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Many organisms can remember locations they have previously visited during a search. Visual search
experiments have shown exploration is guided away from these locations, reducing redundancies in the search path
before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional
information during a search task. A position-encoding layer sustains a bump attractor corresponding to the
searching agent’s current location, and search is modeled by velocity input that propagates the bump. A memory
layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input
from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs
to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional
system of equations that track the bump position and front boundary. Performance is compared for different
target-finding tasks.

DOI: 10.1103/PhysRevE.96.062411

I. INTRODUCTION

Most motile organisms rely on their ability to search [1].
The processes of identifying habitats, food sources, mates,
and predators make use of visual search combined with spatial
navigation [2,3]. One guiding principle used to evaluate how
organisms implement search is the exploration-exploitation
tradeoff [4,5]. Exploiting one’s current position to search
locally has a low cost, whereas exploring by moving to another
search position has a higher cost but a potentially higher
reward [6]. Many organisms have developed search strategies
that attempt to manage this tradeoff in a robust way [7,8].
Mathematical models of search can quantify the resources
expended and yielded by different strategies, showing how
managing the explore-exploit tradeoff is key [9,10].

Memoryless stochastic processes are commonly used to
model the dynamics of searching organisms [11]. Such models
prescribe equations for an agent that moves according to pure
diffusion [12], mixed advection-diffusion [13,14], or even
local diffusion punctuated by large deviations in position [15].
None of these search strategies relies on information about pre-
vious locations the agent has visited. However, some studies,
particularly studies that focus on visual search, have examined
the impact of memory on random search processes [16]. There
is evidence suggesting organisms tend to guide their gaze
away from locations they have already examined [17,18], a
mechanism often called inhibition-of-return (IOR). While the
degree to which IOR facilitates exploration continues to be
debated [19–21], recent studies suggest return saccades to
previously visited locations are less frequent than they would
be for a memoryless search process [22].

Neural mechanisms underlying memory of previous visual
targets are relatively unknown, but function magnetic reso-
nance imaging (fMRI) studies in humans have shed light
on specific brain areas that might be involved [23]. One
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candidate region is the superior colliculus (SC), known to
be involved in oculomotor planning [24]. Unilateral lesioning
of SC disables IOR during visual search performed in the
visual hemifield linked to the damaged half of the brain [25].
Other oculomotor programming areas linked to IOR include
the supplementary eye field (SEF) and frontal eye field (FEF)
[26,27]. Detectable activation of these regions suggests models
of IOR should represent previous search locations using some
form of persistent neural activity. In this way, there is a
parallel between inhibitory tagging of previous locations and
working memory, which also engages persistent activity for
its implementation [28,29]. However, it remains unclear how
persistent activity might be initiated and utilized by a neural
circuit to successfully implement search guided by IOR.

There is also evidence that top-down signals guided by
biased competition can drive attention in a preferred direction
based on a decision-making process that selects relevant places
in a scene to look [34,35]. Visual search guidance can be
thought of as a spatially directed attention process, shaped by
neural activity in ventral stream areas [36,37]. These regions
are known to possess a topographic organization via individual
neurons’ receptive fields. For instance, both V4 [38] and SC
[39] are known to possess a retinotopic salience map that
guides visual search direction, so such areas are likely involved
in the oculomotor planning process. There are changes in
the neural activity in localized regions of V4 associated with
saccades to a particular part of the visual search area [40].
This suggests that there are likely multiple areas involved
in visual search planning and feedback, but in this initial
study we focus on a simple model that collapses the neural
underpinnings of search planning to a single area. There has
been extensive experimental work showing that propagating
patterns of neural activity are relevant to visual processing
[41–43], so it is reasonable to expect that the brain might
exploit such frameworks to guide visual search.

We develop a model of memory-guided search that stores
an agent’s present search location as well as previously visited
search locations. Our model consists of two neural field
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FIG. 1. Examples of search tasks. Effectively one-dimensional: (a) Find the number in the above quote from Bartleby the Scrivener by
Herman Melville (1853) [30]. (b) Bolded agent must find the restroom (R) among the food vendors (F) and gates (G) in a narrow airport
terminal. (c) Gopher must find its nest within a narrow network of underground tunnels [31]. Multidimensional: (d) Find Waldo among a crowd
of non-Waldo visual distractors [32]. (e) Student looking for their professor’s office in the multifloor (three-dimensional) Engineering Center
Office Tower at University of Colorado Boulder [33].

equations: One neural field layer captures the position of
the searcher and the other describes the memory of visited
locations. To systematically analyze our neural field model,
we focus on one-dimensional search tasks such as scanning
lines of text for a specific word [Fig. 1(a)]; searching a long
corridor [Fig. 1(b)]; or foraging in a tunnel system [Fig. 1(c)].
We idealize these examples by considering the problem of
searching along a one-dimensional segment or a radial arm
maze. After our analysis of the one-dimensional system, we
discuss how our model can be extended to two-dimensional
search tasks, such as finding an object in a picture [Fig. 1(d)]
or higher dimensions [Fig. 1(e)].

We proceed by presenting our one-dimensional model of
memory of visited spatial locations in Sec. II. This neural field
model suggests a basic neural circuit architecture for encoding
previously searched regions of a spatial domain. Subsequently,
we analyze the existence and stability of stationary solutions to
our model equations in Sec. III. The position of the searching
agent is represented by a stationary pulse (bump) solution in
the absence of velocity inputs, and the previously searched
region is bounded by two stationary front interfaces. Our
analysis provides us with intuition as to how model parameters
shape the spatial resolution and robustness of the memory
representation. After this, we carry out a low-dimensional
reduction of our model, so that we can capture its dynamics
by tracking the location of the bump and front interfaces
(Sec. IV). In fact, this captures the dynamics of the full neural
field quite well. Subsequently, we evaluate the performance of
memory-guided search, when the velocity inputs are shaped

by the previously visited locations stored in memory (Sec. V).
Memory-guided search does not improve the speed of searches
along a single segment but does improve search across multiple
connected segments, as in a radial arm maze. Lastly, we discuss
extensions to planar domains in Sec. VI.

II. MULTILAYER NEURAL FIELD MODEL

Our model of memory-guided search is composed of two
layers of stimulus-tuned neurons corresponding to locations
of the searching agent. This is mostly motivated by studies of
visual search [20], but there could be IOR mechanisms that
shape the search processes driven by organisms’ idiothetic1

navigation [1]. The first layer of the network encodes the
agent’s position [Fig. 2(a)], and is driven by velocity input,
which the network integrates (Sec. IV). This layer projects
to the second layer, which encodes a memory of locations
the agent has visited [Fig. 2(b)]. Closed-loop control of the
velocity input can be implemented using the memory and
position layer to determine the agent’s next search location.
We discuss this in more detail in Sec. V.

We employ a neural field model describing the population
activity of two layers: a position-encoding layer u(x,t), which

1Idiothetic literally means “self-proposition” (from Greek) and
describes the use of self-motion cues such as vestibular, optic flow,
or proprioception. Spatial navigation can be performed using purely
self-motion cues via path integration.
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FIG. 2. Multilayer neural field model describes neural computations involved in memory-guided search. (a) Searching agent (blue dot)
moves along a one-dimensional domain, storing a memory of its previously visited locations (red regions), expanding with time. (b) Multilayer
neural field model contains a position-encoding layer [u(x,t)] and memory-encoding layer [q(x,t)], representing previously visited locations.
Position-encoding layer u(x,t) receives a velocity input v(t), which is the searching agent’s true velocity, the product of a baseline search
velocity v̄(t) and a control signal χ (u,q) based on the memory of previously visited locations. Recurrent connections wu(x) within layer u(x,t)
sustain persistent bump of activity representing location, and this location information is relayed via feedforward connections wp(x) to layer
q(x,t). A front of activity is sustained in q(x,t) via recurrent connections wq (x,y). (c) Peak of bump in position layer [u(x,t)] represents agent’s
current position. Input to memory layer activates neural population [q(x,t)] that represent previously visited locations.

supports a bump attractor solution, and a memory layer q(x,t),
which supports stationary front solutions [Fig. 2(b)],

ut = −u + wu ∗ H (u − θu) − v(t)(w′
u) ∗ H (u − θu), (1)

qt = −q + wq ∗̄ H (q − θq) + wp ∗ H (u − θu). (2)

The neural fields u(x,t) and q(x,t) represent the normalized
synaptic input to the position-encoding and memory layers
over x ∈ (−∞,∞). Recurrent coupling in the position layer is
described by the convolution wu ∗ H (u − θu) = ∫ ∞

−∞ wu(x −
y)H (u(y,t) − θu)dy with weight function wu(x), whereas
velocity-modulation of coupling occurs through the convolu-
tion w′

u ∗ H (u − θu) = ∫ ∞
−∞ w′

u(x − y)H (u(y,t) − θu)dy. We
model the total velocity input v(t) as a product of a baseline
search velocity, v̄(t), and a control term χ (u,q) that describes
changes in velocity due to remembered locations. Thus, the
function χ (u,q) incorporates the memory of the current
position u(x,t) and previously visited locations q(x,t). Further
details on our choice of χ (u,q) are given in Appendix D.
The memory layer q(x,t) receives feedforward input via a
convolution involving the weight function wp(x), and its recur-
rent coupling is spatially heterogeneous, so wq ∗̄ H (q − θq) =∫ ∞
−∞ wq(x,y)H (q(y,t) − θq)dy. Each layer j has a Heaviside

firing rate function, H (u − θj ) = {1 : u � θj ; 0 : u < θj },
with its own constant threshold parameter θu and θq . We
discuss the model’s constituent functions in more detail below.

A. Position-encoding layer

Both the direction of visual gaze [44] and an animal’s idio-
thetic location [45] are known to be encoded by position-tuned
cells [46,47]. Network ensembles with excitatory coupling
between cells with similarly tuned stimulus preference and
effective inhibition between cells with dissimilar stimulus

preference generate localized packets of activity representing
location [48,49]. Together with well-accepted models of
velocity input to networks with positional memory [50],
this suggests a locally excitatory (wu > 0: |x − y| < r) and
distally inhibitory (wu < 0: |x − y| > r) weight kernel for the
recurrent connectivity of the position layer u(x,t), Eq. (1). We
consider the “wizard hat” [51,52], for explicit calculations:

wu(x) = (1 − |x|)e−|x|, (3)

so wu(x) > 0 when |x| < 1 and wu(x) < 0 when |x| > 1. The
Heaviside step nonlinearity in Eq. (1), H (u − θu), converts
synaptic input to output firing rate [53]. More nuanced firing
rate functions are possible but complicate calculations and
do not substantially alter the qualitative results [54]. Velocity
inputs are modeled by the final term in Eq. (1), which
propagates stationary bump solutions in the direction of the
time-dependent velocity v(t) [50]. This feature is ensured by
the form of the weight function w′

u(x) in the convolution,
which results in a translation of the bumps, as we demonstrate
in Sec. IV. Given the weight function Eq. (3), we have

w′
u(x) = −sgn(x)(2 − |x|)e−|x|,

where sgn(x) = ±1 if x ≷ 0 and sgn(0) = 0, so a jump
discontinuity arises at x = 0, which is mollified by the
integration in Eq. (1).

B. Memory layer

As we have discussed, IOR biases organisms’ search
strategy, so they are less likely to visit locations they have
already scanned [18,55]. We account for neural hardware
capable of storing visited locations over appreciable periods
of time (e.g., at least several seconds [20]). Note, the weight
kernel wq(x,y) in Eq. (2) is spatially heterogeneous, and
the scale of the heterogeneity may be set by environmental
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landmarks [56] or the spatial extent of receptive fields or
hypercolumns in the visual cortex [57]. Heterogeneity can
stabilize activity, pinning wavefronts to a stationary location
[58–60]. We assume spatial heterogeneity is periodic, given
by a cosine-modulated exponential:

wq(x,y) := [1 + σwh(y)]w̄q(x − y)

= [1 + σ cos(ny)]
e−|x−y|

2
, (4)

so the weight function is a homogeneous kernel w̄q(x − y)
modulated by a periodic heterogeneity wh(y). Varying the
amplitude σ increases the parameter range for which front
solutions are pinned. For perturbative results, we assume
0 < σ � 1. The parameter n sets the number of stable
conformations of wavefronts over the length 2π . Input from
the position layer is weak, as compared with local recurrent
connections, and excitatory,

wp(x) = I0
αe−α|x|

2
, (5)

so typically we assume 0 < I0 � 1. Varying the inverse spatial
scale α shapes the precision with which position information is
sent from the position layer to the memory layer. Changing α

has minimal impact on our qualitative results, so we set α = 1.
As mentioned, velocity v(t) is a nonlinear combination of

a baseline velocity v̄(t), which would guide the agent with no
memory-based feedback, and a control function χ (u,q), which
depends on both the position u(x,t) and the memory q(x,t)
layer activities. We discuss effects of this control in Sec. V,
where we examine performance of the model in two different
types of search tasks.

III. STATIONARY SOLUTIONS

We begin by studying the existence and stability of
stationary solutions of the neural field model, Eq. (1), (2), in the
case of no velocity input (v(t) ≡ 0) and strong input position
input and heterogeneity (I0 and σ arbitrary). Understanding
these stationary solutions, and the effect of the position layer
on the memory layer, provides us with insight needed to
project the neural field to a low-dimensional model that can
be more easily analyzed. Subsequently, we consider the effect
of closed-loop control on the velocity input based upon the
combination of position and memory layer activities.

A. Existence

We begin with the stationary equations associated with
Eqs. (1) and (2), finding

U (x) = wu ∗ H (U (x) − θu), (6a)

Q(x) = wq ∗̄ H (Q(x) − θq) + wp ∗ H (U (x) − θu). (6b)

Since the nonlinearities are step functions, we can simplify
Eq. (6) further by constraining the form of their solutions.
In particular, we look for solutions with simply connected
active regions in both layers: a bump in the position layer
and a stationary front in the memory layer. These assumptions
lead to the following conditions: U (x) > θu for x ∈ (a,b) and
Q(x) > θq for x ∈ (c,d). By construction, there will be two

interface locations in each neural field layer x = a,b in u(x,t)
and x = c,d in q(x,t). Often in studies of wave solutions to
neural fields, translation invariance is used to project out one of
the wave interface parameters [53]. However, in this case, the
position layer U (x) has translation symmetry, but the memory
layer Q(x) does not. Thus, to fully characterize qualitatively
different solutions, we must explore all solutions (a,b,c,d) to
the resulting reduced equations

U (x) =
∫ b

a

wu(x − y)dy, (7a)

Q(x) =
∫ d

c

wq(x,y)dy +
∫ b

a

wp(x − y)dy. (7b)

For specific choices of the weight kernels, the integrals in
Eq. (7) can be computed explicitly, easing the identification of
solutions. In particular, we use the kernels defined in Eqs. (3),
(4), and (5) and evaluate integrals to find that stationary
solutions take the form

U (x) = (x − a)e−|x−a| − (x − b)e−|x−b|, (8a)

Q(x) = F(x; c,d) + I0P(x; a,b), (8b)

where F and P are defined piecewise, according to the active
regions Rq ≡ (c,d) and Ru ≡ (a,b) as

F(x; c,d)=
⎧⎨
⎩
M+(x,d) − M+(x,c), x ∈ [d,∞],
C(x) − M+(x,c) − M−(x,d), x ∈ [c,d],
M−(x,c) − M−(x,d), x ∈ [−∞,c],

where C(x) = 1 + σ cos(nx)
n2+1 ,

M±(x,y) = e∓(x−y)

2

[
1 + σ

cos(ny) ± n sin(ny)

n2 + 1

]
,

and

P(x; a,b) = 1
2 [sgn(b − x)(1 − e−α|x−b|)

+ sgn(x − a)(1 − e−α|x−a|)],

where sgn(z) = ±1 if z ≷ 0 and sgn(0) = 0. Note that since
U (x) and Q(x) involve integrals over the smooth weight
functions wu, wq , and wp, this mollifies the discontinuities
in the Heaviside firing rates, so they will be continuously
differentiable but not twice differentiable. Together with the
threshold conditions U (a) = U (b) = θu and Q(c) = Q(d) =
θq , we have implicit equations for the interface locations:

θu = (b − a)ea−b, (9a)

θq = M−(c,c) − M−(c,d) + I0P(c; a,b), (9b)

θq = M+(d,d) − M+(d,c) + I0P(d; a,b). (9c)

Note that a degeneracy arises in the equation for the bump
interfaces a and b, due to the translation symmetry of
the position equation, Eq. (1). Since Eq. (9) contains a
mixture of transcendental functions, we do not expect to
solve explicitly for vector solutions (a,b,c,d). Thus, we will
employ a nonlinear root finder in order to construct associated
bifurcation diagrams.

We now demonstrate the mechanism by which fronts are
propagated in Eq. (2), via input from the position layer,
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FIG. 3. Dependence of stationary solutions on the input from the position layer. (a) For no position layer input (I0 = 0), there is a range of
memory layer threshold values θq (gray region), for which multiple stable (blue solid) and unstable (red dashed) standing front solutions exist.
Curves represent the location of the right interface d associated with the solution. Branches “snake” back and forth, turning at saddle-node
(SN) bifurcations (see also Ref. [60]). The left interface c is bounded to be between −2π and 0 (see main text), and we solve Eq. (9) to obtain
the left c and right interface d [see panel (d)]. (b) Weak input (I0 = 0.1, background gradient) from a bump centered at �u = 7.184 (near third
SN) shifts branches near the third SN, but weakly affects other branches. A stable solution near d ≈ 10 for θq = 0.4 remains (magenta dot).
(c) Weak input from bump centered at �u = 10.184 (near fourth SN) shifts branches near d ≈ 10, so nearby solutions for θq = 0.4 vanish.
[(d)–(f)] Stationary solution profiles associated with light dot in a [panel (d)]; magenta dot in b [panel (e)]; and magenta dot in c [panel (f)].
Solution from panel (d) is shown for reference in panels (e) and (f). Other parameters are θu = 0.2, θq = 0.4, α = 1, n = 1, σ = 0.3.

Eq. (1). This analysis uses bifurcation diagrams associated
with stationary solutions, but in Sec. IV we approximate
the dynamics of the bump and front interfaces to obtain a
low-dimensional system for the motion of the patterns in
each layer. Bifurcation curves and stationary solutions of
the model Eq. (1), (2) are shown in Fig. 3. Nonlinear root
finding applied to Eq. (9) is used to compute the bifurcation
curves, but the stability will be determined by a linear analysis
below. To clearly display solution curves, we have bounded
the left interface c of the front solution between [−2π,0].
Note that similar bifurcation curves would be obtained by
bounding c ∈ [−2(m + 1)π, − 2mπ ] for any positive integer
m. The location of the left interface c only marginally affects
the right interface, since interactions between the interfaces
are described by the function ec−d in Eq. (9), which will
typically be small. In Ref. [60], this was addressed by plotting
bifurcation diagrams showing the dependence of the width
Lf = d − c of the front, rather than the right interface d. For
our purposes, it is more instructive to track how d changes
with the location of the bump in the position layer.

The stationary solutions’ dependence on the memory layer
threshold θq and input from the position layer is shown in
Figs. 3(a)–3(c). The case of no input [I0 ≡ 0 in Eq. (9)]
is shown in Fig. 3(a). Note the metastability of solution
in the gray shaded region. Advancing the front interface to
subsequent stable branches is the main mechanism by which
previously visited locations are stored by the network. When
input from the position layer is applied to the memory layer
[Figs. 3(b) and 3(c)], it warps the solution curves in the vicinity
of the excitation. This can result in the annihilation of stable
solutions at lower values of θq [Fig. 3(c)]. We plot profiles

in Figs. 3(d)–3(f), demonstrating how solutions are identified
with their threshold intersection points. Note input from the
position layer is not sufficient to destabilize the input-free
solution in Fig. 3(e), but is in Fig. 3(f) since the input is
slightly ahead of the front interface. This is the mechanism by
which the memory layer’s front is propagated, once moving
bumps in the position layer are considered: The bump must be
ahead of the front interface to propagate it forward.

Next, we take a closer look at the bifurcation that occurs by
increasing the strength I0 of the input from the position layer to
the memory layer. In particular, we consider a one-sided front,
as this a fairly accurate approximation of the case d − c 
 1,
and we will utilize this observation in our low-dimensional
system we derive in Sec. IV.

B. One-sided front

Terms involving ec−d will tend to be quite small, even for
a modest difference between the two front interfaces (e.g.,
e−10 ≈ 4.54 × 10−5). Thus, we consider the case where c − d

is sufficiently large as to ignore the exponentially small term
ec−d , and focus specifically on using Eq. (9) to solve for the
right interface d. In this case, we can write

θu = (b − a)ea−b, (10a)

θq = 1

2
+ σ cos(nd) + nσ sin(nd)

2(n2 + 1)
+ I0P(d; a,b), (10b)

so that Eqs. (10a) and (10b) can be solved in sequence to
obtain bifurcation curves for d, similar to Fig. 3, except for
small differences arising for low values of d. As we also
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FIG. 4. Phase diagram showing the impact of the bump location �u and input amplitude I0 on the movement of a nearby front interface.
(a) Partition of (�u,I0) parameter space into regions where front propagates forward (white) and where it does not (black). Line shows analytical
approximation derived from Eq. (10) (see Appendix A). Mismatch arises due to dynamics’ strong sensitivity to discretization errors in the
numerical scheme for solving Eqs. (1) and (2). [(b), (c)] Numerical simulations of the full network, Eqs. (1) and (2), with a stationary bump
centered at �u = 6 (interfaces given by dashed lines). The position input amplitude is switched from I0 = 0 to I0 = 0.02 in panel (b) [blue
square in panel (a)] and I0 = 0.1 in panel (c) [red star in panel (a)] at t = 50 (light line). The front propagates for large enough I0 [panel (c)].
Color gradient denotes the values of q(x,t) in space x and time t . Other parameters are θu = 0.2, θq = 0.4, σ = 0.3, n = 1, and α = 1.

demonstrated in Fig. 3(c), increasing the strength of the input
I0 from the position layer to the memory layer can lead to
the annihilation of the pair of stable-unstable solutions via
a saddle-node (SN) bifurcation. We derive this curve of SN
bifurcations in Appendix A, identifying the point at which
the bend of the bifurcation curves in Fig. 3 cross through a
threshold value θq due to an increase of the input I0.

We compare our analytical results to numerical simulations
in Fig. 4. In particular, we study the input strength I0 necessary
to advance the location of the front in the memory layer to
the next stable branch of solutions [see Figs. 3(b) and 3(c)
for further illustration]. As the location �u of the bump
in the position layer is varied, the critical input strength
I c

0 at which the front in the memory layer advances varies
nonmonotonically [Fig. 4(a)]. At an intermediate value of
the bump location, I c

0 obtains a minimum. Thus, activity in
the memory layer propagates best when the bump is slightly
advanced as compared to the front location. Our results agree
well with numerical simulations. We demonstrate examples
of the front dynamics in the full systems, Eqs. (1), (2), in
Figs. 4(b) and 4(c). When I0 < Ic

0 , the front does not advance
to the next stable branch, but the front does advance if I0 > Ic

0 .
Next, we examine the linear stability of the solutions

computed above. In particular, we expect the eigenvalues
of front solutions Q(x) to equal zero at the SN bifurcation
points. Such solutions indicate boundaries at which I0 can be
changed to propagate the front from one stable branch to the
next.

C. Linear stability

The stability of stationary solutions, defined by Eq. (9), can
be determined by examining the evolution of small smooth
perturbations. This allows us to derive a set of linearized
equations, which can be analyzed to yield eigensolutions that
indicate the stability of the stationary bump and fronts derived
above.

We solve for the eigenvalues associated with linear stability
in Appendix B and plot the result in Fig. 5(a). The eigenvalue
λd corresponds to the response of fronts to translating
perturbations applied to the right front interface, close to
where the input from the bump layer is received. As expected,
the eigenvalue becomes zero at the endpoints of the stable
branch, annihilating in a SN bifurcation. Eigenfunctions

are determined directly from our linearized equations, after
solving for the eigenvalues (see Appendix B). The eigen-
function associated with λd is plotted in Fig. 5(b), showing
perturbations shift the location of the right front interface to
the right.

With knowledge of the mechanism by which the position
layer u(x,t) moves the memory layer front q(x,t), we now
derive low-dimensional approximations of the bump and front
motion. Our interface calculations track the location of the
bump �u(t) as well as the left and right locations of the
memory front �+(t) and �−(t) using a system of three
nonlinear differential equations.

IV. INTERFACE EQUATIONS

We now derive interface equations for the position layer
u(x,t) and the front layer q(x,t), starting with mild assump-
tions on the parameters and dynamics of the activity in each
layer. Strong assumptions of weak heterogeneity and inputs
will be used to simplify the form of our derived interface
equations. Interface equations reduce the dimensionality of

FIG. 5. Eigensolution for perturbations near the right interface
of the front at x = d . (a) Eigenvalue varies nonmonotonically for
different values of θq (correspondingly plotted vs d) along the stable
branch corresponding to those d values. As input amplitude I0 is
increased, the range of d values decreases and λd moves closer to
zero (see Appendix B). Cusp arises at boundary of input (bump
in position layer is centered at �u = 10.184). (b) Eigenfunction
φd (x) associated with perturbations of the right interface, x = d

(see Appendix B). Peak near x = d increases as the input amplitude
is increased I0. Shades correspond to input strength I0 as in panel
(a) Other parameters are σ = 0.3, α = 1, n = 1, c ∈ [−2π,0], and
θu = 0.2.

062411-6



NEURAL FIELD MODEL OF MEMORY-GUIDED SEARCH PHYSICAL REVIEW E 96, 062411 (2017)

our system due to the Heaviside form of the nonlinearities
in Eqs. (1) and (2), so that the threshold crossing points
u(x,t) = θu and q(x,t) = θq largely determine the dynamics
of the full system. Several authors have extended the seminal
work of Amari [48], who developed interface methods for
analyzing bump stability in neural fields, to handle more
complicated dynamics like fronts in heterogeneous networks
[59] and planar domains [61]. The details of the derivation of
the interface equations are given in Appendix C.

We can reduce the dynamics of Eqs. (1) and (2) to an integral
for the location of the bump, �u(t) = ∫ t

0 v(s)ds + �u(0), and
a pair of nonlinear differential equations for the right [�+(t)]
and left [�−(t)] front interfaces:

d�+
dt

= 1

|Q′(d)|
[
σ

cos[n�+(t)] + n sin[n�+(t)]

2(n2 + 1)

+ I0G(�+(t) − �u(t)) + 1

2
− θq

]
,

d�−
dt

= − 1

|Q′(d)|
[
σ

cos[n�−(t)] − n sin[n�−(t)]

2(n2 + 1)

+ I0G(�−(t) − �u(t)) + 1

2
− θq

]
, (11)

where G(�) = S(h − �) + S(� + h) and S(x) = sgn(x)
(1 − e−α|x|), and

|Q′(d)| = 1

2

[
1 + σ

cos(nd) + n sin(nd)

n2 + 1

]
.

We note a number of features of the full system Eqs. (1)
and (2) captured by the interface Eq. (11). First, in the absence
of any heterogeneity (σ = 0) or positional input (I0 = 0),
the front interfaces propagate at a speed approximated by
γd (1/2 − θq) on the right [�+(t)] and γc(1/2 − θq) on the left
[�−(t)]. Sufficiently strong heterogeneity (σ = σ c > 0) will
pin the front. Without any positional input (I0 = 0), the critical
value σ c that pins fronts is given by the σ such that the maxi-
mum of σ [cos(n�+) + n sin(n�+)] equals n2 + 1 − 2θq . This
occurs when σ c = [n2 + 1 − 2θq]/[cos T (n) − n sin T (n)]
for T (n) = 2 tan−1[(1 − √

n2 + 1)/n], corresponding to the
critical heterogeneity for wave propagation failure discussed in
Refs. [58,59]. Thus, we require σ > σc for the system to retain
memory of visited locations, which prevents front propagation
to the rest of the domain.

Our interface equations are compared with simulations of
the full model Eqs. (1) and (2) in Fig. 6. The evolution of the
bump interfaces in the positional layer u(x,t) [u(x±(t),t) = θu]
are captured well by x±(t) = �u(t) ± h [Figs. 6(a) and 6(c)].
We expect the mismatch arises as the result of our static
gradient approximation ux(x±(t),t) ≈ ±U ′(±h). The front
tracks previously visited locations of the bump, corresponding
to the active regions in the domain at time t [Figs. 6(b)
and 6(d)]. More regions are activated when the searcher
position enters an unvisited part of the domain. Otherwise, the
front solution remains stationary. Thus far, we have utilized
an open-loop velocity protocol, so that the velocity input to
the position layer does not receive feedback from the memory
layer.

Our low-dimensional approximation, Eq. (11), agrees
with numerical simulations. Thus, we have established a

FIG. 6. Interface equations approximate the dynamics of the full
neural field model, Eqs. (1) and (2). (a) Bump propagates across
the domain of the position layer, u(x,t), in response to a velocity
input defined v(t) = 0.3 on t ∈ [0,62.5) and v(t) = −0.3 on t ∈
[62.5,250]. Interfaces approximation �u(t) ± h (see Appendix C)
agrees well with the threshold crossing locations u(x±(t),t) = θu

of the full simulation, Eqs. (1) and (2). (b) Memory layer, q(x,t),
supports a front solution that propagates in response to the motion of
the bump in the position layer. Our interface approximation, �±(t),
given by Eq. (11) correspondingly tracks the left and right boundaries
of the visited regions of the searching agent. [(c), (d)] Enlarged
versions of the simulations in panels (a) and (b), showing slight
mismatches in the approximation that occur due to our truncations.
Color gradient denotes the values of u(x,t) and q(x,t) in space x and
time t . Parameters are θu = 0.2, θq = 0.4, n = 1, σ = 0.3, I0 = 0.2,
and α = 1.

mechanism by which a ballistic searcher may store a mem-
ory of previously visited locations. In the next section,
we analyze our reduced model and study search strategies
whereby an agent’s behavior depends on which regions it has
searched.

V. MEMORY-GUIDED SEARCH

Now, we study the impact of memory-guided control on
the efficiency of a searching agent with memory of previously
visited locations. We measure efficiency by calculating the
mean first passage time associated with absorption into the
target, which is commonly used to quantify search efficiency,
presuming the agent uses more resources with time [13,15].
More complicated measures of search efficiency are possible,
such as penalizing high search speeds, but we focus on the
simple passage time measure in this initial study. First, we
consider search along a single segment, and control speeds up
search when the agent arrives at a previously visited location.
Assuming stochastic discovery of targets, this reduces time
spent in previously visited locations. Interestingly, this does
not appear to reduce search time in single segments, and
the optimal search speed is the same whether in novel or
previous searched territory. Second, we consider a radial
arm maze, changing the geometry from a single segment to
multiple segments connected at one end. An IOR strategy is
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FIG. 7. Ballistically moving agent searches for a hidden target. (a) Searcher (dot) begins at the left edge (x = 0) of the domain (x ∈ [0,L]),
initially moving with speed v0 and then moving with speed v1 on all subsequent trips across. The target spanning x ∈ [xT − r,xT + r] is
stochastically discoverable according to the waiting time density p(t) = ρ2te−ρt (plot above), so if the waiting time exceeds Tv , the searcher
will not find the target on the current trip. (b) Plots of T̄ vs v0 = v1 (line) using Eq. (15) are nonmonotonic, revealing an interior optimum
that minimizes the average search time (circles). As the rate of target discovery ρ decreases, T̄ increases and the optimal v0 decreases. Theory
matches well with averages from 106 Monte Carlo simulations (dots). (c) Mean search time T̄ as a function of both v0 and v1, showing the
optimal choice (v0,v1) occurs when v0 = v1 ≈ 0.706 (circle) when ρ = 1. Other parameters are L = 100 and r = 1.

advantageous in this case, since it prevents the agent from
searching previously searched arms, in the initial exploratory
phase of the search. Our theory is compared to Monte Carlo
simulations of ballistic searcher model, which we describe
below.

A. Single segment

We begin by exploring memory-guided search in a single
segment. Avoiding previously visited locations will not work
in this case, since the searcher would be trapped at the end
of the segment, so we invoke a strategy whereby the searcher
changes speed when exploring a previously visited portion
of the segment. In Appendix D, we show that the effects of
the velocity feedback in the control term v(t) = χ (u,q)v̄(t)
can be mapped to a ballistically moving particle model of
a searcher. Effectively, we have reduced the neural field
model, Eqs. (1) and (2), to the interface Eqs. (11), which can
further be approximated by a particle model with switching
speeds. With this in mind, we can map the dynamics of
memory-guided search to a much simpler model we describe
below.

We model the agent’s search behavior as follows. The agent
enters a bounded interval x ∈ [0,L] from the left side (x = 0)
and searches ballistically at a constant speed, determined by
whether it is in the unsearched (v0) or searched domain (v1).
The finite-sized target has radius r and is centered at xT , so
it spans x ∈ [xT − r,xT + r] and r � xT � L − r [Fig. 7(a)].
The agent discovers the target stochastically, according to a �

distributed waiting time, �(t,ρ) = ρ2e−ρt . This is motivated
by the experimental observation that reaction times for visual
search over a small number of items are � distributed [62].
Thus, we think of this as a local approximation of the item
discovery dynamics. Such dynamics could arise for a two-stage
process whereby the searcher first realizes an object of interest
is nearby and then compares it with the target object from
memory. For velocity v, the agent is over the target for a time
Tv = 2r/v, so the probability of discovering the target on a
single trip is

Pv = ρ2
∫ Tv

0
te−ρtdt = 1 − (1 + ρTv)e−ρTv , (12)

and the associated conditional mean time to find the target
while over it is

Ta(v) = ρ2

Pv

∫ Tv

0
t2e−ρtdt

= 1

ρPv

[
2 − (

2 + 2ρTv + ρ2T 2
v

)
e−ρTv

]
. (13)

We now address the problem of finding the velocities
(v0,v1), corresponding to the novel and searched territory, that
minimize the time to find the target. The mean first passage
time can be derived analytically by tracking the probability
of absorption and accumulated search time at each target en-
counter. The calculation is presented in detail in Appendix D.
Ultimately, we find an expression for the generalized mean
first passage time in terms of the search velocities (v0,v1) and
domain length L, renormalized by the target radius

T̄ = L − 2

2v0
+ Pv0Ta(v0) + (1 − Pv0 )

[
L

v1Pv1

+
(

1 + L

2

)(
1

v0
− 1

v1

)
+ Ta(v1)

]
. (14)

Note, for constant speeds v1 = v0, Eq. (14) simplifies consid-
erably to

T̄ (v1 ≡ v0) = L

2Pv0v0
(2 − Pv0 ) + Ta(v0) − 1

v0
. (15)

As shown in Fig. 7(b), T̄ (v1 = v0) has an internal minimum,
which leads to the most rapid finding of the target. Notably,
in Fig. 7(c), we find there is no advantage in searching
more quickly (or slowly), once the domain has already been
searched: The search time is minimized when v1 = v0.

Thus, for single segments, memory guidance does not speed
up search in this particular paradigm. The optimal strategy
for minimizing the time to find the target is for the searcher
to maintain the same search speed throughout the exploration
process. We now demonstrate an alternative paradigm in which
memory-guided search does reduce the time to find the target.

B. Radial arm maze

Since search on a single segment is not aided by memory
guidance, we examine the case in which the agent must search
over a space with more complex topology. In particular, we
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FIG. 8. Ballistically moving agent searches a radial arm maze with a single target in a single arm. (a) Searcher (dot) begins at the center of
the maze and chooses a random arm k , k ∈ {1, . . . ,N} to search. Purely random search (rand) proceeds with the searcher always choosing 1
out of N total arm. Inhibition of return (IOR) guides searcher away from previously searched arms, so the first N arms chosen are the arms
k = 1, . . . ,N . (b) Inhibition of return leads to more rapid location of the target than purely random search [T̄rand > T̄IOR as in Eq. (19)]. Theory
(solid lines) matches 106 Monte Carlo simulations (dots) very well. Here N = 8. (c) Average time to find the target T̄IOR using IOR increases
with the number of arms, but note the optimal search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1,
and ρ = 1.

study the problem of the searcher finding a hidden target in
a radial arm maze [Fig. 8(a). This paradigm has been used to
test mammalian memory, requiring a combination of spatial
navigation, decision making, and working memory [63,64].
Rather than deriving a new neural field model and associated
interface equations on this more complex domain, we develop
a simpler model for memory of previously visited locations
using a metastable neuronal network with distinct populations
encoding each arm. The searcher begins at the center of
the maze with N arms that radiate outward, so locations lie
on the union of bounded intervals 1 ∪ 2 ∪ · · · ∪ N with
j = [0,L] for all j . The target lies within one of the arms k ∈
{1, . . . ,N} at a location xT ∈ [r,L − r] as before. Since our
previous analysis did not reveal an advantage to storing the spa-
tial structure of locations visited within a segment, we model
memory of visited arms by distinct bistable neural populations:

q̇j (t) = −qj (t) + H (qj − θq) + Ij (t), (16)

where Ij (t) = I0 > θq when the agent visits arm j and
Ij (t) = 0 otherwise. The variables qj (t) → 1 once arm j is
visited, and initially qj (0) = 0 for all j . If the searcher avoids
arms such that qj (t) > θq , they will only visit novel arms until
qj (t) → 1 for all j . Thus, Eq. (16) constitutes a discretized
version of Eq. (2). When the searcher is over the target, it
discovers it according to a � distributed waiting time. The
probability of discovering the target at each encounter is Pv ,
Eq. (12), and the conditional mean first passage time within
the target is Ta(v), Eq. (13).

We now derive the mean time to find the target, as in the
case of a single armed domain. In particular, we compare the
effects of IOR, where the searcher avoids previously explored
arms initially, as opposed to a memoryless selection of the
next arm to be searched. As mentioned, we assume the speed
of search is constant throughout the process |v(t)| ≡ v0 for
all t . Following the steps of our previous calculation (and see
also Ref. [65]), we find that (for r = 1) the average time for
a memoryless searcher to find a target placed uniformly on
xT ∈ [1,L − 1] on one of N radial arms is

T̄rand = 2L(N − 1)

v0
+ 2NL(1 − Pv0 )2

Pv0 (2 − Pv0 )v0

+ L(1 − Pv0 )

(2 − Pv0 )v0
+ L − 2

2v0
+ Ta(v0). (17)

On the other hand, a searcher that uses IOR to avoid previously
explored arms prior to all arms being searched finds the target
after an average time

T̄IOR = L(N − 1)

v0
+ 2NL(1 − Pv0 )2

Pv0 (2 − Pv0 )v0

+ L(1 − Pv0 )

(2 − Pv0 )v0
+ L − 2

2v0
+ Ta(v0), (18)

which appears nearly the same as the random search time T̄rand,
except that the leading factor is roughly half for T̄IOR. In fact,
T̄rand � T̄IOR for any N � 2, since

T̄rand − T̄IOR = L(N − 1)

v0
> 0, (19)

for N � 2. This theory agrees with Monte Carlo simulations
of the ballistic searcher [Fig. 8(b)], demonstrating the efficacy
of IOR in reducing the time to find the target. This effect
is stronger for mazes with more arms (higher N ) as the
total time to find the target [Fig. 8(d)] and the discrepancy
between IOR and random search increases with N . Note these
results do not depend strongly on the particular form of the
distribution of waiting times, as long as it is a unimodal peaked
distribution. However, for purely decreasing distributions like
an exponential, the optimal search strategy is to take the search
velocity v0 → ∞ which is unrealistic.

Our analysis of the neural field model has demonstrated
a plausible neural mechanism for memory-guided search,
persistent activity encoding previously searched regions. The
theory and simulations we have performed here for ballistic
searcher models has demonstrated that memory-guided search
does not appear to be advantageous in one-dimensional
domains composed of a single segment. However, multiple
segments adjoined at there ends can comprise more complex
domains like the radial arm maze, which do benefit from
inhibition of return (IOR). A searcher that avoids previously
searched segments will tend to find a randomly placed target
more quickly than a searcher that chooses subsequent arms
in a memoryless way. Since our low-dimensional theory was
derived from the full neural field equations, we expect that
stochastic simulations of the full neural field model would
yield qualitatively similar results. We discuss briefly how our
theory might be extended to planar domains.
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FIG. 9. Two-dimensional simulation of the neural field model, Eq. (20), describing the propagation of a coupled bump and front in a planar
domain. Evolution of the bump in the position layer u(x,t) is tracked by showing snapshots at (a) T = 0; (b) T = 90; and (c) T = 250. The
path of the agent is shown by the solid blue line. Motion of the bump layer is stored by the front layer q(x,t), which tracks the previously
visited locations of the bump at the same snapshots in time: (d) T = 0; (e) T = 90; and (f) T = 250. Parameters are θu = 0.2, θq = 0.45,
n = 1, σ = 0.3, υ = 0.3, and I0 = 0.3.

VI. EXTENSIONS TO TWO DIMENSIONS

Most visual and navigational search tasks tend to be in
spaces of two or more dimensions (see Figs. 1(d) and 1(e) and
Refs. [1–3]). In future work, we will extend our analysis of
our one-dimensional model, Eqs. (1) and (2), to an analogous
two-dimensional model. We expect there to be a wider variety
of control mechanisms that lead to an efficient use of memory
in guiding future search locations. Analysis of stationary
solutions in planar neural field models has been successful
in a number of cases [66–69], and there is a clear path to
extending interface methods to describe contour boundaries
that arise for solutions in planar systems [61].

Here we discuss a candidate model for memory-guided
search in two dimensions. In particular, we will demonstrate in
numerical simulations that such a model does result in a model
that can store previously visited locations in the plane. Memory
of a searching agent’s position and memory for previously
searched locations are captured by the following pair of neural
field equations on a planar domain:

ut = −u + wu ∗ H (u − θu) − v(t)(∇wu) ∗ H (u − θu),

qt = −q + wq ∗ H (q − θq) + wp ∗ H (u − θu), (20)

defined on x = (x1,x2)T ∈ R2. Recurrent coupling in the
position layer is described by the integral wu ∗ H (u − θu) =∫
R2 wu(x − y)H (u(y,t) − θu)dy, and the synaptic kernel is lat-

eral inhibitory and rotationally symmetric (wu(x,y) = wu(z),
z =

√
(x1 − y1)2 + (x2 − y2)2) comprised of a difference of

Bessel functions of the second kind [68]:

wu(z) =
4∑

k=1

ckK0(αkz),

with [c1,c2,c3,c4]=[5/3,−5/3,−1/2,1/2] and [α1,α2,α3,α4]
= [1,2,1/4,1/2]. Velocity input is given by a two-dimensional

vector v(t) = [v1(t),v2(t)]T , which translate bumps when
taking its dot product with the gradient of the weight
function ∇wu(r) = (∂x1 ,∂x2 )T wu(r), r = √

x2
1 + x2

2 . The het-
erogeneous connectivity function that pins the activity in the
memory layer is defined using the product of cosines and an
exponential:

wq(x,y) = [1 + σ cos(ny1) + σ2 cos(ny2)]
e−υd2

2π
. (21)

As in the one-dimensional case, the weight function is a
homogeneous kernel modulated by periodic heterogeneities.
We will demonstrate in numerical simulations that these het-
erogeneities can pin the expansion of wave fronts, analogous
to the stabilizing effects they have on stationary bumps in
planar neural fields [70]. Lastly, we consider an input term
from the position layer, applying feedforward input centered
at the location of the bump:

wp(d) = I0e
−υz2

.

We now demonstrate that this model is capable of generat-
ing a memory trace for previously visited regions of a searcher
exploring two-dimensional space. In Fig. 9, we demonstrate
the results from a numerical simulation of the neural field,
Eq. (20). A bump is instantiated in the position layer u(x,t),
and tracks the locations visited by an agent moving about
the domain [Figs. 9(a)–9(c)], evolving in response to velocity
inputs. The motion of the bump is reflected by the memory of
previously visited locations tracked by the front layer q(x,t)
[Figs. 9(d)–9(f)]. The activity in the front layer is stabilized
by the heterogeneity in the weight kernel, Eq. (21), as it was
in the one-dimensional case.

We now discuss a control mechanism that we conjecture
could lead to successful inhibition of return of a searcher with
position and memory layer activity described by Eq. (20). In
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FIG. 10. Inhibition of return is implemented when an agent
moves in the direction of the unexplored regions of the domain
. (a) The intersection of the bump layer’s active region Au(t) and
the complement of the active region Aq (t) is the region yet to be
searched (quarter section of circle) with center-of-mass xT (t) close to
the agent’s current location xP (t) (black dot). (b) The agent reorients
its velocity angle ϑ(t) in the direction of the unexplored region [xT (t)].

particular, the position and memory layers will have active
regions Au(t) and Aq(t) describing the area of superthreshold
within each [Fig. 10(a)}. From the active region Au(t), the
position center-of-mass xP (t) can be computed as the first mo-
ment. Second, the region Au(t) ∩ [\Aq(t)] describes where
the position layer’s activity intersects with the complement
of the memory layer’s activity, corresponding to unexplored
space. If we call the center of mass of this region xT (t), then
an IOR mechanism might work by having the searcher move
toward xT (t). Thus, the angle of the searcher’s velocity ϑ(t)
should constantly orient in the direction of xT (t) [Fig. 10(b)].

Note that the computations involved in determining a
gradient-descent type orientation of the searcher require
some linear readouts [71], divisive normalization [72,73], and
nonlinearities. Motor control circuits are capable of producing
outputs that correspond to a wide range of nonlinearities, for
example, built on summations of various nonlinear basis func-
tions [74]. Thus, we expect the computation we have outlined
above could be implemented as a closed-loop feedback from
the memory system onto a corresponding motor control circuit,
but we do not propose a specific neural architecture for doing
so here.

VII. DISCUSSION

We have demonstrated that a neural field model can store
previously visited locations in a search task with persistent
activity. In a one-dimensional model, feedforward connectivity
from a continuous attractor network that encodes position can
initiate memory-encoding activity in the form of stationary
fronts whose spatial resolution is determined by the frequency
of underlying synaptic heterogeneity (as in Ref. [60]). Anal-
ysis of stationary solutions demonstrates the mechanism by
which persistent activity expands in the memory layer is via
hysteresis. For sufficiently strong input from the position layer,
front positions in the vicinity of the position input undergo a
bifurcation, leading to a rapid transition of the front to an
adjacent stable location. We can capture the dynamics of these
two layers by a low-dimensional approximation that tracks the
interfaces of the front in the memory layer and the position of
the bump attractor in the position layer. This low-dimensional
model is leveraged to test the impact of memory-guided search.
We find that search along a single one-dimensional segment

is not aided by memory-guided search, but search in more
complex domains with distinct conjoined segments are. We
expect that our approach can be extended to two-dimensional
search processes, where memory-guided search is likely to be
advantageous in most situations.

Our work contributes a new application of interface
methods to neural field equations. Recently, the dynamics of
labyrinthine and spot patterns in two dimensions have been
captured by the low-dimensional projection of their interfaces
[61,69]. This method has two advantages. First, it can lead to
numerical simulation schemes that are an order of magnitude
faster than simulating the full system, since the dimensionality
of the dynamics can be reduced considerably. Second, it often
leads to systems that are analytically tractable, allowing for a
systematic study of both linear and nonlinear dynamics in the
vicinity of equilibria. We leveraged both of these advantages
in our work, since we were able to gain insight concerning
the mechanism by which the memory layer dynamics evolved.
Our work has shown that a searcher engaging memory from a
neural field model storing previous positions can be approxi-
mately mapped to a ballistically searching agent with velocity
evolving according to a memory-shaped jump process. This
provides a new and interesting link between neural fields and
low-dimensional models of stochastic search [13,14].

Extensive experimental work has been performed to un-
cover the neural mechanisms underlying visual search. In par-
ticular, there is strong evidence that topographically organized
ventral stream areas, such as V4, are involved in the memory
and future planning of search saccades [34,38,40]. However,
there have been few computational models that address the
organization of neural circuits that would engender effective
feedback between memory and search-planning brain regions.
More evidence is also needed to confirm the importance of
specific brain regions in oculomotor planning during visual
search [24,38]. Our model suggests that reversible inactivation
experiments may further shed light on which particular brain
regions are responsible for memory-guided search. As was
recently done to explore the functional significance of primate
dorsal stream area for decision making [75], behavioral
experiments in primates could be performed in the context
of visual search, where candidate motor planning areas are
temporarily inactivated. If the statistics of psychophysical
performance are significantly different, this would suggest
these areas play a role in the search guidance process. For
instance, our model predicts that when an agent encounters a
previously visited area in the visual field, the speed of their
search should increase or even be directed away, related to
recent results in Ref. [22].

Biophysical models of search tend to use memoryless
agents, particularly because this can make for straightforward
analysis and explicit results for quantities such as the mean
first passage time to find the target [15]. However, there is
evidence suggesting organisms employ memory of searched
locations to find hidden targets in both foraging [7] and visual
search [22] tasks. For this reason, we think it is worthwhile
to develop techniques for understanding search models in the
form of stochastic processes with various forms of memory.
Our study is a first step in the direction of both implementing
memory-driven stochastic search process in combination with
a proposed neural mechanism for their implementation.
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APPENDIX A: ONE-SIDED FRONT ANALYSIS

Here we derive the condition for saddle-node (SN) bifur-
cations in the one-sided front version of stationary solutions
to the full neural field model. As derived in the main text, we
have a reduced system

θu = (b − a)ea−b,

θq = 1

2
+ σ cos(nd) + nσ sin(nd)

2(n2 + 1)
+ P(d; a,b),

for the interfaces of the bump in the position layer (a,b), and
the right interface of the front d. We can identify a curve of
SN bifurcations in the reduced Eq. (10), corresponding to the
critical values of (I0,d) that lead to wave propagation.

Fixing the threshold θq , we can identify the critical I0 for
which a SN bifurcation occurs by simultaneously looking for
the interface location dc and I c

0 at which an extremum of the
right-hand side of Eq. (10b) occurs. In essence, this identifies
the point at which the bend of the bifurcation curves in Fig. 3
cross through a threshold value θq due to an increase of the
input I0. This requires, first, that Eq. (10b) is satisfied for
d = dc. Additionally, we require that the derivative of the
right-hand side Eq. (10b) with respect to d is zero since the
SN bifurcation occurs at a critical point of the solution curve.
This condition is given by the equation:

nσ

n2 + 1
[n cos(nd) − sin(nd)]+αI0

2
[e−α|d−a|−e−α|d−b|] = 0,

which can be solved explicitly for the critical input strength I c
0

in terms of the interface location dc at the bifurcation:

I c
0 = 2nσ

α(n2 + 1)

sin(ndc) − n cos(ndc)

e−α|dc−a| − e−α|dc−b| . (A1)

Plugging Eq. (A1) into Eq. (10b), we obtain the following
implicit equation for the critical location of the interface, given
the critical input I c

0 :

θq = 1

2
+ σ

cos(ndc) + n sin(ndc)

2(n2 + 1)

+ 2nσ

α(n2 + 1)

sin(ndc) − n cos(ndc)

e−α|dc−a|−e−α|dc−b| P(dc; a,b). (A2)

Equation (A2) further simplifies in the case where the input is
ahead of the interface dc < a < b, so that

2α

σ
(n2 + 1)

(
θq − 1

2

)
= (α − 2n2) cos(ndc)

+ (α + 2)n sin(ndc),

which can be solved explicitly,

dc = 2

n

[
tan−1

(√
A2 + B2 − C2 + B

A + C

)
+ mπ

]
,

for m ∈ Z, where A = α − 2n2, B = (α + 2)n, and C =
2α
σ

(n2 + 1)(θq − 1
2 ). A similar set of explicit solutions can be

obtained for the case a < b < dc, so that

dc = 2

n

[
tan−1

(√
A2 + B2 − C2 − B

C − A

)
+ mπ

]
.

We cannot solve the case a < dc < b explicitly, but it can
easily be evaluated using numerical root finding.

APPENDIX B: LINEAR STABILITY

The stability of stationary solutions, defined by Eq. (9),
can be determined by examining the evolution of spa-
tiotemporal perturbations, ε[ψ(x,t),φ(x,t)], 0 < ε � 1, to
the original stationary solutions [U (x),Q(x)]. We examine
linearized equations associated with the perturbed solu-
tions u(x,t) = U (x) + εψ(x,t) and q(x,t) = Q(x) + εφ(x,t).
Plugging these into the original evolution Eqs. (1) and (2), for
v(t) ≡ 0, and truncating to O(ε), we obtain

ψt = −ψ + wu ∗ [H ′(U − θu)ψ],

φt = −φ + wq ∗ [H ′(Q − θq)φ] + wp ∗ [H ′(U − θu)φ].

(B1)

The spectrum of the associated linear operator is found by
examining the evolution of the separable solutions ψ(x,t) =
eλtψ(x) and φ(x,t) = eλtφ(x). Furthermore, the convolutions
in Eq. (B1) are localized, since they involve derivatives
of H (U (x) − θu) = H (x − a) − H (x − b) and H (Q(x) −
θq) = H (x − c) − H (x − d), which are

δ(x − a) − δ(x − b) = dH (U − θu)

dx
= H ′(U − θu)U ′,

δ(x − c) − δ(x − d) = dH (Q − θq)

dx
= H ′(Q − θq)Q′,

which can be rearranged to find

H ′(U (x) − θu) = 1

|U ′(a)| [δ(x − a) + δ(x − b)],

(B2a)

H ′(Q(x) − θq) = δ(x − c)

|Q′(c)| + δ(x − d)

|Q′(d)| , (B2b)

where

U ′ = wu(x − a) − wu(x − b),

Q′ =
∫ d

c

dwq(x,y)

dx
dy + wp(x − a) − wp(x − b).

We can assume even symmetry of the bump solution U (x), but
not the front solution Q(x). Applying the identities in Eq. (B2)
to Eq. (B1) along with separability, we obtain the following
system for the spectrum of the underlying linear operator:

(λ + 1)ψ = γa[wu(x − a)ψ(a) + wu(x − b)ψ(b)], (B3a)

(λ + 1)φ = γa[wp(x − a)ψ(a) + wp(x − b)ψ(b)]

+ γcwq(x,c)φ(c) + γdwq(x,d)φ(d), (B3b)

where γ −1
a = |U ′(a)|, γ −1

c = |Q′(c)|, and γ −1
d = |Q′(d)|.

There are two classes of solution to Eq. (B3). First, all
solutions ψ(a) = ψ(b) = φ(c) = φ(d) = 0 lie in the essential
spectrum and λ = −1, which contributes to no instabili-
ties. Solutions that do not satisfy the condition ψ(a) =
ψ(b) = φ(c) = φ(d) = 0 can be classified by the vector
[ψ(a),ψ(b),φ(c),φ(d)]. In this case, the functions [ψ(x),φ(x)]
are fully specified by their values at (a,b,c,d). This leads to
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the linear system

(λ + 1)ψ(a) = γa[wu(0)ψ(a) + wu(b − a)ψ(b)],

(λ + 1)ψ(b) = γa[wu(b − a)ψ(a) + wu(0)ψ(b)],

(λ + 1)φ(c) = γa[wp(c − a)ψ(a) + wp(c − b)ψ(b)]

+ γcwq(c,c)φ(c) + γdwq(c,d)φ(d),

(λ + 1)φ(d) = γa[wp(d − a)ψ(a) + wp(d − b)ψ(b)]

+ γcwq(d,c)φ(c) + γdwq(d,d)φ(d). (B4)

Since Eq. (B4) is in block triangular form, the eigenvalue
problem can be separated in to diagonal blocks [76]. The
upper left block yields a two-by-two eigenvalue problem with
eigenvectors [ψ(a),ψ(b)] [48,53,77]:

(λ + 1)ψ(a) = γa[wu(0)ψ(a) + wu(b − a)ψ(b)],

(λ + 1)ψ(b) = γa[wu(b − a)ψ(a) + wu(0)ψ(b)],

leading to the following characteristic equations for the
associated eigenvalues:

U(λ) =
∣∣∣∣λ + 1 − γawu(0) −γawu(b − a)

−γawu(b − a) λ + 1 − γawu(0)

∣∣∣∣

= λ

[
λ − 2wu(b − a)

wu(0) − wu(b − a)

]
= 0.

The other two-by-two system corresponds to eigenvectors of
the form [φ(c),φ(d)]:

(λ + 1)φ(c) = γcwq(c,c)φ(c) + γdwq(c,d)φ(d), (B5a)

(λ + 1)φ(d) = γcwq(d,c)φ(c) + γdwq(d,d)φ(d), (B5b)

with corresponding characteristic equation

Q(λ) =
∣∣∣∣λ + 1 − γcwq(c,c) −γdwq(c,d)

−γcwq(d,c) λ + 1 − γdwq(d,d)

∣∣∣∣
= λ2 + Q1λ + Q0 = 0,

where Q0=[γcwq(c,c) − 1][γdwq(d,d) − 1] − γcγdwq(c,d)
wq(d,c) and Q1 = 2 − γcwq(c,c) − γdwq(d,d). Clearly, the
roots of U(λ) = 0 are λ0 = 0 and λw = 2wu(b − a)/[wu(0) −
wu(b − a)], the typical stability classification of bumps in
neural fields with Heaviside firing rates [48,53]. The zero
eigenvalue indicates the translation symmetry of the bump, and
the generically nonzero eigenvalue λw represents the stability
of the bump in response to width perturbations, determined
by the sign of wu(b − a). We are interested in the linear
stability characterized by Q(λ) = 0. These eigenvalues can
be determined explicitly assuming (a,b,c,d) and Q′(x) are
known by applying the quadratic formula

λ± = 1
2

[−Q1 −
√
Q2

1 − 4Q0
]
. (B6)

Neutral stability of the front occurs when Reλ+ = 0. Past work
showed these are SN bifurcations [60], so we expect λ+ = 0.
Placing this condition on Eq. (B6) yields Q0 = 0, and

[γcwq(c,c) − 1][γdwq(d,d) − 1] = γcγdwq(c,d)wq(d,c).

For front interfaces that are far apart d − c 
 1,
|wq(c,d)|,|wq(d,c)| � 1. These terms scale exponentially
with the distance d − c, so their product will be smaller, and we
approximate Eq. (B5) as a diagonal system with eigenvalues
λd := λ+ = γdwq(d,d) − 1 and λc := λ− = γcwq(c,c) − 1.
Focusing on bifurcations that emerge at the right interface
near x = d, we expect the SN bifurcation to occur when
λd = 0 or wq(d,d) = |Q′(d)|. This is identical to the condition
we derived above for the location of SN bifurcations for a
single-interface front.

The associated eigenfunction is determined by plugging
λd = λ+ into Eq. (B4), solving the linear system for the
degenerate eigenvector [ψ(a),ψ(b),φ(c),φ(d)], and using
the full linear system Eq. (B3) to determine the shape of
[ψ(x),φ(x)].

APPENDIX C: DERIVING THE INTERFACE EQUATIONS

To start, we define the active regions of both layers, Au(t) =
{x|u(x,t) > θu} and Aq(t) = {x|q(x,t) > θq} where the output
of the firing rate nonlinearities will be nonzero, allowing us to
rewrite Eqs. (1) and (2) as

ut + u =
∫

Au(t)
wu(x − y)dy − v(t)

∫
Au(t)

w′
u(x − y)dy,

qt + q =
∫

Aq (t)
wq(x,y)dy +

∫
Au(t)

wp(x − y)dy, (C1)

and since we expect the active regions to be simply connected,
we specify

Au(t) = [x−(t),x+(t)], Aq(t) = [�−(t),�+(t)].

Assuming continuity of u(x,t) and q(x,t), the boundaries of
Au,q(t) describe the interfaces of the bump and front. Thus,
we write the dynamic threshold equations

u(x±(t),t) = θu, q(�±(t),t) = θq. (C2)

Differentiating Eq. (C2) with respect to t , we find

α±(t)
dx±
dt

+ ∂u(x±(t),t)
∂t

= 0, (C3a)

β±(t)
d�±
dt

+ ∂q(�±(t),t)
∂t

= 0, (C3b)

where we have defined

α±(t) = ∂u(x±(t),t)
∂x

, β±(t) = ∂q(�±(t),t)
∂x

.

We obtain differential equations for the dynamics of the
interfaces x±(t) and �±(t) by rearranging Eq. (C3) and
substituting Eq. (C1) in to yield

dx±
dt

= − 1

α±(t)

[∫ x+(t)

x−(t)
wu(x±(t) − y)dy

± v(t)(wu(0) − wu(x+(t) − x−(t))) − θu], (C4a)

d�±
dt

= − 1

β±(t)

[∫ �+(t)

�−(t)
wq(�±(t),y)dy

+
∫ x+(t)

x−(t)
wp(�±(t) − y)dy − θq

]
. (C4b)
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To further simplify Eq. (C4), we assume x+(t) − x−(t) ≈
b − a, based on our linear stability analysis showing bumps
are stable to width perturbations, but marginally stable to
position perturbations. This is means we assume u(x,t) ≈
U (x − �u(t)), so the neural activity variable is roughly
a temporal translation of a stationary bump [78]. In this
case, the first integral term in Eq. (C4) and θu cancel.
Thus, wu(0) − wu(x+(t) − x−(t)) ≈ |U ′(a)|. We also approx-
imate the spatial gradients using the stationary solutions,
α−(t) ≈ U ′(a), α+(t) ≈ U ′(b), β−(t) ≈ Q′(c), and β+(t) =
Q′(d). Such an approximation will hold in the limit of
small changes to the spatial gradient of the bump and front
interfaces, u(x,t) = U (x) + ε�(x,t) + O(ε2) and q(x,t) =
Q(x) + ε�(x,t) + O(ε2), since then ux(x,t) = U ′(x) + O(ε)
and qx(x,t) = Q′(x) + O(ε). Since the terms inside the brack-
ets of Eq. (C4b) are O(ε), performing an O(1) approximation
of ux and qx constitutes a linear approximation of the dynamics
of �±(t). This combination of approximations leads to a
simplified set of interface equations. The edges of the bump
propagate according to the velocity input

x±(t) =
∫ t

0
v(s)ds + x±(0), (C5)

so we assign �u(t) = [x+(t) + x−(t)]/2 to be the location of
the bump in the position layer, and

�u(t) =
∫ t

0
v(s)ds + �u(0),

where assuming x+(t) − x−(t) ≈ b − a = 2h, x±(t) =
�u(t) ± h. The front interface equations are then
approximated with the stationary gradient assumptions
discussed above:

d�+
dt

= γd

[∫ �+(t)

�−(t)
wq(�+(t),y)dy

+
∫ �+(t)−�u(t)+h

�+(t)−�u(t)−h

wp(y)dy − θq

]
,

d�−
dt

= −γc

[∫ �+(t)

�−(t)
wq(�−(t),y)dy

+
∫ �−(t)−�u(t)+h

�−(t)−�u(t)−h

wp(y)dy − θq

]
, (C6)

where γ −1
c = |Q′(c)| and γ −1

d = |Q′(d)|, so �u(t) integrates
the weak velocity input, and the front interfaces �±(t) interact
nonlinearly with the location of the bump.

To simplify Eq. (C6) further, we compute integrals, re-
calling wq(x,y) and wp(x) are given by Eqs. (4) and (5).
The corresponding integrals are essentially the same as those
evaluated in Eqs. (6) and (8). The resulting formulas simplify,
since we are only examining the dynamics along the interfaces:

d�+
dt

= γd

[
σ

cos[n�+(t)] + n sin[n�+(t)]

2(n2 + 1)

+ I0G(�+(t) − �u(t)) + 1

2
− θq

]
,

d�−
dt

= −γc

[
σ

cos (n�−(t)) − n sin (n�−(t))
2(n2 + 1)

+ I0G(�−(t) − �u(t)) + 1

2
− θq

]
,

where G(�) = S(h − �) + S(� + h) and S(x) = sgn(x)
(1 − e−α|x|), and e−|�+−�−| ≈ 0, assuming large interface
separation. Assuming �+ − �− 
 1 also allows us to ap-
proximate the spatial gradients γc = γd , so it suffices to use
Eq. (10b) in the weak input, I0 � 1, limit, yielding

d = 2

n
tan−1

(√
σ 2 + n2σ 2 − (2θq − 1)2(n2 + 1)2 + nσ

σ + (2θq − 1)(n2 + 1)

)
,

up to periodicity, so that

γ −1
c = γ −1

d = −Q′(d) = 1

2

[
1 + σ

cos(nd) + n sin(nd)

n2 + 1

]
.

APPENDIX D: BALLISTIC SEARCHER MODEL

1. Approximating interface model with control

We map the activities of the position u(x,t) and memory
(q(x,t)) layers directly onto a velocity variable:

v(t) = χ [u(x,t),q(x,t)] · v̄(t), (D1)

so that v̄(t) is an open-loop component of the velocity control,
not subject to the internal neural activity variables. The open-
loop component is then modulated by a closed-loop control
χ (u,q) with evolution equation

τχ χ̇ (t) = 2〈H (u − θu),H (q − θq)〉[(χ+ − χ (t)]

−〈H (u − θu),1〉[χ− − χ (t)], (D2)

where 〈F,G〉 = ∫ ∞
−∞ F (x)G(x)dx, so when the position layer

totally overlaps with the memory layer, both inner products
equal �u(t), the width of the bump. The steady state control
input in this case of total overlap is χ (t) → 2χ+ − χ−, whereas
when the position layer does not overlap with the memory
layer, χ (t) → χ−. The parameters χ± are fixed and thus
determine the maximal and minimal possible value of the
control feedback function χ (t). Search will speed up (slow
down) when the agent is in a location it has already visited for
χ+ > χ− (χ−/2 < χ+ < χ−). In this way, memory of previous
positions can guide search.

Now, to analyze the impact of this memory-guided search
strategy, we consider the limit of the interface Eq. (11) in
which a searcher starts in the left side of a bounded domain.
All our calculations to this point assumed x ∈ (−∞,∞), an
approximation to the case of large bounded domains of length
L 
 1 we analyze now. In this case, the left interface �−(t)
is irrelevant. Furthermore, we study the limit in which the
position input dominates the dynamics. Taking θq → 1/2,
σ → 0 and assuming a velocity with constant amplitude to
start |v(t)| = v0, we then have

d�+
dt

= γdI0G(�+(t) − v0t)

by plugging into Eq. (11), where we have |�u(t)| = v0t .
Switches in the direction of the velocity occur when the agent
encounters the boundary of the domain, v(t) �→ −v(t). The
agent begins moving rightward: v(t) = v0 > 0. The corre-
sponding phase shift between the front interface position and
the bump position is � = v0t − �+(t), so �+(t) = v0t − �.
We thus expect constant velocity solutions for �+(t) as long
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as the condition

v0 = γdI0G(−�)

holds for some phase shift �. Note also since we are using
closed loop control, this solution will only be valid if v0 is the
constant velocity to which the control loop has equilibrated.
Self-consistency of Eqs. (D1) and (D2) then requires v0 =
χ̄0 · v̄, where

χ̄0 = 2max(h − �,0)χ+ − 2hχ−
2max(h − �,0) − 2h

,

where h is the half-width of the bump in the position layer.
Once the domain has been searched, the control variable is
updated to χ̄1 = 2χ+ − χ−, and we thus define v1 = χ̄1 · v̄.
Since the parameters χ± can be tuned to give any pair (v0,v1),
we focus on the limit τχ → 0, and assume the agent employs
these two search velocities, depending on a novel or searched
regime.

2. Single-segment mean first passage time

Here we present the calculation of the generalized mean first
passage time for an agent searching along a single segment.
The first visit to the target occurs after TL(v0) = (xT − r)/v0.
During the first pass over the target, the searcher discovers the
target with probability Pv0 , Eq. (12), with conditional mean
time within the target Ta(v0), Eq. (13). The time between the
first and the second visits is TR(v0) + TR(v1), where TR(v) =
(L − xT − r)/v, and the probability of finding the trap during
the next visit is Pv1 with mean time Ta(v1). Subsequent times

and probabilities are computed similarly, and the time spent
searching scales linearly with the length of the searcher’s path.
Using geometric series, we compute the mean time to find the
target by marginalizing over all possible visit counts

T (xT ) = TL(v0) + Pv0Ta(v0) + 1 − Pv0

2 − Pv1

[
2L

v1Pv1

+ (1 − Pv1 )

(
Tv0+TR(v0)+TL(v1)+Ta(v1)− L

v1

)

+ Tv0 + TR(v0) + TR(v1) + Ta(v1) − 2L

v1

]
. (D3)

The generalized mean first passage time is given by
integrating over the range of possible target locations
xT , assuming a uniform probability of placement: T̄ =

1
L−2r

∫ L−r

r
T (xT )dxT . Since the only terms in Eq. (D3)

that depend on xT are TL(v) and TR(v), we need only
compute T̄L(v) = 1

L−2r

∫ L−r

r
xT −r

v
dxT = L−2r

2v
and T̄R(v) =

1
L−2r

∫ L−r

r
L−xT −r

v
dxT = L−2r

2v
, and we rescale space, so it is

in units of the radius r . This is equivalent to setting r = 1
in Eq. (D3), and considering spatial parameters in units of r ,
which yields

T̄ = L − 2

2v0
+ Pv0Ta(v0) + (1 − Pv0 )

[
L

v1Pv1

+
(

1 + L

2

)(
1

v0
− 1

v1

)
+ Ta(v1)

]
.
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