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Abstract. Forecasts of wind-power production are necessary
to facilitate the integration of wind energy into power grids,
and these forecasts should incorporate the impact of wind-
turbine wakes. This paper focuses on a case study of four di-
urnal cycles with significant power production, and assesses
the skill of the wind farm parameterization (WFP) distributed
with the Weather Research and Forecasting (WRF) model
version 3.8.1, as well as its sensitivity to model configura-
tion. After validating the simulated ambient flow with obser-
vations, we quantify the value of the WFP as it accounts for
wake impacts on power production of downwind turbines.
We also illustrate with statistical significance that a vertical
grid with approximately 12 m vertical resolution is necessary
for reproducing the observed power production. Further, the
WFP overestimates wake effects and hence underestimates
downwind power production during high wind speed, highly
stable, and low turbulence conditions. We also find the WFP
performance is independent of the number of wind turbines
per model grid cell and the upwind–downwind position of
turbines. Rather, the ability of the WFP to predict power pro-
duction is most dependent on the skill of the WRF model in
simulating the ambient wind speed.

1 Introduction

In recent years, numerical weather prediction (NWP) models
have become an indispensable tool in the wind-energy indus-
try, not only in day-to-day wind-energy production forecasts
(Wilczak et al., 2015), but also to support wide-scale wind-

power penetration (Marquis et al., 2011) and wind resource
assessment. To forecast power production accurately at wind
farms, the simulation tools should resolve all physical pro-
cesses relevant to the wind field, including possible impacts
of the wind turbines themselves. Consequently, including the
meteorological effects of wind farms in NWP models can
improve power-production forecasts.

Researchers have developed various methods to numer-
ically represent wind farms. Via large-eddy simulations
(LESs), some investigators assess the meteorological impacts
of wind turbines as well as power production (Abkar and
Porté-Agel, 2015b; Aitken et al., 2014; Calaf et al., 2010;
Churchfield et al., 2012; Jimenez et al., 2007; Mirocha et
al., 2014; Na et al., 2016; Sharma et al., 2016; Wu and Porté-
Agel, 2011). Simulating wind turbines and their effects in
LESs is, while useful, computationally expensive, making
wind-farm-scale simulations unreasonable in an operational
setting.

At coarser spatial scales, suitable for global, synoptic, or
mesoscale models, numerically representing wind turbine ef-
fects may involve unrealistic assumptions. For example, re-
searchers have used exaggerated surface roughness to repre-
sent the reduction of wind speed (WS) caused by wind farms
in a global model (Barrie and Kirk-Davidoff, 2010; Frandsen
et al., 2009; Keith et al., 2004). Similarly, the analytical wind
park model of Emeis and Frandsen (1993) considers both the
downward momentum flux and the momentum loss due to
surface roughness. The revised model by Emeis (2010) ac-
counts for the spatially averaged momentum-extraction coef-
ficient by turbines, and the parameters become atmospheric-
stability dependent. However, these models omit the consid-
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eration of turbine-scale interactions between the hub and the
surface (Abkar and Porté-Agel, 2015a; Fitch et al., 2012,
2013b).

Aside from indirectly representing wind turbines via ex-
aggerated roughness, another common approach is to use the
turbine power curve to deduce elevated drag and turbulence
production of wind turbines. A power curve illustrates the re-
lationship between inflow WS at hub height and power pro-
duction of a particular turbine model. This method can model
meteorological impacts of wind turbines and the impact of
turbine drag force (Baidya Roy, 2011; Blahak et al., 2010).
Based on this technique, Fitch et al. (2012) added the con-
sideration of the turbine thrust coefficient to simulate both
turbine drag and power loss.

In the wind farm parameterization (WFP) of the Weather
Research and Forecasting (WRF) model, wind turbines in
each model grid cell are collectively represented as a turbu-
lence source and a momentum sink within the vertical lev-
els of the turbine rotor disk (Fitch et al., 2012). A fraction
of the kinetic energy extracted by the virtual wind turbines
is converted to power, and the turbulence generation is de-
rived from the difference between the thrust and power co-
efficients. In the WFP scheme, the use of the WS-dependent
thrust coefficients accounts for the effects of local wind drag
on wind-energy extraction as well as on power estimation.
The WRF WFP offers flexibility, where users can modify the
parameters of a turbine model, such as its hub height, rotor
diameter, power curve, and thrust coefficients, and does not
require other empirically derived parameters. By simulating
wind farms in a mesoscale weather model, WRF users can
simulate aggregated effects of wind-turbine wakes and thus
the effects of power production of downwind turbines.

An approach similar to the WRF WFP proposed by Abkar
and Porté-Agel (2015a) relies on an extra parameter, which
is the ratio of the free-stream velocity to the horizontally av-
eraged hub-height velocity of a turbine-containing grid cell.
This ratio depends on various factors such as the wind-farm
density and layout, and requires preliminary simulation re-
sults (Abkar and Porté-Agel, 2015a). Therefore, the publicly
available WFP in the WRF model is chosen in this project for
observed power comparison. Several approaches are avail-
able to incorporate impacts of wind farms into mesoscale
simulations. The explicit wake parameterization (EWP) re-
cently designed by Volker et al. (2015) uses classical wake
theory to describe the unresolved wake expansion. Both the
WRF WFP and the EWP average the drag force within grid
cells. Nevertheless, users of the EWP need to adjust the
length scales that determine wake expansion in the EWP for
different situations.

In this paper, we evaluate the WFP in the WRF model
via comparison to actual power-production data. The WRF
WFP has been widely used to assess the impacts of on-
shore and offshore wind farms at different spatial scales and
in different stability regimes (Eriksson et al., 2015; Fitch
et al., 2013a, b; Jiménez et al., 2015; Lee and Lundquist,

2017; Miller et al., 2015; Vanderwende et al., 2016; Vander-
wende and Lundquist, 2016; Vautard et al., 2014). Whereas
WFP predictions have been compared to power production
of offshore wind farms for a limited set of WSs (Jiménez et
al., 2015), here we explore a range of WSs, wind direction
(WD), turbulence, and atmospheric stability conditions. The
large range of wind conditions induces spatially and tempo-
rally diverse power production, thereby providing a basis for
a comprehensive evaluation of the WFP. The uniqueness of
this project lies in the in-depth assessment of the WRF WFP
performance in forecasting and simulating wind energy of a
sizable onshore wind farm, using observed power-production
data.

We describe the observation data and the model design in
Sect. 2. In Sect. 3, we evaluate the simulations by comparing
the meteorological and power-generation data with a statisti-
cal examination. We close with a proposal of improvements
on the WRF WFP in Sect. 4.

2 Data and methods

2.1 Observations

The 2013 Crop Wind Energy eXperiment (CWEX-13) took
place in central Iowa at a 200-turbine wind farm to quan-
tify far-wake impacts of multiple rows of turbines (Lundquist
et al., 2014). In CWEX-13, measurements from seven sur-
face flux stations, a radiometer, three profiling lidars, and
a scanning lidar were collected. This campaign was a com-
ponent of the larger CWEX project, which explored the in-
teractions of wind turbines with crops, surface fluxes, and
near-surface flows in different atmospheric stability regimes
in flat terrain (Rajewski et al., 2013). Research facilitated
by the CWEX projects include diurnal changes in observed
turbine wakes (Rhodes and Lundquist, 2013), turbine inter-
actions with moisture and carbon dioxide fluxes (Rajewski
et al., 2014), LES modelling of turbine wakes in changing
stability regimes (Mirocha et al., 2015), nocturnal low-level
jet (LLJ) occurrences (Vanderwende et al., 2015), diurnal
changes of the microclimate near wind turbines (Rajewski et
al., 2016), multiple-wake interactions (Bodini et al., 2017),
the evolution of turbine wakes during the evening transi-
tion (Lee and Lundquist, 2017), and coupled mesoscale–
microscale modelling (Muñoz-Esparza et al., 2017).

This wind farm consists of 200 wind turbines, represented
by the red dots in Fig. 1. Half of the wind turbines in the wind
farm are General Electric (GE) 1.5 MW super-long extended
(SLE) model, and the other half are GE 1.5 MW extra-long
extended (XLE) model (Rajewski et al., 2013). The cut-in
and cut-out speeds of the SLE model are 3.5 and 25 m s−1

respectively, and the rated speed is 14 m s−1. With the same
cut-in speed, the XLE model has lower rated and cut-out
wind speeds at 11.5 and 20 m s−1. The hub height of both
models is 80 m; the rotor diameters of the SLE and the XLE
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(b)

(a)

Figure 1. Map of the three domains (d01, d02, and d03) in the WRF simulations (a), with the white “x” representing the CWEX-13 wind
farm. Zoom-in map of the wind farm (b), with the black horizontal and vertical lines outlining the WRF grid cells, the red dots as the actual
locations of wind turbines, the blue numbers as the number of wind turbines per WRF grid cell, the yellow square as the WC lidar, the
green square as the 200S lidar, and the purple square as the surface flux station. Other instruments were deployed in CWEX-13, and only the
instruments used herein are shown.

model are 77 and 82.5 m respectively. For simplicity, refer-
ences to the rotor diameter (D) herein refer to the 77 m rotor
diameter. Power generated by each turbine is recorded by the
Supervisory Control and Data Acquisition (SCADA) system
every 10 min, and we sum up the power production of all tur-
bines for wind-farm production for each 10 min period.

Observations of the wind profile are collected by a pro-
filing lidar and a scanning lidar. The WINDCUBE v1 (WC)
profiling lidar (yellow square in Fig. 1) is located 528 m, or
6.3D, south of the nearest turbine. The WC lidar measures
winds at about 0.25 Hz from 40 to 220 m above ground level
(a.g.l.) every 20 m via the Doppler beam swinging (DBS)
method. The WC lidar derives wind components by measur-
ing radial velocities using DBS at an azimuth angle of 28◦.
Note that the WC-observed turbulence parameters, namely
the turbulence kinetic energy (TKE) and the turbulence in-
tensity (TI), are derived from the variances of the three wind
components in 2 min intervals and hence do not represent
small-scale turbulence. The turbulence parameters are de-

fined by the following:
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1
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U
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where σ 2 is the 2 min averaged variances of the u, v, and w
wind components, and U is the mean horizontal WS (Stull,
1988). In CWEX-11, wind-turbine wake measurements at a
different location in this wind farm were collected with these
instruments (Rhodes and Lundquist, 2013), and the errors in
the WC lidar measurements due to inhomogeneous flow were
explored by Bingöl et al. (2009) and Lundquist et al. (2015).

The WINDCUBE 200S scanning lidar (green square in
Fig. 1) is positioned 437 m, or 5.7D, north of the nearest
turbine row. In CWEX-13, the 200S lidar scanning strategy
included velocity azimuth display (VAD) scans that mea-
sures winds from∼ 100 to∼ 4800 m a.g.l. approximately ev-
ery 50 m for every 3 min. In this study, we use the 200S 75◦

elevation scans (Vanderwende et al., 2015) to estimate hor-
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izontal winds every 30 min to verify the simulated winds in
the boundary layer. In the case study chosen, the dominant
WD is south-easterly to south-westerly (Vanderwende et al.,
2015), and thus some of the 200S measurements below the
rotor top (about 120 m a.g.l.) could be influenced by turbine
wakes during conditions when the wakes persist longer than
5D downwind from the turbine (Bodini et al., 2017). How-
ever, the WC measurements are largely unaffected by turbine
wakes except when WD is east of 150◦. The closest upwind
turbine during this simulation period was located over 2.7 km
(33D) to the south-east.

The measurements from the surface flux station can also
quantify model skill. The surface flux station of interest (pur-
ple square in Fig. 1) is located 681 m, or 8.8D, south of
the closest turbine. At 8 m a.g.l., the station measures 20 Hz
winds via a CSAT3 sonic anemometer, as well as virtual tem-
perature and water-vapour density via a HMP45C probe. Af-
ter tilt correction (Wilczak et al., 2001), we calculate surface
sensible heat flux using a 30 min averaging time period. We
use the Obukhov length (L) to categorize atmospheric stabil-
ity conditions:

L=−
Tvu

3
∗

k g
(
w′Tv

′

)
s

, (3)

where Tv is the mean virtual temperature, u∗ is the frictional
velocity, k is the von Karman constant, g is the gravity accel-
eration, and (w′T ′v)s is the surface virtual temperature flux
calculated from the 20 Hz measurements (Stull, 1988). A
positive surface sensible heat flux and Obukhov length ra-
tio (zL−1), where z is 8 m, indicates a stable atmosphere,
whereas a negative ratio represents unstable conditions.

From 24 to 27 August 2013, nocturnal LLJs were observed
(Vanderwende et al., 2015). No major synoptic events af-
fected the area during this period. Moreover, when the near-
surface flows are southerly, the WC and the surface flux sta-
tion measure winds unaffected by wind turbines (Muñoz-
Esparza et al., 2017). Additionally, no curtailment of wind
turbines occurred and the instruments operated normally dur-
ing the period, making these 4 days ideal for model verifica-
tion.

2.2 Modelling

To establish direct comparison with the observations, we
simulate winds with and without the WFP using the Ad-
vanced Research WRF (ARW) model (version 3.8.1) (Ska-
marock and Klemp, 2008). We simulate the winds on each
day separately, from 00:00 to 00:00 UTC, after 12 h of spin-
up time. The ERA-Interim (Dee et al., 2011) and the 0.5◦

Global Forecast System (GFS) reanalysis datasets provide
boundary conditions for two different sets of model runs. We
set three domains in our simulations with horizontal resolu-
tions of 9, 3, and 1 km respectively, where the finest domain
covers the state of Iowa (Fig. 1). To capture the westerly syn-

optic flow and the southerly near-surface winds, we position
the inner grids north-east of the centres of the coarser grids.

The WFP scheme simulates wind farms and their meteoro-
logical influences to the atmosphere. We provide a brief sum-
mary here, and the details are discussed in Fitch et al. (2012).
Wind turbines slow down ambient wind flow and convert a
part of the kinetic energy of wind into electrical energy. The
WFP represents this wind-turbine drag force as the kinetic
energy harvested by the turbine from the atmosphere:

F drag =
1
2
CT(|V |)ρ |V |AV , (4)

where CT is the turbine-specific thrust coefficient (discussed
in detail in Fitch, 2015), V is the horizontal velocity vector, ρ
is air density, A= π

4D
2 is the cross-sectional rotor area, and

D is the rotor diameter. This kinetic-energy extraction also
causes changes in the atmosphere, namely the kinetic energy
loss in the grid cell, which is described by the momentum
tendency:

∂|V |ijk
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(
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)
|V |2ijkAijk
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where i, j , and k represent the zonal, meridional, and vertical
grid indices, N ij

t is the number of wind turbines per square
metre, and zk is the height at model level k. Of the kinetic
energy extracted by the turbines, the WFP accounts for the
electricity generation with the following:
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|V |3ijkAijk
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, (6)

where Pijk is the power output in the grid cell in watts, and
CP is the power coefficient. Assuming negligible mechanical
and electrical losses, the rest of the kinetic energy harvested
turns into TKE:

∂TKEijk
∂t

=
N
ij
t CTKE

(
|V |ijk

)
|V |3ijkAijk

2(zk+1− zk)
, (7)

where TKEijk is the TKE in the grid cell, and CTKE is the
difference between CT and CP.

In this study, we employ two resolutions of vertical grids:
approximately 12 m and 22 m resolution below 400 m a.g.l.,
with 80 and 70 total levels respectively (Fig. 2). Three and
six vertical levels intersect the atmosphere below and within
the rotor layer in the finer vertical grid, while the 22 m grid
only allows one full level below and four levels within the ro-
tor layer (Fig. 2). The vertical levels are further stretched be-
yond the boundary layer. In past research involving the WRF
WFP scheme, the selections of vertical resolution within the
rotor layer include 9–18 m in Vanderwende et al. (2016),
about 10–16 m in Volker et al. (2015), about 15 m in Fitch et
al. (2012, 2013a, b) and Vanderwende and Lundquist (2016),
about 20 m in Miller et al. (2015) and Vautard et al. (2014),
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Table 1. The WRF model configuration.

Parameterization Scheme Reference

Cumulus Kain–Fritsch Kain (2004)
Land surface NOAH LSM Ek et al. (2003)
Land surface roughness Thermal roughness length Chen and Zhang (2009)
Microphysics Thompson aerosol-aware Thompson and Eidhammer (2014)
PBL MYNN Level 2.5 Nakanishi and Niino (2006)
Radiation RRTMG Iacono et al. (2008)
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Figure 2. Illustration of the two vertical grids chosen: the 12 m grid
on the left in blue and the 22 m grid on the right in purple. Both
grids shown use the ERA-Interim as the boundary conditions. The
simulations initiated with the 0.5◦ GFS have similar vertical grids.

about 22 m in Lee and Lundquist (2017), and about 40 m in
Eriksson et al. (2015) and Jiménez et al. (2015).

Moreover, the Mellor–Yamada–Nakanishi–Niino
(MYNN) level 2.5 planetary boundary layer (PBL)
scheme is required for the WFP in the WRF model version
3.8.1 (Fitch et al., 2012). Note that substantial upgrades
were made on the MYNN PBL schemes in WRF version 3.8
(WRF-ARW, 2016). The MYNN PBL scheme supports TKE
advection, active coupling to radiation, cloud mixing from
Ito et al. (2015), and mixing of scalar fields. The MYNN
scheme also uses the cloud probability density function
from Chaboureau and Bechtold (2002), and here we keep
the mass-flux scheme deactivated. We summarize the other
model configuration details in Table 1.

After verifying the background flow simulated by the
WRF model (first four rows in Table 2), virtual turbines are
added via the WFP (last four rows in Table 2). We simu-
late all the turbines using the 1.5 MW PSU generic turbine
model (Schmitz, 2012), in which its specifications are based
on the GE 1.5 MW SLE model installed at the wind farm.
The turbines within the WRF grid cells are located using the
latitudes and longitudes provided by the wind-farm owner–
operator. The model grid cells within the wind farm, con-

Table 2. List of WRF simulations and their features.

Run Boundary Vertical WFP
name condition resolution

ERA12 ERA-Interim 12 m No
ERA22 ERA-Interim 22 m No
GFS12 0.5◦ GFS 12 m No
GFS22 0.5◦ GFS 22 m No

ERA12WF ERA-Interim 12 m Yes
ERA22WF ERA-Interim 22 m Yes
GFS12WF 0.5◦ GFS 12 m Yes
GFS22WF 0.5◦ GFS 22 m Yes

taining 1–4 wind turbines per cell, are labelled as blue num-
bers in Fig. 1. With the WFP activated, the model simulates
the total power production at each time step in each turbine-
containing grid cell, regardless of the number of turbines per
cell. To match the 10 min average power data from the tur-
bines, we sample 10 min power from the WFP output.

We also estimate the power generation of the WRF sim-
ulations without using the WFP. Based on the ambient WS
of the turbine-containing grid cells in the control WRF runs,
we use the turbine power curve to obtain an assessment of
the power every 10 min. We then multiply the power with the
number of turbines per cell to calculate power in each grid
cell, as would be done in wind-energy forecasting without
a wake parameterization. This method of power estimation
omits wake effects, in contrast to the WFP.

3 Results

3.1 Ambient flow evaluation

The WRF model simulations without the WFP simulate ac-
curate ambient winds compared to the lidar measurements.
Qualitatively, the ERA12 simulation (see Table 2 for a list-
ing of all the simulations) has skill in simulating WS and
WD during the 4-day period, including the occurrence, the
strength, and the elevation of the nocturnal LLJs (Fig. 3). The
200S records the vertical shear caused by LLJs above 100 m
(Fig. 3a), and the WC measures the near-surface winds with
high temporal resolution (Fig. 3b). In the observations and
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Figure 3. Time–height contour of WS from the 200S (a), the
WC (b), and the ERA12 at the closest grid point to the 200S (c).

the simulations of WS (Fig. 3c), the night-time WS profile
is stratified, whereas the daytime atmosphere is well mixed.
The WD simulations also match well with the measurements,
where in the evening the winds veer, or turn clockwise with
height (Fig. 4), while the WD remains relatively constant
with height during daytime. Except for the last hours on
24 August, the ERA12 captures the general temporal and
vertical fluctuations in WS and WD, when the winds change
from south-easterly to south-westerly (Figs. 3 and 4). The
200S measurements above the rotor layer (120 m) are unaf-
fected by turbine wakes (Figs. 3a and 4a); the LLJs observed
above the rotor layer resemble those from the ERA12, con-
firming the skill of the simulations. To evaluate the effects of
boundary conditions and vertical resolutions on simulating
winds, we compare the four no-WFP runs: ERA12, ERA22,
GFS12, and GFS22.

Quantitatively, simulations using finer vertical resolution
have more skill in simulating winds than those with coarser
resolution (Table 3). In comparison to the 200S and WC ob-
servations, the mean absolute errors in WS and WD of the
12 m runs are lower than those of the 22 m runs over the 4-
day period, by 0.3 m s−1 and 0.8◦ on average. In particular,
in the ERA12, the errors in WS decrease by at least 19 % rel-
ative to the ERA22. Although the GFS22 yields smaller WS

00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

H
ei

gh
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.g
.l.

Figure 4. As in Fig. 3, but for WD.

Table 3. Average absolute error in WS (m s−1) and WD (◦) of dif-
ferent no-WFP runs.

ERA12 ERA22 GFS12 GFS22

200S 120 m WS 1.49 1.84 1.35 1.54
WC 120 m WS 1.21 1.63 1.34 1.48
WC 80 m WS 1.24 1.64 1.36 1.55
WC 40 m WS 1.47 1.90 1.53 1.86

200S 120 m WD 14.99 15.98 14.68 14.99
WC 120 m WD 12.66 13.86 13.07 13.47
WC 80 m WD 13.23 14.55 13.85 14.24
WC 40 m WD 14.19 15.58 14.83 15.15

The smallest errors across different WRF settings are highlighted in bold.

errors than the ERA22, refining the vertical grid of the simu-
lations using either boundary condition dataset improves the
WS-prediction skill of the WRF model more than changing
the boundary conditions (Table 3). The errors in simulating
WD remain similar regardless of the choice of boundary con-
dition or vertical grid. Of all our control runs, the ERA12
simulates the most accurate inflow.
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Table 4. RMSE of 10 min total power (MW) of different model runs
each day.

24 Aug 25 Aug 26 Aug 27 Aug 4-day
mean

ERA12 73.6 73.5 35.4 22.6 51.3
ERA22 79.5 72.8 48.5 41.0 60.5
GFS12 62.0 76.5 58.3 40.9 59.4
GFS22 73.9 89.6 65.3 51.9 70.2

ERA12WF 42.2 49.4 31.1 46.5 42.3
ERA22WF 61.7 61.2 50.9 71.6 61.4
GFS12WF 46.2 54.6 34.1 36.1 42.8
GFS22WF 40.0 60.0 32.6 37.3 42.5

The RMSEs and biases closest to zero across different days are highlighted in bold.

3.2 Power simulations

The simulation omitting the WFP ignores the wake effects on
power production of downwind turbines, and therefore over-
estimates total power. For each 10 min time step, we com-
pare the spatial distribution of power production as well as
the total power between the ERA12, the ERA12WF, and the
observations; Fig. 5 represents one 10 min time step in the
4-day period. As mentioned above, we calculate the power
estimates of ERA12 using the ambient WS, the number of
turbines in each grid cell, and the power curve (Fig. 5a).
The WRF WFP generates power predictions (Fig. 5b), and
we sum up the actual power production in each grid cell
(Fig. 5c). We present the total 10 min simulated and observed
power of the whole wind farm at the bottom of each panel
in Fig. 5, and the total power production of the WFP run
matches the observed. We then assemble the 576 10 min total
power values over the 4-day period and compare the simula-
tions to the observations (Fig. 6). We also calculate an error
and a bias of modelled total power for each 10 min interval,
summarizing as the daily root mean-squared errors (RMSEs)
and average biases in Tables 4 and 5. The large average bi-
ases in Table 5 highlight the consistent power overestimation
of the no-WFP runs.

Over the 4-day period, the WFP produces total power of
the whole wind farm that generally agrees with observa-
tion (Fig. 6c). Although the RMSEs between the no-WFP
and WFP runs are comparable (Table 4), the average bi-
ases are smaller in the WFP simulations (Table 5). For in-
stance, the ERA12WF slightly under-predicts total power by
−4.9 MW on average (Figs. 6c and Table 5). The ERA12,
by contrast, consistently over-predicts power production by
41.5 MW (Fig. 6a and Table 5). The daily positive biases of
the ERA12 in the first 2 days are nearly 20 % of maximum
wind farm production (Table 5). The average positive power
bias of 36.2 MW in the ERA22 is also remarkably larger
than the mild negative bias of −15.1 MW in the ERA22WF
(Fig. 6b, d, Table 5). Furthermore, the ERA12 and the GFS12

Table 5. Average bias of 10 min total power (MW) of different
model runs each day.

24 Aug 25 Aug 26 Aug 27 Aug 4-day
mean

ERA12 68.3 62.6 26.8 8.1 41.5
ERA22 58.3 52.1 28.0 6.2 36.2
GFS12 49.4 65.0 51.8 29.0 48.8
GFS22 65.5 80.7 60.3 35.8 60.6

ERA12WF 17.5 16.6 −12.2 −41.6 −4.9
ERA22WF 10.4 0.6 −17.6 −53.6 −15.1
GFS12WF 3.8 22.2 9.6 −18.6 4.3
GFS22WF 2.9 29.7 10.9 −12.3 7.8

The RMSEs and biases closest to zero across different days are highlighted in bold.

Figure 5. The power production for one 10 min period from the
ERA12 estimates (a), the ERA12WF outputs (b), and the observa-
tion (abbreviated as OBS) (c). The total power in each grid cell is
presented regardless of the number of turbines in each cell, and the
wind-farm totals are summarized at the bottom. The vectors indicate
the simulated winds, and their lengths correspond to the horizontal
velocity magnitude.

generally outperform the ERA22 and the GFS22 in power
predictions, particularly in RMSE (Fig. 6 and Table 5). How-
ever, on the last day, with more south-westerly flow, the
ERA12 and the ERA22 outperform the ERA12WF and the
ERA22WF, while the GFS12WF and the GFS22WF yield
smaller errors and biases (Tables 4 and 5). Nonetheless, in
aggregate, the simulations using the WFP predict wind-farm
power production with more skill than simulations without
the WFP.

As demonstrated by the average absolute errors (Table 3),
the WFP power simulations improve when using 12 m rather
than 22 m vertical resolution (Fig. 6). Changing the vertical
grid improves the predictions more than changing bound-
ary conditions (Tables 4 and 5). In particular, in the ERA-
Interim simulations, the RMSE each day decreases by 19–
39 % when switching from ERA22WF to ERA12WF (Ta-
ble 4, Fig. 6c, d). Since the power-prediction skill of the
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Figure 6. Scatter plots comparing the 10 min average observed total
wind-farm power over the 4-day period against the calculated total
power from the ERA12 (a) and the ERA22 (b), and the simulated
total power from the ERA12WF (c) and the ERA22WF (d). The
dots represent the total power productions on 24 August (purple),
25 August (blue), 26 August (green), and 27 August (yellow).

ERA-Interim-initiated runs and the GFS-initiated runs are
comparable, the rest of the paper will focus on the WFP runs
using the ERA-Interim as initial and boundary conditions.

Moreover, to statistically differentiate the power produc-
tions from various model runs, we apply the two-sample Stu-
dent’s t test. The null hypothesis of a two-sample t test is that
the two population means are the same, assuming the under-
lying distributions are Gaussian (Wilks, 2011). Hence, if the
resultant p value is equal to or below 0.05, the two distribu-
tions are statistically significantly different at the 95 % confi-
dence level. For example, the difference between the 4-day
power-production averages from the ERA12 and from the
ERA12WF is−46.8 MW, and the respective p value is 0 (Ta-
ble 6). Thus the difference between the means is statistically
significant. In other words, the ERA12 and the ERA12WF
yield different power-production distributions at any confi-
dence level. Similarly, the GFS12 and the GFS12WF lead to
statistically different power outputs as the p value from t test
is 0 as well (Table 7). We also use the two-sample t test to
contrast the actual and the modelled power distributions. For
instance, all the p values between the no-WFP runs and the
observation are 0, implying those simulations yield power-
generation distributions significantly different from the real-
ity (Table 8).

Given the utility of the WFP, assessing the interactions be-
tween atmospheric forcing and power production is an im-
portant step to further examine the performance of the WFP.
As with the ERA12, the ERA12WF adequately simulates the
evolution of the meteorological variables over the 4-day pe-

Table 6. Differences (first value) and p values (second value) from
two-sample t tests of simulated power from different ERA runs.

ERA12 ERA12WF ERA22WF
4-day mean 41.8 −4.9 −15.1

ERA12 41.8 −46.7; 0
ERA22 36.1 5.7; −51.2; 0

0.03
ERA12WF −4.9
ERA22WF −15.1 10.2;

9.6× 10−4

Table 7. As in Table 6, but for GFS runs.

GFS12 GFS12WF GFS22WF
4-day mean 48.6 4.2 7.8

GFS12 48.6 −44.4; 0
GFS22 60.5 −11.9; −52.7; 0

1.1× 10−7

GFS12WF 4.2
GFS22WF 7.8 −3.6; 0.16

Table 8. The p values from two-sample t tests of the 10 min ob-
served power and the 10 min simulated power from different model
runs.

Simulated Observed Difference p value
4-day 4-day of means
mean mean

ERA12 212.7

170.9

41.8 0
ERA22 207.0 36.1 0
GFS12 219.5 48.6 0
GFS22 231.4 60.5 0

ERA12WF 166.0 −4.9 0.106
ERA22WF 155.8 −15.1 6.5× 10−6

GFS12WF 175.1 4.2 0.167
GFS22WF 178.7 7.8 0.014

riod (Fig. 7a–d). Both the ERA12 and the ERA12WF capture
the overall trends of hub-height ambient WS and WD mea-
sured by the WC (Fig. 7a and b), corresponding to Figs. 3
and 4. However, although the simulations suggest stronger
TKE diurnal cycles than the observations, especially in the
first 36 h, the simulated values follow the trends of the WC-
measured TKE (Fig. 7c). Although the magnitudes of the
surface sensible heat flux of the surface flux station and
the simulations differ, their signs change at similar times,
particularly in the last 3 days (Fig. 7d). Hence the WRF
model is capable of representing diurnal atmospheric sta-
bility changes. Note that in Fig. 7c, the lidar derives TKE
using 2 min variances, which is intrinsically different from
the modelled TKE, as discussed in Kumer et al. (2016) and
Rhodes and Lundquist (2013). Hence, readers should focus
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Figure 7. Time series of hub-height WS (a), hub-height WD (b),
hub-height TKE (c), surface sensible heat flux (d), and total wind-
farm power (e) from the simulations (ERA12, in blue; ERA12WF,
in black) and the measurements (in light blue). The simulated values
are interpolated to hub height in the grid cell closest to the WC.
In (b), the horizontal dash line marks the WD of 180◦. In (d), the
horizontal dash line marks the heat flux of 0 W m−2.

on the general trends of the TKE time series, rather than their
absolute values.

The observed WS fluctuates more than the mesoscale-
simulated WS during daytime (Fig. 7a). The ramp events,
when the WS changes rapidly in a short period (Kamath,
2010; Potter et al., 2009), induce considerable swings in
power production (Fig. 7e). The five distinct ramp events
with sudden WS increases are from 00:00 to 01:00 UTC on
24 August, from 18:00 to 19:00 UTC 24 August, from 00:00
to 01:00 UTC 25 August, from 00:00 to 02:00 UTC 26 Au-
gust, and from 00:00 to 02:00 UTC 27 August. Most of the
ramp events are related to the LLJs (Fig. 3), and the simu-
lated WS usually lags behind that observed (Fig. 7a). There-
fore, the WFP under-predicts total power in nearly all the
ramp events (Fig. 7e). Note that the measured WS ranges be-
tween the cut-in and rated speed of the wind turbine, when
power production is highly sensitive to WS. The strong link-
age between the temporal fluctuations of WS and power em-
phasizes the importance of accurate WS predictions.

Figure 8. Scatter plots of the bias of the ERA12WF 10 min to-
tal power and the WC-observed hub-height WS (a), hub-height
WD (b), hub-height TI (c), and stability parameter zL−1 measured
at the surface flux station (d). The r represents the Pearson correla-
tion coefficient. Similar to Fig. 6, different coloured dots represent
biases on different days. The horizontal black dash lines mark the
zero power bias. In (d), the vertical black dash line at zero zL−1

differentiates the two stability regimes.

Along the same line, the WFP power performance changes
in different meteorological conditions. To quantify WFP’s
skill, we use the bias in total power as a benchmark, calcu-
lated by subtracting the observed power from the WFP sim-
ulated power every 10 min (Fig. 8). In particular, in condi-
tions of strong winds and weak turbulence, the WFP overesti-
mates wake effects and thus underestimates power. However,
for calm conditions with moderate or strong turbulence, the
WFP tends to underestimate wake effects and thereby over-
predicts power (Fig. 8a and c). Besides, the Pearson correla-
tion coefficient between total power bias and WC-observed
TKE is 0.48 (not shown).

On the contrary, WD and atmospheric stability have
weaker influence on the skill of the WFP in general. The
winds gradually rotate from south-easterly to south-westerly
over this 4-day period while maintaining similar magni-
tudes of WS. During this direction shift, the WFP demon-
strates a weakly positive power bias when the WD is strictly
southerly, while the biases skew negative when the winds
have a more easterly or westerly component (Fig. 8b). Sim-
ilarly, the WFP power bias is generally unresponsive to sta-
bility changes, although biases tend to be small in strongly
stable conditions (Fig. 8d). Moreover, strongly stable condi-
tions tend to have stronger and more distinct wakes (Abkar
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Figure 9. As in Fig. 8, and only including data when the winds are
accurately simulated in the ERA12WF run: the modelled–observed
absolute error in WS smaller than 1 m s−1 and the absolute error
in WD smaller than 5◦. Different colours represent different WD
bins: 150–170◦ in blue, 170–190◦ in cyan, 190–210◦ in orange,
210–230◦ in red, and 230◦ and beyond in maroon. The n values
illustrate the sample size in each WD bin. Solid circles represent
unstable conditions (zL−1 smaller than 0) and hollow circles rep-
resent stable conditions (zL−1 larger than 0).

and Porté-Agel, 2015b; Lee and Lundquist, 2017; Magnus-
son and Smedman, 1994; Rhodes and Lundquist, 2013).

To isolate the WFP errors in power predictions from the
WRF model errors in simulating ambient winds, we analyse
a subset of data where the winds are simulated accurately.
When the absolute error in WS is smaller than 1 m s−1 and
the absolute error in WD is smaller than 5◦, the relation-
ships between power bias and WS, WD, and TI (Fig. 9a–
c) remain similar to the general trends shown in Fig. 8a–
c. The WS-power-bias and TI-power-bias correlations be-
come stronger in this subset (Fig. 9a and c), compared to
the correlations using all the data in the 4-day period (Fig. 8a
and c). Moreover, when considering only cases of accurate
wind predictions, the correlation between power bias and
stability increases from −0.06 (Fig. 8d) to −0.42 (Fig. 9d).
In the few (27 10 min time steps) unstable conditions with
accurate WS predictions, the power bias is generally posi-
tive, given moderate WS and high TI (Fig. 9a, c and d). In
the stable regime, the WFP tends to underestimate power,
regardless of WD (Fig. 9b and d): 106 of the 125 stable
data points are negatively biased. If the few strongest sta-
bility points (zL−1 larger than 0.55) are removed from the
subset shown in Fig. 9d, a weakly negative correlation be-

Figure 10. Scatter plot between the bias of the ERA12WF 10 min
total power compared to observation, and its bias of the simulated
hub-height WS in the closest grid cell to the WC. The r represents
the Pearson correlation coefficient.

tween power bias and stability emerges as the Pearson cor-
relation coefficient becomes −0.61. Additionally, generally
south to south-westerly flows yield stronger negative power
biases (Fig. 9).

As expected, when the model properly simulates ambient
WS, the WFP performs better. When the ERA12WF predicts
larger WS than observed, the simulation over-predicts the to-
tal power. The positive WFP power bias corresponds to WS
overestimation, and the negative bias is associated with WS
underestimation (Fig. 10). Interestingly, when the error in
simulated total power lies between ±30 MW, the error of the
simulated WS is mostly within±2 m s−1 (Fig. 10). However,
the power bias does not seem to be related to WD or to am-
bient TKE: the correlation between the power bias and the
simulated WD (TKE) bias is low, at 0.3 (0.22) (not shown).
Although the simulated WD and TKE generally match the
WC observations (Fig. 7b and c), the model’s skill in simu-
lating WD and TKE does not strongly influence the WFP’s
power performance.

Although the WFP omits sub-grid-scale wake interactions
between the wakes of multiple turbines within a cell, this
omission does not affect the accuracy of the ERA12WF in
power prediction: the performance of the WFP is insensitive
to the number of turbines per model grid cell. The turbine-
normalized bias demonstrates no dependence on the num-
ber of turbines within the model grid cell (Fig. 11). Each
whisker in Fig. 11 marks the maximum, the upper quartile,
the median, the lower quartile, and the minimum of the av-
erage bias. Despite the large positive biases of the maxima,
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Figure 11. Box plot of the average bias of the ERA12WF simulated
power across different numbers of wind turbine per WRF grid cell
(Fig. 1) every 10 min during the 4-day period.

more than half of the average biases fall between ±1.5 MW,
regardless of the numbers of turbines per cell (Fig. 11). Sim-
ulating one or four turbines in a grid cell (Fig. 1) does not
influence the WFP’s overall power-prediction performance
in the cases shown here.

Furthermore, the WFP performance remains consistent be-
tween upwind and downwind turbines, based on their posi-
tions against the ambient winds (Fig. 12). Given the square
shape of grid cells, we determine the sequential rows of tur-
bines during strictly southerly flows, with WD between 175
and 185◦ (Fig. 12a). The bulk of the normalized power biases
fall within 0–0.4 MW, regardless of the upwind–downwind
positions of turbines (Fig. 12b). Additionally, the power bias
is independent of the mean distance between the actual tur-
bine locations and the centre points of their respective grid
cells (not shown).

4 Discussion

Herein, we compare WRF model simulations with different
choices of vertical resolutions and boundary conditions. The
evidence suggests that, at least for this onshore case with a
strong diurnal cycle, the vertical resolution is more crucial
than the choice of boundary conditions in simulating accurate
winds and wind-power production. Shin et al. (2011) have
explored the impacts of the lowest model level on the perfor-
mance of various PBL schemes in the WRF model, suggest-
ing that increasing the number of model layers can simulate
regimes. In this study, we further illustrate that establishing
more vertical levels in the boundary layer as well as the rotor
layer improves the skill of the WRF model in simulating am-
bient WS, ambient WD, and wind power (Tables 3, 4, and 5).
Furthermore, Carvalho et al. (2014) discussed the effects of
different reanalysis datasets on wind-energy production es-
timates, and found the ERA-Interim presents the most pre-

cise initial and boundary conditions, followed by the GFS.
Herein, we test the ERA-Interim and the 0.5◦ GFS, and both
datasets produce simulations that resemble observed winds
and power generations. Since the simulated power is sensi-
tive to the resolution of the model vertical grid, particularly
near the surface, future WRF WFP users should select verti-
cal levels with care.

Additionally, the outcomes from the statistical tests among
the model runs further validate the importance of using the
WFP as well as using a fine vertical grid. From the Student’s
t test, the p values of all the no-WFP and WFP pairs are
0 (Tables 6 and 7), demonstrating that the differences be-
tween the power-generation distributions of the no-WFP runs
and the WFP runs are statistically significant at any con-
fidence level. Therefore, to accurately simulate power pro-
duction, applying the WFP is better than not using it, re-
gardless of the choice of vertical resolution and boundary
condition, and the corresponding improvements in Tables 4
and 5 are statistically significant. Although the distinction
between the GFS12WF and GFS22WF is not statistically
significant at the 90 % confidence level (Table 7), switching
from ERA22WF to ERA12WF improves power simulations
significantly at 99 % confidence (Table 6). In particular, the
RMSE drops by 19.1 MW and the bias reduces by 10.2 MW
on average in the ERA12WF (Tables 4 and 5), and these are
proven statistically significant.

Similarly, results from the statistical tests between the dis-
tributions of power from simulations and observations sup-
port the value of the WFP applied in a fine vertical grid. The
p values of the ERA12WF-observed pair and the GFS12WF-
observed pair are 0.106 and 0.167 respectively (Table 8). The
high p values illustrate that the distinctions between the dis-
tribution of observed power and the distributions of simu-
lated power from the 12 m WFP simulations are not statisti-
cally significant, at the 90 % confidence level. Among all the
simulations analysed above, running the WFP over the 12 m
vertical grid is the only combination that is not statistically
different from observations (Table 8). In other words, the
12 m WFP simulations provide the closest approximations
to the actual power production, regardless of the boundary-
condition dataset.

One of the objectives of this study is to propose general
directions for improvements on the WFP. First of all, as the
key determinant of wind-power production, WS plays a crit-
ical role. Ramp events pose a challenge to the WRF model
in simulating WS as well as to the WFP in predicting power
(Fig. 7a and e). However, windy conditions of WS exceed-
ing 10 m s−1, although below the rated speed, lead to WFP
power underestimation (Fig. 8a). Furthermore, the WFP per-
formance depends more on the horizontal winds and turbu-
lence, rather than their vertical components, since the power
bias correlates more strongly with TI than TKE (Fig. 8c).
Reducing turbulence diffusion in the WRF model could po-
tentially yield more accurately simulated winds in stable con-
ditions, including LLJs (Sandu et al., 2013); active research
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Figure 12. Map of the wind farm where the blue numbers represent the row number from the upwind row during southerly winds (a). The
upwind row number is reset to 1 when the next two downwind grid boxes to the north contain no turbines. Box plot of the average ERA12WF
power bias normalized over different number of wind turbine rows, when the hub-height WD in the grid cell closest to the WC is between
175 and 185◦ (b).

in modifying mixing lengths (Jahn et al., 2017) also suggests
promising model improvements. More importantly, sharpen-
ing the skill of the WRF model in simulating WS can im-
prove the WFP power performance (Fig. 10). Future versions
of the WRF model and the WFP should aim to better account
for instantaneous horizontal WS variations and the subse-
quent sub-grid wake interactions.

Besides, necessary improvements in simulating ambient
WS, the WFP scheme itself also requires refinements. When
background winds are accurately predicted, the power-bias
dependence on WS and TI remains strong (Fig. 9a and c).
Moreover, the correlation between the WFP performance and
atmospheric stability becomes weakly negative without the
strongly stable data (Fig. 9d). Therefore, even when the sim-
ulated winds are close to observations, the WFP tends to un-
derestimate power during high WS, low TI, and stable con-
ditions. In contrast, the WFP tends to over-predict power in
calm, unstable, and turbulent conditions, with the caveat that
a small number of unstable cases are considered here. The
WFP scheme appears to overestimate wake loss within a grid
cell in stable and windy conditions and underestimate wake
effects in an unstable and well mixed atmosphere. Certainly
the interactions between WD and wind-farm layout affect the
power-bias relationships, and further sensitivity tests can pro-
vide more insight into the WFP performance, particularly in
intra-cell WS reduction. We demonstrate that inter-cell wake
effects are not the critical factor to power error (Fig. 12b);
hence, the inability of the WFP to simulate intra-cell wake
effects can explain the biases when many of the turbines ex-
perience accurately simulated ambient flow.

In contrast, WD has no clear influence on the WFP skill
(Fig. 8b) in this case, although the irregular shape of the
wind farm adds uncertainty to this relationship. Similarly,
the skill of the WFP for this case is insensitive to the num-
ber of virtual turbines per cell, and the downwind position
of turbines against inflow (Figs. 11 and 12). Compared to
the power overestimation of downwind turbines in the ideal-
ized cases described in Vanderwende et al. (2016), both the
upwind and downwind turbine-containing cells presented in
this study have consistent positive biases on power produc-
tion (Fig. 12). Our findings suggest that the WFP is skilful
in simulating power of aggregate wind turbines and can rep-
resent the impact of inter-cell wakes on power. In the end,
the primary limitation of the WFP is rooted in the ambient
simulated WS in the WRF model.

5 Conclusion

The WFP scheme in the WRF model (version 3.8.1) provides
a convenient way to represent wind farms and their meteoro-
logical impacts in the NWP models. However, its power pre-
dictions have not been verified for onshore wind farms or in a
range of WS conditions. Herein, we evaluate the performance
of the WFP in various atmospheric conditions to guide users
of the WFP and to suggest future WFP advancements.

Using data from the CWEX-13 campaign, we select a 4-
day period, from 24 to 27 August 2013, for our case study,
due to the consistent nocturnal LLJ occurrences. We use
measurements from a profiling lidar, a scanning lidar, and a
surface flux station to verify the ambient flows simulated by
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the WRF model. The wind farm of interest, located in central
Iowa, consists of 200 1.5 MW wind turbines.

We explore the role of vertical resolution in the opera-
tion of the WRF WFP. We evaluate two vertical grids with
12 and 22 m resolution near the surface. We find that the
finer vertical resolution produces simulations that agree bet-
ter with observed WS, WD, and power than the simulations
with coarser vertical resolution. Further, because the WFP
accounts for wake effects on power production of downwind
turbines, the use of the WFP enables more accurate power
prediction, whereas simulations without the WFP generally
over-predict power production. Statistically, the WFP simu-
lations with a fine vertical grid, regardless of the boundary
conditions, are the most skilful in simulating power.

The skill of the WFP varies with meteorological condi-
tions. When the model simulates WS close to the observa-
tions, the WFP predicts power properly, making WS the criti-
cal factor in improving the WFP. Rapid temporal fluctuations
in WS introduce errors in power simulations, especially dur-
ing ramp events. Further, in windy, stable, and less turbulent
conditions, the WFP tends to overestimate wake effects and
thus underestimates power production. However, the WFP
performance demonstrates no clear dependence on the num-
ber of turbines per model grid cell or the downwind distance
of turbines with respect to the upwind ones.

In conclusion, we demonstrate the value of the WRF WFP
and the importance of using a fine vertical grid. Since WS
greatly affects the skill of the WFP, subsequent research
could include evaluating the WFP for an even larger range
of WS, especially at WS beyond the turbine cut-out speed
(which would be 25 m s−1 in this case; no such high WSs
were observed during the CWEX-13 campaign). Evaluating
the performance of other wind-farm layouts in locations with
complex terrain is also needed. Modifications in the inflow
WS considered by the WFP, for example, considering the
rotor equivalent wind speed (REWS) (Wagner et al., 2009),
may bring promising improvements. More accurate power
forecasts will help shape a more competitive wind-energy in-
dustry and further facilitate grid integration of wind energy
(MacDonald et al., 2016).

Code and data availability. The code of the WRF-ARW model
(https://doi.org/doi:10.5065/D6MK6B4K) is publicly avail-
able at http://www2.mmm.ucar.edu/wrf/users/. This work
uses the WRF-ARW model and the WRF Preprocessing Sys-
tem (WPS) version 3.8.1 (released on 12 August, 2016),
and the wind farm parameterization is distributed therein.
The PSU generic 1.5 MW turbine (Schmitz, 2012) is avail-
able at https://doi.org/10.13140/RG.2.2.22492.18567. The
user input required to run the WRF WFP is available at
https://doi.org/10.5281/zenodo.847780.
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