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Abstract

We first study a model, introduced recently in [4], of a critical branching random
walk in an IID random environment on the d-dimensional integer lattice. The walker
performs critical (0-2) branching at a lattice point if and only if there is no ‘obstacle’
placed there. The obstacles appear at each site with probability p ∈ [0, 1) indepen-
dently of each other. We also consider a similar model, where the offspring distribution
is subcritical.

Let Sn be the event of survival up to time n. We show that on a set of full Pp-
measure, as n → ∞, Pω(Sn) ∼ 2/(qn) in the critical case, while this probability is
asymptotically stretched exponential in the subcritical case.

Hence, the model exhibits ‘self-averaging’ in the critical case but not in the sub-
critical one. I.e., in the first case, the asymptotic tail behavior is the same as in a ‘toy
model’ where space is removed, while in the second, the spatial survival probability is
larger than in the corresponding toy model, suggesting spatial strategies.

A spine decomposition of the branching process along with known results on
random walks are utilized.
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1 Introduction

1.1 Model

We first consider a model, introduced recently in [4], of a critical branching random
walk Z = {Zn}n≥0 in an IID random environment on the d-dimensional integer lattice
as follows. The environment is determined by placing obstacles on each site, with
probability 0 ≤ p < 1, independently of each other. Given an environment, the initial
single particle, located at the origin at n = 0, first moves according to a nearest neighbor
simple random walk, and immediately afterwards, the following happens to it (see
Fig. 1.1):
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BRWs in IID environments

1. If there is no obstacle at the new location (we call it then a vacant site), the particle
either vanishes or splits into two offspring particles, with equal probabilities.

2. If there is an obstacle at the new location (and so it is an occupied site), then
nothing happens to the particle.

The new generation then follows the same rule in the next unit time interval and produces
the third generation, etc.

vacant site:
critical (0 - 2) branching

splitting
obstacle:
no branching

death
Each lattice point receives an obstacle with 

probability p, independently.
At a vacant site, death and splitting

are equally likely.

Figure 1.1:

We will also consider the same model when, on vacant sites, critical branching
is replaced by a subcritical one with mean µ < 1. (On occupied sites, as before,
nothing happens to the particle.) In this latter case we will make the following standard
assumption.

Assumption 1.1 (L logL condition). In the subcritical case let L denote the random
number of offspring, with law L. We assume that

∞∑
k=1

Prob(L = k)k log k <∞.

Let p ∈ [0, 1). In the sequel, K = K(ω) will denote the set of lattice points with
obstacles, Pp will denote the law of the obstacles and Pω will denote the law of the

BRW given the environment ω ∈ Ω. (Here Ω may be identified with {0, 1}Zd

.) Define also
Pp := Ep ⊗ Pω. We will say that a statement holds ‘on a set of full Pp-measure,’ when it
holds under Pω for ω ∈ Ω′ ⊂ Ω and Pp(Ω′) = 1.

Finally, IA will denote the indicator of the set A, and for f, g : (0,∞) → (0,∞), the
notation f ∼ g will mean that limt→∞

f(t)
g(t) = 1.

1.2 Quenched survival; main result

We are interested in the asymptotic behavior, as time tends to infinity, of the probabil-
ity that there are surviving particles, and in its possible dependence on the parameters.
(Note that in the extreme case, when p = 0, the asymptotic behavior is well known.)

We consider the quenched case, and so, we can only talk about the almost sure
asymptotics, as the probability Pω itself depends on the realization of the environment.

Let Sn denote the event of survival up to n ≥ 0. That is, Sn = {|Zn| ≥ 1}, where
|Zn| is the population size at time n. Our main result will concern the a.s. asymptotic
behavior of Pω(Sn).
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BRWs in IID environments

Theorem 1 (Quenched survival probability). Let d ≥ 1 and p ∈ (0, 1), and recall that
q := 1− p. Then the following holds on a set of full Pp-measure, as n→∞.

(i) Critical case:

Pω(Sn) ∼ 2

qn
; (1.1)

(ii) Subcritical case:

Pω(Sn) = exp

[(
−Cd,q ·

n

(log n)2/d

)
(1 + o(1))

]
, (1.2)

where Cd,q is a positive constant that does not depend on the branching law.

1.3 Motivation; heuristic interpretation

Consider first the case of critical branching, and recall Kolmogorov’s well-known
result on the survival of (non-spatial) Galton-Watson processes [8, Formula 10.8]: for
critical unit time branching with generating function ϕ, as n→∞,

Prob (survival up to n) ∼ 2

nϕ′′(1)
. (1.3)

As a particular case, let us consider now a non-spatial toy model as follows. Suppose
that branching occurs with probability q ∈ (0, 1), and then it is critical binary, that is,
consider the generating function

ϕ(z) = (1− q)z +
1

2
q(1 + z2).

It then follows that, as n→∞,

Prob (survival up to n) ∼ 2

qn
. (1.4)

Turning back to our spatial model (with critical branching), simulations suggested
(see [4]) the self averaging property of the model: the asymptotics for the annealed and
the quenched case are the same. In fact, this asymptotics is the same as the one in (1.4),
where p = 1− q is the probability that a site has a obstacle. In other words, despite our
model being spatial, in an asymptotic sense, the parameter q simply plays the role of the
branching probability of the above non-spatial toy model. To put it yet another way, q
only introduces a ‘time-change.’

In the present paper we would like to establish rigorous results concerning survival.
Our main result will demonstrate that while for critical branching, self-averaging

indeed holds, this is not the case for subcritical branching.
For further motivation in mathematics and in mathematical biology, see [4]. For

topics related to the quenched and annealed survival of a single particle among obstacles
in a continuous setting, see the fundamental monograph [11]. Finally, we mention the
excellent current monograph [10] on branching random walks, which also includes the
spine method relevant to this paper.

A heuristic interpretation of Theorem 1 is as follows.
(i) Critical case: There is nothing the ‘motion component’ could do to increase the

chance of survival, at least as far as the leading order term is concerned (as opposed to
the single Brownian particle model in [11]).

Should |Zn| reduce to one, the probability of that particle staying in the region of
obstacles is known to be much less than O(1/n). So the optimal strategy for this particle
to survive would obviously not be an attempt to stay completely in that region; rather,
survival will mostly be possible because of the potentially large family trees. Since |Z|
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BRWs in IID environments

is a Pω-martingale with unit mean for any ω ∈ Ω, survival probability is related to the
population size:

Pω(Sn) = [Eω(|Zn| | Sn)]
−1
. (1.5)

In fact, we suspect that on a set of full Pp-measure, under Pω(· | Sn), the law of |Zn|
n

converges to the exponential distribution with mean q/2. (Cf. Theorem C(ii) in [9].)
(ii) Subcritical case: Now the situation is very different, and a spatial strategy does

make sense, since vacant sites are now ‘more lethal.’ Unlike in (i), the result now differs
from what the toy model suggests, namely, that ∃ limn→∞

Prob(Sn)
µn > 0 holds under the

LlogL condition (Theorem B in [9]). In our spatial setting, the survival probability has
thus improved!

Finally, we note that in [4], in the annealed case with critical branching, the second-
order survival asymptotics has also been observed through simulations. Those simulation
results1 suggest that spatial survival strategies do exists, which are not detectable at
the logarithmic scale but are visible at the second-order level.

2 Some preliminary results

In this section we present two simple statements concerning our branching random
walk model which were proven in [4], and also some a priori bounds.

Lemma A (Monotonicity (Theorem 2.1 in [4]) and its proof). Let 0 ≤ p < p̂ ≤ 1 and fix
n ≥ 0. Then

Pp(Sn) ≤ Pp̂(Sn).

Also, for any ω ∈ Ω and n ≥ 1, one has Pω(Sn) ≥ P ∗(Sn), where P ∗ corresponds to the
p = 0 case.

Although [4] only handles the critical case, the same proof carries through for the
subcritical case as well. The proof only uses the fact that if ϕ is the generating function
of the offspring distribution, then ϕ(z) ≥ z on [0, 1]. This remains the case for subcritical
branching too, since ϕ(1) = 1, ϕ′(1) < 1 and ϕ is convex from above on the interval.

Lemma B (Extinction (Theorem 2.2 in [4])). Let 0 ≤ p < 1 and let A denote the event
that the population survives forever. Then, for Pp-almost every environment, Pω(A) = 0.

Again, [4] only handles the critical case, but the same proof carries through for the
subcritical case as well. (One then uses that the population size is a supermartingale,
instead of a martingale.)

Lemma A yields the following a priori bounds.

Corollary 2 (A priori bounds). Let f : Z+ → (0,∞). Then the following holds.
(i) Critical case: On a set of full Pp-measure,

lim inf
n→∞

nPω(Sn) ≥ 2, (2.1)

and

Pω(|Zn| > f(n) | Sn) = O
(

n

f(n)

)
, (2.2)

as n→∞.
(ii) Subcritical case: On a set of full Pp-measure,

lim inf
n→∞

µ−nPω(Sn) > 0. (2.3)

1Simulation has indicated [4] that Pp(Sn) =
2
qn

+ f(n), with n2/3f(n) tending to a positive constant.
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BRWs in IID environments

Proof. (i) In the critical case, by comparing with the p = 0 (no obstacles) case, when sur-
vival is less likely, and for which the non-spatial result of Kolmogorov (1.3) is applicable,
(2.1) follows by Lemma A. Using that 1 = Eω(|Zn|) = Pω(Sn)Eω(|Zn| | Sn), we infer that

lim sup
n→∞

1

n
Eω(|Zn| | Sn) ≤ 1/2.

Finally, use the Markov inequality to get (2.2).

(ii) In the subcritical case (µ < 1), the proof is very similar, taking into account the
well known result of Heathcote, Seneta and Vere-Jones (see Theorem B in [9]) that under
the L logL condition, (2.3) holds with limit instead of lim inf for p = 0.

3 Further preparation: size-biasing and spine in the critical case

Consider the critical case in this section. Given (1.5), the asymptotic relation under
(1.1) is tantamount to

Eω(|Zn| | Sn) ∼ qn

2
, (3.1)

as n→∞. We will actually prove that (3.1) holds on a set of full Pp-measure.

In the particular case when q = 1 (p = 0, no obstacles) and in a non-spatial setting,
this has been shown in [9] (see formula (4.1) and its proof on p. 1132). We will show
how to modify the proof in [9] for our case.

(In the subcritical case, we will also reduce the question to the study of the behavior
of Eω(|Zn| | Sn) as n→∞.)

3.1 Left-right labeling

At every time of fission, randomly (and independently from everything else in the
model) assign ‘left’ or ‘right’ labels to the two offspring. So, from now on, every time
we write Pω(· | Sn), we will actually mean, with a slight abuse of notation, Pω(· | Sn),
augmented with the choice of the labels; we will handle Pω(· ∩ Sn) similarly. Ignor-
ing space, and looking only at the genealogical tree, we say that at time n, a particle
is ‘to the left’ of another one, if, tracing them back to their most recent common
ancestor, the first particle is the descendant of the left particle right after the fis-
sion. Transitivity is easy to check and thus a total ordering of particles at time n is
induced.

3.2 The size-biased critical branching random walk

Recall that if {pk}k≥0 is a probability distribution on the nonnegative integers with
expectation m ∈ (0,∞), then the corresponding size-biased distribution is defined by
p̂k := kpk/m for k ≥ 1. We will denote the size biased law obtained from L by L̂.

Given the environment ω, the size-biased critical branching random walk with corre-
sponding law P̂ω is as follows. The motion component is unchanged, that is particles
still perform symmetric random walk, however the branching does change according to
these rules:

• The initial particle does not branch until the first time it steps on a vacant site, at
which moment it splits into a random number offspring according to L̂.

• One of the offspring is picked uniformly (independently from everything else) to
be designated as the ‘spine offspring.’ The other offspring launch copies of the
original branching random walk (with ω being translated according to the position
of the site).
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BRWs in IID environments

• Whenever the ‘spine offspring’ is situated next time at a vacant site, it splits into
a random number offspring according to L̂, and the above procedure is repeated,
etc.

Definition 3 (Spine). The distinguished line of decent formed by the successive spine
offspring will be called the spine.

Note the following.

(i) (Survival) Because of the size biasing, the new process is immortal P̂ω-a.s.

(ii) (Martingale change of measure) For any given ω, the law of the size-biased
critical random walk satisfies that

dP̂ω

dPω

∣∣∣∣∣
Fn

= |Zn|,

where {Fn}n≥0 is the natural filtration of the branching random walk, and the
lefthand side is a Radon-Nikodym derivative on Fn. This is a change of measure by
the nonnegative, unit mean martingale |Z|. The proof is essentially the same as in
[9]. Even though in that paper the setting is non-spatial, it is easy to check that the
proof carries through in our case, because the mean offspring number is always
one, irrespective of the site. (See p. 1128 in [9].)

In particular, when the critical law L is binary (either 0 or 2 offspring, with equal
probabilities), the law L̂ is deterministic, namely it is dyadic (that is, 2 offspring with
probability one). In this case, the spine particle always splits into two at vacant sites.

In addition to P̂ω, we also define the law P̂ω∗ which is the distribution of the size-
biased branching random walk, augmented with the designation of the spine within
it. The corresponding, augmented filtration, {Gn}n≥0 is richer than {Fn}n≥0, as it now
keeps track of the position of the spine as well.

The significance of the new law P̂ω is as follows. Let us denote the spine’s path up to
n by {Xi}0≤i≤n. Let

An := {The spine particle is the leftmost particle of Zn.}.

Then, size biasing and conditioning on An has the combined effect of simply conditioning
the process on survival up to n. That is, the distribution of Z restricted on {Fn} is the
same under Pω(· | Sn) and under P̂ω∗ (· | An). To see why this is true, let Cn,k := {|Zn| = k}.
One has for F ∈ Fn that

P̂ω∗ (F | An) =
P̂ω∗ (F ∩An)

P̂ω∗ (An)
=

∑
k≥1 P̂

ω
∗ (F ∩An ∩ Cn,k)∑

k≥1 P̂
ω
∗ (An ∩ Cn,k)

=

∑
k≥1(1/k)P̂ω(F ∩ Cn,k)∑
k≥1(1/k)P̂ω(Cn,k)

=

∑
k≥1(1/k)Eω(|Zn|;F ∩ Cn,k)∑
k≥1(1/k)Eω(|Zn|;Cn,k)

=

∑
k≥1 P

ω(F ∩ Cn,k)∑
k≥1 P

ω(Cn,k)
=
Pω(F ∩ Sn)

Pω(Sn)
= Pω(F | Sn).

In particular, for n ≥ 1,
Eω(|Zn| | Sn) = Êω∗ (|Zn| | An). (3.2)

Remark 4 (Optimal survival strategy). It is important to point out the (obvious) inter-
pretation of the equation Pω(· | Sn) = P̂ω∗ (· | An): it gives the description of the ‘optimal
survival strategy.’
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3.3 Frequency of vacant sites along the spine in the critical case

Let the branching be critical, and let

Ln :=

n∑
i=1

I{Xi∈Kc}

denote the (random) amount of time spent by X (the spine) on vacant sites between
times 1 and n.

Lemma 3.1 (Frequency of visiting vacant sites). On a set of full Pp-measure,

lim
n→∞

P̂ω∗

(∣∣∣∣Lnn − q
∣∣∣∣ > ε

)
= 0, ∀ε > 0.

Proof. Let

Fn,ε :=
⋃

1≤i≤|Zn|

{∣∣∣∣Linn − q
∣∣∣∣ > ε

}
∈ Fn,

where Lin is defined similarly to Ln for Zi,n, the ith particle in Zn on Sn; we define
Fn,ε := ∅ on Scn. Then

P̂ω∗

(∣∣∣∣Lnn − q
∣∣∣∣ > ε

)
=
∑
k≥1

P̂ω∗

(∣∣∣∣Lnn − q
∣∣∣∣ > ε | |Zn| = k

)
P̂ω∗ (|Zn| = k)

=
∑
k≥1

P̂ω∗

(∣∣∣∣Lnn − q
∣∣∣∣ > ε | |Zn| = k,An

)
P̂ω∗ (|Zn| = k)

≤
∑
k≥1

P̂ω∗ (Fn,ε | |Zn| = k,An) P̂ω∗ (|Zn| = k) ,

where, in the second equality, we used the fact that given |Zn| = k, the event An means
that out of the k surviving particles, the spine is the ‘leftmost’ one,2 and hence, given
|Zn| = k, An is independent of the event

{∣∣Ln

n − q
∣∣ > ε

}
. (Of course, |Zn| itself is not

at all independent of this last event.) Switching back to the original measure now, the
righthand side equals ∑

k≥1

Pω (Fn,ε | |Zn| = k) kPω (|Zn| = k) ,

and by the union bound, this can be estimated from above by∑
k≥1

k2Qω
(∣∣∣∣Tnn − q

∣∣∣∣ > ε

)
Pω (|Zn| = k) = Qω

(∣∣∣∣Tnn − q
∣∣∣∣ > ε

)
Eω(|Zn|2),

where Tn denotes the time spent on vacant sites between times 1 and n by a simple
random walk in the environment ω, starting at the origin, with corresponding probability
Qω. We will use Qp for the law of the environment.

Now, it is easy to show that Eω(|Zn|2) = Varω(|Zn|2) + 1 ≤ n+ 1, and so it is sufficient
to check (the ridiculously crude bound) that Qω

(∣∣Tn

n − q
∣∣ > ε

)
= o(1/n) on a set of full

measure.
Next, observe that it is in fact sufficient to verify the upper tail large deviations.

Indeed, the lower tail large deviations for the time spent in Kc can be handled similarly,
since they are exactly the upper tail large deviations for the time spent in K.

2Which notion has nothing to do with physical space.
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The statement reduces to one about a d-dimensional random walk in random scenery.3

We now have to consider a scenery such that it assigns the value 1 to each lattice point
with probability q, and the value 0 otherwise (that is, the scenery is the indicator of va-
cancy). With a slight abuse of notation, we will still use Qω and Qp for the corresponding
laws.

Since it was easier to locate the corresponding annealed result in the literature (see
also the remark at the end of the proof), we will use that one, and then show how one
easily gets the quenched statement from the annealed one.

To this end, define the random variable Y ∗ := Y −q, where Y is the ‘scenery variable,’
that is, Y = 1 with probability q and Y = 0 otherwise. Then Y ∗ is centered, and defining

T ∗n :=

n∑
k=1

Y ∗(Xk),

one can apply4 Theorem 1.3 in [5], yielding that for ε > 0,

lim sup
n→∞

n−
d

d+2 log(EQp ⊗Qω)

(
Tn
n
> q + ε

)
=

lim sup
n→∞

n−
d

d+2 log(EQp
⊗Qω)

(
T ∗n
n
> ε

)
≤ −Cε,

where Cε is finite and positive, and is given in [5] in terms of a variational problem. We
now easily obtain the quenched result too, since for any positive sequence {an}n≥0, the
Markov inequality yields

Qp

(
Qω
(
Tn
n
> q + ε

)
> an

)
≤ (an)−1(EQp ⊗Qω)

(
Tn
n
> q + ε

)
.

Given that (EQp
⊗ Qω)

(
Tn

n > q + ε
)
≤ exp

(
−Cεn

d
d+2 (1 + o(1))

)
, to finish the proof, we

can pick any sequence satisfying that∑
n

a−1n exp

(
−1

2
Cεn

d
d+2

)
<∞.

Then, by the Borel-Cantelli Lemma,

Qp

(
Qω
(
Tn
n
> q + ε

)
> an occurs finitely often

)
= 1.

Clearly, by picking, for example, an := 1/n1+δ, δ > 0, we are done.

Remark 5. Regarding RWRS, we note that in Theorem 2.3 in [3] the quenched large
deviations have been studied in a more continuous version, namely for a Brownian
motion in a random scenery, where the scenery is constant on blocks in Rd.

4 Proof of Theorem 1 – critical case

Our goal is to verify (3.1). To this end, note that the spine has a (nonnegative) number
of ‘left bushes’ and a (nonnegative) number of ‘right bushes’ attached to it; each such
bush is a branching tree itself. A ‘left bush’ (‘right bush’) is formed by particles which
are to the left (right) of the spine particle at time n. It is clear that, under conditioning
on An, each left bush dies out completely by time n (see Fig. 4.1 with t = n).

3Random walks in random scenery (RWRS) were first introduced, in dimension one, by Kesten-Spitzer and
also by Borodin, in 1979. (See e.g. [6, 7].)

4A formal application of the result in [5] would require that ε ∈ int(supp(Y ∗(0)), however this is only used in
their lower bound. In fact, we believe that here the lower estimate holds as well, despite the scenery variable
being atomic, but we do not need that.
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t

time ‘leftmost particle’ at t

‘left bushes’

‘right bushes’

Under       ,‘left bushes’ are doomed to die out by t; ‘right bushes’ may survive.

Figure 4.1:

Because of (3.2), we are left with the task of showing that

Êω∗ (|Zn| | An) ∼ qn

2
, as n→∞. (4.1)

The proof of this statement is similar to the proof of (4.1) in [9] (with σ2 = 1), except
that, as we will see, now we also have to show that

Êω∗ (number of all bushes along the spine) = qn(1 + o(1)). (4.2)

The reason is that in [9], the spine particle branched at every unit time, which is not the
case now. In our case, the spine {Xi}1≤n splits into two at each vacant site and thus
bushes are attached each time (larger than zero and smaller than n) when X is at a
vacant site.

For n ≥ 1 given, define the set of indices (times)

Jn := {1 ≤ j ≤ n− 1 | Xj ∈ Zd is a vacant site};

then (4.2) can be written as Êω∗ (|Jn|) = qn(1 + o(1)) (cf. equation (4.6) in the sequel).
Furthermore, let j ∈ Jn and

• (LB)j be the event that there is a left bush launched from the space-time point
(Xj , j);

• (RB)j be the event that there is a right bush launched from (Xj , j);

• (LBE)j be the event that there is a left bush launched from Xj which becomes
extinct by n;

• An,j := (RB)j ∪ (LBE)j .

Then

An =
⋂
j∈Jn

An,j , (4.3)
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BRWs in IID environments

where the events in the intersection are independent under P̂ω. (See again Fig. 4.1.)
Conditioning on An can be obtained by conditioning successively on An,j , j ∈ Jn.

For j ∈ Jn, let the random variable Rn,j be the ‘right-contribution’ of the jth bush
to |Zn|. That is, Rn,j = 0 on (LB)j , and on (RB)j it is the contribution of the right
bush, stemming from (Xj , j), to |Zn|. The ‘left contribution’ Sn,j is defined similarly, and
Zn,j := Rn,j + Sn,j is the total contribution. Note that An,j = {Sn,j = 0}.

Let {R′n,j}j∈Jn be independent random variables under a law Q̃ω such that

Q̃ω(R′n,j ∈ ·) = P̂ω∗ (Rn,j ∈ · | An,j),

and let Qω := P̂ω∗ × Q̃ω, with expectation EωQ. Furthermore, let R∗n,j := IAn,j
Rn,j +

IAc
n,j
R′n,j , and R∗n :=

∑
j∈Jn R

∗
n,j . Then, for j ∈ Jn,

P̂ω∗ (Zn,j ∈ · | An,j) = P̂ω∗ (Rn,j + Sn,j ∈ · | An,j) = Qω(R∗n,j ∈ ·). (4.4)

(The Sn,j term in the second probability has zero contribution.) Using (4.3) along with
(4.4), it follows that

1

n
Êω∗ (|Zn| | An) =

1

n
Êω∗

|Zn| | ⋂
j∈Jn

An,j

 =

1

n
Êω∗

1 +
∑
j∈Jn

Zn,j |
⋂
j∈Jn

An,j

 = EωQ

 1

n
+

1

n

∑
j∈Jn

R∗n,j

 =
1

n
+ EωQ

(
R∗n
n

)
.

Hence, the desired assertion (4.1) will follow once we show that (on a set of full Pp-
measure)

lim
n→∞

EωQ

(
R∗n
n

)
=
q

2
.

Denoting Rn :=
∑
j∈Jn Rn,j , the same proof as in [9] reveals that

lim
n→∞

EωQ
1

n
|Rn −R∗n| = 0. (4.5)

(The intuitive reason is that Acn,j = {Sn,j > 0}, while the probability of the survival of
a bush tends to zero as the height of the bush tends to infinity; thus Acn,j only occurs
rarely. The fact that now we do not have a bush launched at every position of the spine
makes the estimated term even smaller.)

In view of (4.5), it is sufficient to show that limn→∞ Êω∗ (Rn/n) = q/2. Since the
‘branching’ can be considered (degenerate) critical at an obstacle and Êω∗ (Rn,j | Jn) =
1
2 , j ∈ Jn (as each bush is equally likely to be left or right under P̂ω∗ ), one has

Êω∗ (Rn/n) = Êω∗

 1

n

∑
j∈Jn

Rn,j

 =
1

2
Êω∗ (|Jn|/n) =

1

2
Êω∗ (|Ln−1|/n),

where we are using the notation of Lemma 3.1 (|Jn+1| = Ln). Hence, our goal is to show
that

lim
n→∞

Êω∗ (|Ln|/n) = q. (4.6)

Write

Êω∗ (Ln) = Êω∗

(
Ln |

Ln
n
∈ (q − ε, q + ε)

)
P̂ω∗

(
Ln
n
∈ (q − ε, q + ε)

)
+ Êω∗

(
Ln |

Ln
n
6∈ (q − ε, q + ε)

)
P̂ω∗

(
Ln
n
6∈ (q − ε, q + ε)

)
.

Now use Lemma 3.1. Since the first probability on the righthand side is 1− o(1) and the
second is o(1), and since 0 ≤ Ln ≤ n, and ε > 0 is arbitrary, we are done.
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5 Proof of Theorem 1 – subcritical case

Recall the definition of Qω from the proof of Lemma 3.1 and that K is the ‘total
obstacle configuration.’ Just like in Subsection 3.3, let Tn be the time spent in Kc (vacant
sites).

Let Y be a simple random walk onZd and let Eω denote the corresponding expectation.
Then

DV(n) = DV(ω, n, µ) := Eω
(
µ
∑n

1 1Kc (Yi)
)

= Eω
(
µTn

)
is the quenched probability that Y would survive up to time n, were ‘soft’ killing being
introduced.5 By ‘soft killing’ we mean that at each vacant site, independently, the particle
is killed with probability 1− µ.

In this discrete setting, q plays the role of the ‘intensity’ and µ plays the role of the
‘shape function’. In fact, it is known that given q ∈ (0, 1), for Qq-almost every ω,

DV(n) = exp

[
−Cd,q ·

n

(log n)2/d
(1 + o(1))

]
, (5.1)

as n→∞, and Cd,q > 0 does not depend on µ. See formula (0.1) on p.58 of [1] for hard
obstacles. The proof for hard obstacles actually extends for soft obstacles. Indeed, it
becomes easier, since in the case of soft obstacles one does not have to worry about
‘percolation effects,’ that is that the starting point of the process is perhaps not in an
infinite trap-free region. Clearly, the lower estimate for survival among hard obstacles is
still valid for soft obstacles; the method of proving the upper estimate is a discretized
version of Sznitman’s ‘enlargement of obstacles’ in both cases. (See also [2] for similar
results and for the enlargement technique in the discrete setting.)

Returning to our branching process and the event Sn, we first show that on a set of
full Pp-measure,6 as n→∞,

Pω(Sn) =
DV(n)

Eω(|Zn| | Sn)
. (5.2)

The expectation Eω|Zn| can in fact be expressed as a functional of a single particle (this
is the ‘Many-To-One’ Lemma [10] for branching random walk):

Eω|Zn| = Eω
(
µTn

)
= DV(n).

This follows from the fact that for un(x) = uωn(x) := Eωx |Zn|, one has the recursion

un(x) =
∑
y∼x

un−1(y)(I{y∈K} + µ I{y∈Kc})p(x, y),

where y ∼ x means that y is a neighbor of x, and p(·, ·) is the one-step kernel for the
walk. (See again [10].) Thus

Pω(Sn)Eω(|Zn| | Sn) = Eω|Zn| = Eω µTn , (5.3)

proving (5.2). Since the denominator on the righthand side of (5.2) is at least one, it
follows that

Pω(Sn) ≤ DVµ(n), (5.4)

where we emphasize the dependence on µ.

5As the reader has probably guessed already, DV refers to ‘Donsker-Varadhan.’
6Pp of course can be identified with Qq (q = 1− p). We used the latter one simply to emphasize we were

talking about the random walk setting and not the branching RW one.
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On the other hand, we claim that

Pω(Sn) ≥ DVµ
∗
(n), (5.5)

where µ∗ := 1− p0, and p0 > 0 is the probability of having zero offspring (i.e. death) for
the law L.

Indeed, consider a random walk with ‘soft killing’ (RWSK), where soft killing means
that the walk is killed with probability p0, independently at each vacant site. Clearly,
given an environment ω, Pω(Sn) is not less than the probability of survival up to n

by RWSK, as we can couple the latter process with our branching random walk Z by
embedding it7 into Z.

Having (5.4) and (5.5) at our disposal, we can now conclude the assertion of Theo-
rem 1(ii), because DVµ(n) and DVµ

∗
(n) both have the asymptotic behavior given in (5.1),

despite the fact that µ > µ∗ in general.
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