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Abstract: The ability of a natural ice-binding protein from Shewanella frigidimarina (SfIBP) to
inhibit ice crystal growth in highly alkaline solutions with increasing pH and ionic strength was
investigated in this work. The purity of isolated SfIBP was first confirmed via sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion chromatography with an
ultraviolet detector (SEC-UV). Protein stability was evaluated in the alkaline solutions using circular
dichroism spectroscopy, SEC-UV, and SDS-PAGE. SfIBP ice recrystallization inhibition (IRI) activity,
a measure of ice crystal growth inhibition, was assessed using a modified splat assay. Statistical
analysis of results substantiated that, despite partial denaturation and misfolding, SfIBP limited
ice crystal growth in alkaline solutions (pH ≤ 12.7) with ionic strength I ≤ 0.05 mol/L, but did not
exhibit IRI activity in alkaline solutions where pH ≥ 13.2 and I ≥ 0.16 mol/L. IRI activity of SfIBP in
solutions with pH ≤ 12.7 and I ≤ 0.05 mol/L demonstrated up to ≈ 66% reduction in ice crystal size
compared to neat solutions.

Keywords: ice-binding protein; ice recrystallization inhibition; alkalinity; ionic strength

1. Introduction

1.1. Ice-Binding Proteins

Ice-binding proteins (IBPs) are a robust series of proteins found in a multitude of freeze-avoidant
and freeze-tolerant organisms, including fish, fungi, plants, and bacteria, that are capable of
surviving sub-zero temperatures by inhibiting ice crystal growth and controlling ice crystal
morphology [1–5]. Some freeze-tolerant organisms produce IBPs that prevent the coalescence of
small, nucleated ice crystals into larger, more destructive crystals through a mechanism known as
ice recrystallization inhibition (IRI) [6]. The growth of large ice crystals at the expense of smaller
crystals is thermodynamically preferred to minimize interfacial energy at the grain boundaries [7,8].
Mechanistically, IBPs function in a non-colligative manner for IRI through lattice matching of the
protein ice-binding face with the crystal lattice of ice, which induces a high local curvature and
increases the energy required for further crystal growth [5,9–12].

Previous cryogenic research indicates that IBPs may offer a new, biomimetic alternative to
conventional frost-prevention strategies for biological materials [5,13] and, by extension, antifreeze
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applications in a host of other commercial industries (e.g., aerospace, infrastructure). Previous
research indicates that low concentrations of IBPs can be used to cryopreserve microorganisms,
such as microalgae used to produce insulin [14], to improve the viability of rat kidneys post-thaw
over conventional agents in media [15], and to ameliorate follicular integrity of vitrified-warmed
mouse ovaries [16]. Additionally, the efficacy of IBPs to reduce hemolysis of red blood cells upon
thawing has previously been investigated: An IBP from the genus Leucosporidium significantly reduced
hemolysis at concentrations of 0.4–0.8 mg/mL [17], and three IBPS (AFPI, AFPII, and AFPIII) were
shown to reduce hemolysis by 75% compared to controls [18]. The effects of IBPs on cryopreservation
have been found to depend on IBP type and concentration, the preservation protocol, and biological
material [19]. As an emerging biotechnology, IBPs have the potential to extend beyond biological
applications to meet frost-prevention needs of other industries in aerospace (e.g., cryogenic fluids),
civil engineering (e.g., frost-resistant pavements), and energy infrastructure (e.g., anti-icing coatings).
While IBPs offer a promising biological solution for these ice-prevention applications, proteins
are well known to restructure (e.g., unfold, refold, denature, aggregate, degrade) in non-native
environments [20]. Changes in pH and ionic concentration may affect IRI activity of IBPs and limit
their applicability as a biotechnological frost-resistance solution in novel applications with more
aggressive chemical environments.

IBPs have been shown to exhibit control of ice structures at nanomolar (nM) concentrations of
IBPs in solution [21,22], and a few studies have indicated that IBPs may perform similarly in ionic
solutions [23,24]. While IRI was not reported, Kristainsen et al. [23] found that antifreeze activity as
measured by thermal hysteresis using nanoliter osmometry for Rhagium inquisitor IBP was improved
six-fold in 0.8 M monovalent ionic solutions of tri-sodium citrate, sodium chloride (NaCl), and sodium
iodide. Leiter et al. [24] studied the performance of Type III fish antifreeze protein in low concentrations
of NaCl (i.e., 20–30 mM) and found a marginal increase in IRI activity compared to neat solutions.
Leiter et al. also investigated the effect of 0.1 M NaOH (pH 11) on the IRI activity of Type III fish
antifreeze protein and found that the elevated pH did not affect IRI activity [24]. Taken together,
these studies indicate the potential for IBPs to maintain IRI activity in non-native ionic environments.

1.2. Scope of Work

The purpose of this work was to investigate the ability of an ice-binding protein from the bacterium
Shewanella frigidimarinas (SfIBP) to control the size and inhibit the growth of ice crystals in highly
alkaline solutions (pH > 12) with increasing ionic strength. First, the structural stability of SfIBP
was investigated using circular dichroism (CD) spectroscopy. Second, SfIBP stability, aggregation,
and degradation were analyzed with two protein size-analysis techniques, sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion chromatography with an ultraviolet
detector (SEC-UV). Finally, SfIBP IRI activity was investigated using a modified splat assay and
compared to controls of neat solutions. Similar to precedent research [25–28], IRI activity was
determined through direct measurement of the mean size of ice crystals that formed in the alkaline
solutions that contained SfIBP after incubation in freezing (−4 ◦C) conditions compared to neat
alkaline solutions.

2. Materials and Methods

2.1. Materials

Calcium hydroxide (Ca(OH)2), potassium hydroxide (KOH), sodium hydroxide (NaOH), calcium
sulfate (CaSO4), 2-mercaptoethanol, and bovine serum albumin (BSA) were purchased from Sigma
Aldrich without further purification. Tris(hydroxymethyl)aminomethane buffer (Tris) was purchased
from Fisher Bioreagents without further purification. Shewanella frigidimarina IBP isoform 1 (SfIBP) at
a concentration of 4 mg/mL in solution was obtained from Dr. Peter Davies at Queen’s University
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in Kingston, Ontario, Canada [22] and was reconstituted using a centrifugal filter into 20 mM Tris
solution. SfIBP concentration was verified at 4.4 mg/mL against BSA using UV-Vis.

Hydroxide salts were used to create alkaline solutions of increasing pH in ~0.5 pH increments
from pH ~12.5 to 14.0. Formulations were adapted from studies performed by Ghods et al. [29], and the
supernatant decanted. The cation concentrations in the supernatant were verified using inductively
coupled plasma mass spectrometry (ICP-MS), and hydroxide ion concentrations were determined
from solution pH (Table 1). Tris buffer was included in all solutions to account for protein addition.
Total ionic strength (I) for each solution was calculated according to Equation (1):

I =
1
2 ∑ Z2C, (1)

where Z is the valence of the ion and C is the ion concentration. As Tris has a pKa of 8.1, solutions
with pH > 12 were above Tris’s buffer capacity. Therefore, Tris was determined to have dissociated
completely to its conjugate base (deprotonated, uncharged) and conjugate acid (H+), as per the
Henderson-Hasselbach equation. Since Tris was in its deprotonated form, it was not included in the
ionic strength calculations for solutions with pH > 12. The conjugate acid was expected to neutralize
through combination with hydroxide ions present in alkaline solutions to form water, which would
have been reflected in measured solution pH used to determine hydroxide concentration. Samples for
IRI characterization without or with 0.125 mg/mL SfIBP were prepared using stock solutions from
Table 1. While SfIBP has been shown to exhibit activity in protein buffer conditions at concentrations as
low as 50 nM (0.00125 mg/mL) [22], lower SfIBP concentrations tested did not exhibit inhibition in this
study (data not shown) due to the ionic and alkaline nature of the solutions. Therefore, a concentration
of 0.125 mg/mL was selected in this study to evaluate ice crystal nucleation and growth inhibition.

Table 1. Chemistry of alkaline solutions obtained via ICP-MS.

Solution I
(mol/L) pH OH

(mM)
Tris

(mM)
Ca

(mM)
Na

(mM)
K

(mM)
S

(mM)
Al

(mM)
Mg

(mM)
Si

(mM)

A 0.03 12.4 ± 0.1 26.71 20 0.003 6.08 9.85 5.02 - 0.001 0.005
A + 1/2 Tris* 0.03 12.4 ± 0.1 23.62 10 0.003 6.08 9.85 5.02 - 0.001 0.005

B 0.05 12.7 ± 0.1 48.60 20 0.003 9.70 15.5 8.08 - 0.001 0.005
C 0.16 13.2 ± 0.1 168.5 20 0.007 23.9 37.3 20.6 0.001 0.002 0.005
D 0.69 13.9 ± 0.2 857.7 20 0.761 90.5 132.0 76.4 0.001 - 0.008

Tris 0.01 8.90 ± 0.1 0.008 20 - - - - - - -
1/2 Tris * 0.005 8.40 ± 0.2 0.003 10 - - - - - - -

* Indicates samples that were used for SfIBP circular dichroism (CD) characterization.

2.2. Experimental Methods

2.2.1. CD Spectroscopy

SfIBP structure and stability were analyzed in two solutions (Table 1), namely 1/2 Tris and A +
1/2 Tris, via circular dichroism (CD) spectroscopy in the far UV range (190–260 nm) using a modular
Applied Photophysics Chirascan Plus CD and Fluorescence Spectrometer at ambient temperature with
0.5 nm steps and 0.5 sec/step at a 0.5 mm path length. SfIBP was loaded at 0.5 mg/mL for CD analysis
for improved protein signal. SfIBP could not be analyzed in all solutions, given the confluence of
increasing alkalinity and ionic strength and the signal detection limits of the instrument. Secondary
structure composition (% helix, sheet, turns, etc.) was measured from the peptide bond region (<240
nm) [30] using BeStSel software [31]. SfIBP was allowed to incubate in solution for at least 24 hours to
ensure equilibrium folding states [32], as it was expected that the alkalinity and high ion concentrations
would induce protein misfolding. All CD spectra were averaged over five runs on the same sample
and the solution baseline was removed from the spectra. Curves were smoothed to remove noise using
the Savitzky-Golay filter method in OriginPro 2016 using 5 points per window with a polynomial
order of 2.
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2.2.2. SEC-UV

SfIBP stability, aggregation, and degradation were analyzed using size-exclusion chromatography
(SEC) equipped with an ultraviolet (UV) detector monitoring a wavelength of 220 nm. SEC was
performed on an Agilent 1100 Series LC system with a UV detector and a Tosoh TSKgel G3000SWxl
size exclusion column. For all experiments, the mobile phase was 100 mM potassium phosphate buffer
(pH 7.4) at a flow rate of 0.4 mL/min. Solutions from Table 1 were analyzed without and with a SfIBP
concentration of 0.4 mg/mL for improved signal. For each injection, 50 µL of sample were analyzed,
resulting in a final SfIBP content of 20 µg. Data were processed using Astra software 7.1.2 and plotted
using GraphPad Prism software 7.04.

2.2.3. SDS-PAGE

Sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed on SfIBP
loaded into solutions from Table 1 at a concentration of 1 mg/mL to ensure visible bands in the
gel. SfIBP samples were denatured prior to SDS-PAGE via the additional of 2-mercaptoethanol and
subsequent heating at 95 ◦C for 5 minutes. Samples were loaded onto a 4–20% denaturing TGX gel
from Bio-Rad (1.0 mm × 12 well; 35 min, 200 V, 1X Tris-Glycine-SDS PAGE running buffer, pH 8.8) and
compared to a 10–250 kDa protein ladder (New England BioLabs) for estimation of molecular weight.
The protein content within the gel was stained with Coomassie SimplyBlue SafeStain (Invitrogen)
according to manufacturer specifications.

2.2.4. IRI Activity

A splat ice recrystallization assay was adapted from Knight et al. [26]. Solutions from Table 1 were
tested neat or with a 0.125 mg/mL loading of SfIBP. A 10–20 µL droplet of solution was dispensed
from 1.7 m through a PVC pipe onto a microscope slide on top of an aluminum block chilled with
dry ice to obtain a monolayer of ice crystals. The slide was then transferred to an Otago nanoliter
osmometer sample stage and annealed at −4 ◦C. The temperature was monitored using a bead-type
thermocouple. Images were collected immediately after the splat was performed (t0) and again at 30
minutes (t30) to observe ice recrystallization. Images were obtained using a Zeiss Axio Imager M2m
microscope with an EC Epiplan 5x/0.13 BD M27 objective and crossed polarizers, equipped with an
Axiocam 506 color camera on a 1” 1.0x 60N C-mount adapter. ZENCore 2.4 image processing was
used to measure individual grain sizes along the major axis. Data were taken from images from 2–3
different splat samples and used to determine an average grain size (n = 150) at t = 30 min.

2.2.5. Statistical Analyses

Grain sizes were first averaged for each of the replicate images. The effect of solution (i.e., different
ionic strength and pH per Table 1) and inclusion of protein on mean grain size, as well as the
interaction between these factors, was then tested using two-factor ANOVA. Model assumptions
of residual normality and homoscedasticity were satisfied. For main effects, significance was set a
priori to p < 0.05. Simple effects (i.e., the effect of protein on grain size for a particular solution) were
assessed with the Fisher Least Significant Difference test using a Bonferroni correction to account
for family-wise error (critical α = 0.05/3 = 0.0167). To determine if ionic strength and pH influenced
mean grain size, these two solution chemistry metrics were first tested for intercorrelation using
Pearson product-moment correlation. Since ionic strength and pH were found to be intercorrelated,
no conclusions about the relative influence of pH versus ionic strength on mean grain size could be
made. All statistical analyses were performed with Minitab (v18).
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3. Results

3.1. CD Spectroscopy

Results from protein stability and secondary structure determination using CD are shown in
Figure 1. As expected, SfIBP exhibited an initially well-folded secondary structure in 1/2 Tris (Figure 1)
that matches previously reported spectra for SfIBP [22]. As anticipated, proteins incubated in solution
A + 1/2 Tris at ambient conditions exhibited partial misfolding (Figure 1).

Since CD uses plane polarized light absorbance to analyze protein composition, highly ionic
solutions can saturate the absorbance detectors in CD. Therefore, ion concentrations in solution
were increased (A→D) to find the maximum ionic strength that did not saturate the CD detector,
which corresponded to solution A with Tris concentration reduced to 10 mM (A + 1/2 Tris). CD spectra
could not be obtained for solutions B, C, or D, as the ion concentration of the solutions saturated CD
absorption, preventing detection of SfIBP in the peptide bond region.

An analysis of secondary structure using CD data of SfIBP in 1/2 Tris and its associated changes
when placed in A + 1/2 Tris is presented in Table 2. Data analysis using BeStSel software parsed
secondary structure of SfIBP into 8 categories: Regular α-helix, distorted α-helix, left β-helix, relaxed
β-helix, right β-helix, parallel β-strand, turn, and other (disordered). Table 2 lists the relative
percentages of each secondary structure identified for SfIBP in 1/2 Tris and the relative changes
to those structures when placed in A + 1/2 Tris. Values are expressed as a positive or negative percent.
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Figure 1. CD spectra showing SfIBP secondary structure at 0.5 mg/mL in 1/2 Tris (—) and A + 1/2
Tris (—). Spectra for B, C, and D were not attainable due to oversaturation of CD absorption.

Table 2. SfIBP CD structure analysis in 1/2 Tris and A + 1/2 Tris.

Secondary Structure 1/2 Tris A + 1/2 Tris Difference

Regular α-helix 3.8% 2.1% −1.7%
Distorted α-helix 5.1% 2.3% −2.8%

Left β-helix 7.5% 1.0% −6.5%
Relaxed β-helix 18.3% 10.4% −7.9%

Right β-helix 13.2% 21.1% +7.9%
Parallel β-strand 0.1% 0.8% +0.7%

Turn 10.3% 15.3% +5.0%
Other 41.7% 46.9% +5.2%
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3.2. SEC-UV and SDS-PAGE

SEC-UV and SDS-PAGE were used to analyze protein stability, aggregation, and degradation in
the alkaline solutions investigated herein. SEC-UV data are presented in Figure 2a. The chromatograms
show UV absorbance signals from SfIBP as a function of elution volume from the column. SfIBP in
Tris exhibited a singular dominant peak around 10 mL, similar to the singular peak exhibited by
Vance et al. [22]. The SfIBP signal in alkaline solutions with I ≤ 0.05 mol/L (solutions A and B) had a
shape and elution volume similar to SfIBP in Tris (Figure 2a). Additional UV signals appeared for SfIBP
in all alkaline solutions at greater elution volumes with lower UV absorbance than the main protein
elution at ~10 mL. In solution A, SfIBP exhibited a peak at the 10 mL mark, similar to Tris, along with
other prominent peaks past 12.5 mL. Similarly, for solution B, SfIBP exhibited one prominent peak
that matches SfIBP in Tris at 10 mL, but residual peaks were evident after 12.5 mL. SfIBP in solution
C exhibited peaks after 12.5 mL—as do all other solutions—but manifests a peak around 6 mL and
distinctly lacks a peak at 10 mL. SfIBP in solution D exhibited absorbance peaks that are shifted to
greater elution volumes than SfIBP in Tris and exhibited peak broadening.

The SDS-PAGE results are presented in Figure 2b. The results for SfIBP in Tris and alkaline
solutions are depicted with decreasing ionic concentrations (solution D→A). SfIBP in Tris exhibited
a large, single band ≈ 25 kDa, matching the molecular weight of SfIBP as previously reported by
Vance et al. [22]. SfIBP incubated in solution D did not demonstrate any obvious bands for SDS-PAGE.
However, in solutions where I ≤ 0.16 mol/L (i.e., solutions A, B, C), bands corresponding to intact
SfIBP protein ≈ 25 kDa are evident. SfIBP exhibited faint bands in lower molecular weight regions
(≈10 kDa) for all alkaline solutions except for solution D.
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alkaline solutions with increasing ionic strength. (b) SDS-PAGE for SfIBP. Left to right, SfIBP in: (i) Tris;
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3.3. IRI Activity

IRI activities of all solutions listed in Table 1 without (0 mg/mL) and with (0.125 mg/mL) SfIBP
protein are demonstrated in Figure 3. The average size of ice crystallites formed in each solution after
incubation at −4 ◦C is summarized in Table 3. The average percent difference of mean ice crystal
grain size relative to neat Tris after incubation without and with SfIBP is demonstrated in Figure 4a,
and statistical relevance of results as determined by ANOVA is shown in Figure 4b.

As expected, all solutions without SfIBP exhibited ice nucleation and growth upon incubation at
sub-freezing temperatures (−4 ◦C). Ice crystallites with an average grain size of 51±19 µm formed
in Tris without SfIBP, which were comparable in size to ice crystals formed in all alkaline solutions
without SfIBP (Table 3).
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= 100 µm.

SfIBP exhibited IRI activity in both Tris, as expected, and alkaline solutions (pH > 12) with I ≤
0.05 mol/L, (i.e., solutions A and B). ANOVA determined that (i) solution, (ii) inclusion of protein,
and (iii) the interaction between solution and protein all significantly affected mean grain size at t = 30
min. Simple effects testing revealed that for solutions A (−61.9%, p < 0.001), B (−66.3%, p < 0.001),
and Tris (−76.9%, p < 0.001), including protein significantly reduced grain size (Figure 4b). SfIBP
samples in Tris exhibited IRI activity, as evidenced by no noticeable ice growth beyond ice nucleation
(Figure 3). When included in solution A, B, or Tris, SfIBP inhibited the growth of ice crystals (p < 0.0167)
(Figure 4b). As expected, however, the inhibition was less than SfIBP in pure Tris. The IRI activity
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of SfIBP was similar in both solutions A and B, which had comparable ionic strengths of 0.03 mol/L
and 0.05 mol/L, respectively. As summarized in Table 3, SfIBP in solutions C and D exhibited no IRI
activity, where I ≥ 0.16 mol/L, as evidenced by final grain sizes that were not statistically different
than their neat solutions (Figure 4b). The range of ionic strength in which SfIBP lost its ability to
mitigate ice growth was 0.05 < I < 0.16 mol/L, and the range of pH for the loss of SfIBP function was
12.7 < pH < 13.2. Notably, in solutions where SfIBP exhibited ice growth inhibition (i.e., Tris, A, B),
the distribution of crystal size was narrowed, as indicated by the smaller error bars.

Table 3. Average ice crystallite size of frozen solutions after incubation at −4 ◦C (t = 30 min).

Solution SfIBP Loading (mg/mL) Mean Crystal Size (µm) % Change in Mean Crystal Size

Tris 0 51 ± 19 -
Tris 0.125 11 ± 4 −78%

A 0 51 ± 18 -
A 0.125 21 ± 5 −59%

B 0 68 ± 30 -
B 0.125 23 ± 6 −66%

C 0 61 ± 25 -
C 0.125 63 ± 27 +3%

D 0 54 ± 16 -
D 0.125 52 ± 14 +4%
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protein. Asterisks indicate statistically significant differences in average grain size due to the addition
of SfiBP (p < 0.001).

4. Discussion

The structure and activity of the ice-binding protein SfIBP was investigated in solutions with high
alkalinity and increasing ionic strength. The reduction in average ice crystal size in solutions A and B
with SfIBP was statistically significant compared to neat solutions. However, in more alkaline solutions
C (pH = 13.2) and D (pH = 13.9) with higher ion content (0.16 mol/L and 0.69 mol/L, respectively),
the protein stability and IRI efficacy decreased, which affected ice recrystallization inhibition.

Despite misfolding and partial degradation, SfIBP exhibited secondary structure and ice-inhibiting
functionality in alkaline solutions (pH = 12.4 to 12.7) with ionic strength I≤ 0.05 mol/L. SfIBP degraded
in solution D, as indicated by the lack of gel stain in SDS-PAGE (Figure 2b). Protein degradation is
verified by the shifted peaks in SEC-UV (Figure 2a) to elution volumes greater than 12.5 mL in solution



Polymers 2019, 11, 299 9 of 13

D. At I ≤ 0.16 mol/L, bands in SDS-PAGE at ≈ 25 kDa mirror SfIBP in Tris, indicating that SfIBP likely
retained some of its structure in these solutions. SDS-PAGE verifies that SfIBP did not aggregate in any
of the tested solutions due to the lack of molecular weight bands above 25 kDa. The peak broadening
observed in SEC-UV absorbance for SfIBP in solution D (Figure 2a) corroborates the SDS-PAGE to
indicate that protein secondary or tertiary structure was disrupted, likely due to changes in the proteins
native charge, yielding chromatogram traces with peaks at larger volumes than the native protein due
to ionic interactions with the column [33,34]. To this same end, the high alkalinity and ionic strength
of the solutions likely facilitated covalent bond cleavage of the protein along the backbone through
base-mediated hydrolysis [35,36], as indicated by faint bands in SDS-PAGE for SfIBP in solutions A, B,
and C in the ≈ 10 kDa molecular weight region, and the lack of bands for solution D (Figure 2b).

According to SDS-PAGE and SEC-UV, SfIBP exhibited some protein degradation in all solutions.
Sample eluting at volumes of 12.5 mL and greater indicate that the high alkalinity and ion content
of the solutions likely caused some degree of protein restructuring and degradation [36,37]. At ionic
strengths I ≤ 0.05 mol/L, chromatograms retained traces with absorbance peak shapes similar to
SfIBP in Tris, along with evidence of some degradation. SfIBP in solutions A and B both exhibited
UV absorbance peaks at 10 mL, similar to that of SfIBP in Tris, indicating retention of some protein.
However, solutions C and D did not exhibit UV absorbance peaks at 10 mL, indicating degradation
and, hence, a lack of protein structure that could exhibit IRI activity. The peak at 6 mL in solution C is
decidedly an artifact due to the proportionally small signal, verified by the lack of higher molecular
weight bands in SDS-PAGE.

Protein misfolding does not necessarily equate to loss of ice-binding functionality [20], as some
ice-binding protein faces may still have been exposed to the solution through the process of
refolding, retaining—albeit reducing—IRI activity. Secondary structure analysis (Table 2) quantitatively
approximates residual protein structure. The analysis of SfIBP structure following CD experiments
indicated that in solution A + 1/2 Tris the amount of unstructured protein increased by 5.2%, although
the overall change in protein structure (taken as the difference between each type of fold), was altered
approximately 37.7%. The current hypothesis for SfIBP IRI activity is closely related to β-fold content
in the DUF3494 domain (domain of undefined function) [22]. The β-fold content in SfIBP secondary
structure (left β-helix, relaxed β-helix, right β-helix, parallel β-strand) changed overall by ~ 23% when
in A + 1/2 Tris compared to 1/2 Tris and is hypothesized to be responsible for the change in IRI
activity. Based on the changes observed in CD spectra (Figure 1) and peak broadening in SEC-UV
(Figure 2b), it can be deduced that, while SfIBP is misfolding, it retains some ice-binding functionality
in solutions with high alkalinity (pH 12.4 to 12.7), as seen via IRI activity that is comparable to SfIBP in
Tris (Figures 3 and 4a).

Due to the high alkalinity and ionic nature of the solutions (Table 1), it was expected that the
secondary structure of SfIBP would become disordered, leading to disruption of protein tertiary
structure that would affect its ice-binding capabilities [20]. The induced conformational changes and
refolding are likely due to the disruption of hydrogen bonds necessary for proper protein folding in
the native state [32]. It is hypothesized that SfIBP is refolding in response to the alkalinity of solutions,
with either the ionic strength, the high pH, or a combination of both ionic strength and pH acting as
a denaturant.

Tris had a pH and ionic strength that promoted expected SfIBP conformation and function
(Table 1, Figures 1 and 3) and corresponded to the slightly basic solution pH, as verified in Vance
et al. [22]. As Tris and solution A had comparable ionic strengths (I = 0.01 and I = 0.03 mol/L,
respectively), the elevated pH of solution A likely caused SfIBP to misfold (Table 2). Despite the
change in structure, however, SfIBP in solution A expressed a strong band at ≈ 25 kDa for SDS-PAGE
(Figure 2b), a prominent absorbance peak at 10 mL for SEC-UV (Figure 2a), and IRI activity (Figure 3),
indicating that SfIBP still maintained structure and functionality at elevated pH.

SfIBP in solution C did not evince IRI activity (Figure 3) and, as expected, showed clear signs
of degradation, as seen in the lack of elution peak at 10 mL in SEC-UV (Figure 2a) and diminished
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intensity of the SDS-PAGE band at ≈ 25 kDa (Figure 2b). Solution D had the highest ionic strength
(I = 0.69 mol/L) and highest alkalinity (pH = 13.9) of all tested solutions. Solution D was the only
solution where SfIBP did not exhibit a band at ≈ 25 kDa in the SDS-PAGE gel (Figure 2b) and had a
broadened peak in SEC-UV (Figure 2a), likely due to the extremely ionic and alkaline environment.

While the folded structure of SfIBP in solutions with higher ionic content (e.g., solutions B, C,
and D) cannot be determined directly through CD, it is hypothesized that further denaturation and
decomposition occurred that prevented inhibition of ice crystal growth, as determined by the lack
of IRI behavior of SfIBP in solutions C and D (Figure 3). The mean ice crystal grain size SfIBP in
solutions C and D (63 ± 27 µm and 52 ± 14 µm, respectively) are similar in size to ice grains of
solutions C and D without SfIBP (61 ± 25 µm and 54 ± 16 µm), indicating that the ice-binding face
of the protein was no longer interacting with ice crystals nucleating and recrystallizing in solution
(Table 3). However, given the retention of some protein structure in solution A + 1/2 Tris (Table 2),
it was expected that SfIBP would still exhibit some inhibition of ice crystal growth, as substantiated in
Figure 3, which shows that SfIBP in solutions A and B exhibit IRI activity. SfIBP in solutions A and B
exhibited grain sizes of 21 ± 5 µm and 23 ± 6 µm, respectively, indicating the likelihood of protein
interaction with ice crystals despite protein misfolding. While IRI activity was not as potent as in Tris,
SfIBP effectively reduced average grain sizes in solutions A and B by ≈ 59% and ≈ 66%, respectively,
compared to neat solutions (Figure 4a).

SfIBP exhibits IRI activity in alkaline solutions (pH > 12) with ionic strength I ≤ 0.05 mol/L,
indicating that SfIBP (and other IBPs) could be effective at mitigating frost-induced damage in
applications that necessitate activity in non-native chemical environments. It is clear from these
data in Table 3 that solutions that exhibit IRI activity (i.e., SfIBP in Tris, A, and B) also demonstrate
much narrower crystal size distributions, indicating that SfIBP not only inhibits ice crystal coalescence
in these solutions, but dictates its final size in equilibrium.

While SfIBP exhibits a potential to reduce frost-induced damage in select highly alkaline
environments, other IBPs and new classes of biomimetic polymeric materials may prove more effective.
Certain IBPs are well known to contain structures with a high density of stabilizing di-sulfide bonds,
such as IBPs from Tenebrio molitor [38], which offer the potential of maintaining increased tertiary
structure, and, thus, performance, in extremely ionic and alkaline environments. Other IBPs, such as
those from Marinomonas primoryensis [39], require divalent calcium for proper folding and may be
stabilized by calcium-rich environments with higher ionic strengths to maintain activity. In addition to
proteins, polymer architectures that mimic the ice-binding functionality of IBPs offer a unique avenue
for mitigating and controlling ice nucleation and growth, as they may not only be more cost-effective,
but also able to inhibit ice crystal recrystallization in solutions of higher alkalinity without relying on
tertiary structure or reduced ionic strength to exhibit IRI activity [40–42].

5. Conclusions

This study evaluated the potential of an ice-binding protein (IBP) from Shewanella frigidimarinas
(SfIBP) to inhibit and control ice crystal nucleation and growth in highly alkaline solutions of increasing
pH and ionic strength. While the folded structure of SfIBP in media with ionic strength I > 0.03 mol/L
could not be determined directly through CD, based on evidence from SEC-UV and SDS-PAGE, it is
assumed that a greater extent of denaturation and degradation occurred at higher ionic concentrations
(I ≥ 0.16 mol/L) that prevented the inhibition of ice crystal growth, as determined by the lack of IRI
behavior. Despite protein misfolding, data indicate that SfIBP exhibits ice recrystallization inhibition
(IRI) activity in solutions with high alkalinity (pH = 12.4 to 12.7) and low ionic strength (I ≤ 0.05
mol/L) (≈ 66% reduction in ice crystal size compared to neat solutions). In conclusion, these results
suggest that SfIBP (and other IBPs and their biomimetic synthetic replicates) could be effective at
mitigating frost-induced damage in applications with chemically extreme non-native environments.
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