
ticated physics-based firn model, SNOWPACK, forced with CESM2 his-
torical and future model output over ice shelves, to capture complex
thermodynamical behavior as firn transitions from dry to wet. From these
firn simulations, we compute effective FAC (FACe), an original metric that

accounts for the detrimental effect of ice lenses on subsurface meltwater
percolation in the firn and FAC available for meltwater retention. We fur-
ther use the FACe derived from SNOWPACK simulations to train a sta-
tistical emulator using a random forest that replaces SNOWPACK by
quickly and efficiently predicting ice-shelf FACe based on ice-shelf climate.
This approach enables us to project 21st century FACe changes across all
Antarctic ice shelves, from various future emission scenarios, and from a
comprehensive suite of CMIP6 models — a task that would be computa-
tionally impractical using a traditional firn model. Our emulator indicates
that mean summer air temperature is the most important climate variable
for predicting firn air depletion and highlights that the Larsen C ice shelf is
most critically at risk of 21st century firn air depletion.

While our analysis shows that future FACe for some ice shelves
remains relatively insensitive to climate change (e.g. Ross and Ronne-
Filchner), we find a robust signal that, for this century, the fate of several
Antarctic ice shelves (e.g. ice shelves in theAPor inWilkes Land)may range
from being relatively stable in low-emissions scenarios, to undergoing
substantial firn air depletion in high-emission scenarios. Critically, our
analysis indicates that substantial changes in FAC occur rapidly oncemean
summer air temperatures approach the melting point. Given the con-
sequences of ice-shelf instability for sea-level rise projections, these findings
are crucial. While many ice shelves still have large uncertainty regarding
their future FAC (stemming from a wide range of CMIP6 model climate
sensitivity to increasedgreenhouse gasses), our emulator provides a valuable
tool that couldbeused toparameterize ice sheetmodels and constrain future
sea-level rise projections.

Methods
The goal of our firn emulator is to replace a more sophisticated, computa-
tionally expensive firn model to make large-scale FAC predictions into the
future under a range of climatological conditions. Our firn emulator was
built to mimic how the detailed, physics‐based, multi-layer model
SNOWPACK33,34 simulates FAC under these different climatological con-
ditions. Our methodology can be broken up into 3 main steps (Fig. 6): (a)
Firn modeling using the SNOWPACK model (Section 5.1), (b)
FACe Emulator training (Section 5.2), and (c) Emulator application to
predict current and future FACe (Section 5.3).

Firn modeling using the SNOWPACKmodel
The SNOWPACK model has previously been modified for use on ice
sheets35,36,38,77 and ice shelves37,39, showing good performance at reproducing
FAC over the Greenland Ice Sheet for a range of climate conditions38 and
good comparison of Antarctic ice shelf melt days with microwave satellite
observations and melt volume with regional climate models39.

SNOWPACK model forcing. We forced SNOWPACK with historical
and future output from National Center for Atmospheric Research’s
most recent Earth System Model (CESM2)40,63. Using the MEaSUREs v2
Antarctic Boundaries ice shelves map78,79, we selected 168 CESM2 ice-
shelf grid cells that are representative of a variety of different ice-shelf
climates (Fig. 1b). For each grid cell, we extracted 3-hourly air tem-
perature, relative humidity and incoming shortwave radiation, and daily
wind speed, incoming longwave radiation and precipitation output from
CESM2 historical (1850–2015) and future (2015–2100) Shared Socio-
economic Pathway (SSP) SSP1-2.6, SSP3-7.0 and SSP5-8.5 simulations80.
This forcing data represents a wide range of potential climates. It is
critical that firn simulations from potential future climates were included
in the emulator training dataset because the historical period exhibits
substantially less melt than predicted for the future and we wanted our
emulator to make future FAC predictions as well.

SNOWPACKmodel setup. SNOWPACK was spun-up over the period
1850–1900 for as many repeats as necessary to build up a 100 m column
of snow, firn, and ice. We then ran the final simulation from 1850–2015
for the historical scenario and 2015–2100 for each SSP scenario. Model
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settings were similar as described in Keenan et al.35, except for the
treatment of the lower boundary for solving the heat equation for which
we followed Banwell et al.39 by prescribing a fixed lower-boundary tem-
perature of −1.8 °C: the freezing point of ocean water.

Determination of effective FAC from SNOWPACK model output.
SNOWPACK provides, among other output, the volumetric air content
(θa, m3 m−3) in each vertical layer i. We computed effective FAC (in
meters) over the N layers constituting the full firn column using:

FACe ¼
XN

i¼1

f ið Þθa ið ÞΔzðiÞ ð1Þ

where Δz ið Þ is the layer thickness (in meters) of layer i and f ðiÞ is a weight
applied to θa ið Þ for each layer. The default definition of FAC is congruent
with f ðiÞ ¼ 1, and assumes that all FAC is accessible to downward perco-
latingmeltwater. The presence of ice lenses,whichwedefine as layers having
adensity> 830 kgm−3 (thepore close-off density81), is known to impact how
much FAC is available to retain meltwater24,41. To account for the impact
that ice lenses have on meltwater storage in firn, we compute an “effective
FAC” (FACe) by varying f ðiÞ. These f ðiÞ weights are determined based on
work by Samimi et al. (2021)46, in which the authors scale hydraulic
conductivity in Darcy’s law to account for the effect of ice lenses. Based on
evidence of relatively unobstructedmeltwater penetration through ice layers
up to 0.12m thick at DYE-2, Greenland45, we assumed ice layers <0.1 m are
fully permeable and thus all pore space below these small ice layers is
included in our calculation of FACe (i.e., f ðiÞ ¼ 1). Following Samimi
et al.46, we also assumed that ice layers > 0.5m thick are impermeable to
meltwater (i.e., f ðiÞ ¼ 0), meaning that firn below these thick ice layers is
excluded from our FACe calculation. Given M ice layers above layer i, for
each ice layer j above layer i with thickness tj between 0.1 and 0.5m, we
prescribed a nonlinear decrease in FACe below these ice layers:

f ið Þ ¼
XM

j¼1

A�γ tj�0:1ð Þ ð2Þ

with A ¼ 10 and γ ¼ 1046. Weights f ðiÞ are limited between 0 and 1. We
refer to this ice lens thickness-permeability relationship as TP1 (Supple-
mentary Fig. 7).

However, uncertainties still exist regarding how thick ice slabs can
grow before they limit downward percolation of meltwater47. To test the
sensitivity of our results to this assumed relationship (Eq. 2, TP1), we
implement two other ice lens thickness-permeability relationships. The first
alternate relationship follows Eq. (2)withA ¼ 4 and γ ¼ 4, providing a less
aggressive decrease in permeability with thickness (we will refer to this
relationship as TP2). The other relationship we consider is also a variant of
Eq. (2), applying a linear decrease in permeability with ice lens thickness

from 0.1 to 1m (referred to as TP3):

f ið Þ ¼
XM

j¼1

1� tj � 0:1

0:9
ð3Þ

Forboth alternate relationshipsTP2andTP3,we assume that ice lenses
> 1m are fully impermeable and maintain the assumption that ice lenses
<0.1m are fully permeable45,46 (Supplementary Fig. 7).

FACe emulator training
Using FACe derived from the SNOWPACK model output, we built an
emulatorwhichallowsus to efficiently estimate FACe across allAntarctic ice
shelves fornumerous climatemodel scenarios.Our emulatorwasbuilt using
a random forest (RF)model82, whichwe trained and implemented using the
Python sci-kit learn library83.We opted for aRF as it has demonstrated good
performance in emulating model processes50, even compared with deep
neural networks and gaussian processes51, can learnnonlinear behavior, and
is quick to train and implement. Additionally, RFs provide out-of-bag
estimates, a useful validation metric, and feature importance measures,
allowing use to assess which climate conditions are most important for
FACe predictions

52. Briefly,RFs consist of an ensemble of decision trees. The
RF inputs are referred to as ‘features’ and a prediction for the output, or
‘target’, variable is made by averaging this ensemble.

FACe emulator feature and target variables. To train our emulator, we
used historical (1985-2015) and future (2015-2100) SSP1-2.6, SSP3-7.0,
and SSP5-8.5 climate variable output fromCESM2 at each grid cell where
we ran SNOWPACK. The climate variables used as features in our
emulator (to predict FACe) were: (1) total annual precipitation, (2) mean
annual 10 m wind speed, (3) mean annual 2 m air temperature and (4)
mean austral summer (DJF) 2 m air temperature. These variables are 1)
known to impact surface firn density, compaction rate and meltwater
production, all which impact FACe, and 2) readily available from most
Earth System Models. We only consider total precipitation and not
precipitation type because 1) precipitation partitioned into solid and
liquid precipitation is less common GCM output, and 2) our emulator
was shown to have a low FACe bias at sites with higher summer air
temperatures (Fig. 1c), indicating that neglecting to account for temporal
changes in the rain/snow ratio has not led to a substantial source of error.

Our target variable was October mean FACe (just before the melt
season onset) at corresponding timesteps and locations.

Feature and target variable preprocessing. We computed 10-year
moving averages of our feature and target variables to largely remove
interannual variability and achieve a more representative mean climate,
at the expense of capturing inter-annual variability. As a result, our input
dataset consisted of 21-timesteps of 10-year moving means from the
historical period (1990–2010) and 76-timesteps of 10-year moving

Fig. 5 | FACe and firn air depletion for different
ice-shelf climate conditions. a Relationship
betweenmean summer air temperature, total annual
precipitation, and FACe. Data are from each ice-
shelf grid cell below 1500 m for every year from 2015
to 2100 in the SSP3-7.0 and SSP5-8.5 scenarios.
White lines represent the SSP5-8.5 projected path
for seven ice shelves (A-G) with the 2090–2100
mean-state marked for SSP1-2.6 (blue dot), SSP3-
7.0 (yellow dot) and SSP5-8.5 (red dot). b From (a),
the percentage of ice-shelf grid cells with depleted
firn ( < 5 m FACe) for mean summer air tempera-
tures ranging from −5 to 1 °C.
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means from future emission scenarios SSP1-2.6, SSP3-7.0 and SSP5-8.5
(2020–2095) at each of the 168 ice-shelf sites for which we employed
SNOWPACK. In total, our input dataset consisted of 41,832 entries
(168 sites * (21 historical years+ 76 future years * 3 scenarios)), whichwe
divided into two groups such that 80% was used for model training and
20% was used for testing. Additionally, we held out 4 ice-shelves (Ven-
able, Brunt Stancomb, Totten, and Larsen C) completely from the
training dataset, to test our emulator with previously unseen ice-shelves.
Supplementary Fig. 8 demonstrates that the variability in ice-shelf cli-
mate regimes is sufficiently captured by the training dataset and that our
emulator can reproduce 21st century firn air depletion on previously
unseen ice shelves.

To maximize the points used for training, the emulator does not
consider dependence in FACe between successive years. This dependence,
however, is implicitly captured through the 10-year moving averaged inputs.
No additional filtering was done besides the 10-year moving means. Finally,
we standardize our training data feature and target variables by subtracting
the mean and dividing by the standard deviation for each variable.

Emulator hyperparameter tuning. Our RF was comprised of 100
decision trees, each optimized on a bootstrapped sample of the training
dataset. The hyperparameters used for our RF model are listed below
(points in italics indicate parameters that differ from the scikit-learn
default):
• Number of trees (‘n_estimators’)= 100
• Cost function(‘criterion’)=L2loss(‘squared_error’)
• Maximum tree depth (‘max_depth’) = None
• Minimum samples required to split a node (‘min_samples_

split’)= 2
• Minimum leaf size = ‘min_samples_leaf’ = 1
• Number of features to consider when looking for the best split

(‘max_features’) = ‘auto’
• ‘bootstrap’ = True
• Use out-of-bag samples to estimate the generalization score (‘oob_-

score’)= True

• Number of samples to draw from X to train each base estimator
(‘max_samples’) = None

To test our RF hyperparameter choice we randomly selected 100 dif-
ferent combinations of the following scikit-learn hyperparameters:
• ‘max_depth’ = [5, 10, 25, 50, 100, None]
• ‘max_features’ = [‘auto’, ‘sqrt’]
• ‘min_samples_leaf’ = [1, 2, 4]
• ‘min_samples_split’ = [2, 5, 10]
• ‘n_estimators’ = [10, 50, 100, 200]

The optimal hyperparameters from this randomized search were:
‘max_depth’ = None, ‘max_features’ = ‘sqrt’,
‘min_samples_leaf’ = 1, ‘min_samples_split’ = 2,
‘n_estimators’ = 200. We then compared this optimal model
from our randomized search with the default hyperparameters and
found that the default model had a marginally better mean 5-fold
cross validation score (0.9526 ± 0.0033 for the default model and
0.9522 ± 0.0031). As such, we chose to use the default scikit-learn
hyperparameters for our random forest, except for ‘oob_score’
= True, which we used as a validation metric for the model’s
generalization error.

Emulator application to predict current and future FACe

Current FACe. We estimated present-day (1985-2015) ice-shelf FACe by
running our firn emulator with input data from the ECMWF ERA5
reanalysis dataset53. We used ERA5 because it has the smallest near-
surface temperature bias relative to the observations and best represents
accumulation84,85.We only considered ice shelves with > 5 ERA5 grid cells
with a modeled elevation <1500 m above sea level, resulting in 43 ice
shelves, which we divided into 8 regions74 for a regional comparison of
FAC (Supplementary Fig. 3).

Future FACe. To predict ice-shelf FACe throughout the 21st century,
we used changes in mean annual near-surface air temperature,

Fig. 6 | Schematic outlining our methodology. Steps (a), (b), and (c) follow Section 5.1 Firn modeling using the SNOWPACKmodel, 5:2FACe Emulator training, and 5.3
FACe Emulator application, respectively.
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summer air temperature, wind speed, and total annual precipitation
from CMIP6 models54 (Supplementary Table 2). From the 88 avail-
able CMIP6 models, we only used the 34 models with these variables
available on the Pangeo platform from the historical period and
future SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios. To map a future
FACe envelope, we used the low-emission (SSP1-2.6) and high-
emission (SSP5-8.5) scenarios, and included SSP3-7.0 as a more likely
high-end emission scenario86. CMIP6 model output was regridded
using bilinear interpolation to the ERA5 grid. Changes in these cli-
mate variables were added to the ‘current-state’ climate from ERA5
to remove possible bias in the CMIP6 models representation of the
current climate (delta-change method87,88). We again computed 10-
year moving averages (from 2020–2095) of these climate variables as
input for the emulator.

To determine the 21st centuryΔFACe, we subtract themean historical
(1985–2015) FACe from the 2095 value, which represents an end-of-
century mean-state FACe, because our emulator input is 10-year moving
averages of climate variables.We calculate% change in FACe with respect to
the total ice-shelf FACe, not for each grid cell.

Additionally, we ensured that the dataset used for training our
emulator covers the range of climatic conditions used in its appli-
cation with CMIP6 models. We compared climate conditions used
for training (raw-CESM2 output) with conditions used in the emu-
lator simulations (ERA5 + ΔESM mean). Supplementary Fig. 5b
shows that the emulator simulations do not extrapolate greatly
beyond the data used for training. In cases where extrapolation does
occur (e.g. the Ronne ice shelf where ERA5 historical conditions are
colder than the training dataset), FACe change will be minimal and
the emulator performs as expected given these colder conditions.
Further, the firn air depletion transition is well represented in the
training data and thus the training data set is appropriate for how we
implement the emulator.

Code availability
The SNOWPACK model code is available at: https://github.com/
snowpack-model/snowpack. Code used for the analysis in the project is
published at https://doi.org/10.5281/zenodo.10456145.

Data availability
ERA5 reanalysis output can be downloaded at https://doi.org/10.24381/cds.
adbb2d47. Input and FAC results from the SNOWPACK model can be
found at https://doi.org/10.5281/zenodo.7535507. The emulator models
and emulator FAC results can be found at https://doi.org/10.5281/zenodo.
10456145. Instructions and examples for how to access CMIP6 model
output from the Pangeo Platform can be found at https://gallery.pangeo.io/
repos/pangeo-gallery/cmip6/.
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