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Abstract

Quantum mechanical phases arising from a periodically varying Hamiltonian are considered.

These phases are derived from the eigenvalues of a stationary, “dressed” Hamiltonian that is able

to treat internal atomic or molecular structure in addition to the time variation. In the limit of

an adiabatic time variation, the usual Berry phase is recovered. For more rapid variation, non-

adiabatic corrections to the Berry phase are recovered in perturbation theory, and their explicit

dependence on internal structure emerges. Simple demonstrations of this formalism are given, to

particles containing interacting spins, and to molecules in electric fields.
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I. INTRODUCTION

Any quantum mechanical system in a stationary state accumulates a dynamical phase

over time proportional to the energy of that state. To determine energy differences, based on

phase differences accumulated between two such states, is the basis of Ramsey spectroscopy;

the workhorse of high-precision measurement. For this reason, small effects that can add

spurious phase shifts must be understood and kept under control.

One such variety of spurious phases arises when the states of interest are not strictly

stationary. If the total Hamiltonian H(t) has an explicit time dependence, then this depen-

dence will generate an additional phase evolution. For example, precision spectroscopy of

trapped ions must contend with the fact that the ions are in motion, and experience varying

ambient fields during the course of their orbit. Likewise, ultracold atomic samples confined

in an optical dipole trap experience, in principle, an oscillating electric field due to the laser

field that provides the trapping potential.

In the case of a Hamiltonian with a slow, periodic time dependence H(t+τ) = H(t), Berry

[1] has given a famous description of the additional phase. Berry’s original treatment requires

that the period τ be far larger than any other relevant time scale of the system, and thus finds

an “adiabatic” phase shift. This shift is largely independent of the detailed way in which

the Hamiltonian varies with time, and leads to an elegant geometric description of the phase

[1, 2, 3, 4, 5, 6, 7]. Extensions to this formalism have considered the next-order corrections

if the rate of change of the Hamiltonian is not strictly adiabatic [8, 9, 10, 11, 12, 13, 14].

A more general Floquet theory has also been advanced, which allows one to consider the

effect of overtones of the fundamental period τ [14, 15, 16]. In addition, the ideas have been

extended to particles with dynamic properties [17], gauge structure [18], the Quantum Hall

Effect [19], and to relativistic effects using the Dirac equation [20].

Thus far, applications of the Berry phase have mostly considered the effect of the time-

dependence on quantum mechanical particles without internal structure, although atoms

with two or several levels have been considered [16, 21, 22]. However, the job of precision

spectroscopy is precisely to reveal this internal structure. Corrections to Berry’s phase aris-

ing from degrees of freedom internal to an atom or molecule is our concern in this article.

To establish a concrete formalism for this, we will consider a particular case, namely, a dia-

magnetic or electrically polar species in the presence of a magnetic or electric field, whose
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FIG. 1: The axis of rotation with laboratory-fixed coordinates {ξ, η, ζ} as well as the field coor-

dinates defined by {x, y, z}. The field direction rotates about the ζ-axis with angular frequency

ωr.

direction precesses on a cone with an angular frequency ωr (see Fig. I). The system evolves

in time according to the field variation, combined with whatever intrinsic Hamiltonian gov-

erns the particle’s internal structure. The internal structure dictates regimes of linear and

quadratic Zeeman (Stark) shifts with respect to the applied magnetic (electric) field.

A main point in deriving the non-dynamic phase in this situation is to recognize the

periodicity of the driving field. By analogy to the periodic driving of a near-resonant laser

field applied to a two-level atom, we consider “field-dressed” states of the Hamiltonian in

the spirit of quantum optics [22, 23]. This viewpoint effectively counts the energy of the

atom itself, plus that of the photons of frequency ωr arising from the driving field. The

additional energy shift due to the rotating field is then equivalent to the ac Stark effect in

optics. By constructing the complete Hamiltonian in this way, we are able to accommodate

the particle’s internal structure. We are also able to consider arbitrary rates of rotation,

not just those that are adiabatic with respect to the particle’s Hamiltonian. Nevertheless,

in what follows we will focus primarily on results for low rotation rates, to better draw

analogies with the usual adiabatic phase.

This article is structured as follows. In Sec. II we work out the general transformation
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from a Hamiltonian with an explicit time-rotating field, into an effective dressed Hamiltonian

whose eigen-energies yield the shifted energies. We illustrate this transformation first with

a simple two-level atom, then generalize it to an arbitrary atom or molecule. In Sec. III

we briefly re-visit a structureless particle with arbitrary total spin, showing that our results

reduce to Berry’s in the limit of slow rotation. Sec. IV illustrates the application of the

method to a particle composed of two interacting spin-1/2 objects, to show most clearly the

effect of their fine structure on the Berry phase. Finally, Sec.V considers a simple case of a

dipolar molecule in a rotating electric field, to assess the influence of molecular end-over-end

rotation on the phase.

II. DERIVATION OF THE DRESSED STATES

This section lays the ground work for the formalism. It is composed of two subsections.

The first works out the derivation for a spin−1/2 system in a rotating magnetic field, and will

illustrate simply and cleanly the basic idea. The second subsection contains a generalization

of this same derivation to explicitly account for an arbitrary quantum mechanical object

with total spin j.

A. Spin−1/2 interaction

The most elementary of quantum mechanical objects is the spin−1/2 particle. Its inter-

action with a time-dependent magnetic field is

H(t) = −~µm · ~B(t). (1)

There are two coordinate systems that we will find useful, the lab-fixed Cartesian coordinates

labeled (ξ, η, ζ); and a coordinate system (x, y, z) rotating with the magnetic field, where

ẑ = B̂ (see Fig. I). In the lab-fixed frame the field rotation is given by its components

~B(t) = (Bξ(t),Bη(t),Bζ(t))

= B (sin θr cosωrt, sin θr sinωrt, cos θr) , (2)

where φ = ωrt. The field makes an angle θr with respect to the lab-fixed ζ axis, which is

also the axis it rotates about. In other words we identify a vector ~ωr = ωrζ̂, the axis defining

the field’s rotation.
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The spin-field interaction has its own characteristic frequency,

− ~µm · ~B =
gµBB

2
~σ · B̂ ≡ ~

2
ωL~σ · B̂, (3)

in terms of the Pauli matrices ~σ and the (m-independent) Larmor frequency ωL = gµBB.

g is the usual g-factor; e.g. g ≈ 2.0023 for the simple case of the spin-1/2 electron. The

eigen-energies of the non-rotating spin-field interaction are ±~ ωL/2. By causing the field

to rotate, we expect to find apparent energies that are different from these. From this point

forward we shall work in atomic units and set ~ = 1.

In this simple example, we can easily cast the Hamiltonian in matrix form, using the basis

of spin functions |mζ = ±1/2〉, with quantization along the ζ−axis. These states themselves

are then independent of time, which would not be the case if we used the eigenstates referred

to the (moving) magnetic field. Using the explicit forms for the Pauli matrices, we get

H(t) =
ωL

2





cos(θr) sin(θr) e
−iωrt

sin(θr) e
iωrt − cos(θr)



 . (4)

While this basis seems cumbersome it is quite useful for the dressed-state calculation we

wish to perform.

We begin in the most general way by writing an ansatz wave function in this basis:

|ψ(t)〉 =





α(t)e−iω+t

β(t)e−iω−t



 , (5)

where we leave the frequencies ω± unspecified for now. We note a very similar development

has recently been carried out by the authors of Ref. [24] for a two-level system. The constants

will be chosen later to cancel any time dependence in the system. The wave function |ψ〉
satisfies the time-dependent Schrödinger equation (TDSE)

i
∂|ψ〉
∂t

= H(t)|ψ〉. (6)

Inserting the ansatz (5) into the TDSE yields the equation of motion for α and β. This new

equation introduces terms which amount to a kind of effective Hamiltonian due to rotation.

Moving these to the RHS of the TDSE, we get

i
∂

∂t





α

β



 =





+ωL

2
cos θr − ω+

ωL

2
sin θre

−i(ωr+ω−−ω+)t

ωL

2
sin θre

i(ωr+ω−−ω+)t −ωL

2
cos θr − ω−



 . (7)
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Formally, this is still a time-dependent Hamiltonian unless we use the freedom in choosing

the frequencies ω± to get rid of this dependence. We could achieve this by setting

ωr + ω− = ω+. (8)

There are many ways to accomplish this, but a particularly symmetric and appealing one is

to let

ω± = ±ωr

2
, (9)

or, even more to the point,

ωmζ
= mζ ωr (10)

for each angular momentum projection mζ along the rotation axis. This last statement is

very general, and will motivate our choice of wave function in the spin-j case below.

In any event, we are presented with a formally time-independent Hamiltonian, dressed

by the rotation:

Hdressed = Hnr +Hr, (11)

where the magnetic-field part, in the laboratory-fixed |mζ〉 basis, looks like

Hnr =
ωL

2





cos(θr) sin(θr)

sin(θr) − cos(θr)



 , (12)

and is exactly the same as having the magnetic field tilted at an angle θr with respect to

the quantization axis in the direction of the x-axis, as specified by φ = ωrt = 0. Rather, the

vestiges of rotation show up in the effective term

Hr =
ωr

2





−1 0

0 +1



 = −diag(mζ ωr). (13)

Now that we have a time-independent Hamiltonian we write




α(t)

β(t)



 =





α0

β0



 exp(−iλt), (14)

where λ is the effective, or dressed, eigen-frequency of the “stationary” state defined by

Hnr +Hr. λ is, in other words, the eigenvalue of Hdressed:

λ± = ±1

2

√

ω2
L − 2ωLωr cos(θr) + ω2

r . (15)
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Thus the apparent energy difference, measured by the phase difference accumulated during

a hold time τ , would be (λ+ −λ−)τ = φ+ −φ−, rather than the (ω+1/2 −ω−1/2)τ = ϕ+ −ϕ−

that would measure the intrinsic energy splitting. The difference between these two we

attribute to a Berry-like phase in each state defined as (where we assume the dynamical

phase is unaffected by the rotation)

γ± = φ± − ϕ±, (16)

where φ (ϕ) is the total (dynamic) phase of the system. This removes the dynamical phase

ϕ that would have been accumulated in the absence of rotation. Hence γ/τ represents the

error introduced by the field’s rotation into a measurement of the state’s energy.

The dressed eigen-energies are actually independent of whether or not the time τ refers

to one period of the rotating field. To connect explicitly to Berry’s phase, let τ = 2π/ωr

be one period of the field’s rotation. Berry’s phase results when the field rotation is slow,

i.e. when the frequency of the rotating field is small compared to the Larmor precession

frequency of the spin. If we assert that ωr ≪ ωL, then the spin is expected to precess around

the instantaneous field direction, and to follow this direction during the rotation of the field.

In this limit the dressed-state eigenvalue of one state, say λ+, is

λ+ ≈ ωL

2
− ωr

2
cos(θr). (17)

In a period τ the additional phase accumulated by this state is (see (16))

γ
(0)
+ ≈ −1

2
ωrτ cos(θr)

≈ π − 1

2
(2π) cos(θr). (18)

Here we have used the freedom to add π to the phase, which amounts to an unobservable

overall change of sign of the dressed eigenstate (α0 β0).

The ordinary dynamical phase ϕ = ωLτ is canceled out in (18) leaving only the terms

due to the slow rotation of the field. This remainder can be written

γ(0) =
1

2
(2π)(1 − cos(θr)) =

1

2
∆Ω ⇒ m∆Ω, (19)

where

∆Ω =

∫ 2π

0

dφ

∫ θr

0

sin(θ)dθ = 2π(1 − cos(θr)) (20)

7



is the solid angle subtended by the vector describing the direction of the rotating field. In

other words, this additional phase γ(0) is exactly Berry’s phase m∆Ω, for a particle with

spin projection m = 1/2 along the ζ̂-axis. Similarly, for the m = −1/2 state there arises an

additional phase −(1/2)∆Ω.

We have cast the Hamiltonian H in (11) in the basis where angular momentum projection

along the rotation axis ω̂r = ζ̂ is a good quantum number. Yet, in the limit of slow rotation

that is particularly important, the relevant states are those where m is quantized along the

field axis. We should therefore cast H in the basis of states |sm〉 quantized along the field

axis, which we call the ẑ-axis (see Fig. 1).

Using the ansatz (5), our dressed Hamiltonian represents a Hamiltonian Hnr that is

already diagonal in this basis, and reads

Hnr =
ωL

2





1 0

0 −1



 (21)

To cast the rotational piece Hr in this basis, we make explicit the notation |s mζ〉 for spin

states quantized along the rotation axis ζ̂; and |s m〉 for spin states quantized along the field

axis ẑ. The rotation from ζ̂ to ẑ is accomplished through the Euler angles R = (0, θr, 0).

The transformation from |s mζ〉 to |s m〉 is given by [25]

|s m〉 = D(R)|s mζ〉 (22)

=
∑

m′

ζ

|s m′
ζ〉〈s m′

ζ |D(R)|s mζ〉

=
∑

m′

ζ

|s m′
ζ〉Ds

m′

ζ
mζ

(R). (23)

The Wigner rotation matrices have a simple explicit form:

Ds
m′

ζ
mζ

(0, θr, 0) = e−im′

ζ
0ds

m′

ζ
mζ

(θr)e
−imζ0, (24)

where

d
1/2
1/2,1/2 = d

1/2
−1/2,−1/2 = cos

(

θr

2

)

(25)

d
1/2
−1/2,1/2 = −d1/2

1/2,−1/2 = sin

(

θr

2

)

. (26)
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Using the fact that Hr is diagonal in the rotation basis with values −mζωr, it is easily verified

that, in the rotating-frame basis,

Hr =
ωr

2





− cos(θr) − sin(θr)

− sin(θr) cos(θr)



 . (27)

Therefore, the Hamiltonian matrix referred to the field axis is

H = Hnr +Hr (28)

=





ωL

2
− ωr

2
cos θr −ωr

2
sin θr

−ωr

2
sin θr −ωL

2
+ ωr

2
cos θr



 . (29)

And this matrix gives has the same eigenvalues as (15), as is expected when one merely

performs a unitary transformation on the system.

In this basis, the Hamiltonian is already diagonal in the absence of rotation. Thus for a

small rotation it is nearly diagonal, and the eigenvalues are easily estimated in perturbation

theory. Indeed, Berry’s energy follows immediately from the diagonal perturbations in this

matrix: it is −(ωr/2) cos(θr) for m = +1/2, and +(ωr/2) cos(θr) for m = −1/2.

To summarize, for a Hamiltonian of the form H(t) that we have been dealing with, the

rotation-dressed energies are given by the eigenvalues of the time-independent operator

Hdressed = H(t = 0) − ωrsζ = H(t = 0) − ωr (cos(θr)sz − sin(θr)sx) . (30)

For more general systems incorporating internal structure, all that is required is to include

the appropriate structure in H(t = 0), as we will now see.

B. A general spin-j system

Having provided the groundwork by working out the simple spin-1/2 system, we now

proceed with a general derivation for the spin-j system. A system such as this can be

described by the following Hamiltonian

H(t) = H0 − ~µ · ~F(t), (31)

where ~F(t) is an external field, electric or magnetic, that acts on an appropriate moment ~µ

of the atom or molecule. ~F rotates on a cone at frequency ωr and tilt angle θr just as ~B did
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in the previous section and depicted in Fig. I. Here H0 is a Hamiltonian in the absence of the

applied rotating field. It can be used to describe the hyperfine elements of an atom or it can

be a detailed molecular Hamiltonian that includes such items as rotation, spin-spin, nuclear

spin, or lambda doubling. The Hamiltonian can equally be represented in a basis referred to

the axis of rotation or to the instantaneous field axis. Later we will take the instantaneous

field axis, just as we did above. We will, as in the previous section, begin by quantizing

along the axis of rotation. We take this structured object and place it in a rotating field ~F ;

this can be either electric or magnetic provided there is an electric or magnetic dipole that

interacts with the field in the usual way, i.e. it is a scalar interaction of two vectors.

To work with this Hamiltonian, it is again convenient to pick two basis sets:

|(κ)jmζ〉

|(κ)jmj〉 (32)

Because j is the total of all relevant angular momenta, its projection onto an axis is unam-

biguously defined as mζ in the lab fame and mj in the rotating frame, as above. Here κ is

a shorthand notation for all the other quantum numbers required to specify the state.

To deal with the explicit time dependence of the field rotation, we will expand into the

lab basis first, and will make the same trial wave function that was motivated above;

|ψ(t)〉 =
∑

κ′,j′,m′

ζ

Cκ′,j′,m′

ζ
e−im′

ζ
ωrt|(κ′)j′m′

ζ〉. (33)

We have explicitly included a time dependent phase factor with phase mζωr, which is akin

to the spin-1/2 case, cf. (10). Taking the time derivative for the TDSE and projecting onto

a particular state, gives

〈(κ)jmζ|i
d|ψ〉
dt

=
(

iĊκ,j,mζ
+mζωrCκ,j,mζ

)

e−imζωrt. (34)

As for the internal Hamiltonian H0, it may or may not be diagonal in our basis, but it does

not depend on any external field. Therefore it can be represented in a basis where it is

diagonal in mζ , whereby

〈(κ)jmζ |H0|ψ〉 =
∑

κ′,j′,m′

ζ

ei(mζ−m′

ζ
)ωrt〈(κ)jmζ|H0|(κ′)j′m′

ζ〉Cκ′,j′,m′

ζ
δmζ ,m′

ζ
(35)
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To treat the field interaction, we use the language of tensor algebra, and express the

spherical components of ~F in the lab frame as an explicit rotation from ~F in the rotating

frame (whose z axis is, of course, defined by the instantaneous direction of ~F itself):

Fι =
∑

ι

FqD1⋆
ιq (ωrt, θr, 0)

= FD1⋆
ιq (ωrt, θr, 0). (36)

F is the magnitude of the field, and q is its spherical projection in the rotating frame. But ~F
defines this frame so only the values of q = 0 will contribute. D is a Wigner rotation matrix.

In a similar manner, the dipole moment ~µ is determined by its spherical components such

that

− ~µ · ~F = −
∑

ι

(−1)ιµιF−ι

= −F
∑

ι

(−1)ιµιD1∗
−ι0(ωrt, θr, 0)

= −F
∑

ι

µιe
−iιωrtd1

−ι0(θr). (37)

This uses the explicit expression for D in terms of a little-d function [25].

Just as we treated the internal degrees of freedom in H0 we must now treat the field

interaction.

〈(κ)jmζ | − ~µ · ~F|ψ〉 = −F
∑

κ′j′m′

ζ
ι

(−1)ι〈(κ)jmζ |µι|(κ′)j′m′
ζ〉 ×

Cκ′,j′,m′

ζ
d1
−ι0(θr)e

iωrt(−ι−m′

ζ
). (38)

Piecing together the different parts, and multiplying through by eimζωrt, we arrive at the

TDSE for the coefficients C:

iĊκ,j,mζ
+ ωrmζCκ,j,mζ

=
∑

κ′,j′

〈(κ)jmζ |H0|(κ′)j′mζ〉Cκ′,j′,mζ
−

F
∑

κ′j′m′

ζ
ι

(−1)ι〈(κ)jmζ |µι|(κ′)j′m′
ζ〉Cκ′,j′,m′

ζ
×

d1
−ι0(θr)e

iωrt(−ι−m′

ζ
+mζ). (39)

Now, we have not specified what field ~F is, nor which structural degrees of freedom are

involved in making the dipole ~µ, and it does not matter. All that matters is that ~µ is
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a vector, in which case the Wigner-Eckhart theorem applies [25]. In the total angular

momentum basis, we must have

〈(ν)jmζ |µι|(ν ′)j′m′
ζ〉 ∝





j 1 j′

−mζ ι m′
ζ



 , (40)

where the proportionality constant involves the reduced matrix element. Then the con-

servation of angular momentum implies that m′
ζ − mζ = −ι. However, this immediately

removes the time-dependence in the exponential term in (39). In fact, as alluded to earlier,

this statement says that any angular momentum imparted by the rotating field must be

accounted for in the projection mζ .

In some cases it will prove more useful to keep track of the individual spin components

mζi separately. For instance, suppose there were two angular momenta, mζ1 and mζ2: we

would have two projection terms that would each evolve as ei mζ1ωrt and ei mζ2ωrt. Terms in

the Hamiltonian which describe the interaction of the two spins are of the form ~s1 · ~s2 for

which we find scales as

〈s1 mζ1 s2 mζ2|~s1 · ~s2|s′1 m′
ζ1 s

′
2 m

′
ζ2〉 ∝





s1 1 s′1

−mζ1 p m′
ζ1









s2 1 s′2

−mζ2 −p m′
ζ2



 ei (mζ1−m′

ζ1
)ωr tei (mζ2−m′

ζ2
)ωr t. (41)

The proportionality involves a reduced matrix element. By the conservation of angular

momentum we find that mζ1−m′
ζ1 = −(mζ2−m′

ζ2) and the phase factor is still canceled out.

In fact, for any such interaction between two spins, the conservation of angular momentum

forces the time dependence to cancel out.

With the time-dependence removed, Eq. (39) reduces to the Schrödinger equation for a

non-rotating field tilted at an angle θr from the rotation axis, just as in the spin-1/2 example

in the prior subsection. This introduces an additional term on the left of (39), which is moved

to the RHS and interpreted as an effective Hamiltonian. Thus if H0 is presented in the basis

|(κ)j mj〉 diagonal with respect to the field, then the matrix to be diagonalized is

Hdressed = H0 − ~µ · ~F − ωrmζ

= H0 − ~µ · ~F − ωrjζ , (42)

where mζ is the eigenvalue of the jζ operator. As before, we can rotate this Hamiltonian

from the mζ basis to the mj basis. Since H0 does not depend on the either mζ or mj , it is
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unaffected by this rotation. In the frame of the instantaneous field where mj is the good

quantum number, we can write the dressed Hamiltonian as

Hdressed = H0 − ~µ · ~F − ω̂r ·~j,

= H0 − ~µ · ~F − ωr(cos(θr)jz − sin(θr)jx). (43)

This dressed Hamiltonian is the main result of this article. This Hamiltonian has been

previously formulated in NMR studies [26]. In the following sections we will apply it to

several elementary cases of interest.

III. PURE SPIN-s SYSTEM

As the simplest application of the general method beyond the spin-1/2 particle, we con-

sider in this section a structureless particle of arbitrary spin s, as was considered in the

original formulation of Berry [1]. This spin interacts with a magnetic field that rotates at

an angle θr with respect to the axis of rotation. Using the result from (43), this system is

described by the Hamiltonian

Hdressed = ωLsz − ωr(cos(θr)sz − sin(θr)sx), (44)

where ωL = gsµBB is the m-independent Larmor precession frequency and gs is the g-factor

for the spin-s. For this section, we have reverted to the usual notation s and m for the spin

and it’s projection onto the instantaneous field axis.

For this structureless particle, the Hamiltonian (44) is represented by a (2s+1) × (2s+1)

tridiagonal matrix, in the basis of states |sm〉. This matrix is explicitly given by

H =























m a b(s,m) 0 0 . . .

b(s,m) (m− 1) a b(s,m− 1) 0
...

0 b(s,m− 1)
. . .

. . . b(s,−m+ 1)
... 0 b(s,−m+ 1) −(m− 1) a b(s,−m)

. . . 0 0 b(s,−m) −m a.























, (45)

where a = ωL − ωr cos(θr) and b(s,m) = (1/2)
√

s(s+ 1) −m(m− 1) ωr sin(θr). Appendix

A sketches a derivation of the eigenvalues of this matrix, which are

λm = m
√

ω2
L + ω2

r − 2ωrωL cos(θr), (46)
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where m takes on the values −s, . . . ,+s in integer steps.

The usual Berry phase is obtained in the adiabatic limit where ωr ≪ ωL, in which case

λm ≈ mωL −mωr cos(θr). (47)

The magnetic field completes one rotation in a time τ = 2π/ωr. In this time the spin

accumulates a dynamical phase ϕm = mωLτ . Beyond this, it acquires an additional phase

γm = φm − ϕm, where φm = λmτ , given to lowest order by

γ(0)
m = −m2π cos(θr) ⇒ 2πm(1 − cos(θr)). (48)

In the final step, we use the fact that adding 2 π m (where m is either integer or half-integer)

amounts to adding an unobservable phase of ±1 to the system. We see that the phase γ
(0)
m

accumulated is exactly that given by the result of Berry; m times the solid angle subtended

by the rotation. We can also extend this solution to regimes of non-adiabaticity. The first

order correction in ωr/ωL is

γ(1)
m = 2π m

ωr

2ωL
sin2(θr), (49)

which has already been identified elsewhere [8, 14]. Based on our explicit formula, we can

extract corrections to any desired order, at least for fields undergoing the simple motion

in Fig. I. This additional phase can be expanded to any desired order in the adiabatic

parameter ωr/ωL. For example, the second and third-order γ(k) corrections are

γ(2)
m = 2πm

ω2
r

2ω2
L

cos(θr) sin2(θr) (50)

γ(3)
m = 2πm

ω3
r

16ω3
L

(3 + 5 cos(2θr)) sin2(θr) (51)

Using the general dressed formalism, the limit of fast field rotation can also be described.

The phase γm (after one field period) can be approximated in this limit (ωr ≫ ωL):

γm ≈ 2πm− 2πm
ωL

ωr
cos(θr), (52)

and the first term is unobservable. In this case the dominant energy, as manifested in the

phase, is the photon energy due to the time-periodic field. On top of this, the magnetic field

interaction itself makes a small correction. This is clearly not the appropriate limit in which

to perform precision spectroscopy, since small uncertainties in the field rotation rate would

dominate the observable Larmor frequency.
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The structureless spin problem can be solved analytically for arbitrary rotation rates since

the spin precesses about an effective magnetic field in the rotating coordinate system [27].

The effective magnetic field makes an angle with respect to the positive ζ-axis, θ∗r , satisfying

sin(θ∗r) =
sin(θr)

√

1 − 2 ωr

ωL
cos(θr) +

(

ωr

ωL

)2
,

cos(θ∗r) =
cos(θr) − ωr

ωL
√

1 − 2 ωr

ωL
cos(θr) +

(

ωr

ωL

)2
. (53)

This angle smoothly transitions from θ∗r ≈ θr for ωr ≪ ωL to θ∗r ≈ π for ωr ≫ ωL. Equiv-

alently, the angular deviation, ∆θr = θ∗r − θr, between the effective magnetic field and the

true magnetic field can be described through

sin(∆θr) =
ωr

ωL
sin(θr)

√

1 − 2 ωr

ωL
cos(θr) +

(

ωr

ωL

)2
,

cos(∆θr) =
1 − ωr

ωL
cos(θr)

√

1 − 2 ωr

ωL
cos(θr) +

(

ωr

ωL

)2
, (54)

where this deviation smoothly transitions from ∆θ∗r ≈ 0 for ωr ≪ ωL to ∆θ∗r ≈ π − θr for

ωr ≫ ωL.

The total phase shift, φm = ϕ⋆
m +γ⋆

m, accumulated during one revolution of the magnetic

field can be broken up into a dynamic contribution, ϕ⋆
m, and a geometric contribution, γ⋆

m,

where [26, 28, 29]

ϕ⋆
m = 2πm

ωL

ωr
cos(∆θr),

γ⋆
m = 2πm (1 − cos(θ∗r)) . (55)

ϕ⋆
m and γ⋆

m are slightly different than the phases defined in Eq. (16). In this definition, both

the dynamical phase and the geometric phase acquire non-adiabatic corrections. In the limit

of very slow rotation ωr, we have that ϕ⋆
m → ϕm. Grouping terms together and simplifying

provides the total accumulated phase φm:

φm = 2πm



1 +
ωL

ωr

√

1 − 2
ωr

ωL
cos(θr) +

(

ωr

ωL

)2


 ,

= 2πm



1 +

√

1 − 2
ωL

ωr
cos(θr) +

(

ωL

ωr

)2


 . (56)
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The total phase shift arrived at in this geometrical way is the same as the dressed state

derivation — (2π/ωr)λm, where λm is defined in (46) — apart from a factor of 2πm, which

is unobservable for integer or half-integer values of m. This is a semi-classical geometric

procedure that yields the non-adiabatic corrections to Berry’s result.

For the above calculations, we have taken ~µ = −gsµB
~S and ωr to have a positive sense

about the ζ-axis. For the single revolution phase shifts, γ
(i)
m , terms proportional to odd

powers of ωr/ωL change sign when the g-factor changes sign, while terms proportional to even

powers of ωr/ωL change sign when the sense of rotation changes sign. For the expressions

defining the angle, θ∗r , and angular deviation, ∆θr, changing the sign of the g-factor (sense

of rotation) directly changes the sign of ωL (ωr).

A spectroscopic measurement would involve finding the energy difference between two

states with different values of m, with difference ∆m. In a Ramsey-type experiment, this

measurement seeks to measure the phase difference ωL∆mτ = ∆ϕ. In a rotating field, how-

ever, the experiment will produce a measurement of ∆φ = ∆m
√

ω2
L + ω2

r − 2ωLωr cos(θr)τ ,

and thus will introduce an error. This error is given by the difference ∆γ = γm − γm′ =

∆φ − ∆ϕ, and is plotted in Fig. III as a function of rotation rate. The different curves

represent different values of the tilt angle θr.

IV. STRUCTURED SPIN-J SYSTEM

More generally, atoms and molecules are composite objects made of individual spins,

which are moreover coupled together to create fine or hyperfine structure. For example,

alkali atoms couple the electronic and nuclear spins into a total hyperfine state. The resulting

angular momentum structure will have a bearing on the non-adiabatic corrections to the

geometric phase accumulated.

As a simple illustration of our formalism, we consider a composite particle composed of

two spin-1/2 objects. This example goes beyond the structureless particle often envisioned

by the usual Berry theory. The dressed Hamiltonian is given by

Hdressed = ω1j1z + ω2j2z + ∆~j1 ·~j2 − ωr(cos(θr)Jz − sin(θr)Jx), (57)

where ωi = giµBB is the Larmor precession frequency of spin ji; ~J is the vector sum of ~j1

and ~j2; and ∆ is parameter that governs the splitting between levels J = 0 and J = 1.
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FIG. 2: The extra phase accumulated due to the rotation of the field. In the limit of very fast

rotation, ωr ≫ ωL, the system accumulates a phase of 4π, which is unobservable. In this limit, the

states are best represented by projections onto the axis of rotation. The various lines represent

values of θr between π/2 (bottom line) and 0 (top line) in steps of π/10. As can be seen, when θr

is zero, there is no measurable phase shift, since there is no enclosed solid angle.

The Hamiltonian (57) can be represented by a 4×4 matrix, in the basis {|(j1 j2)J MJ〉} =
{

|(1
2

1
2
)0 0〉 , |(1

2
1
2
)1 1〉, |(1

2
1
2
)1 0〉, |(1

2
1
2
)1 − 1〉

}

Hdressed =















−3∆
4

0 1
2
(ω1 − ω2) 0

0 ∆
4

+ ωZ − ωr cos(θr)
ωr√

2
sin(θr) 0

1
2
(ω1 − ω2)

ωr√
2
sin(θr)

∆
4

ωr√
2
sin(θr)

0 0 ωr√
2
sin(θr)

∆
4
− ωZ + ωr cos(θr)















, (58)

where ωZ = 1
2
(ω1 + ω2), is the average of the individual Larmor frequencies. The first

item to note is that if the two spins have identical Larmor frequencies, ω1 = ω2, then

this Hamiltonian is equivalent to that of a spin-0 particle and a spin-1 particle that are

independent of each other, there is no coupling between the two states. Each would then

evolve according to the previous section on pure spins. This would be the case for the singlet

and triplet excited states of the helium atom, (1s2s)1,3S state, for example. However, should

these spins be different from one another (such that ω1 6= ω2) then coupling corrections arise.

The ordinary adiabaticity criterion specifies that the rotational frequency ωr be small

as compared to the Larmor precession frequency ωL, which in this example is given by
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ωZ. However, now it becomes also necessary to specify whether the Larmor frequency itself

is large or small compared to the splitting ∆ between adjacent J-levels. This is because

the Berry phase arises from a correction to the eigenvalues of the dressed Hamiltonian

relative to the non-rotating Hamiltonian. It is therefore worthwhile to cast the non-rotating

Hamiltonian in the basis in which it is as diagonal as possible. In the following sections

we treat the two limits separately. Since our emphasis here is on the Berry-phase limit,

we consider only the limit where ωr ≪ ωZ, where the rotation rate of the field is small

compared to the Larmor frequency. The resulting phase shifts are of course implicit in the

theory, however.

A. Weak magnetic field, ωr ≪ ωZ ≪ ∆

In the low-field limit, but assuming that each Larmor frequency ωi is still far larger than

the rotational frequency ωr, we can write down expressions for the energy quite simply.

Note that in the absence of rotation, the leading-order energy shift is the sum of the Larmor

frequencies themselves, i.e., (1/2)(ω1 + ω2)MJ = ωZMJ . Leaving this correction on the

diagonal to break the degeneracy of the J = 1 level, we now treat as perturbations the

difference (1/2)(ω1 − ω2) and the rotation rate ωr.

Doing so, the leading-order correction due to rotation of the field is given by the diagonal

terms in (58) that contain the rotation rate ωr. This correction is the usual Berry phase

found above,

γ(0)(|J MJ〉) = −2πMJ cos θr, (59)

and it depends on the atomic state only through the total projection of angular momentum

MJ . Thus the ordinary Berry phase in the limit of zero rotation rate is still intact, and is

independent of the internal structure.

However, the higher order corrections do depend on this structure. To leading order in

the rotation frequency ωr, we find a correction to the Berry phase in the |(1
2

1
2
)1 1〉 state:

γ(1)(|11〉) = 2π
ωr

2ωZ
sin2(θr)

(

1 +
(ω1 − ω2)

2

4ωZ(∆ + ωZ)

)

. (60)

The first term is the usual first order correction for a structureless particle (cf. (49)), with

the replacement of ωL by ωZ. This should be expected since the energy splitting between
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the two states is given by ωZ, and thus is what must be overcome by the rotating field that

couples together the differing projections. The second term in the parentheses depends on

how strongly the rotating field couples states with differing total J , as manifested by ω1−ω2.

This new correction arises from 4th-order mixing in perturbation theory, it is nevertheless

linear in the adiabaticity parameter ωr/ωZ. A similar expression is found for the |1 − 1〉
state,

γ(1)(|1 − 1〉) = −2π
ωr

2ωZ
sin2(θr)

(

1 − (ω1 − ω2)
2

4ωZ(∆ − ωZ)

)

. (61)

As is expected from the pure spin case, this state picks up an overall negative sign. However,

due to slight changes introduced by the structure, we find a slightly different correction to

the second term in parentheses. In fact, we can write down an expression that encapsulates

the first order (in ωr/ωZ) correction as

γ(1)(|J MJ〉) = 2πMJ
ωr

2ωZ

sin2(θr)

(

1 +MJ
(ω1 − ω2)

2

4ωZ(∆ +MJωZ)

)

. (62)

While the first term is exactly of the form in (49), the second term describes how the

distant |J = 0,MJ = 0〉 state affects the accumulated first order phase γ
(1)
MJ

; namely that

the quadratic Zeeman shift in the two MJ = 0 levels distorts the system such that the

|J = 1,MJ = 1(−1)〉 state is affected more (less) by the |J = 1,MJ = 0〉 state.

The two states with MJ = 0 do not acquire a geometric phase at lowest order in ωr, which

is appropriate. In this case the leading order perturbation to the dressed Hamiltonian is

E
(±)
Z = ±[(1/2)(ω1 − ω2)]

2/∆, which denotes the quadratic Zeeman shift already present in

the non-rotating system, and which does not contribute to the Berry phase γ. The quadratic

shift after a period τ = 2π/ωr is the dynamical phase the MJ = 0 would nominally acquire.

To the first order in ωr in which there is a correction to the |J = 0,MJ = 0〉 state arises in

4th-order perturbation theory. It is given by

γ(1)(|0 0〉) = 2π
ωr

2∆
sin2(θr)

2E
(−)
Z

∆
(

1 −
(

ωZ

∆

)2
) , (63)

where as always the superscript “1” denotes a correction linear in ωr. Here we find a term

that appears similar to the MJ = 1 states, with the exception that it occurs in an MJ = 0

state. We have introduced a new energy scale into the problem by adding ∆ and this allows

the |0 0〉 state to acquire a first order Berry phase. However, the strength of this phase is

reduced by a term proportional to the ratio of the quadratic Zeeman shift in the lower level
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to the spin-spin energy splitting. Given our assumptions, this term — while linear in ωr —

is a product of multiple small parameters, and is generally smaller than γ(0) for MJ = ±1

states.

For the case of the |J = 1,MJ = 0〉 state, there is also a 4th-order correction, but it takes

a very different form. We find, after much algebra,

γ(1)(|1 0〉) = −2π
ωr

2ωZ
sin2(θr)

2E
(+)
Z

ωZ
. (64)

This is very different from the |0 0〉 state correction in (63). The important energy scale

is the linear Zeeman shift ωZ. Eqs. (63) and (64) carry an important insight; the energy

scale responsible for higher-order Berry phases is different for the two MJ = 0 states. The

dominant scale in the |0 0〉 is the spin-spin splitting ∆. In the |1 0〉, the dominant energy

scale is the linear Zeeman shift. To first order in ωr, there is a correction to the MJ = 0

states that, while similar to the shift in the |MJ | = 1 states, is reduced in magnitude. This

reduction is due to the structure, the structure that provides a quadratic Zeeman shift in the

MJ = 0 states. For the lower (upper) level, the correction depends on the relative strength

of the quadratic Zeeman shift to the spin-spin splitting (linear Zeeman shift). In the regime

considered, both of these contributions are very small. The same ideas apply to the F = 0

and F = 1 hyperfine states of Hydrogen, where the magnetic field is coupling states of the

same parity. Briefly, γ(1) is influenced by “nearby” MJ = ±1 states for the |1 0〉 level, and

comparitively less influenced by the “far away” MJ = ±1 levels in the |0 0〉 state.

It is instructive to examine these results for different cases of individual Larmor frequen-

cies. In the case where both particles experience the same Larmor frequency in a field,

ω1 = ω2, then these first-order corrections reduce to the usual first-order corrections for a

structureless spin-1 particle, as in Eqn. (49), and the additional MJ = 0 pieces are zero as

well. In another limit where one Larmor frequency dominates the other, say ω1 ≫ ω2, then

γ(1) for the |MJ | = 1 states reduce to the first order correction of the dominant spin alone,

reflecting the fact that the weaker spin is coupled to the stronger one and gets dragged along

for the ride. This happens, for example, in the F = 1 hyperfine ground state of the hydrogen

atom, where the nuclear g-factor is far smaller than the electron g-factor.
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B. Strong magnetic field, ω1, ω2 ≫ ∆ ≫ ωr

In the other limit, where the magnetic field is large compared to the splitting between

adjacent J-levels, it is more useful to construct the dressed Hamiltonian in an alternative

basis. Namely, the non-rotating Hamiltonian is more nearly diagonal in the independent-spin

basis |j1m1 j2m2〉, where the four Zeeman energies Em1,m2 are given simply by m1ω1+m2ω2:

E 1

2
, 1
2

=
1

2
(ω1 + ω2)

E 1

2
,− 1

2
=

1

2
(ω1 − ω2)

E− 1

2
,− 1

2
= −1

2
(ω1 + ω2)

E− 1

2
, 1
2

= −1

2
(ω1 − ω2), (65)

as appropriate to this Paschen-Back limit of the Zeeman effect. This is an example of

the aside in Sec. II where we make the ansatz (α, β) e−i m1ωrte−i m2ωrt. The remaining

Hamiltonian, which includes the rotation of the field and the spin-spin interaction, is recast

as follows

Hdressed =















E 1

2
, 1
2

+ ∆
4
− ωr cos(θr)

ωr

2
sin(θr) 0 −ωr

2
sin(θr)

ωr

2
sin(θr) E 1

2
,− 1

2
− ∆

4
ωr

2
sin(θr) −∆

2

0 ωr

2
sin(θr) E− 1

2
,− 1

2
+ ∆

4
+ ωr cos(θr) −ωr

2
sin(θr)

−ωr

2
sin(θr) −∆

2
−ωr

2
sin(θr) E− 1

2
, 1
2
− ∆

4















(66)

Once again, we can immediately read the Berry-phase contribution from the diagonal com-

ponents, as

γ(0)(|j1 m1 j2 m2〉) = −2π(m1 +m2) cos(θr)

= −2πMJ cos(θr). (67)

The phase accumulates due to the individual spins separately, as expected when the spins

interact weakly with each other compared to their interaction with the field.

This independent accumulation of phase leads to a different interpretation of the MJ = 0

states: in the limit of small magnetic field compared to the spin-spin energy splitting, we

had attributed this to an MJ = 0 projection while here, we can attribute this to m1 = ±1
2

accumulating ±(ωr/2) cos(θr) extra energy and the m2 = ∓1
2

accumulating ∓(ωr/2) cos(θr).
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To cement this idea even further, we find there are two independent first-order contributions

to the first-order non-adiabatic correction γ(1), computed first neglecting ∆:

γ(1)(|j1 m1 j2 m2〉) = 2π m1
ωr

2ω1
sin2(θr) + 2π m2

ωr

2ω2
sin2(θr) (68)

= γ
(1)
1 (|j1 m1〉) + γ

(1)
2 (|j2 m2〉). (69)

This is exactly the contribution one would expect from two independent spins following a

rotating field. When the spins are anti-aligned, or m1 = −m2, we find no correction at this

order. It is worth noting that this perturbative expansion breaks down if ωr ∼ ωi. Thus,

should the rotation rate be fast with respect to one of the Larmor frequencies, but not the

other, then the measured phase difference cannot be treated perturbatively in this regime.

The explicit effect of internal structure, manifested in the splitting ∆, appears as a next-

order correction:

γ
(1)
1 → 2π m1

ωr

2ω1
sin2(θr)

(

1 +

(

∆

2ω2

)2
)

(70)

γ
(1)
2 → 2π m2

ωr

2ω2
sin2(θr)

(

1 +

(

∆

2ω1

)2
)

. (71)

Of course, there are many routes by which 4th-order perturbation theory can affect this state.

We only give one route which produces a phase shift proportional to ωr after one period of

oscillation. There is a structure correction for each non-adiabatic spin that depends on the

relative strength of the spin-spin splitting to the other Larmor frequency. Thus, we require

that the spin-spin splitting be small compared to each of the Larmor frequencies in order

to make this expansion. Again, this is a more restrictive condition on adiabaticity than is

usually employed for two independent spins.

V. POLAR MOLECULES IN A ROTATING ELECTRIC FIELD

Molecules bring yet another degree of freedom to the picture, namely end-over-end rota-

tion with eigenstates |N MN 〉. In addition, if the molecule is polar, it has an electric dipole

moment that can be acted upon by a rotating electric field. In this section we will consider

only diatomic molecules, and only one of a fairly simple structure, to illustrate how our

formalism applies to them. The lowest-order Berry phase was worked out recently in this

system [22], but the higher-order corrections are implicit there as well.
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For the sake of illustration we choose the simplest of diatomic molecules, a 1Σ molecule

with no hyperfine structure. In a rotating electric field this system is described by a Hamil-

tonian of the form

Hdressed = B ~N2 − ~µm · ~E − ωr(cos(θr)Nz − sin(θr)Nx), (72)

where ~N is the end-over-end rotational angular momentum of the molecule, µm is the electric

dipole moment of the molecule and E is the electric field strength. Since we are in the frame

of the electric field and the electric dipole moment points along the molecular axis, we do

not have any couplings of MN or Λ, where Λ is the projection of total angular momentum

onto the internuclear axis. For Σ-molecules, this means there are no couplings to excited

electronic states by the applied electric field at the low fields we consider.

For simplicity, we consider here the coupling only between theN = 0 andN = 1 rotational

levels of the molecule, assuming weak coupling of rotational states due to the electric field,

i.e., µmE ≪ B. The formalism can of course be extended to arbitrarily large N values as

needed. It is nice to note that this formalism has an atomic analog: the 1S0 and 1P1 states

of noble gas and alkaline-earth atoms have opposite-parity and are coupled by the Stark

interaction. This approach gives the corrections for states of opposite parity coupled by

the Stark interaction. The dressed Hamiltonian reads, in the basis {|NMN 〉} = {|00〉, |1 −
1〉, |10〉, |1 + 1〉}

Hdressed =















0 0 − 1√
3
µmE 0

0 2B − ωr cos(θr)
1√
2
ωr sin(θr) 0

− 1√
3
µmE 1√

2
ωr sin(θr) 2B 1√

2
ωr sin(θr)

0 0 1√
2
ωr sin(θr) 2B + ωr cos(θr)















(73)

Note the the electric Hamiltonian is off-diagonal in the basis of parity eigen-states. In the

absence of the perturbation ωr, this Hamiltonian appears to have a complete degeneracy

among the three states with N = 1. In the magnetic field case above, this degeneracy was

broken by the linear Zeeman effect acting on the diagonal matrix elements. To achieve the

same feat here, we must account for the off-diagonal mixing due to electric field. Note the

similarity of this procedure to that of Vutha and DeMille [22].

We first diagonalize the MN = 0 subspace, using the mixing angle δ defined by

tan(δ) = − µmE√
3B

= −x, (74)
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with the usual eigenvectors (cos(δ/2), sin(δ/2)) and (− sin(δ/2), cos(δ/2)). The explicit val-

ues in terms of the parameter x are

cos

(

δ

2

)

=

√√
1 + x2 + 1

2
√

1 + x2
(75)

sin

(

δ

2

)

=

√√
1 + x2 − 1

2
√

1 + x2
. (76)

In terms of this mixing angle the transformed Hamiltonian, with electric-field-dependent

terms on the diagonal only, reads

Hdressed =















B(1 −
√

1 + x2) − ωr√
2
sin( δ

2
) sin(θr) 0 − ωr√

2
sin( δ

2
) sin(θr)

− ωr√
2
sin( δ

2
) sin(θr) 2B − ωr cos(θr)

ωr√
2
cos( δ

2
) sin(θr) 0

0 ωr√
2
cos( δ

2
) sin(θr) B(1 +

√
1 + x2) ωr√

2
cos( δ

2
) sin(θr)

− ωr√
2
sin( δ

2
) sin(θr) 0 ωr√

2
cos( δ

2
sin(θr) 2B + ωr cos(θr)















.(77)

In the limit that x≪ 1 we see that the diagonal terms for the two MN = 0 states are merely

the quadratic Stark shift E
(±)
S = ±(µmE)2/6B. From here we can read off the ordinary

Berry phase from the diagonal perturbations linear in ωr, yielding the usual

γ(0)(|Ñ MN 〉) = −2πMN cos(θr), (78)

where by Ñ is meant the appropriate eigenstate of the field-mixed MN = 0 states [22]. This

diagonalization removed the degeneracy of the MN = 0 level with the MN = ±1 levels of

the N = 1 subspace. However, the degeneracy among the MN = ±1 states still exists.

Having quasi-broken the degeneracy in the N = 1 levels, we can now evaluate the first-

order adiabatic correction term using standard second-order perturbation theory. It is ev-

ident that both states |N,MN = ±1〉 experience the same additional phase at this order

(due to their degeneracy in the non-perturbing Hamiltonian), given by

γ(1)(|1, ±1) = −π
(

6B

(µmE)2

)

ωr sin2(θr), (79)

where an expansion in the small parameter x has been applied. Requiring this to be a small

correction identifies the adiabaticity criterion for this situation. If this case were analogous

to the magnetic field case, we would only be concerned about the magnitude of ωr with

respect to µmE , which is the stand-in for the Larmor frequency in this case. However,

Eqn. (79) suggests a slightly different criterion, namely ωrB ≪ (µmE)2 must hold in order
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to recover the simple leading-order Berry phase. To understand the origin of this criterion

we look at the term in the large parentheses in (79). It is the inverse of the Stark energy in

the absence of field rotation for the upper level. We can rewrite (79) as

γ(1)(|N MN = ±1〉) = −2π
ωr

2ES

sin2(θr), (80)

and we recover a form reminiscent of the pure spin case (cf. (49)), where the Larmor

frequency, ωL, is replaced by ES, the quadratic Stark shift. In order to be an adiabatic

correction, it is immediately evident why ωrB ≪ (µmE)2 must hold; the rotation rate must

be small compared to the energy splitting in that level. In this case, the splitting is quadratic

in electric field and therefore a secondary energy scale — the rotational level splitting or

internal structure — must come into play.

By similar reasoning, we can arrive at the γ(1) corrections for the MN = 0 states as well.

That of the lower level is given by

γ(1)(|Ñ ∼ 0 , 0〉) = −2π
ωr

2B
sin2(θr)

ES

2B
, (81)

where we find the requirement that ωr ES ≪ B2 must hold. In this case, our assumptions

clearly support this adiabatic criterion since we are in the regime ωr ≪ µmE ≪ B. This

correction is linear in ωr, but suppressed by the ratio of the Stark energy to the rotational

constant of the molecule. Physically, this is because this state is far removed from the

“degeneracy” in the N = 1 levels. It is the electric analogue of the weak magnetic field limit

of the spin-spin interaction. The correction for the upper level is given by

γ(1)(|Ñ ∼ 1 , 0〉) = 4π
ωr

2ES
sin2(θr). (82)

This correction is in the opposite direction to and twice that of the |N MN = ±1〉 states

because the |Ñ ∼ 1 , 0〉 state is influenced by the two states, MN = ±1, that are below

it in energy. This is in contrast to the coupled spins in a magnetic field case, where each

MN = ±1 contributed equally in magnitude but opposite in sign. This is due to the lack of

any linear Stark shift in the MN = ±1 levels.

It is evident that polar molecules in a rotating electric field are quite similar to magnetic

dipoles in rotating magnetic fields. There is an energy splitting in comparison with which

the rotation of the field must be small to ensure adiabaticity. If there is a shift in energy

that is linear with the applied field, then the rotation rate must be small compared to this
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energy. However, if the energy scales quadratically with the applied field, the rate of rotation

must be small in comparison to the energy shift in the field. Thus, the internal structure

is quite important in regimes of quadratic field shifts and introduces different adiabaticity

requirements on ωr in terms of the applied field and internal structure.

VI. CONCLUSIONS

The dressed-state formalism is a natural way to treat quantum mechanical objects subject

to time-periodic driving such as we have considered here. It allows for the inclusion of

arbitrary internal structure of the object, and still reveals the exact dressed eigen-energies

at arbitrary rotation rates. In the limit of slow rotations, it also reduces, as it must, to

the usual geometric Berry phase. Because it includes the structure of the atom or molecule

considered, however, it is also able to shed light on the influence of this structure on non-

adiabatic corrections to the geometric phase. It is therefore expected to be a powerful tool to

be used when analyzing high-precision spectroscopic data in the presence of periodic driving

[30, 31].

The treatment herein has considered only the simplest case of a magnetic or electric field

whose direction precesses uniformly about a given axis. It is to be expected, however, that

this treatment is yet more general, and that dressed states for arbitrary periodic driving

Hamiltonians could be constructed, at least numerically. It could, for example, be combined

with the Floquet analysis that has been used previously for unstructured particles [14, 15,

16, 32].
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APPENDIX A

In Sec. III, we had a Hamiltonian of the form

H = ωLSz − ωr(cos(θr)Sz − sin(θr)Sx), (A1)
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which looks like

H =























a1 c1 0 0 . . .

c1 a2 c2 0
...

0 c2
. . .

. . . cn−2

... 0 cn−2 an−1 cn−1

. . . 0 0 cn−1 an.























, (A2)

In our system, not only is this matrix symmetric, it contains the following added symmetry:

a1 = −an, a2 = −an−1, etc. Also, the coupling coefficients ci follow a similar property:

c1 = cn−1, etc. These properties are key to simplifying the eigenvalues of the tridiagonal

matrix in our case.

Eigenvalues of an n × n tridiagonal matrix are given by the roots of the polynomial pn,

defined recursively by

p0(λ) = 1,

p1(λ) = (a1 − λ),

p2(λ) = (a2 − λ)p1(λ) − c21p0(λ)

...

pn(λ) = (an − λ)pn−1(λ) − c2n−1pn−2(λ). (A3)

In our problem, the constants are defined as

am = m(ωL − cos(θr)), (A4)

cm ∼





S 1 S

−m q m− q



 . (A5)

Thus, the symmetry pops right out.

A simple example is the case of S = 1/2. Here we find that the characteristic polynomial

is

p2(λ) = (λ− 1

2
a)(λ+

1

2
a) −

(

1

2
b

)2

= (λ2 − 1

4
(a2 + b2)) (A6)

where a = (ωL − ωr cos(θr)) and b = ωr sin(θr). For the case of S = 1 we find a similar

equation (after simplification)

p3(λ) = λ((λ− a)(λ+ a) − 2

(

1√
2
b

)2

)

= λ(λ2 − (a2 + b2)) (A7)
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For integer values there is always a diagonal element that is 0. As is evident, this has the

same form as (A6) with the added piece of λ multiplying everything yielding an eigenvalue

of 0. In addition, Eq. (A7) is scaled by a factor of 4 from from Eq. (A6), thus making the

the eigenvalues a factor of 2 larger. This is because the value of m in (A7) is twice as large

as the value of m in (A6).

We can generalize the characteristic polynomial to a very simple expression due to the

added symmetries. It is given by

p2S+1 =

mmax
∏

m=(mmin≥0)

(λ2(1−δmmin,0) −m2(a2 + b2)). (A8)

The Kronecker δ-function in (A8) is to insure that in the event mmin = 0 there is only one

eigenvalue λ = 0.
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[28] S. Appelt, G. Wäckerle, and M. Mehring. Z. Phys. D, 34:75–85, 1995.
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