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Fragmentation events and large scale small-sat deployments are a significant threat; because

of the sudden creation of many new objects posing potential risks to existing satellites, and the fact

that current surveillance systems require laborious human intervention to identify and catalog these

new objects. In the tracking community, the spontaneous appearance of new objects is referred

to as birth, whereas spawning refers to the appearance of new objects generated by previously

existing ones, such as a fragmentation event or small-sat deployment. In this dissertation, two-

well known random finite set (RFS) filters are extended via mathematical derivation, aimed at

performing initial orbit determination (IOD) of objects generated by spawning events. A Zero-

Inflated Poisson (ZIP) spawn model is presented and a predicted cardinality expression for general

spawn model configuration, capable of implementation via Partial Bell Polynomials, is derived for

the Cardinalized Probability Hypothesis Density (CPHD) filter using a measure-theoretic approach.

Generalized Labeled Multi-Bernoulli (GLMB) filter developments achieve a closed-form solution to

the multi-object Bayes recursion capable of jointly estimating a spawned object’s state and ancestry.

Linear simulations demonstrate fundamental filter developments; the ZIP spawn model is shown

to outperform other conventional models with the CPHD filter and multiple generations of spawn

object ancestry are accurately estimated with the GLMB filter. Finally, non-linear simulations

specific to Space Situational Awareness (SSA) IOD demonstrate the filters’ efficacy, which include:

fragmentation event and small-sat deployment scenarios, homogeneous and heterogeneous radar

network observations, and spawning events that occur in and out of sensor field of view. This

research shows that on-line multi-object IOD in the presence of spawning is possible within the RFS

paradigm, and establishes a foundation upon which further SSA improvements can be investigated.
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Chapter 1

Introduction

1.1 Motivation

Sputnik 1, launched in 1957, was the first artificial satellite to orbit Earth. By today’s

standards, maintaining a space catalog for one object seems a trivial task as now, nearly sixty

years later, tens of thousands of Earth orbiting artificial satellites, or resident space objects (RSOs),

are tracked and cataloged by the Joint Space Operations Center (JSpOC)1 in support of its SSA

missions 2. In general, Space Sitational Awareness (SSA) refers to the knowledge of the current and

predicted states of the RSO population, however, depending on its specific application, definitions

of SSA can vary. For instance, the end result of SSA for some operators is RSO collision avoidance3,

often referred to as conjunction assessment (CA), whereas [22] outlines applications of SSA that

include CA, but also more militaristic applications such as determining a satellite’s type and the

purpose of its mission. As it pertains to the work presented in this paper, any reference to SSA

hereafter will simply refer to the tracking of the RSO population and maintaining the catalog

thereof.

All cataloged RSOs can be referred to as persistent objects, i.e., a priori information is

1 JSpOC is a center within the Joint Functional Component Command for Space (JFCC Space), which is a component

of the United States Strategic Command (USSTRATCOM).
2 stratcom.mil. [online] Available at: https://www.stratcom.mil/factsheets/11/Space Control and Space Surveillance

[Accessed 21 Jan. 2014]
3 spacefoundation.org. [online] Available at: http://www.spacefoundation.org/programs/public-policy-and-

government-affairs/introduction-space-activities/space-situational [13 Jun. 2015]
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available for the propagation of their states, hence, initial orbit determination (IOD) is not required.

However, new RSOs regularly appear due to launches and fragmentation events that do require

some form of IOD or track initiation. Fragmentation events, e.g., when an RSO explodes or RSOs

collide, are particularly distressing as they have the potential of producing several hundred new

trackable objects [47], or more.

Another significant contributor to the RSO population is the small-sat industry. Small-sat

refers to a category of satellites that have gained popularity over the last several years. They

are typically small enough to fit on your desk and are categorized by a variety of names, e.g.,

nanosat, picosat, and, of course, CubeSat. CubeSats were first developed in 2000 and introduced

as a means of low-cost space experimentation [39]. According to [84], more than seventy CubeSats

were flown in the eight year span after 2003, when the first CubeSats were launched. Since then,

seemingly every university has a space program, and launch vehicle (LV) operators have honed

their “rideshare” [84] capabilities. For example, note that one-hundred rideshares were performed

in 2013, as illustrated in the bar chart presented in Fig. 1.1, [83]. Only four years later, that same

number of small satellites were deployed from a single LV4,5.

The majority of small-sats are deployed with relatively low altitudes, which promotes their

inevitable re-entry into Earth’s atmosphere due to the effects of air drag. Still, prior to re-entry,

they pose a threat to space operations like any other RSO; a threat exacerbated by the level

of uncertainty associated with determining their orbits. Most small-sat programs use Two-Line

Element (TLE) sets release by JSpOC for orbit determination. Unfortunately, it is increasingly

the case where large numbers of small-sats are deployed from a launch vehicle and TLE sets get

confused [33].

4 “India launches more than 100 satellites into orbit.” USA Today, February 15, 2017. Web. June 8, 2017.
5 PSLV-C37 Brochure-ISRO. Web. June 8, 2017.
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1.2 State of the Art

1.2.1 Spawn Event IOD

In terms of tracking, objects launched into orbit are referred to as birth objects, whereas those

originating from small-sat deployments or fragmentation events are referred to as spawn objects.

For example, a LV is born and goes on to spawn small-sats. Hereafter, such events are generally

referred to as spawning events. Birth and spawning objects are categorized as newly appearing

objects and, when they are observed by conventional space surveillance systems, they cause the

generation of uncorrelated tracks (UCTs). UCTs are generally considered to be observations that

automated processes fail to associate with known objects. Ultimately, if manual data association

attempts fail, IOD is required to instantiate a new track for entry into the space catalog.

In [76], Schumacher detailed the then Naval Space Command’s approach to UCT processing

in the 1990’s. Upon generation of UCTs, an analyst stepped in to make the appropriate data asso-

ciations by drawing on their “expertise built up through long experience” and using a sophisticated

set of tools which included the following:

• Satellite Identification (SID), which identifies position observations via an all-versus-all

comparison of observations for a known set of objects selected by the analyst, and

• Search and Determine (SAD), which attempts correlation by considering all possible can-

didate element sets in the entire UCT database.

When a new association was made with tools like those listed above, analysts updated the space

catalog using a tool called Manual Differential Correction (MANDC). Schumacher noted that with

this framework, spawning events were potentially disruptive to catalog maintenance efforts due to

the generation of a large number of UCTs.

Fast-forward to 2014, when Schumacher et al. presented a software package called Search

and Determine Integrated Environment (SADIE) [77], the result of a joint effort by the Air Force

Research Laboratory (AFRL) and the Naval Research Laboratory (NRL) under the High Perfor-
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mance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA).

SADIE was developed to address the expected increase in observation flow due to advancements in

sensor technology, while meeting JSpOC mission requirements. Using “legacy” applications such

as SID and SAD in conjunction with advance computing techniques, SADIE automatically adds to

and maintains a space catalog; however, it is not a fully automated application as it was designed

for analysts to use. Additionally, the fact remains that the tracking of persistent objects and the

initialization of new objects via processing UCTs is performed disjointly.

1.2.2 Advanced Tracking Algorithms

Recent events such as the Fengyun-1C breakup [46] and the collision of Cosmos 2251 and

Iridium 33 [1] prompted the SSA community to reevaluate their standards and practices. This

included an assessment of the United States (US) Air Force’s astrodynamics standards [22] which

posited that advanced techniques such as Multiple Hypotheses Tracking (MHT) would produce

significant improvement to SSA capabilities.

MHT was originally introduced in the late 1970’s [72] as a data association approach to

multi-target tracking (MTT) that considers multiple association hypotheses over several observa-

tion scans, i.e., it defers decisions about data associations, e.g., track correlations, by maintaining

association hypotheses from multiple scans until sufficient information is collected to improve said

decisions using probabilities computed via Bayes’ rule . This specific approach is commonly referred

to as hypothesis-oriented MHT whereas another commonly referenced approach is track-oriented

MHT where, instead of maintaining hypotheses from scan to scan, tracks are maintained and used

to form new hypotheses at each scan [11]. Since its initial presentation, MHT has been the focus

of a substantial amount of research to include space surveillance applications [78].

Another approach to MTT is Joint Probabilistic Data Association (JPDA). Originally pre-

sented in 1980 [6], and the focus of a large volume of research since [5], JPDA is very similar to

track-oriented MHT in that it maintains a set of tracks while forming new data association hypothe-

ses at each scan. The main difference is that, unlike MHT where hypotheses can be maintained
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for a number of scans, hypotheses are merged before moving on to the next scan. This similarity

is likely why JPDA has been referred to as a special case of MHT [11].

A relatively new approach to MTT uses random finite sets (RFSs). Presented by Mahler as

Finite Set Statistics (FISST) [61,63,64], RFSs are used to represent multi-object states. The multi-

object Bayes filter is the theoretically optimal multi-object filter, however, for practical applications

its implementation is intractable due to combinatorial complexity [63]. Hence, several RFS based

approximations of the multi-object Bayes filter were developed to circumvent this intractability

that include but are not limited to: the Probability Hypothesis Density (PHD) [89], Cardinalized

PHD (CPHD) [96], Multi-target Multi-Bernoulli (MeMBer) [63], Cardinality Balanced MeMBer

(CBMeMBer) [97], and Generalized Labeled Multi-Bernoulli (GLMB) [94,95] filters.

Methods for multi-object tracking like MHT and JPDA are formulated using a bottom-up

approach. That is, by way of data associations, they reduce the multi-object tracking problem into

multiple single-object tracking problems [64]. RFS filtering, on the other hand, takes a top-down

approach. Formulated on the principles of point process theory, RFS filtering uses the multi-object

analog to Bayes’ recursion to propagate multi-object densities through time. In this framework,

the multi-object densities characterize the distributions of RFSs, which are the multi-object analog

to the random variable representations in single-object filtering, e.g., in Kalman filtering.

Random finite set multi-object dynamics models can account for object survival, birth, spawn-

ing, and death: examples of each are given in Table 1.1. Both spontaneous birth and spawn models

can account for the appearance of new objects in a given scene6, however, for the presented work

6 Spawn models can be considered birth models since they account for new objects, however, the term spontaneous

is used to make a clearer distinction between objects that enter a scene on their own and objects generated by those

already in the scene.
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Figure 1.1: Number of rideshares launched per year, 1960-2013 (Image credit: [83]).
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Table 1.1: RFS Target Dynamics Terminology

Nomenclature Example

survival continued existence of an object from one time to the next
spontaneous birth first appearance of an object in a surveillance region, regardless of

surviving object locations
spawning first appearance of an object, statistically conditional on an existing

object
death departure or disappearance of an object from a surveillance region

spawn models are a more attractive approach. Not only do spawn models more accurately represent

the generation of new objects for small-sat deployments and fragmentation events, they are poten-

tially more efficient than birth models commonly used in the general tracking community, with

respect to (w.r.t.) the same application. For example, some birth models populate a sensor’s entire

surveillance region with diffuse Gaussian distributions in an effort to detect object appearance [7].

For SSA applications, this would require an intractable number of GM components. Figure 1.2

from [49] illustrates this for a radar surveillance region large enough to encapsulate a single arc

of observations for a low-Earth orbit (LEO) object. Assuming GM component means are equidis-
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Figure 1.2: Over 7500 GM components, each with a standard deviation of 100 km, required to fill a radar
surveillance region [49].
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components are required to fill the region. Fortunately, more efficient SSA specific birth models

are being developed [48,50].

The PHD filter readily accounts for spawn objects, so in that regard, it makes sense to start

with it for spawning event IOD. This filter was applied in [27] to the breakup of the Landsat 2 rocket

body, though spontaneous birth models were used instead of spawn models. Notwithstanding, the

PHD filter is a relatively poor choice for scenarios with a high variability in the number of objects

(details provided in Chapter 2). The CPHD filter, whose formulation is designed to circumvent

challenges that varying object number can present, is a better option for the given application.

However, as the CPHD filter is originally derived, it does not account for the presence of spawned

objects, nor does it account for object identity.

Though the CPHD filter’s model for birth targets has the potential to address spawning

targets [64], there may be cases where specific spawning models are more applicable. In the context

of tracking RSO spawning events, without a spawn model, the best option may be the use of diffuse

birth regions, however, as mentioned before the volume of space to be filled requires a potentially

intractable number of birth regions [49]. To improve the CPHD filter’s performance for space-

object tracking, [50] presented a measurement-based birth model that leverages an astrodynamics

approach to track initialization for Resident Space Objects (RSOs). While such an approach may

be effective for tracking spawned RSOs, a multi-object filter that correctly models the birth process

for a given object is expected to provide better accuracy and faster confirmation of new objects.

Note the distinction between filtering and tracking. In this document, the term filtering is

used to denote the estimation of the number of objects in a surveillance region and their states,

but it does not imply knowledge of a given object’s identity. The term tracking implies that a

given object’s identity is known or estimated, along with its state. Therefore, to be effective,

a multi-object tracker must provide object number and individual object state estimates, along

with performing data associations to distinguish objects. The CPHD filter’s capabilities could

be extended to tracking as was done similarly in [69]. However, such a labeling scheme is more

an algorithmic extension than an integral feature resulting from principled derivations; a cause
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for concern since it may be difficult to characterize the behavior of track labels. An RFS filter

that rigorously accounts for track labels has recently been gaining traction within the tracking

community. The GLMB tracking filter [94, 95] accounts for track labeling mathematically via

labeled random finite sets (LRFSs).

Information on lineage or ancestry is an important aspect of tracking multiple spawn objects.

For example, in (biological) cell tracking, information on a cell’s lineage is important to the analyis

of cell behavior [4, 9, 57, 66]. For SSA, information on the ancestry of RSOs is important for

cataloging and analysis, e.g., that of fragmentation events [13, 27, 76]; moreover, country of origin

and launch site, information required to add a space object to the United States Strategic Command

(USSTRATCOM) catalog7, can be derived from ancestry information. Even with spawn models, the

PHD/CPHD filters [14,60,61] only provide estimates of spawned objects’ states, but no information

on their ancestries. Further, in applications where ancestry information is not required, it is also

possible to estimate spawned objects using RFS-based multi-object filters with measurement-driven

(spontaneous) birth models [74], [65]. Hence, a complete treatment of modeling and estimation for

spawning objects should address the issue of ancestry.

Labeled RFSs enable ancestry information to be incorporated into the modeling and estima-

tion of spawn objects. Approximate multi-object Bayes filters such as the PHD [61], CPHD [62],

and multi-Bernoulli [63, 93, 97] filters were not formulated to estimate tracks, without which the

ancestries of the objects are, conceptually, not traceable. On the other hand, labeled RFSs provide

the means for identifying and estimating individual object tracks [95], thereby making it possible,

conceptually, to trace their ancestors. Furthermore, as demonstrated in this thesis, the labels used

to identify individual tracks can also be encoded with ancestry information, which can be assimi-

lated by RFS spawning models, and subsequently inferred from the labels obtained using labeled

RFS estimation techniques.

Under the labeled RFS formulation, the multi-object Bayes recursion (without spawning)

admits an analytic solution known as the GLMB filter [94, 95], which can be implemented with

7 space-track.org. [online] Available at: https://www.space-track.org/ [12 Jun. 2016]
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linear complexity in the number of measurements and quadratic in the number of hypothesized

tracks [92]. This on-line multi-object tracker is based on the GLMB family of conjugate priors

that enjoys a number of nice analytical properties, e.g., the void probability functional–a necessary

and sufficient statistic–of a GLMB, the Cauchy-Schwarz divergence between two GLMBs [8], the

L1-distance between a GLMB and its truncation, can all be computed in closed form [94]. Of direct

relevance to this thesis is the fact that the GLMB family is flexible enough to approximate any

labeled RFS density with matching intensity function and cardinality distribution [70].

1.3 Overview

This thesis develops new RFS multi-object filtering/tracking methods that jointly estimate

the states and number of objects that appear due to spawning events, with intended applications

to IOD. There are multiple RFS filters presented in the literature and choosing the best options

for extending their capabilities to meet the demands of IOD requires special considerations. These

include, but are not limited to, the multi-object state models and track labeling methods available

for a given approach.

Chapter 2 of this thesis provides relevant background on multi-object filtering and tracking

within an RFS framework. Section 2.1 covers RFS multi-object filtering methods while Section 2.2

presents labeled RFS multi-object tracking methods. Gaussian mixture implementations of two

filters central to the presented research are presented in Section 2.3. Their tractability is discussed

in Section 2.4 and the performance metrics used to evaluate them are defined in Section 2.5. An

overview of the orbit problem is provided in Section 2.6. Uncertainty propagation methods are

discussed in Section 2.7, with detection probability and breakup modeling detailed in Section 2.8

and Section 2.9, respectively.

Chapter 3 of this thesis provides additional background material particularly relevant to

the CPHD derivations presented in Chapter 4. Random finite sets are “simplified” versions of

point processes [64], which are formulated in the more general theory of measures. According to

Mahler, a point process must be a RFS to be of practical use, and the use of a point process
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theory approach to multi-object filtering developments “unnecessarily increase[s] notational and

theoretical complexity” [64, pg. 52]. While the addition of complexity cannot be denied, in the case

of the research presented in Chapter 4, the point process theory approach, i.e., measure-theoretic

approach, is key in facilitating a cohesive formulation of the spawn model inclusive CPHD filter,

regardless of the specific spawn model used. Hence, Chapter 3 includes the relevant background

for a measure-theoretic approach to CPHD derivations. Section 3.1 discusses point processes and

their relationship to RFSs. Sections 3.2 and 3.3 define probability generating functionals and the

mechanics of functional differentiation, respectively, while a few properties from the application of

differentiation in the context of point processes are shown in Section 3.4.

In Chapter 4, models are proposed that allow for the development of CPHD implementations

used for RSO filtering applications with spawning. The incorporation of spawn models in the

context of CPHD filtering was previously explored in [60], relying on an intuitive construction of

the filtering equations related to the spawning models considered (Bernoulli or Poisson process)

through a non-standard derivation procedure. This thesis proposes expressions for the CPHD filter

enhanced with various target spawning models through a standard derivation procedure within

an RFS framework specific to the considered spawning model (Bernoulli, Poisson, or zero-inflated

Poisson process). The derivation of the spawning terms in [60] relies on additional approximations

and the approach does not lead to the same results as those presented here. Section 4.1 provides

a detailed construction of the CPHD filter with target spawning, considering several models of

spawning processes. Section 4.2 demonstrates the proposed concepts through simulation example.

The proofs of the results in Section 4.1 are given in Appendix A.

Chapter 5 of this thesis presents multi-object filtering simulations for two spawning event

orbit determination scenarios: small-sat deployments and a rocket body (RB) explosion. CubeSat

deployments offer a unique opportunity to test spawn model filter implementations because they

are typically scheduled, well defined, and controlled events. The QB50 mission [87] in which fifty

CubeSats were planned for deployment in LEO is a good example of this as its mission design is well

documented, including a study of deployment strategies [53]. Important to note, in the time since
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the research presented in Chapter 5 was performed, according to the QB-50 mission’s website8,

only thirty-six QB50 CubeSats have been launched: twenty-eight from the international space

station (ISS) and eight from an Indian PSLV rocket. The presented simulations were performed in

early 2016 at which time the QB50 mission was reportedly preparing to launch fifty CubeSats from

the ISS that summer9. Rocket body explosions are a well known fragmentation event type and

Space Surveillance Network (SSN) catalog entries for their fragments are periodically reported, e.g.,

a Delta 2 second-stage (SSN# 25637, International Designator 1999-008D) explosion yielded the

addition of six fragments into the SSN catalog10. Scenario descriptions are provided in Section 5.1

which includes information pertaining to dynamics, measurements, and filter configuration. Results

are presented in Section 5.2.

In Chapter 6 of this thesis, a new GLMB based filter that formally incorporates spawning,

in addition to birth, is proposed. Using labeled RFSs ancestry information is encoded into the

labels of individual object states and a labeled RFS spawn model is proposed. When a track

is instantiated by spontaneous birth, its label contains information pertaining to when an object

is born and from which birth region [95]. Similarly, for a track instantiated by spawning, its

label contains information pertaining to when and from which parent it originated. Under such a

spawning model, the multi-object prediction and filtering densities are no longer GLMBs, even if

the initial prior is a GLMB. To derive a tractable filter, following [92] the prediction and update

are combined into a single step and the labeled multi-object filtering density is approximated by

a GLMB with matching first moment and cardinality using the technique in [70]. The result is a

recursion that propagates the GLMB approximation of the labeled multi-object filtering density,

from which the states of the spawned objects and their labels, hence lineage, can be jointly inferred.

The derivation, approximation, and joint prediction and update of object spawning inclusive GLMB

8 [online] Available at: https://www.qb50.eu/. [Accessed 10 Oct. 2017].
9 [online] Available at: http://amsat-uk.org/2015/09/08/qb50-cubesats-to-be-deployed-from-iss/ [Accessed 10 Oct.

2017].
10 orbitaldebris.jsc.nasa.gov. odqnv18i3.pdf (pdf). [online] Available at: https://orbitaldebris.jsc.nasa.gov/quarterly-

news/pdfs/odqnv18i3.pdf [Accessed 11 Sep. 2014].
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densities is developed in Section 6.1. Simulation results are presented in Section 6.5.

Chapter 7 of this thesis demonstrates that the filter advancements made in Chapter 6 are

capable of performing IOD for objects generated by space based spawning events. CubeSat deploy-

ment is revisited, but with a more challenging scenario in which the simulated sensor network more

closely resembles real-world capabilities. Multiple simulations are run that highlight the need for

more versatile spawn models for SSA applications.

The contributions and significant results of the presented research are reviewed in Chapter

8. Future work is proposed for further filter advancements and improved SSA capabilities.

1.4 Summary of Contributions

Derivations were performed so that spawn modeling could be incorporated with the CPHD

filter, at a fundamental level. The resultant expressions for predicted cardinality distribution were

in general form, w.r.t. input spawn models, i.e., special considerations for spawn modeling prior to

derivation were not required. A tractable implementation method was presented using Partial Bell

Polynomials, and the Zero-Inflated Poisson spawn model was introduced. Filter capabilities were

demonstrated via linear simulations.

• Results published in the peer reviewed journal IEEE, Transactions on Signal Processing [14]

The Gaussian mixture implementation of the CPHD filter, configured with a Zero-Inflated

Poisson spawn model, was shown to be effective in IOD of objects originating from spawning events.

When high observation density is achievable, the GM-CPHD filter can be a useful tool in estimating

the number of objects generated by CubeSat deployments and/or fragmentation events and their

states.

• Results presented at the 2016 AAS/AIAA Spaceflight Mechanics Meeting [13]

A GLMB filter implementation was derived that includes spawning; the first multi-object

filter ever derived capable of providing ancestry information estimates, along with number of ob-

jects and individual object state estimates. Presented in a fundamental form, the derived results
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are accessible to any sub-discipline of the multi-object filtering/tracking field where spawning is

applicable.

• Results currently under review for publication in the peer reviewed journal IEEE, Trans-

actions on Signal Processing

• Mathematical derivations presented at the 2017 International Conference on Control, Au-

tomation and Information Sciences

Additionally, this research has shown that on-line multi-object orbit determination in the

presence of spawning is possible within the RFS filtering paradigm. Having shown that the GLMB

filter can perform initial orbit determination for spawned RSOs, this research has established a

foundation upon which further SSA improvements can be investigated.



Chapter 2

Multi-Object Filtering and Tracking with Random Finite Sets

This chapter provides background material on multi-object filtering and multi-object tracking

within an RFS framework relevant to the presentation and discussion of advancements in this area

later on. Section 2.1 covers RFS multi-object filtering methods while Section 2.2 presents labeled

RFS multi-object tracking methods. Gaussian mixture implementations of two filters central to the

presented research are presented in Section 2.3, their tractability is discussed in Section 2.4, and

the performance metrics used to evaluate them are defined in Section 2.5. Uncertainty propagation

methods are discussed in Section 2.7, with detection probability and breakup modeling detailed in

Section 2.8 and Section 2.9, respectively.

2.1 Random Finite Set Filtering

2.1.1 Random Finite Sets

The content of this section closely follows that in [89].

Instead of a single system state x in the state space X ⊆ Rn or observation z in observation

space Z ⊆ Rm, a multi-object system considers finite sets X ⊂ X and Z ⊂ Z as the multi-

object state and multi-object observation, respectively. Furthermore, in a Bayesian framework the

multi-object state and multi-object observation are modeled as RFSs, i.e., finite-set-valued random

variables [61]. An RFS, also known as a simple finite point process, consists of a random number of

points that are, themselves, random and unordered. An RFS can be described by the multi-object

density-defined to be the set derivative of its belief functional [63]-shown to be equivalent to a
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probability density in [90].

Assume that at time k there is a collection of unordered single object states x
(i)
k with i =

1, 2, . . . , J
(x)
k and a collection of unordered measurements z

(i)
k with i = 1, 2, . . . , J

(z)
k . Then, the

multi-object state and multi-object observation at time k are

Xk =

{
x

(1)
k , . . . , x

(J
(x)
k )

k

}
∈ F(X), (2.1)

Zk =

{
z

(1)
k , . . . , z

(J
(z)
k )

k

}
∈ F(Z), (2.2)

where F(Y ) denotes the collection of finite subsets of Y .

Depending on the intended application, the multi-object state can take on several different

forms [89, 90, 96, 97]. Letting Xk−1 denote the multi-object state at time k − 1, each xk−1 ∈ Xk−1

will either survive to the next time k with probability of survival pS,k(xk−1) or die with probability

1− pS,k(xk−1). Define a surviving RFS Sk|k−1 that models the behavior of Xk−1 at the next time.

Also, define a spontaneous birth RFS Bk at time k that accounts for newly appearing objects,

e.g., objects that recently entered a surveillance region, and a spawn RFS Tk|k−1(xk−1) at time k

that accounts for objects spawned from an object with previous state xk−1. Then, the predicted

multi-object state can be formulated in the following ways:

Xk =

[ ⋃
xk−1∈Xk−1

Sk|k−1(xk−1)

]
, surviving only, (2.3)

Xk =

[ ⋃
xk−1∈Xk−1

Sk|k−1(xk−1)

]
∪Bk, surviving and birth, (2.4)

Xk =

[ ⋃
xk−1∈Xk−1

Sk|k−1(xk−1)

]
∪

[ ⋃
xk−1∈Xk−1

Tk|k−1(xk−1)

]
, surviving and spawn, (2.5)

Xk =

[ ⋃
xk−1∈Xk−1

Sk|k−1(xk−1)

]
∪

[ ⋃
xk−1∈Xk−1

Tk|k−1(xk−1)

]
∪Bk, surviving, spawn and birth. (2.6)

The multi-object observation Zk is the superposition of detections and false alarms, i.e.,

clutter returns. Each state xk ∈ Xk is either detected with probability of detection pD,k(xk) and

generates an observation zk ∈ Zk or missed with probability qD,k(xk) = 1 − pD,k(xk). Clutter

models typically follow a Poisson distribution and their statistics are usually denoted by the Greek
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letter κ.

2.1.2 Multi-Object Bayes Filter

The content of this section closely follows that in [14].

The multi-object Bayes filter [63] is the natural extension of the usual single-object Bayesian

paradigm to the multi-object case. Letting Xk and Zk denote the multi-object state and multi-

object measurement at time k, respectively, the multi-object filtering density is recursively propa-

gated by the multi-object Bayes filter [61,63] via

πk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)πk−1(X|Z1:k−1)δX, (2.7)

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)πk|k−1(X|Z1:k−1)δX

, (2.8)

where the integral is a set integral defined for any function f : F(X)→ R by∫
f(X)δX =

∞∑
i=0

1

i!

∫
f({x1, . . . , xi})d(x1, . . . , xi), (2.9)

Z1:k denotes the measurement history up to time k, πk|k−1 is the predicted multi-object density, and

πk is the multi-object posterior density. The multi-object transition density fk|k−1 describes the

time evolution of the population of objects since time step k − 1 and encapsulates the underlying

models of object birth, motion, spawning, and death. The multi-object likelihood gk describes

the sensor observation process and encapsulates the underlying models of object detection, object-

generated measurements, and false alarms (i.e., clutter).

Practical applications of the recursion in (2.7) and (2.8) are typically deemed computationally

intractable due to the involvement of multiple integrals on the space F(X) [89]; however, several of

its approximations circumvent this intractability and are detailed next.

2.1.3 First-Order Approximation Filters

Instead of propagating the multi-object posterior density, first-order approximation filters

propagate the first-order multi-object moment, or intensity, commonly known as the Probability
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Hypothesis Density (PHD). Such an approximation reduces computational complexity by allowing

for integration of terms over the single-object state space X, as opposed to over the space F(X) [89].

Note that first-order approximation filters provide number of objects and object state estimates;

however, they do not provide object tracks, i.e., they do not provide object identity information.

The PHD [63] and CPHD [96] filters are first-order approximations of the multi-object Bayes

recursion that have been substantially researched in the past decade. Their details are provided

below, but first, define the following terms in Table 2.1 (as they are presented in [89]):

Table 2.1: Notation Definitions [89]

Notation Definition

µB,k(·) intensity of the birth RFS Bk at time k

µT,k|k−1(·|xk−1) intensity of the RFS Tk|k−1(xk−1) spawned at time k by an object with

previous state xk−1

pS,k(xk−1) probability of survival, i.e., probability that an object still exists at

time k given that that its previous state is xk−1

pD,k(x) probability of detection, i.e., probability of an object at time k given

state x being detected by a sensor

κk intensity of clutter RFS Kk at time k

2.1.3.1 PHD Filter

The content of this section closely follows that in [89].

The original PHD filter derivation assumes the multi-object state is given by (2.6). The

following are also assumed:

A.2.1: objects evolve and generate observations independently from one another,

A.2.2: the clutter RFS is Poisson and independent of object-originated observations,

A.2.3: the predicted multi-object RFS (Eq. (2.7)) follows a Poisson distribution.
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Remark 1: As noted in [89], assumptions A.2.1 and A.2.2 are fairly standard for tracking applica-

tions.

Remark 2: The PHD filter can have trouble with scenarios where the number of objects vary over

time, e.g., fragmentation events. This is due to the “linearizing effect” the Poisson approximation

in assumption A.2.3 has on the estimated number of objects [63,64].

Letting µk|k−1 and µk denote the intensities associated with πk|k−1 in (2.7) and πk in (2.8),

respectively, the PHD recursion is defined as [61,89],

µk|k−1(x) =

∫
pS,k(ς)fk|k−1µk−1(ς)dς +

∫
µT,k|k−1(x|ς)µk−1(ς)dς + µB,k(x), (2.10)

µk(x) = [1− pD,k(x)]µk|k−1(x) +
∑
z∈Zk

pD,k(x)gk(z|x)µk|k−1(x)

κk(z) +
∫
X pD,k(ξ)gk(z|ξ)µk|k−1(ξ)dξ

. (2.11)

2.1.3.2 CPHD Filter

The content of this section closely follows that in [96].

The original derivation of the CPHD filter did not account for spawned objects [62,96], hence

it assumed the multi-object state model (2.4). Noting that A.2.1 still holds, the remaining CPHD

filter assumptions are:

A.2.4: birth and surviving RFSs are independent of each other,

A.2.5: the clutter RFS is an independent and identically distributed (i.i.d.) process, independent

of the measurement RFSs,

A.2.6: the prior and predicted multi-object RFSs are i.i.d. processes.

Remark 3: A.2.5 and A.2.6 include the assumption of an i.i.d. process which is characterized by

a cardinality distribution ρ and a spatial distribution. It describes a population whose size is

distributed according to ρ and whose individual states are i.i.d.. A Poisson process is a special case

of an i.i.d. process in which the cardinality distribution ρ is Poisson.
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The prediction step of the CPHD filter is similar to that of the PHD, except that the predicted

intensity µk|k−1 does not include spawning terms, and, there is an equation for the predicted

cardinality distribution ρk|k−1. The prediction step of the classical CPHD recursion is given by [96]

µk|k−1(x) =

∫
pS,k(ς)fk|k−1µk−1(ς)dς + µB,k(x), (2.12)

ρk|k−1(n) =
n∑
j=0

ρB,k(n− j)
∞∑
`=j

C`j
〈pS,k(ς), µk−1〉j〈1− pS,k(ς), µk−1〉`−j

〈1, µk−1〉`
ρk−1(`), (2.13)

where

ρB,k(·) = cardinality distribution of births at time k,

〈λ, ε〉 = the inner product defined between two real-valued functions λ and ε,

C`j = the binomial coefficient
`!

j!(`− j)!
.

The update step of the CPHD filter is given by [96]

µk =
〈Υ1

k

[
µk|k−1, Zk

]
, ρk|k−1〉

〈Υ0
k

[
µk|k−1, Zk

]
, ρk|k−1〉

× [1− pD,k(x)]µk|k−1(x)

+
∑
z∈Zk

〈Υ1
k

[
µk|k−1, Zk \ {z}

]
, ρk|k−1〉

〈Υ0
k

[
µk|k−1, Zk

]
, ρk|k−1〉

〈1, κk〉
κk(z)

gk(z|x)pD,k(x)µk|k−1(x), (2.14)

ρk(n) =
Υ0
k

[
µk|k−1, Zk

]
(n), ρk|k−1(n)

〈Υ0
k

[
µk|k−1, Zk

]
, ρk|k−1〉

, (2.15)

where

Υu
k [µ,Z] (n) =

min(|Z|,n)∑
j=0

(|Z| − j) ρK,k (|Z| − j)Pnj+u

×
〈1− pD,k(x), µ〉n−(j+u)

〈1, µ〉n
ej
(
Λk(µ,Z)

)
, (2.16)

Λ(µ,Z) =

{
〈µ, 〈1, κk〉

κk(z)
gk(z|x)pD,k(x)〉 : z ∈ Z

}
, (2.17)

ρK,k(·) = cardinality distribution of clutter at time k,

Pnj = the permutation coefficient
n!

(n− j)!
,

ej(Λ) = the elementary symmetric function of order j defined

for a finite set Λ of real numbers.



21

As can be seen in (2.12)-(2.17), the CPHD filter is more complex than the PHD filter, though

it has been shown that the former can provide a better cardinality estimate than the latter [96].

Notwithstanding, both filters are known to exhibit a behavior referred to as “spooky action at a

distance” [32], or the “spooky effect” [94], whereupon a missed detection the PHD mass is shifted

away from undetected tracks to detected tracks, regardless of the distance between tracks. An

example given in [32] using only two tracks illustrates how a portion of the updated weight of

the undetected track is transferred to the detected track. A proposed remedy to this issue is to

partition a multi-object scene into “statistically noninteracting target-clusters” and apply a single

CPHD filter to each cluster [64]. For example, if a multi-object scenario involved tracking RSOs

in both LEO and geosynchronous-Earth orbit (GEO), an individual CPHD filter would be applied

to tracking LEO objects, with another filter applied to tracking GEO objects.

2.1.4 Multi-Bernoulli Approximation Filters

The content of this section closely follows that in [97].

Instead of approximating the multi-object density π of the multi-object Bayes recursion as

a Poisson process (PHD filter) or an i.i.d. process (CPHD filter), approaches discussed in this

section make a “less restrictive assumption” [63] of multi-object densities as approximately multi-

Bernoulli [63]. According to Mahler, analogous to the way closed form solutions of the single-object

Kalman filter are made possible when the relevant distributions are linear Gaussian, closed form

solutions for the multi-object Bayes filter are possible when the relevant distributions are at least

approximately multi-Bernoulli [63].

The first proposed multi-Bernoulli filter is the Multi-target Multi-Bernoulli (MeMBer) filter

[63], which was determined to have a problem with over estimating the number of objects, i.e.,

cardinality, hence the proposal of the Cardinality Balanced MeMBer (CBMeMBer) filter [97]. These

filters are not discussed here in detail, as they are not the focus of the presented work. However,

both filters make use of multi-Bernoulli RFSs which are relevant in later sections.
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2.1.4.1 Multi-Bernoulli RFSs

A Bernoulli RFS X on X describes a single object and is parameterized by a probability of

existence r ∈ (0, 1) and a spatial distribution p(x) that describes the state x ∈ X. The probability

density function (p.d.f.) of X is given by

π(X) =


1− r, X = ∅,

r · p(x), X = {x}.
(2.18)

A multi-Bernoulli RFS X on X is a union of M independent RFSs X(i), each with existence

probability r(i) ∈ (0, 1) and probability density p(i)(x) (defined on X), where i = 1, . . . ,M . The

probability density π of a multi-Bernoulli RFS is given as [63]

π(X) = π(∅)
∑

1≤i1 6=···6=in≤M

n∏
j=1

r(ij)p(ij)(xj)

1− r(ij)
, (2.19)

which is typically expressed more compactly as a set of parameters by [94,95,97]

π , {(r(i), p(i))}Mi=1. (2.20)

2.2 Labeled Random Finite Set Tracking

The content of this section and its subsections closely follows that in [94,95].

The previously detailed multi-object filters are capable of estimating the number of objects

and their states, but provide no information on object identity. Labeled implementations of these

filters do exist [21,58]; however, the track labels themselves do not result from top down derivation,

but are algorithmically added to the filters. Therefore, fundamentally, the previously discussed

filters perform multi-object filtering, but not tracking.

A new approach to RFS multi-object tracking was recently developed that centers around

the labeled RFS. An analytic solution to the labeled multi-object Bayes filter (2.29), known as the

Generalized Labeled Multi-Bernoulli (GLMB) filter, was derived in [95], and is the focus of this

section.
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2.2.1 Label Random Finite Sets

A labeled RFS is a marked simple finite point process with state space X and discrete mark

space L, such that each realization has distinct marks [95], [94]. The distinct marks, or labels,

provide the means to identify trajectories or tracks of individual objects since a trajectory is a

time-sequence of states with the same label. Let L : X × L → L be the projection L((x, `)) = `,

then the labels of realization X ⊂ X× L are L(X) = {L(x) : x ∈ X}. The realization X is said to

have distinct labels if and only if it has the the same cardinality as its labels L(X). This concept

is compactly formulated by the distinct label indicator defined by [95], [94]

∆(X) = δ|X| (|L(X)|) ,

where |X| denotes the cardinality of a finite set X, and

δY (X) ,


1, if X = Y,

0, otherwise,

denotes a generalization of the Kroneker delta that takes arbitrary arguments such as integers, sets,

vectors etc.

Throughout this document the following notation conventions are observed. Lower case

letters represent single-object states, e.g., x,x, while upper case letters represent multi-object

states, e.g., X,X. Bold symbols represent labeled states and their distributions/statistics, e.g.,

x,X,π, etc., to distinguish them from unlabeled ones. Blackboard letters represent spaces, e.g.,

X,Z,L,N. Multi-object exponential notation hX ,
∏
x∈X h(x), where h is a real-valued function

and h∅ = 1 by convention, and the inclusion function notation, a generalization of the indicator

function,

1Y (X) ,


1, if X ⊆ Y,

0, otherwise,

are also used.
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Additionally, the list of variables Xm, Xm+1, ..., Xn is abbreviated as Xm:n and where it is

convenient we let the symbol + denote the time index at the next time and its absence denote the

time index at the current time, e.g., the state xk at the current time and the state xk+1 at the next

time can equivalently be denoted as x and x+, respectively.

2.2.2 Generalized Labeled Multi-Bernoulli

A GLMB is a labeled RFS with state space X and label space L distributed according

to [94,95]

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))
[
p(ξ)
]X

(2.21)

where Ξ is a given discrete space, each p(ξ)(·, `) is a (single-object) probability density on X (i.e.,∫
p(ξ)(x, `)dx = 1 with each x ∈ X denoting a single-object state and each ` ∈ L denoting a distinct

label), and each w(I,ξ) is non-negative such that

∑
I∈F(L)

∑
ξ∈Ξ

w(I,ξ)(L) = 1. (2.22)

Each GLMB density component (I, ξ) in (2.21) consists of a weight w(I,ξ) that depends solely on

the labels of the multi-object state X and the multi-object exponential
[
p(ξ)
]X

, which is a product

of single-object probability densities.

Also relevant to this work is the Labeled Multi-Bernoulli (LMB). An LMB X defined on

X× L is an RFS with parameter set {(r(ς), p(ς)) : ς ∈ Ψ} distributed according to [95]

π(X) = ∆(X)1α(Ψ)(L(X)) [Φ(X, ·)]Ψ (2.23)

where α : Ψ→ L is a 1-1 mapping (usually an identity mapping) and

Φ(X, ς) =
∑

(x,`)∈X

δα(ς)(`)r
(ς)p(ς)(x) +

(
1− 1L(X)(α(ς))

) (
1− r(ς)

)
. (2.24)

2.2.3 GLMB Tracking Filter

Pertinent details of the GLMB tracking filter are presented in this subsection. There is some

overlap between the filter recursion development presented here and that presented in Section 2.1.2,
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and it may seem a bit repetitive. However, the multi-object filtering problem is now formulated

using labeled RFSs and they, along with their statistical descriptors, use different notation. So, for

the sake of clarity, some expressions are presented again using labeled notation.

2.2.3.1 Multi-object Bayes Filter

Using the convention detailed in [95], a label ` = (t, i) in the space L of labels at the current

time k is an ordered pair, where the first term t ≤ k denotes time of birth, and the second term

i ∈ N is a unique index distinguishing objects born at the same time. Birth labels at the next time

belong to the space B+ = {(k + 1, i) : i ∈ N}, hence L ∩ B+ = ∅ and the label space at the next

time is L+ = L∪B+. The assignment of labels to object trajectories is illustrated in Fig. 2.1 [94].

Figure 2.1: “An example of label assignments. The two tracks born at time 1 are given labels (1,1) and
(1,2), while the only track born at time 4 is given label (4,1). Notice also the difference between multi-target
states and target tracks.” [94]

The history X0:k of labeled multi-object states contains the set of all trajectories up to time k.

All information on the set of trajectories conditioned on the observation history Z1:k, is captured in

the multi-object posterior density π0:k(·|Z1:k), which incorporates the evolution of the multi-object

state via the multi-object transition density, as well as the observed data via the multi-object

likelihood [63].
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2.2.3.2 Multi-Object Transition Model

The multi-object transition density f+(·|X) models the evolution of a given multi-object

state X to the next time and encapsulates all information pertaining to loss of objects via thinning,

movement of surviving objects via Markov shifts1, and appearance of new objects via superposition.

Given a single-object state x ∈ X at the current time, an object either survives to the

next time with probability pS(x, `) and moves to a new state (x+, `+) with probability density

fS,+(x+|x, `)δ`(`+), or dies with probability qS(x, `) = 1 − pS(x, `). Assuming that the transition

of kinematic states are mutually independent and conditional on X, we model the set XS,+ of

surviving objects at the next time as a conditional LMB RFS distributed according to [95]

fS,+(XS,+|X) = ∆(X)∆(XS,+)1L(X)(L(XS,+)) [ΦS,+(XS,+|·)]X (2.25)

where

ΦS,+(XS,+|x, `) =
∑

(x+,`+)∈XS,+

δ`(`+)pS(x, `)fS,+(x+|x, `) +
[
1− 1L(XS,+)(`)

]
qS(x, `).

A new object with state (x+, `+) appears at the next time with probability rB,+(`+) and

probability density pB,+(x+, `+), or does not with probability 1− rB,+(`+). Modeling object birth

as an LMB RFS, the set XB,+ of new objects born at the next time is distributed according to [95]

fB,+(XB,+) = ∆(XB,+)wB,+(L(XB,+)) [pB,+]XB,+ (2.26)

where wB,+(L) = 1B+(L) [1− rB,+]B+−L [rB,+]L.

The multi-object state at the next time is the superposition of birth and surviving objects,

i.e., X+ = XS,+ ∪XB,+, and since L ∩ B+ = ∅, labeled birth and surviving objects are mutually

independent. Thus, the multi-object transition kernel ultimately reduces to the product of birth

and survival transition densities [95]

f+(X+|X) = fS,+(X+ ∩ (X× L)|X)fB,+(X+ − (X× L)), (2.27)

where X+ ∩ (X× L) is the subset of X+ consisting of surviving objects.

1 Markov shift refers to the Markov state transition density function, which is a probability density characterizing the

state xk of an object at time k, assuming it had state xk−1 at time k − 1 [64].
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2.2.3.3 Multi-object Measurement Model

The multi-object likelihood is a multi-object density g(·|X) that models the multi-object

observation generated by a given multi-object state X, and encapsulates all information pertaining

to missed detections via thinning, detections (observations of detected objects) via Markov shifts

and clutter (false observations) via superposition.

The multi-object observation Z =
{
z1, . . . , z|Z|

}
is the superposition of detections and clutter.

Each state (x, `) ∈ X is either detected with probability pD(x, `) and generates an observation

z ∈ Z with likelihood g(z|x, `) or missed with probability qD(x, `) = 1− pD(x, `). The multi-object

likelihood is given by [94,95]

g(Z|X) ∝
∑

θ∈Θ(L(X))

∏
(x,`)∈X

ψ(θ(`))(x, `|Z) (2.28)

where

ψ(j)
(
x, `|

{
Z1:|Z|

})
= δ0(j)qD(x, `) + (1− δ0(j))

pD(x, `)g(zj |x, `)
κ(zj)

,

κ(·) is the intensity of Poisson clutter, and Θ(L) denotes the space of mappings θ : L → {0 : |Z|}

that are 1-1 when restricting the range to the positive integers, i.e., θ(i) = θ(j) > 0 implies i = j.

2.2.3.4 Multi-object Bayes recursion

While the multi-object posterior density can be approximated by Markov Chain Monte Carlo

[23, 98], these techniques are still expensive and not suitable for on-line applications. For real-

time tracking, a more tractable alternative is the marginal π(·) ,πk(·|Z1:k) called the multi-object

filtering density, which can be recursively propagated by the multi-object Bayes filter [61], [63]

π+(X+) ∝ g+(Z+|X+)

∫
f+(X+|X)π(X)δX, (2.29)

where the integral is a set integral defined for any function f : F(X× Lk)→ R by∫
f(X)δX =

∞∑
i=0

1

i!

∫
f({x1, . . . ,xi})d(x1, . . . ,xi).
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Note that Bayes optimal multi-object estimators can be formulated by minimizing the Bayes risk,

e.g., the marginal multi-object estimator [63].

If the multi-object prior is a GLMB of the form (2.21), then the predicted multi-object density

is also a GLMB given by [95]

π+(X+) = ∆(X+)
∑

(I+,ξ)∈F(L+)×Ξ

w
(I+,ξ)
+ δI+(L(X+))[p

(ξ)
+ ]X+ , (2.30)

where

w
(I+,ξ)
+ = wB,+(I+ ∩ B+)w

(ξ)
S,+(I+ ∩ L), (2.31)

p
(ξ)
+ (x, `) = 1L(`)p

(ξ)
S,+(x, `) + (1− 1L(`))pB,+(x, `), (2.32)

p
(ξ)
S,+(x, `) =

〈pS,+(·, `)fS,+(x|·, `), p(ξ)(·, `)〉
η

(ξ)
S,+(`)

, (2.33)

η
(ξ)
S,+(`) =

∫
〈pS,+(·, `)fS,+(x|·, `), p(ξ)(·, `)〉dx, (2.34)

w
(ξ)
S,+(L) = [η

(ξ)
S,+]L

∑
I⊆L

1I(L)[q
(ξ)
S,+]I−Lw(I,ξ), (2.35)

q
(ξ)
S,+(`) = 〈qS,+(·, `), p(ξ)(·, `)〉. (2.36)

If the predicted multi-object density if a GLMB of (2.21), then the multi-object posterior is

also a GLMB with form [95]

π(X|Z) = ∆(X)
∑

(I+,ξ)∈F(L+)×Ξ

∑
θ∈Θ

w(I,ξ,θ)(Z)δI(L(X))[p(ξ,θ)(·|Z)]X, (2.37)

where

w(I,ξ,θ)(Z) =
δθ−1({0:|Z|})(I)w(I,ξ)[η

(ξ,θ)
Z ]I∑

(I+,ξ)∈F(L+)×Ξ

∑
θ∈Θ

δθ−1({0:|Z|})(I)w(I,ξ)[η
(ξ,θ)
Z ]I

, (2.38)

p(ξ,θ)(x, `|Z) =
p(ξ)(x, `)ψ(θ(`))(x, `|Z)

η(ξ,θ)(`|Z)
, (2.39)

η(ξ,θ)(`|Z) = 〈p(ξ)(·, `), ψ(θ(`)) (x, `|Z)〉, (2.40)

ψ(θ(`)) (x, `|Z) = δ0(θ(`))qD(x, `) + (1− δ0(θ(`)))
pD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
. (2.41)
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2.3 Gaussian Mixture Implementations

Random finite set filters typically require further approximations to admit a closed form

solution, the CPHD and GLMB included. As is usually done, these filters are implemented with

either Gaussian mixture (GM) or Sequential Monte Carlo (SMC) models, the former typically more

computationally expensive than the latter. Solutions to astrodynamics problems naturally tend to

be computationally expensive due to complex dynamics, hence GM implementations are favored in

presented work and SMC implementations are not considered.

In this section key assumptions and the associated equations are presented for GM imple-

mentation of both CPHD and GLMB filters, see [96] and [94] for more details, respectively. Note

the following assumptions:

A.2.7: single-target dynamics and observation models are linear Gaussian,

A.2.8: survival and detection probabilities are state independent, i.e.,

pS,k(x) ≡ pS,k, (2.42)

pD,k(x) ≡ pD,k. (2.43)

2.3.1 GM-CPHD

The content of this section closely follows that in [96].

Assumption A.2.7 is mathematically represented as

fk|k−1(x|ς) = N (x;Fk−1ς, Qk−1), (2.44)

gk(z|x) = N (z;Hkx,Rk), (2.45)

where N (·;m,P ) denotes a Gaussian density with mean m and covariance P , Fk−1 is the state

transition matrix, Qk−1 is the process noise covariance, Hk is the observation mapping matrix and

Rk is the observation error covariance.
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2.3.1.1 Prediction

Recall that the CPHD filter classically accounts for newly appearing targets with only a birth

model, hence, the birth RFS is assumed a Gaussian mixture with form [96]

µB,k(x) =

JB,k∑
i=1

ω
(i)
B,kN

(
x;m

(i)
B,k, P

(i)
B,k

)
, (2.46)

where ω
(i)
B,k,m

(i)
B,k, and P

(i)
B,k are the weights, means and covariances of the mixture birth intensity,

respectively, and where JB,k denotes the number of birth mixture components at time k. Assuming

that the posterior intensity µk−1 at time k − 1 is a Gaussian mixture given by

µk−1(x) =

Jk−1∑
i=1

ω
(i)
k−1N

(
x;m

(i)
k−1, P

(i)
k−1

)
, (2.47)

then the predicted intensity µk|k−1 is also a Gaussian mixture of the form

µk|k−1(x) = µS,k|k−1(x) + µB,k(x), (2.48)

where

µS,k|k−1(x) = pS,k

Jk−1∑
j=1

ω
(j)
k−1N

(
x;m

(j)
S,k|k−1, P

(j)
S,k|k−1

)
, (2.49)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1, (2.50)

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1. (2.51)

Given a posterior cardinality distribution ρk−1 the predicted cardinality distribution is given

by

ρk|k−1(n) =

n∑
j=0

ρB,k(n− j)
∞∑
`=j

C`jρk−1(`)pjS,k(1− pS,k)
`−j , (2.52)

where ρB,k(n− j) and C`j are defined in Section 2.1.3.2.

2.3.1.2 Update

The presented research includes changes to the GM-CPHD prediction to account for spawn

models, but no changes were required for the GM-CPHD update. Nevertheless, for completeness,
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the equations are presented here. Assuming at time k the predicted intensity µk|k−1 and predicted

cardinality distribution ρk|k−1 are given and that the predicted intensity is a Gaussian mixture

given by

µk|k−1(x) =

Jk|k−1∑
i=1

ω
(i)
k|k−1N

(
x;m

(i)
k|k−1, P

(i)
k|k−1

)
, (2.53)

then the updated intensity and cardinality distributions are given by

µk =
〈Ψ1

k

[
ωk|k−1, Zk

]
, ρk|k−1〉

〈Ψ0
k

[
ωk|k−1, Zk

]
, ρk|k−1〉

(1− pD,k)µk|k−1(x) +
∑
z∈Zk

Jk|k−1∑
j=1

ω
(j)
k (z)N

(
x;m

(j)
k , P

(j)
k

)
,

(2.54)

ρk(n) =
Ψ0
k

[
ωk|k−1, Zk

]
(n), ρk|k−1(n)

〈Ψ0
k

[
ωk|k−1, Zk

]
, ρk|k−1〉

, (2.55)

where

Ψu
k [ω,Z] (n) =

min(|Z|,n)∑
j=0

(|Z| − j) ρK,k (|Z| − j)Pnj+u
(1− pD,k)

n−(j+u)

〈1, ω〉j+u
ej
(
Λk(ω,Z)

)
, (2.56)

Λ(ω,Z) =

{
〈1, κk〉
κk(z)

pD,kω
T qk(z) : z ∈ Z

}
, (2.57)

ωk|k−1 =

[
ω

(1)
k|k−1, . . . , ω

(Jk|k−1)

k|k−1

]T
, (2.58)

qk(z) =

[
q

(1)
k (z), . . . , q

(Jk|k−1)

k (z)

]T
, (2.59)

q
(j)
k (z) = N

(
z; η

(j)
k|k−1, S

(j)
k|k−1

)
, (2.60)

η
(j)
k|k−1 = Hkm

(j)
k|k−1, (2.61)

S
(j)
k|k−1 = HkP

(j)
k|k−1H

T
k +Rk, (2.62)

ω
(j)
k (z) = pD,kω

(j)
k|k−1q

(j)
k (z)

〈Ψ1
k

[
ωk|k−1, Zk \ {z}

]
, ρk|k−1〉

〈Ψ0
k

[
ωk|k−1, Zk

]
, ρk|k−1〉

〈1, κk〉
κk(z)

, (2.63)

m
(j)
k (z) = m

(j)
k|k−1 +K

(j)
k

(
z − η(j)

k|k−1

)
, (2.64)

P
(j)
k (z) =

[
I −K(j)

k Hk

]
P

(j)
k|k−1, (2.65)

K
(j)
k = P

(j)
k|k−1H

T
k

[
S

(j)
k|k−1

]−1
, (2.66)

(2.67)
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and where ρK,k, P
n
j , and ej(Λ) are defined in Section 2.1.3.2. See [96] for details on implementing

elementary symmetric functions and circumventing infinitely tailed cardinality distributions (the

summation to ∞ in Eq. (2.52)).

2.3.2 GM-GLMB

The content of this section closely follows that in [94].

This section presents the GM implementation of the GLMB filter, which is fairly straight-

forward, as it is only a matter of substituting Gaussian distributions into (2.30) and (2.37), then

carrying out simplifications. However, it is instructive to present the steps here as they will support

simplifications performed in the presented work. First, note [89, Lemmas 1 and 2], transcribed here

for convenience.

Lemma 1. Given F , d, Q, m, and P of appropriate dimensions and that Q and P are positive

definite [89] ∫
N (x;Fζ + d,Q)N (ζ;m,P )dζ = N (x;Fm+ d,Q+ FPF T ). (2.68)

Lemma 2. Given H, R, m, and P of appropriate dimensions and that R and P are positive

definite

N (z;Hx,R)N (x;m, p) = q(z)N (x; m̃, P̃ ), (2.69)

where

q(z) = N (z;Hm,R+HPHT ), (2.70)

m̃ = m+K(z −Hm), (2.71)

P̃ = (I −KH)P, (2.72)

K = PHT (HPHT +R)−1. (2.73)
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2.3.2.1 Prediction

Assume each single-object probability density p(ξ)(x, `) in (2.21) is a Gaussian mixture with

form

p(ξ)(x, `) =

J(ξ)(`)∑
i=1

w(ξ,i)(`)N (x;m(ξ,i)(`), P (ξ,i)(`)), (2.74)

and let

wB,+(L) = 1B+(L) [1− rB,+]B+−L [rB,+]L , (2.75)

pB,+(x, `) =

JB,+(`)∑
j=1

w
(j)
B,+(`)N (x;m

(j)
B,+(`), P

(j)
B,+(`)), (2.76)

fS,+(y|x, `) = N (y;Fx(`), Q). (2.77)

First, note that with a constant probability of survival and Lemma 1, that (2.34) simplifies

to η
(ξ)
S,+(`) = pS,+. Similarly, (2.36) simplifies to q

(ξ)
S,+(`) = qS,+. Then, by substituting in terms,

(2.31) becomes

w
(I+,ξ)
+ = 1B+(L− L) [1− rB,+]B+−(L−L) [rB,+]L−L p

|L∩L|
S,+

∑
I⊆L

1I(L ∩ L)q
|I−(L∩L)|
S,+ w(I,ξ)(I). (2.78)

Now, (2.33) becomes

p
(ξ)
S,+(x+, `+) =

J(ξ)(`)∑
i=1

w(ξ,i)(`)N (x+;Fm(ξ,i)(`), Q+ FP (ξ,i)(`)F T ) (2.79)

via Lemma 1.

2.3.2.2 Update

With constant probability of detection, note that (2.40) simplifies to

η(ξ,θ)(`|Z) =


qD if θ(`) = 0,

pD

κ(zθ(`))
otherwise,

(2.80)

and, via Lemma 2, (2.39) becomes

p(ξ,θ)(x, `|Z) =


p(ξ)(x, `) if θ(`) = 0,

q(zθ(`))N (zθ(`);Hx(`), R) otherwise,

(2.81)
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where

q(zθ(`)) = N (z;Hm(`), R+HP (`)HT ), (2.82)

m̃(`) = m(`) +K(zθ(`) −Hm(`)), (2.83)

P̃ (`) = (I −KH)P (`), (2.84)

K = P (`)HT (HP (`)HT +R)−1. (2.85)

2.4 Tractability

2.4.1 Gaussian Mixture Components

Both the CPHD and GLMB filter implementations discussed in this paper employ prun-

ing methods to combat combinatorial increase of Gaussian mixture components. They include

truncation methods based on component weight and maximum component number thresholds and

component merging. In this work, merging is performed on the basis of Mahalanobis distance. For

more details on these methods, see [89].

2.4.2 GLMB Hypothesis Components

The content of this section closely follows that in [92].

The first GLMB filter implementation consists of prediction and update stages, each requiring

independent truncations of GLMB densities [94, 95]. Alternatively, a substantially more efficient

implementation of the GLMB filter [92], hereafter referred to as the fast GLMB implementation,

employs a single joint prediction/update stage requiring only one truncation procedure. This work

employs the fast GLMB implementation, thus for convenience, we introduce pertinent expressions

and conventions for GLMB joint prediction/update and formulation of the GLMB truncation prob-

lem originally presented in [92]. We expand on this material in Section 6.4 to incorporate spawning.

Given the GLMB filtering density (2.21) at the current time, the GLMB filtering density at
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the next time is given by [92]2

π+(X+) ∝ ∆(X+)
∑

I,ξ,I+,θ+

w(I,ξ)w(I,ξ,I+,θ+)(Z+)δI+(L(X+))
[
p

(ξ,θ+)
+ (·|Z+)

]X+

, (2.86)

where I ∈ F(L), ξ ∈ Ξ, I+ ∈ F(L+), θ+ ∈ Θ+(I+), and

w(I,ξ,I+,θ+)(Z+) =
[
1− p̄(ξ)

S

]I−I+ [
p̄

(ξ)
S

]I∩I+
[1− rB,+]B+−I+ [rB,+]B+∩I+

[
ψ̄

(ξ,θ+)
+ (·|Z+)

]I+
, (2.87)

p̄
(ξ)
S (`) =

〈
pS(·, `), p(ξ)(·, `)

〉
, (2.88)

ψ̄
(ξ,θ+)
+ (`+|Z+)=

〈
p̄

(ξ)
+ (·, `+), ψ

(θ+(`+))
+ (·, `+|Z+)

〉
, (2.89)

p
(ξ,θ+)
+ (x+,`+|Z+)=

p̄
(ξ)
+ (x+,`+)ψ

(θ+(`+))
+ (x+,`+|Z+)

ψ̄
(ξ,θ+)
+ (`+|Z+)

, (2.90)

p̄
(ξ)
+ (x+, `+) = 1B+(`+)pB,+(x+, `+) + 1L(`+)

〈
pS(·, `+)fS,+(x+|·, `+), p(ξ)(·, `+)

〉
p̄

(ξ)
S (`+)

. (2.91)

Though (2.86) is not strictly GLMB, it does take on GLMB form when rewritten as a sum

over I+, ξ, θ+ with weights [92]

w(I+,ξ,θ+)
+

(Z+) ∝
∑
I

w(I,ξ)w(I,ξ,I+,θ+)(Z+). (2.92)

Efficient implementation of the GLMB recursion (2.86) is achieved by propagating only the

components with significant w(I,ξ,I+,θ+)(Z+) through time, i.e., for each component (I, ξ) from the

GLMB density at the current time and a multi-object observation Z+ at the next time, the set

of pairs (I+, θ+) ∈ F(L) × Θ+(I+) with significant w(I,ξ,I+,θ+)(Z+) are retained while the rest are

discarded. The truncation procedure is described as follows.

Consider a fixed component (I, ξ), and enumerate Z+ = {z1:|Z+|}, B+ = {`1:K}, and I =

{`K+1:P }. For each pair (I+, θ+) ∈ F(L) × Θ+(I+), an equivalent P -dimensional vector represen-

tation γ = (γ1:P ) ∈ {−1 : |Z+|}P is defined as

γi =


θ+(`i), if `i ∈ I+,

−1, otherwise.

(2.93)

2 In the interest of simplifying notation, note that
∑

(I,ξ)∈F(L)×Ξ

a(I,ξ) =
∑
I,ξ

a(I,ξ) when the definitions I ∈ F(L) and

ξ ∈ Ξ are provided.
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Note that γ inherits the positive 1-1 property from θ+, and that I+ and θ+ : I+ → {0 : |Z+|} can

be recovered by

I+ = {`i ∈ B+ ∪ I : γi ≥ 0} , θ+(`i) = γi. (2.94)

Assuming that, for all i ∈ {1 : P}, p̄(ξ)
S (`i) ∈ (0, 1) and p̄

(ξ)
D,+(`i) ,

〈
pD,+(·, `i), p̄(ξ)

+ (·, `i)
〉
∈ (0, 1) ,

we define for each j ∈ {−1 : |Z+|}

ηi(j) =



1− rB,+(`i), 1≤ i≤K, j<0,

rB,+(`i)ψ̄
(ξ,j)
+ (`i|Z+), 1≤ i≤K, j≥0,

1− p̄(ξ)
S (`i), K + 1≤ i≤P, j<0,

p̄
(ξ)
S (`i)ψ̄

(ξ,j)
+ (`i|Z+), K + 1≤ i≤P, j≥0,

(2.95)

where ψ̄
(ξ,j)
+ (`i|Z+) =

〈
p̄

(ξ)
+ (·, `i), ψ(j)

+ (·, `i|Z+)
〉

. Then w(I,ξ,I+,θ+)(Z+) =
∏P
i=1 ηi(γi), if the positive

1-1 vectors γ are equivalent representations of (I+, θ+). Hence generating significant GLMB children

components of (I, ξ) translates to generating positive 1-1 vectors with significant weights [92].

Methods for obtaining a set of positive 1-1 vectors include:

• solving a ranked assignment problem using Murty’s algorithm [68], which finds the N best

1-1 vectors in non-increasing order; and

• a more efficient method using the Gibbs sampler to simulate an unordered set of significant

positive 1-1 vectors [92].

2.5 Metrics

The content of this section was presented in [14].

To compare the multi-target state representing the true targets in a scene – the “ground

truth” – and a collection of targets extracted from a filter’s output, the OSPA metric [75] is used

for assessing the accuracy of multi-object filters. Given two sets X = {x1, . . . , xm}, xi ∈ X,

1 ≤ i ≤ m, and Y = {y1, . . . , yn}, yj ∈ X, 1 ≤ j ≤ n, the second-order OSPA distance d
(c)
2 (X,Y )
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between X and Y is defined as

d
(c)
2 (X,Y ) =



0, m = n = 0,[
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
2+c2(n−m)

)]1/2

, m ≤ n,

d
(c)
2 (Y,X), otherwise,

(2.96)

with

d(c)(xi, yj) = min(c, ||xi − yj ||), (2.97)

where c is the cutoff parameter, and || · || is the usual norm on X. The OSPA distance is such that

0 ≤ d(c)
2 (X,Y ) ≤ c; d(c)

2 (X,Y ) = 0 indicates that X and Y are identical, while d
(c)
2 (X,Y ) increases

with the discrepancies between X and Y , taking into account mismatches in number of elements

and element states.

The Hellinger distance [36] is used to compare the true number of targets in a scene and a

estimated cardinality distribution extracted from the filter’s output. Given two finite cardinality

distributions P = (p1, . . . , pk) and Q = (q1, . . . , qk), the Hellinger distance dH(P,Q) is

dH(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2. (2.98)

Note that in (2.98), the coefficient 1/
√

2 is included in order to scale the Hellinger distance such

that it is bounded as 0 ≤ dH(P,Q) ≤ 1; dH(P,Q) = 0 indicates that P and Q are equivalent, where

as dH(P,Q)→ 1, P and Q become increasingly dissimilar.

2.6 Orbit Problem Overview

An object’s orbit can be characterized by its six Keplerian Elements, which are described in

Table 2.2 and some of which are illustrated in Fig. 2.2.
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Table 2.2: Keplerian Elements Description

Element Description

Semimajor Axis A geometric quantity that describes the size of a
particular orbit

Eccentricity Determines the shape of an orbit, e.g., circular,
elliptical, etc.

Inclination Angle formed between the orbital and equatorial planes, denoted as
i in Fig. 2.2.

Right Ascension of Positive angle Ω in the equatorial plane measured
the Ascending Node from the X unit vector to the ascending node

in Fig. 2.2.

Argument of Perigee Angle ω in the orbital plane measured from the
ascending node that locates the point of the orbit
that is closest to Earth.

True Anomaly Angle ν that determines a satellite’s position
relative to perigee.

Figure 2.2: Keplerian elements and the orbital plane3.

Using the Keplerian elements, a satellite’s position r and velocity ṙ vectors can be computed

for a given reference frame. The differential equations of motion for a perturbed satellite are given

by [86]

r̈ = −µr

r3
+ a, (2.99)

where r̈ is the satellite’s acceleration vector, µ is a gravitational constant, r denotes the norm of r,

and a represents perturbing accelerations. There are many sources of perturbations; however, only

3 Lh4.ggpht.com. tmp12402.jpg (image). [online] Available at: http://lh4.ggpht.com/ 1wtadqGaaPs/TF5SS7 qEdI/

AAAAAAAAOls/MCGLdsknqdQ/s1600-h/tmp12402.jpg [Accessed 18 Dec. 2015].
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accelerations that account for non-spherical Earth aNS and atmospheric drag adrag perturbations

are considered here, i.e.,

a = aNS + adrag. (2.100)

Perturbations due to a non-spherical Earth can be modeled by the use of the geopotential

expansion given by [88]

U =
µ

r

[
1 +

∞∑
`=2

∑̀
m=0

(
R⊕
r

)`
P`,m(sin(φ))(C`m cos(mλ) + S`m sin(mλ))

]
(2.101)

where φ is the geocentric latitude, λ is the longitude, R⊕ is Earth’s mean equatorial radius, Pmn

are associated Legendre polynomials of degree n and order m, and where Cnm and Snm are empir-

ically derived coefficients that can be found in a table. Other forms of Eq. 2.101 are sometimes

used that include the “J” notation for zonal harmonics.4 The work presented here only considers

perturbations due to the J2, (` = 2,m = 0), and J3, (` = 3,m = 0), zonal harmonics.

The perturbing acceleration aNS is given by [86]

aNS = Tns · ∇U, (2.102)

where ∇ denotes the gradient operator and Tns denotes the appropriate coordinate system transfor-

mation matrix required to rotate components (ur, uφ, uλ) in spherical coordinates, to components

(x, y, z) in inertial frame coordinates.

Atmospheric drag perturbation acceleration adrag can be modeled by [86]

adrag = −1

2
ρ

(
CD

A

m

)
VrVr, (2.103)

where ρ is the atmospheric density, CD is the drag coefficient, A/m is the area-to-mass ratio, and

Vr is the satellite velocity relative to the atmosphere.

2.7 Uncertainty Propagation

An issue commonly encountered in orbit propagation is that of covariance degradation due to

non-linearities [22]. The linear Gaussian assumptions above promote tractable real-time tracking,

4 “Zonal harmonics are defined by the zeroth order (m = 0), where the dependencies of the potential on longitude

vanishes and the field is symmetrical about the polar axis.” [88]
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but this conflicts with the nature of RSO tracking due to inevitable observation gaps which translate

into high integration times and non-linear single-target densities [49].

To address this issue, the presented work uses unscented Kalman filter implementations of

the proposed filters. Details for the unscented Kalman filter (UKF) for single-target tracking can

be found in [51,52] while details for UKF implementation of a PHD filter can be found in [89]. To

avoid numerical issues, the square-root formulation of the UKF (SR-UKF) is used. Appropriate

modifications to the UKF implementation to PHD and GLMB filtering are made.

Another tool used to address uncertainty propagation issues is the adaptive entropy-based

Gaussian-mixture information synthesis method (AEGIS) [26]. Given a GM representation of a

p.d.f., this method monitors non-linearity during the propagation of the p.d.f. and through entropy-

based detection, can increase the number of Gaussian mixture components used to represent the

p.d.f. online by splitting a Gaussian distribution into a representative Gaussian mixture so as to

reduce the effects of non-linearity on any given component. AEGIS is seamlessly integrated with

GM filter implementations due to the GM nature of its formulation.

AEGIS detects non-linearity via the deviation between linearized and non-linearized based

entropy measures. Once the deviation surpasses some pre-defined threshold, propagation is stopped

and the process of splitting Gaussian distributions is carried out. A multi-variate distribution is

split along the columns of the square-root factor of its covariance in accordance to pre-defined

splitting library parameters: they determine the number of GM components used to represent the

component being split. A square-root implementation of AEGIS is used in the preliminary research

and is achievable by splitting distributions along the columns of the Cholesky decomposition of their

covariance, thereby avoiding the square-root operation.

2.8 Detection Probability Modeling

Due to the GM approximation, assumption A.2.8 in Section 2.3 introduces a constraint that

is problematic for RSO tracking applications, namely a probability of detection pD,k that is constant

across the entire single-target state space for a given time k. There are several considerations to be
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made for accurate modeling of pD,k [49]; however, of concern to the presented work is the tendency

for track loss due to observation gaps and GM component down-weighting : in the case of the GM-

CPHD filter, this is illustrated by (2.54) in Section 2.3.1. If an RSO is not detected, then over a

period of time its representative GM component weight in the second term of (2.54) is reduced and

eventually discarded in the pruning process. Its component weight in the first term may increase

over time, though its state is never corrected by measurement updates, so when the object is

observable again, its state is poorly estimated and its components are potentially discarded.

The presented work uses the approach in [34] to address this issue by augmenting the prob-

ability of detection using an indicator function. Given a constant probability of detection pD,filter

defined for a given filter implementation, the probability of detection pD,k is given by

pD,k = pD,FOV (zk)pD,filter, (2.104)

where

pD,FOV (zk) =


1, if zk ∈ FOV,

0, otherwise.

(2.105)

However, as noted in [35], this method’s performance potentially degrades when an object is near

the edge of the FOV.

2.9 Breakup Modeling

RSO breakups are simulated using the NASA standard breakup model (NSBM) [45]. Only

rocket body (RB) explosions are simulated in the presented work when fragmentation events are

considered, hence, only NSBM components relating to RB explosions are presented here for the

sake of brevity. See [45] and [54] for more details on satellite collision modeling.

Break up model steps are depicted in Fig. 2.3 where Nd denotes the cumulative number of

fragments with diameter d greater than characteristic length lc, A, m, and A/m denote area, mass

and area-to-mass ratio, respectively, and where ∆v denotes change in velocity.
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Figure 2.3: NSBM flow chart. Adapted from [54].

The cumulative number of explosion particles (fragments) is determined by [54]

Nd(d ≥ lc) = 6csl
−1.6
c , (2.106)

where cs is an empirical calibration factor used to account for space catalog incompleteness and is

given by

cs = cTLE = 10
0.5 exp

(
−2.464

(
log10

(
dSSN

[m]

)
+1.22

)2

)
, (2.107)

where

dSSN/[m] =



0.089, for H ≤ 620 km,

10
−2.737+0.604 log10

(
H

[km]

)
, for 620 km < H ≤ 1300 km,

10
−6.517+1.819 log10

(
H

[km]

)
, for 1300 km < H ≤ 3800 km,

1.0, for H > 3800 km,

(2.108)

where H denotes orbital altitude.

Noting that λc(lc) = log10(lc), χ = log10(A/m), and N = denotes the normal distribution

function N (χ;µ, σ) =

[
1/(σ(2π)0.5)

]
e−(χ−µ)2/2σ2

, area-to-mass ratios are assigned to RB fragments
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with lc > 11 cm using the bi-modal distribution5

D
(A/m)
R/B (λc, χ) =αR/B(λc)N

(
χ;µ

(1)
R/B(λc), σ

(1)
R/B(λc)

)
+
(
1− αR/B(λc)

)
N
(
χ;µ

(2)
R/B(λc), σ

(2)
R/B(λc)

)
, (2.109)

where

αR/B(λc) =



1, λc ≤ −1.4,

1− 0.3571(λc + 1.4), −1.4 < λc < 0,

0.5, λc ≥ 0,

(2.110)

µ
(1)
R/B(λc) =



−0.45, λc ≤ −0.5,

−0.45− 0.9(λc + 0.5), −0.5 < λc < 0,

−0.9, λc ≥ 0,

(2.111)

σ
(1)
R/B = 0.55, (2.112)

µ
(2)
R/B = −0.9, (2.113)

σ
(2)
R/B(λc) =



0.28, λc ≤ −1.0,

0.28− 0.1636(λc + 1), −1.0 < λc < 0.1,

0.1, λc ≥ 0.1.

(2.114)

The inverse cumulative distribution function is used to solve for values of A/m.

Similarly, explosion fragments are assigned ∆v’s via the distribution

D
(∆v)
EXP (χ, ν) = N

(
ν;µEXP (χ), σEXP (χ)

)
, (2.115)

where χ = log10(A/m), ν = log10(∆v), µEXP = 0.2χ+ 1.85 and σEXP = 0.4. Though the NSBM

can be used to simulate ∆v magnitudes, it does not account for the direction in which they are

applied, thus directions are generated by randomly selecting points on a unit sphere.

5 The presented work only considers lc > 11 cm. For distributions with lc ≤ 11 cm see [45].
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Measure-Theoretic Background

Some of the advancements presented in this work are developed within a more generalized

measure-theoretic framework, as described in Chapter 1. Therefore, this chapter introduces the

necessary background on point processes (Section 3.1), probability generating functionals (p.g.fl.s)

(Section 3.2), functional differentiation (Section 3.3), and a few properties from the application of

differentiation in the context of point processes (Section 3.4). The content of this chapter, excluding

the derivations at the end, was presented in [14].

3.1 Point processes

A point process on some space X is a random variable whose number of elements and element

states, belonging to X, are random. In the context of multi-object filtering, the population of objects

is represented by a point process Ω, on a single-object state space X ⊆ Rn, whose elements describe

individual object states. A realization of Ω is a set of points X = (x1, . . . , xN ) depicting a specific

multi-object configuration, where xi ∈ X describes the n-component state of an individual object

(position, velocity, etc.).

Fundamental to probabilistic characterizations of a point process is the measurable space

(X ,BX ), where X =
⋃
n≥0 Xn is the point process state space, i.e., the space of all the finite sets

of points in X, and BX is the Borel σ-algebra on X [82]. Think of X as analogous to F(X), the

collection of finite subsets of X, from Section 2.1.1. A σ-algebra is a system, or collection, of sets

that are closed under basic set operations that include union, intersection, and complementation,
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e.g., if A1 and A2 are disjoint subsets of A such that A = A1 ∪A2 and given a set function f , then

f(A) = f(A1 ∪A2) = f(A1) + f(A2) [82]. The Borel σ-algebra on X is the σ-algebra generated by

the open sets of X [42]. For more on measurable spaces and σ-algebras, see [25,42,82].

A point process Ω is characterized by its probability distribution PΩ on the measurable space

(X ,BX ). The probability distribution of a point process is defined as a symmetric function, so that

the order of points in a realization is irrelevant for statistical purposes – for example, realizations

(x1, x2) and (x2, x1) are equally probable. In addition, if the probability distribution is such that

the realizations are sets of points that are pairwise distinct almost surely, then the point process is

called simple. For the presented research, all considered point processes are assumed simple.

The probability distribution PΩ is characterized by its projection measures P
(n)
Ω , for any

n ≥ 0. The nth-order projection measure P
(n)
Ω , for any n ≥ 1, is defined on the Borel σ-algebra of

Xn and gives the probability for the point process to be composed of n points, and the probability

distribution of these points. By extension, P
(0)
Ω is the probability for the point process to be empty.

For any n ≥ 0, J
(n)
Ω denotes the nth-order Janossy measure [25, p. 124], and is defined as

J
(n)
Ω (B1 × . . .×Bn) =

∑
σ(n)

P
(n)
Ω (Bσ1 × . . .×Bσn) (3.1a)

= n!P
(n)
Ω (B1 × . . .×Bn), (3.1b)

where Bi is in BX, the Borel σ-algebra of X, 1 ≤ i ≤ n, and where σ(n) denotes the set of all

permutations (σ1, . . . , σn) of (1, . . . , n). The probability density pΩ, the nth-order projection density

p
(n)
Ω , and the nth-order Janossy density j

(n)
Ω are the Radon-Nikodym derivatives of the probability

distribution PΩ, the nth-order projection measure P
(n)
Ω , and the nth-order Janossy measure J

(n)
Ω ,

w.r.t. some reference measure.

All these quantities provide equivalent ways to describe the point process Ω; furthermore,

note that a simple point process is equivalent to an RFS and a Janossy density is a multi-object

probability density [64]. Accordingly, a measure-theoretical formulation of the multi-object filtering

problem is in many aspects equivalent to Mahler’s RFS formulation, but with different notation

and terminology. However, a measure-theoretical formulation provides a more general framework



46

for constructing certain statistical properties on point processes that can be exploited for practical

applications. This is the case for the mathematical developments presented in Chapter 4 and the

reason for the material presented in this chapter.

Assuming that f is a non-negative measurable function on X , then the integral of f w.r.t. to

the measure PΩ can be written in the following ways:

PΩ(f) =

∫
X
f(X)PΩ(dX) (3.2a)

=

∫
X
f(X)pΩ(X)dX (3.2b)

=
∑
n≥0

∫
Xn
f(x1, . . . , xn)P

(n)
Ω (d(x1, . . . , xn)) (3.2c)

=
∑
n≥0

∫
Xn
f(x1, . . . , xn)p

(n)
Ω (x1, . . . , xn)dx1 . . . dxn (3.2d)

=
∑
n≥0

1

n!

∫
Xn
f(x1, . . . , xn)J

(n)
Ω (d(x1, . . . , xn)) (3.2e)

=
∑
n≥0

1

n!

∫
Xn
f(x1, . . . , xn)j

(n)
Ω (x1, . . . , xn)dx1 . . . dxn. (3.2f)

Throughout this chapter and Chapter 4, the exploitation of the Janossy measures will be preferred,

for they are convenient tools in the context of functional differentiation (see Section 3.3). For the

sake of simplicity, domains of integration will be omitted when they refer to the full object state

space X.

The Janossy measures can also be used directly to exploit meaningful information on the

point process Ω. For example, central to the presented work is the extraction of the cardinality

distribution measure-theoretical formulation ρΩ of the point process, that describes the number of

elements in the realizations of Ω (see Section 4.1):

Example 1 (Cardinality distribution). Consider the function fn defined as

fn(X) =


1, |X| = n,

0, otherwise,

(3.3)

where |X| denotes the number of elements in the set X. The integral of fn w.r.t. to PΩ yields the

probability ρΩ(n) that a realization X of the point process Ω has size n and we have, using Eq. (3.2)
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(see [81, p.28]):

ρΩ(n) = PΩ(fn) (3.4a)

=

∫
Xn
P

(n)
Ω (d(x1, . . . , xn)) (3.4b)

=
1

n!

∫
Xn
J

(n)
Ω (d(x1, . . . , xn)). (3.4c)

The function ρΩ is called the cardinality distribution of the point process Ω. Note that, in the

general case, the nth-order projection measure P
(n)
Ω and the nth-order Janossy measure J

(n)
Ω are not

probability measures since their integrals over Xn yield ρΩ(n) and n!ρΩ(n), respectively.

3.2 Probability generating functionals

The p.g.fl. provides a useful characterization for point process theory [67] and is defined as

follows.

Definition 3.1 (Probability generating functional [25]). The probability generating functional GΩ

of a point process Ω on X can be written for any test function h ∈ U(X) as1

GΩ(h) =

∫
X

[ ∏
x∈X

h(x)
]
PΩ(dX) (3.5a)

= J
(0)
Ω +

∑
n≥1

1

n!

∫
Xn
h(x1) . . . h(xn)J

(n)
Ω (d(x1, . . . , xn)). (3.5b)

The p.g.fl. GΩ fully characterizes the point process Ω, and is a very convenient tool for the

extraction of statistical information on Ω through functional differentiation (see Section 3.3). From

Eq. (3.5) we can immediately write

GΩ(0) = J
(0)
Ω (= P

(0)
Ω ), (3.6)

GΩ(1) = 1. (3.7)

Operations on point processes (e.g., superposition of two populations) can be translated into op-

erations on their corresponding p.g.fl.s. In the context of multi-object tracking, p.g.fl.s provide a

1 U(X) is the space of bounded measurable functions u on X satisfying ||u||∞ ≤ 1.
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convenient description of the compound population (objects or measurements) resulting from an

operation on elementary populations.

The superposition operation for point processes describes the union of two populations Ω1,

Ω2 into a compound population Ω1∪Ω2, during which the information about the origin population

of each individual is lost.

Proposition 1 (Superposition of independent processes [67]). Let Ω1 and Ω2 be two independent

point processes defined on the same space, with respective p.g.fl.s GΩ1 and GΩ2. The p.g.fl. of the

superposition process Ω1 ∪ Ω2 is given by the product

GΩ1∪Ω2(h) = GΩ1(h)GΩ2(h). (3.8)

The Galton-Watson recursion for point processes [67, 99] describes the evolution of each

individual x from a parent population ΩS into a population of spawned individuals, independently

of the other parent individuals but following a common evolution model described by a process

Ωe. The resulting spawn population ΩT is then the superposition of all the populations of spawn

individuals.

Proposition 2 (The Galton-Watson recursion [99]). Let GΩS
be the p.g.fl. of a parent process ΩS

on X, and let GΩe(·|x) be the conditional p.g.fl. of an evolution process Ωe, defined for every x ∈ X.

The p.g.fl. of the spawn process ΩT is given by the composition

GΩT
(h) = GΩS

(GΩe(h|·)) . (3.9)

3.3 Functional differentiation

To make use of functionals in the derivations presented in Chapter 4.1, we require the notion

of differentials on functional spaces. We adopt a restricted form of the Gâteaux differential, known

as the chain differential [10], so that a general chain rule can be determined [18,19]. Following this,

we describe the general higher-order chain rule.
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Definition 3.2 (Chain differential [10]). Under the conditions detailed in [10], the function f on

some set X has a chain differential δf(x; η) at x ∈ X in the direction η if, for any sequence

ηn → η ∈ X, and any sequence of real numbers θn → 0, it holds that

δf(x; η) = lim
n→∞

1

θn
(f(x+ θnηn)− f(x)) . (3.10)

The nth-order chain differential can be defined recursively as

δnf (x; η1, . . . , ηn) = δ
(
δn−1f (x; η1, . . . , ηn−1) ; ηn

)
. (3.11)

Applying nth-order chain differentials on composite functions can be an extremely laborious pro-

cess since it involves determining the result for each choice of function and proving the result by

induction. For ordinary derivatives, the general higher-order chain rule is normally attributed to

Faà di Bruno [28]. The following result generalizes Faà di Bruno’s formula to chain differentials and

allows for a systematic derivation of composite functions (see [18] for an example of exploitation in

the context of Bayesian estimation).

Proposition 3 (General higher-order chain rule, from [19, 20]). Under the differentiability and

continuity conditions detailed in [20], the nth-order variation of composition f ◦ g in the sequence

of directions (ηi)
n
i=1 at point x is given by

δn(f ◦ g)(x; (ηi)
n
i=1) =

∑
ν∈Nn

δ|ν|f

(
g(x);

(
δ|ω|g

(
x; (ηi)i∈ω

))
ω∈ν

)
, (3.12)

where Nn = N({1, . . . , n}) represents the set of partitions of the index set {1, . . . , n}, and |ν| denotes

the cardinality of the set ν.

Example 2 (General higher-order chain rule).

δ2(f ◦ g)(x; η1, η2) = δ2f (g(x); δg(x; η1), δg(x; η2))︸ ︷︷ ︸
ν={{1},{2}}

+ δf
(
g(x); δ2g(x; η1, η2)

)︸ ︷︷ ︸
ν={{1,2}}

. (3.13)

Applying nth-order chain differentials on a product of functions follows a more straightforward

approach, similar to Leibniz’ rule for ordinary derivatives.
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Proposition 4 (Leibniz’ rule, from [20]). Under the differentiability conditions detailed in [20],

the nth-order variation of the product f · g in the sequence of directions (ηi)
n
i=1 at point x is given

by

δn(f · g)(x; (ηi)
n
i=1) =

∑
ν⊆{1,...,n}

δ|ν|f(x; (ηi)i∈ν)δn−|ν|g(x; (ηi)i∈νc), (3.14)

where νc = {1, . . . , n} \ ν denotes the complement of ν in {1, . . . , n}.

Example 3 (Leibniz’ rule).

δ2(f · g)(x; η1, η2) = δ2f(x; η1, η2)g(x)︸ ︷︷ ︸
ν={1,2}

+ δf(x; η1)δg(x; η2)︸ ︷︷ ︸
ν={1}

+ δf(x; η2)δg(x; η1)︸ ︷︷ ︸
ν={2}

+ f(x)δg(x; η1, η2)︸ ︷︷ ︸
ν={∅}

.

(3.15)

3.4 Probability generating functionals and differentiation

Key properties of a point process can be recovered from the functional differentiation of

its p.g.fl. Taking the kth-order variation of GΩ(h) in the directions η1, . . . , ηk, we have (see, for

example [80, p. 21]),

δkGΩ(h; η1, . . . , ηk) =
∑
n≥k

1

(n− k)!

∫
Xn

k∏
i=1

ηi(xi)
n∏

i=k+1

h(xi) J
(n)
Ω (d(x1, . . . , xn)). (3.16)

It is then useful to consider the cases when we set h = 1 or h = 0, i.e.

δkGΩ(0; η1, . . . , ηk) =

∫
Xk
η1(x1) . . . ηk(xk)J

(k)
Ω (d(x1, . . . , xk)), (3.17)

δkGΩ(1; η1, . . . , ηk) =

∫
Xk
η1(x1) . . . ηk(xk)M

(k)
Ω (d(x1, . . . , xk)), (3.18)

Assuming that one wishes to evaluate the Janossy and factorial moment measures in some

measurable subsets Bi ∈ BX, 1 ≤ i ≤ k, then they can be recovered from Eqs (3.17), (3.18) by

setting the directions to be indicator functions ηi = 1Bi , 1 ≤ i ≤ k, so that

δkGΩ(h; 1B1 , . . . , 1Bk)
∣∣∣
h=0

= J
(k)
Ω (B1 × . . .×Bk), (3.19)

δkGΩ(h; 1B1 , . . . , 1Bk)
∣∣∣
h=1

= M
(k)
Ω (B1 × . . .×Bk). (3.20)
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The propagation of the first-order factorial moment measure M
(1)
Ω – also called the intensity

measure µΩ – of the multi-object point process Ω, in a Bayesian context, is a key component of

the construction of both the PHD filter [61] and the CPHD filter [62]. The density of the intensity

measure is the Probability Hypothesis Density [61].

3.5 Point process models

Note that in what follows here, and in Chapter 4 and Appendix A, there are some notational

differences with previously presented background material. For example, variables r and p are used

to denote probability of existence and probability density, respectively, in (2.18). Here, variables

p and s are used to denote probability of existence and probability density, respectively. The two

major filtering developments made in this research were performed using approaches that share a

common origin, but are different enough that maintaining consistent notation between the two is

challenging, to say the least, hence the change in variables.

3.5.1 Bernoulli process

A Bernoulli process Ω is characterized by a parameter 0 ≤ p ≤ 1 and a spatial distribution

s. It describes the situation where 1) either there is no object in the scene, or 2) there is a single

object in the scene, with state distributed according to s. Its projection measures are given by

P
(n)
Ω (B1 × . . .×Bn) =



1− p, n = 0,

ps(B1), n = 1,

0, otherwise.

(3.21)

Proposition 5 (p.g.fl. of a Bernoulli process [64]). The p.g.fl. of a Bernoulli process Ω with pa-

rameter p and spatial distribution s is given by

GΩ(h) = 1− p+ p

∫
h(x)s(dx). (3.22)
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3.5.2 Poisson process

A Poisson process Ω is characterized by a rate λ ≥ 0 and a spatial distribution s. It describes a

population whose size follows a Poisson distribution and whose individual states are i.i.d. according

to s. Its projection measure is given by

P
(n)
Ω (B1 × . . .×Bn) = e−λ

λn

n!

n∏
i=1

s(Bi). (3.23)

Proposition 6 (p.g.fl. of a Poisson process [64]). The p.g.fl. of a Poisson process Ω with rate λ

and spatial distribution s is given by

GΩ(h) = exp

[
λ

(∫
h(x)s(dx)− 1

)]
. (3.24)

3.5.3 Zero-inflated Poisson process

A zero-inflated Poisson process Ω (from [55]) is characterized by a parameter 0 ≤ p ≤ 1, a

rate λ ≥ 0, and a spatial distribution s. It describes a population that is 1) either empty, or 2) non-

empty, with size following a Poisson distribution and whose individual states are i.i.d. according to

s. Its projection measures are given by

P
(n)
Ω (B1 × . . .×Bn) =


1− p+ pe−λ, n = 0,

pe−λ λ
n

n!

n∏
i=1

s(Bi), otherwise.

(3.25)

Note that a Poisson process is a special case of a zero-inflated Poisson process in which the parameter

p is set to one.

Proposition 7 (p.g.fl. of a zero-inflated Poisson process). The p.g.fl. of a zero-inflated Poisson

process Ω with parameter p, rate λ, and spatial distribution s is given by

GΩ(h) = 1− p+ p exp

[
λ

(∫
h(x)s(dx)− 1

)]
. (3.26)

3.5.4 I.i.d. process

An i.i.d. process Ω is characterized by a cardinality distribution ρ and a spatial distribution

s. It describes a population whose size is distributed according to ρ, and whose individual states



53

are i.i.d. according to s. Its Janossy measures are given by

J
(n)
Ω (B1 × . . .×Bn) = n!ρ(n)

n∏
i=1

s(Bi). (3.27)

Note that a Poisson process is a special case of i.i.d. process in which the cardinality distribution

ρ is Poisson.

3.6 CPHD Filter prediction derivation via p.g.fl. differentiation

The original CPHD predicted intensity and cardinality distribution are derived in this sec-

tion to demonstrate use of the preceding material in this chapter, which is also used in the new

developments presented in Chapter 4.

Assume the survival process is a Bernoulli point process, characterized by the p.g.fl. GS(h|·)

given by

GS(h|x) = 1− pS,k + pS,k

∫
h(x)s(dx), (3.28)

and that the birth process is characterized by a p.g.fl. GB(h).

3.6.1 Cardinality Prediction

Using (3.19), let

J
(n)
k|k−1(d(y1, . . . , yn)) = δnGk|k−1(h; 1dy1 , . . . , 1dyn)

∣∣
h=0

, (3.29)

= δn(Gk−1(GS(h|·))GB(h); 1dy1 , . . . , 1dyn)|h=0 , (3.30)

where

Gk|k−1(h) = Gk−1(GS(h|·))GB(h), (3.31)

and Gk−1(h) is given in (3.5b). Applying the product rule (3.14) then gives

J
(n)
k|k−1(d(y1, . . . , yn)) =

∑
τ⊆{1,...,n}

δ|τ |(Gk−1(GS(h|·)); (1dyi)i∈τ )
∣∣
h=0

δn−|τ |GB(h; (1dyi)i∈τc)
∣∣
h=0

. (3.32)

Using Eq. (3.19) on the instantaneous birth process then gives

J
(n)
k|k−1(d(y1, . . . , yn)) =

∑
τ⊆{1,...,n}

C|τ |(d(yi)i∈τ )J
(n−|τ |)
B (d(yi)i∈τc), (3.33)
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where

C|τ |(d(yi)i∈τ ) = δ|τ |(Gk−1(GS(h|·)); (1dyi)i∈τ )
∣∣
h=0

, (3.34)

and where J
(n−|τ |)
B is the (n−|τ |)th-order Janossy measure of the instantaneous birth process. Using

a change of variable for notational convenience and applying the general chain rule (3.12), let

Cq(d(z1, . . . , zq)) = δq(Gk−1(GS(h|·)); 1dz1 , . . . , 1dzq)
∣∣
h=0

, (3.35)

=
∑
π∈Πq

δ|π|Gk−1

(
GS(h|·);

(
δ|ω|GS(h|·; (1dzi)i∈ω)

)
ω∈π

)∣∣∣∣
h=0

. (3.36)

Developing the predicted p.g.fl. Gk−1 through Janossy measures with Eq. (3.2) then gives

Cq(d(z1, . . . , zq)) =
∑
π∈Πq

∑
m≥|π|

1

(m− |π|)!

∫
Xm

|π|∏
i=1

δ|ωi|GS(h|xi; (1dzj )j∈ωi)

∣∣∣∣
h=0

,

×
m∏

i=|π|+1

GS(0|xi)J (m)
k−1(d(x1, . . . , xm)). (3.37)

Since the prior process is assumed i.i.d., we can substitute the expression given by Eq. (3.27) to

the prior Janossy measures J
(m)
k−1 and obtain

Cq(d(z1, . . . , zq)) =
∑
π∈Πq

∑
m≥|π|

m!

(m− |π|)!
ρk−1(m)Cπ(d(z1, . . . , zq)), (3.38)

where

Cπ(d(z1, . . . , zq)) =

∫
· · ·
∫ |π|∏

i=1

δ|ωi|GS(h|xi; (1dzj )j∈ωi)
∣∣
h=0

m∏
i=|π|+1

GS(0|xi)
m∏
i=1

s(dxi) (3.39a)

=

(∫
GS(0|x)s(dx)

)m−|π|∏
ω∈π

(∫
δ|ω|GS(h|x; (1dzi)i∈ω)

∣∣
h=0

s(dx)

)
. (3.39b)

Note that δ|ω|GS(h|x; 1dz) = 0 when |ω| > 1, and the only partition of π that does not result in a

an inner summation of zeros is the one in which |π| = q, therefore, (3.38) can be simplified as

Cq(d(z1, . . . , zq)) =
∑
m≥q

m!

(m− q)!
ρk−1(m)〈1− pS,k, s〉m−q〈pS,k, s〉q. (3.40)
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Using (3.19), the predicted cardinality is given by

ρk|k−1(n) =
1

n!

∫
Xn
J

(n)
k|k−1(d(y1, . . . , yn)) (3.41a)

=
∑

ν⊆{1,...,n}

1

(n− |ν|)!

∫
Xn−|ν|

J
(n−|ν|)
B (d(yi)i∈νc)

(n− |ν|)!
n!

∫
X|ν|

C|ν|(d(yi)i∈ν) (3.41b)

=
n∑
q=0

(
n

q

)
ρB(n− q)(n− q)!

n!

∑
m≥q

m!

(m− q)!
ρk−1(m)〈1− pS,k, s〉m−q〈pS,k, s〉q (3.41c)

=
n∑
q=0

ρB(n− q)
∑
m≥q

m!

q!(m− q)!
ρk−1(m)〈1− pS,k, s〉m−q〈pS,k, s〉q. (3.41d)

3.6.2 Intensity Prediction

Using Eq. (3.20) let

µk|k−1(y) = δGk|k−1(h; 1y)
∣∣
h=1

, (3.42)

= δ
(
Gk−1(GS(h|·))GB(h); 1y

)∣∣
h=1

. (3.43)

Using the product rule (3.14) it becomes

µk|k−1(y) = δ
(
Gk−1(GS(h|·)); 1y

)∣∣
h=1

GB(1)︸ ︷︷ ︸
=1

+Gk−1(GS(1|·))︸ ︷︷ ︸
=1

δGB(h; 1y)|h=1. (3.44)

Using the definition of the p.g.fl. (3.5a) then yields

µk|k−1(y) = δ

(∫
X

[∏
x∈ϕ

GS(h|x)

]
Pk−1(dϕ); 1y

)∣∣∣∣
h=1

+ δGB(h; 1y)|h=1, (3.45)

=

∫
X
δ

(∏
x∈ϕ

GS(h|x); 1y

)∣∣∣∣
h=1

Pk−1(dϕ) + δGB(h; 1y)|h=1. (3.46)

Using Eq. (3.20), introduce the intensities µS and µB of the survival and spontaneous birth processes

and obtain:

µk|k−1(y) =

∫
X

∑
x∈ϕ

µS(y|x)Pk−1(dϕ) +µB(y), (3.47)

which becomes, using Campbell’s theorem [25, p. 271]:

µk|k−1(y) =

∫
µS(y|x)µk−1(dx) + µB(y). (3.48)



Chapter 4

The CPHD Filter with Object-Spawning

This chapter presents results for the development of spawn model implementations of the

CPHD filter. The contents of this chapter were formed into a paper and published in the IEEE

Transactions on Signal Processing [14]. The derivations in this chapter take a measure-theoretic

approach as opposed to the RFS approach presented in Chapter 2. Nonetheless, definitions and

other forms of supporting material required to follow the derivations presented here are contained

within Chapter 3, this chapter, and the references thereof.

4.1 The CPHD filter with spawning

This section covers the derivation of the filtering equations for the CPHD filter for various

object spawning processes. Section 4.1.1 provides a brief description of the general multi-object

Bayes filter [63], and the principled approximation leading to the construction of the original CPHD

filter [62]. Section 3.5 then presents the various models of point processes that will be necessary

for the construction of the CPHD filter with spawning in Section 4.1.2.

4.1.1 Multi-Object Bayes Recursion

The multi-object Bayes recursion, shown in (4.1) and (4.2) with measure-theoretic notation, is

used to propagate the posterior distribution Pk(·|Z1:k) that describes the current object population
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based on all the measurements Z1, . . . , Zk collected so far.

Pk|k−1(dX|Z1:k−1) =

∫
X
fk|k−1(X|X̄)Pk−1(dX̄|Z1:k−1), (4.1)

Pk(dX|Z1:k) =
gk(Zk|X)Pk|k−1(dX|Z1:k−1)∫
X gk(Zk|X̄)Pk|k−1(dX̄|Z1:k−1)

, (4.2)

The CPHD Bayes recursion aims at simplifying the multi-object Bayes recursion by approximating

the predicted and posterior multi-object processes as i.i.d. processes1, a class of point processes fully

characterized by their cardinality distribution ρΩ and their first-order moment measure µΩ [62].

The CPHD filter thus focuses on the propagation of the posterior cardinality distribution ρk and

the posterior first-order moment measure µk, rather than the full posterior probability distribution

Pk.

The original construction of the CPHD filter [62] does not consider an object spawning mecha-

nism, and the key contribution of this work is to propose the integration of several object spawning

models in the CPHD time prediction equation (see Section 4.1.2). Note that the measurement

update step does not involve the object spawning mechanism, therefore its presentation here is

unnecessary. Update step details can be found in Section 2.1.3.2, Section 2.3.1, and [96].

4.1.2 Prediction step

In this section, an alternative expression of the original CPHD time prediction step [62] is

proposed in which newborn objects may originate from either a spawning mechanism or spontaneous

birth. Note that the assumptions on the posterior multi-object process from the previous time step,

the object survival mechanism, and the object evolution mechanism are identical to the original

assumptions in [62].

Theorem 1 (CPHD with spawning: prediction step). Assuming that, at step k:

• The posterior multi-object process Φk−1 is an i.i.d. process with intensity measure µk−1,

with cardinality distribution ρk−1, and spatial distribution sk−1,

1 The definition of an i.i.d. process is given in Section 3.5.
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• An object in state x at time k − 1 survives to time k with probability pS,k(x),

• A surviving object in state x at time k − 1 evolves since time k − 1 according to a Markov

transition fS,k(·|x),

• Newborn objects are born, independently from prior objects, following a process with inten-

sity measure µB,k, and cardinality distribution ρB,k,

• Newborn objects are spawned from a prior object, in state x at time k − 1, following a

process with intensity measure µT,k(·|x), and cardinality distribution ρT,k(·|x),

then the intensity measure µk|k−1 and cardinality distribution ρk|k−1 of the predicted multi-object

process Φk|k−1 are given by

µk|k−1(·) =

∫ [
pS,k(x)fS,k(·|x)+µT,k(·|x)

]
µk−1(dx)+µB,k(·), (4.3)

ρk|k−1(n) =
n∑
`=0

ρB,k(n− `)
∑̀
j=0

B`,j(b1, . . . , b`)

∑
m≥j

m!

`!(m− j)!
ρk−1(m)b0

m−j

 , (4.4)

where B`,j is the partial Bell polynomial [16, p. 412] given by

B`,k(x1, x2, · · · , x`) =
∑

k1+2k2+···+`k`=`
k1+k2+···+k`=k

`!

k1!(1!)k1k2!(2!)k2 · · · k`!(`!)k`
xk1

1 x
k2
2 · · ·x

k`
` , (4.5)

where the coefficients bi are given by

bi =


∫
qS,k(x)ρT,k(0|x)sk−1(dx), i = 0,

i!
∫ [
qS,k(x)ρT,k(i|x) + pS,k(x)ρT,k(i− 1|x)

]
sk−1(dx), i > 0,

(4.6)

where qS,k(·) ≡ 1− pS,k(·).

The proof is given in the Appendix A. Note that the structure of the predicted cardinality

(4.4) allows for its efficient computation through an algorithm dedicated to the computation of

partial Bell polynomials. Exploiting the recursive formula [16, (11.11)], we propose an algorithm

in Appendix B for implementation of the predicted cardinality (4.4) with a computational cost

of O(n3
max), where nmax is the maximum number of objects considered for the support of the
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cardinality distributions. Also, note that the construction of the predicted intensity (4.3) is identical

to that of the original PHD filter (see [89], for example).

Corollary 1. The intensity measure µT,k and the coefficients bi, describing the spawning process

in the CPHD prediction step (4.3), (4.4), depend on the modeling choices. Denoting qT,k(·) ≡

1− pT,k(·), they are given as follows for various spawning processes:

a) Bernoulli process, with parameter pT,k and spatial distribution sT,k:

µT,k(·|x) = pT,k(x)sT,k(·|x), (4.7)

and

bi =



∫
qS,k(x)qT,k(x)sk−1(dx), i = 0,∫ [
pS,k(x)qT,k(x) + qS,k(x)pT,k(x)

]
sk−1(dx), i = 1,

2
∫
pS,k(x)pT,k(x)sk−1(dx), i = 2,

0, i > 2.

(4.8)

b) Poisson process, with rate λT,k and spatial distribution sT,k:

µT,k(·|x) = λT,k(x)sT,k(·|x), (4.9)

and

bi =

∫
λi−1

T,k (x)e−λT,k(x)
[
qS,k(x)λT,k(x) + ipS,k(x)

]
sk−1(dx), (4.10)

for i ≥ 0.

c) zero-inflated Poisson process, with parameter pT,k, rate λT,k, and spatial distribution sT,k:

µT,k(·|x) = pT,k(x)λT,k(x)sT,k(·|x), (4.11)

and,

bi =



∫
qS,k(x)

[
qT,k(x) + pT,k(x)e−λT,k(x)

]
sk−1(dx), i = 0,∫ [

qS,k(x)pT,k(x)e−λT,k(x)λT,k(x) + pS,k(x)
[
qT,k(x) + pT,k(x)e−λT,k(x)

]]
sk−1(dx), i = 1,∫

pT,k(x)λi−1
T,k (x)e−λT,k(x)

[
qS,k(x)λT,k(x) + ipS,k(x)

]
sk−1(dx), i ≥ 2.

(4.12)
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The proof is given in Appendix A. Note that the construction of the predicted cardinality

for a CPHD filter with Bernoulli and Poisson spawning processes was previously explored in [60],

following traditional Bayesian statistics. The results provided in [60] are not supported by a de-

tailed construction; however, an earlier work by the same authors [59] proposed a more principled

derivation of the predicted cardinality through the exploitation of Probability Generating Func-

tions (p.g.f.s). It can be shown (a sketch is given in Appendix A) that the general expression of the

predicted cardinality [59, (A.15)] is equivalent to the presentation here through the Bell polynomi-

als in Eq. (4.4). However, the latter facilitates practical implementation of the CPHD filter with

spawning, and allows for a clear presentation of the exact time prediction equation (i.e., without

requiring additional approximations) for specific models of spawning through the coefficients bi, as

illustrated in Corollary 1.

4.2 Simulation

The CPHD filter with spawning models is illustrated in this section through a simulation-

based scenario. The GM implementation of the CPHD filter is briefly described in Section 4.2.1.

The scenario and the selection of the filter parameters are detailed in Section 4.2.2, and the results

are discussed in Section 4.2.3.

4.2.1 The GM-CPHD filter with spawning

Since the incorporation of spawning in the CPHD filtering process does not affect the data

update step, this section focuses only on the specifics of the prediction step for the GM-CPHD

filter with spawning. A description of the usual GM-CPHD, including the implementation of the

spontaneous birth term, can be found in Section 2.1.3.2, Section 2.3.1, and [96].

4.2.1.1 Filtering assumptions

The usual assumptions of the GM-CPHD filter [96] are followed regarding the transition

process from time k− 1 to time k, namely, that the probability of survival pS,k is uniform over the



61

state space X and the transition fS,k follows a linear Gaussian dynamical model:

pS,k(·) ≡ pS,k, (4.13)

fS,k|k−1(·|x) = N (· ;Fkx,Qk), (4.14)

where N (· ;m,P ) denotes a Gaussian distribution with mean m and covariance P , Fk is a state

transition matrix, and Qk is a process noise covariance matrix.

Regardless of the chosen spawning model (see Theorem 1), it is further assumed that the

spatial distribution of each spawned object sT,k can be described as the Gaussian mixture

sT,k(·|x) =

JT,k∑
j=1

w
(j)
T,kN (· ;F

(j)
T,kx+ d

(j)
T,k, Q

(j)
T,k), (4.15)

where d
(j)
T,k is a deviation vector, F

(j)
T,k is a spawning transition matrix, and Q

(j)
T,k is a spawning noise

covariance matrix, for 1 ≤ j ≤ JT,k, and
∑JT,k

j=1 w
(j)
T,k = 1. Also, assume that the model parameters

pT,k, λT,k, when applicable, are uniform over the state space X:

pT,k(·) ≡ pT,k,

λT,k(·) ≡ λT,k.

(4.16)

4.2.1.2 Predicted intensity

The construction of the predicted intensity µk|k−1 in Eq. (4.3) follows a similar structure as

for the usual GM-CPHD filter [89]. Assume that the posterior intensity µk−1 can be written as a

Gaussian mixture of the form

µk−1(·) =

Jk−1∑
j=1

w
(j)
k−1N (· ;m

(j)
k−1, P

(j)
k−1), (4.17)

where m
(j)
k−1 and P

(j)
k−1 are the posterior mean and covariance of the j-th component of the mixture,

respectively. Then the predicted intensity µk|k−1 can also be written as a Gaussian mixture of the

form

µk|k−1(·) = µS,k|k−1(·) + µT,k|k−1(·), (4.18)
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where the surviving component µS,k|k−1 is the Gaussian mixture

µS,k|k−1(·) = pS,k

Jk−1∑
j=1

w
(j)
k−1N (· ;m

(j)
S,k|k−1, P

(j)
S,k|k−1), (4.19)

with

m
(j)
S,k|k−1 = Fkm

(j)
k−1, (4.20)

P
(j)
S,k|k−1 = Qk + FkP

(j)
k−1F

T
k , (4.21)

for 1 ≤ j ≤ Jk−1, and the spawning component µT,k|k−1 is the Gaussian mixture

µT,k|k−1(·) = αT,k

Jk−1∑
j=1

w
(j)
k−1

JT,k∑
i=1

w
(i)
T,kN (· ;m

(j,i)
T,k|k−1, P

(j,i)
T,k|k−1), (4.22)

with

m
(j,i)
T,k|k−1 = F

(i)
T,km

(j)
k−1 + d

(i)
T,k, (4.23)

P
(j,i)
T,k|k−1 = Q

(i)
T,k + F

(i)
T,kP

(j)
k−1(F

(i)
T,k)

T , (4.24)

for 1 ≤ j ≤ Jk−1, 1 ≤ i ≤ JT,k, and the scalar αT,k depends on the spawning model:

αT,k =



pT,k, Bernoulli process,

λT,k, Poisson process,

pT,kλT,k, zero-inflated Poisson process.

(4.25)

4.2.1.3 Predicted cardinality distribution

Due to the assumptions presented in Section 4.2.1.1, the coefficients of the Bell polynomial

in Eq. (4.4) have the simpler form

a) Bernoulli process:

bi =



(1− pS,k) (1− pT,k) , i = 0,

pS,k (1− pT,k) + (1− pS,k) pT,k, i = 1,

2pS,kpT,k, i = 2,

0, i > 2.

(4.26)



63

b) Poisson process:

bi = λi−1
T,ke

−λT,k [(1− pS,k)λT,k + ipS,k] , i ≥ 0. (4.27)

c) zero-inflated Poisson process:

bi =



(1− pS,k)
(
1− pT,k + pT,ke

−λT,k
)
, i = 0,

(1− pS,k) pT,ke
−λT,kλT,k + pS,k

(
1− pT,k + pT,ke

−λT,k
)
, i = 1,

pT,kλ
i−1
T,ke

−λT,k [(1− pS,k)λT,k + ipS,k] , i ≥ 2.

(4.28)

The predicted cardinality distribution is then computed by the appropriate substitution of Eqs. (4.26)-

(4.28) into Eq. (4.4).

4.2.2 Scenario and filter setup

A point [x, y, ẋ, ẏ] of the single-object state space X ⊂ R4 describes the position and velocity

coordinates of an object in a square surveillance region of size 2000 m × 2000 m. The simulated

multi-object tracking scenario consists of one scan per second for 100 s, and up to seven objects

evolving in the region with constant velocity. Two objects are present at the beginning of the

scenario and each spawns objects at different times: object 1 spawns two additional objects at

t = 15 s and object 2 spawns three additional objects at t = 25 s. All spawned objects have a

lifespan of 60 s. Fig. 4.1 shows the trajectories of the objects cumulated over time, while Fig. 4.2

illustrates these trajectories and the collected measurements across time.



64

X [m]
0 500 1000 1500 2000

Y
 [
m

]

0

200

400

600

800

1000

1200

1400

1600

1800

2000 Parent target 1
@ t = 1s

Parent target 2
@ t = 1s

Figure 4.1: Object trajectories. A circle “#” indicates where a trajectory begins, and a square “�” indicates

where a trajectory ends. The large square indicates the limits of the sensor’s FOV and the large dashed

circle represents the 90% confidence region of the Gaussian component of the spontaneous birth model.
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Figure 4.2: Collected measurements (gray crosses) and object positions (black lines).

The probability of survival pS,k (4.13) is constant throughout the scenario, and set to pS,k =
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0.99. The object motion model fS,k|k−1 (4.14) is set as follows:

Fk =

12 ∆12

02 12

 , Qk = σ2
ν

∆4

4 12
∆3

2 12

∆3

2 12 ∆212

 , (4.29)

where ∆ = 1 s, σν = 5 m s−2, 1n denotes the n× n identity matrix, and 0n denotes the n× n zero

matrix.

The sensor’s probability of detection is uniform over the sensor’s FOV, and set at a constant

value of 0.95 throughout the scenario. Each object-generated measurement consists of the object’s

coordinate position with an independent Gaussian white noise on each component, with a standard

deviation of 10 m. Spurious measurements are modeled as a Poisson point process with uniform

spatial distribution over the state space and an average number of clutter per unit volume of

12.5× 10−6 m−2, that is, an average of 50 clutter returns per scan over the surveillance region.

For the sake of comparison, the usual GM-CPHD filter [96] with spontaneous birth and no

spawning is implemented as well. The spontaneous birth model is Poisson, with a constant rate

of 0.025 per time step (which yields, over the 100 s of the scenario, an average of 2.5 newborn

objects). The spatial distribution is modeled with a single Gaussian component, centered on the

sensor’s FOV as illustrated in Fig. 4.1.

The spatial distribution of the spawning (4.15) is identical for the three considered models.

Assume no spawned object deviation vectors, and a standard deviation of 12 units is set on each

component of the spawning noise covariance, i.e.

FT,k =

12 02

02 12

 , dT,k = 0, QT,k =

σ2
T12 02

02 σ̇2
T12

 , (4.30)

where 0 denotes the null vector in X, σT = 12 m, and σ̇T = 12 m s−1.

The parameters of the three spawning models are set as follows. The zero-inflated Poisson

model assumes one spawning per parent object during the scenario with an average of 2.5 spawned

objects per spawning event, thus pT,k and λT are set to 0.01 and 2.5, respectively. Relative to the

zero-inflated Poisson model, the Poisson model is set to yield a similar spawning intensity thus its
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λT,k is set to 0.025, whereas the Bernoulli model is set to yield a similar spawning frequency so its

pT,k is set to 0.01. These parameters are also presented in Table 4.1.

Table 4.1: Spawn model parameters.

Model pT,k λT,k µT,k(·|x)

Bernoulli 0.01 - 0.01 · N (· ;x,QT,k)

Poisson - 0.025 0.025 · N (· ;x,QT,k)

zero-inflated Poisson 0.01 2.5 0.025 · N (· ;x,QT,k)

It is interesting to note that neither the Poisson nor the Bernoulli models are equipped to

capture the nature of the spawning events occurring in this scenario, since, per construction, the

Poisson model is a poor match for spawning events occurring at unknown times and the Bernoulli

model is a poor match for spawning events creating more than one spawned object. The zero-

inflated Poisson model possesses a greater flexibility and should be able to cope with a wider range

of spawning situations; in any case, it is expected to yield better performances on the scenario

presented in this paper.

To maintain tractability, GM components are truncated with threshold T = 10−5, pruned

with maximum number of components Jmax = 100, and merged with threshold U = 4 (see [89]

for more details on the pruning and merging mechanisms). Additionally, the maximum number of

objects is set to Nmax = 20 to circumvent issues with infinitely tailed cardinality distributions [96].

4.2.3 Simulation results

The proposed spawning models and the birth model are implemented with the GM-CPHD

filter, and compared over 500 Monte Carlo (MC) runs of the multi-object scenario decribed in

Section 4.2.2.
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Figure 4.3: MAP estimate of the number of objects (averaged on 500 runs).

The MAP estimate of the number of objects is plotted in Fig. 4.3, along with the true number

of objects in the scene. The results suggest that the spawning models provide a better estimate of

the number of objects and, in particular, converge faster to the true number of objects following

the appearance of new objects in the scene. This is expected, because the scenario does not feature

any spontaneous but only spawning-related births, and thus in this context spawning models are a

better match than the birth model.

Among the three spawning models, the zero-inflated Poisson converges the fastest following

the appearance of new objects, while the Bernoulli model converges the slowest. This is expected,

for the zero-inflated Poisson model provides the best match to the spawning events occurring in

this scenario. Note in particular that the Bernoulli model may not consider the appearance of

more than one spawned object per spawning event, and must therefore stage the multiple-object

appearances across several successive time steps; in other words, the Bernoulli is ill-adapted to

“busy” events where objects appear simultaneously. Note also the slight overestimation shown by

the Poisson model when the true number of object is stable. Per construction, the Poisson model is

well-equipped for the simultaneous appearance of an arbitrary number of spawned objects at any

time step, but it fails at coping with “quiet” periods where no spawning occurs because, unlike the

zero-inflated Poisson model, it does not temper the Poisson-driven spawning with a probability of

spawning. In other words, the Poisson model is ill-adapted to the spawning events shown in this

scenario.

Note that all models – spawning and birth – follow the same mechanism for object deaths
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and yield much closer performances when object disappearances occur.
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Figure 4.4: OSPA distance (averaged on 500 runs).

Similar conclusions can be drawn from the comparisons of the OSPA distances shown in

Fig. 4.4. All models show error spikes at times of spawning (t = 15 s, t = 25 s) and death (t = 76 s,

t = 86 s), however, the spawning models recover more quickly than the birth model, and have

consistently lower errors.
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Figure 4.5: Hellinger distances (averaged on 500 runs).

The quality of the estimation of the number of objects proposed by the four models is further

illustrated in Fig. 4.5, where the Hellinger distance between the cardinality distribution propagated

by each model and the “ideal” cardinality distribution (i.e., a distribution in which all the mass is

concentrated on the true number of objects).

The results in Fig. 4.5 allow a more refined analysis of the proposed models. All the models

yield poor estimates immediately after a change in the true number of objects2, but the zero-inflated

Poisson model converges the fastest following an object birth/death and it converges to the best

estimate during periods where the number of object is stable. The Poisson model converges faster

than the Bernoulli model, but to a worse estimate: this is expected, since the Poisson model is ill-

adapted to “quiet” periods while the Bernoulli model is ill-adapted to “busy” events (see discussion

above on Fig. 4.3).

2 Recall from Eq. (2.98) that the Hellinger distance dH is such that 0 ≤ dH ≤ 1.
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As expected, the updated cardinality distributions are consistently more accurate than the

predicted cardinality distributions since they benefit from the processing of an additional measure-

ment batch.



Chapter 5

Spawned Object Orbit Determination Simulations: GM-CPHD

CubeSat deployments offer a unique opportunity to test spawn model filter implementations

because they are typically scheduled, well defined, and controlled events. The QB50 mission [87] in

which fifty CubeSats were planned for deployment in LEO is a good example of this as its mission

design is well documented, including a study of deployment strategies [53]. Important to note,

in the time since the research presented here was performed, according to the QB-50 mission’s

website1, only thirty-six QB50 CubeSats have been launched: twenty-eight from the ISS and eight

from an Indian PSLV rocket. The simulations presented in this chapter were performed in early

2016 at which time the QB50 mission was reportedly preparing to launch fifty CubeSats from the

ISS that summer2.

TLE sets released by the JSpOC are used by most CubeSat programs for orbit determination,

however, it is increasingly the case where large numbers of CubeSats are deployed from a launch

vehicle and TLE’s get confused [33]. Random finite set filters, formulated with spawn models, could

potentially alleviate such confusion by leveraging launch vehicle state information to instantiate

new states for CubeSats.

CubeSat deployments simulated in this chapter are modeled after the QB50 mission where

fifty CubeSats were planned to deploy from the ISS. Excluding implementation considering ballistic

coefficients, the “optimum scenario” proposed in [53], hereafter referred to as the QB50 deployment

model, is used for simulation with the following details:

1 https://www.qb50.eu/. Accessed 10 Oct. 2017.
2 http://amsat-uk.org/2015/09/08/qb50-cubesats-to-be-deployed-from-iss/. Accessed 10 Oct. 2017.
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• CubeSats are deployed one at a time,

• 4-6 minute interval between consecutive deployments,

• deployment directions determined for each deployment by random rotation angle θ about

the In-track axis of the Radial In-track Cross-track (RIC) reference frame w.r.t. the launch

vehicle, where 135◦ ± 10◦ < θ < 225◦ ± 10◦.

Though its primary goals are to generate a “string of pearls” constellation and prevent collisions,

the model also promotes CubeSat observability via spatial and temporal distributions.

Orbit determination for objects generated by a fragmentation event is significantly more

challenging due primarily to uncertainties regarding event time, number of fragments, and an

infinite number of possible directions a fragment can deviate from its parent trajectory. As a proof

of concept, the fragmentation event simulated in this chapter is a RB explosion modeled after a

Delta 2 explosion where six new RSOs entered the SSN catalog3.

The event is simulated using the NASA breakup model (NBM) detailed in Section 2.9. Using

characteristic lengths lc > 11 cm, a ∆v magnitude distribution is generated using (2.115). Six ∆v’s

are drawn from the distribution, and, since the NBM does not account for the direction in which

∆v’s are applied, directions are generated by randomly selecting points on a unit sphere.

5.1 Scenario Descriptions

Each simulation begins with only one object at epoch, i.e., the RB or QB50 launch vehicle

(LV), the initial conditions for which are presented in Table 5.1. The RB and QB50 LV trajectories

are based on that of SSN# 25637 and the ISS, respectively. For both simulations, the scan interval

is ∆t = 1 min and scenario duration is 1000 scans (just over 16.5 hrs).

The spawning event for each scenario type is initiated at the 399th scan (t = 6.65 hrs). For

the RB explosion, this means that at scan 399, each new fragment shares the same position as the

3 orbitaldebris.jsc.nasa.gov. odqnv18i3.pdf (pdf). [online] Available at: https://orbitaldebris.jsc.nasa.gov/quarterly-

news/pdfs/odqnv18i3.pdf [Accessed 11 Sep. 2014].
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Table 5.1: RSO Initial Conditions

Parameter RB QB50 LV

Epoch Time (Julian Date) 2457410.344 2457323.882
Semimajor Axis (km) 7115.626 6781.278

Eccentricity 1.4457× 10−2 6.833× 10−4

Inclination (deg) 96.449 51.644
Right Asc. of Node (deg) 37.231 139.310

Arg. of Perigee (deg) 107.633 88.039
True Anomaly (deg) 304.686 340.332

RB, yet varying changes in velocity are instantaneously imparted upon each fragment. It is only

at scan 400 (t = 6.67 hrs) that the fragments become observable. Similarly for QB50 deployment,

the first CubeSat is deployed at scan 399, but is not observable until scan 400. This method is

sequentially implemented until all CubeSats have been deployed, i.e., it is not until scan 694 that

all CubeSats are observable4. Furthermore, it is assumed that the trajectory and probability of

survival of the original RB and QB50 launch vehicle are unaffected by explosion or the deployment

of CubeSats, respectively. Hence, the number of objects increases from 1 to 7 for the RB scenario

and from 1 to 51 for the QB50 sceanrio.

5.1.1 Dynamics

Model error is simulated via discrepancy between truth simulation and filter dynamics models.

All models use two-body dynamics that include Earth gravity potential and drag perturbations.

Essentially, the only difference is that the truth simulation’s gravity perturbations model includes

up to the J3 zonal harmonic, whereas the filter’s gravity perturbations model only includes up to

the J2 zonal harmonic. Single-object states are defined as X = [x, y, z, ẋ, ẏ, ż]T . Dynamics model

parameters are presented in Table 5.2.

Both truth simulation and filtering uses the CU-TurboProp orbit propagation package [40]

with an embedded Runge-Kutta 8(7) integrator with a relative tolerance of 10−12. Process noise is

modeled as state noise compensation [86] where the process noise covariance Qb and process noise

4 Note that CubeSats are not deployed at every scan time between 399 and 693.
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Table 5.2: Propagation for Observation Simulation and Filter Dynamics

Parameter Truth Model Filter Model

Gravity Perturbation GGM02C [85] GGM02C [85]
Spherical Harmonic Degree/Order 3× 0 2× 0

Area-to-Mass Ratio (m2/kg) 0.01 0.01
Drag Coefficient Cd 2.0 2.0

Process Noise σQ (km/s2) N/A 10−8(RB), 10−9(QB50)

transition matrix Γ are given by

Qb = σ2
QΓ(tk, tk−1)ΓT (tk, tk−1), (5.1)

Γ(tk, tk−1) =

[
0.5(tk − tk−1)213 (tk − tk−1)13

]T
. (5.2)

Also, position and velocity errors are placed on initial a priori objects states with standard devia-

tions σpos = 100 m and σvel = 1 m/s, respectively, for both scenarios.

For the CubeSat scenario, a spawn component covariance Q
(QB50)
T,k−1 , for filter use in (4.24),

is developed by running one-hundred Monte Carlo simulations of the full QB50 deployment and

compiling deviation vectors d
(i)
X formed as

d
(i)
X = [Xiss,k −X

(i)
CubeSat,k]

T , (5.3)

where Xiss,k denotes the state of the ISS at the first time k the ith deployed CubeSat is observable,

X
(i)
CubeSat,k denotes the state of the ith deployed CubeSat at the same time, and states consist of

3-dimensional position and velocity vectors, i.e., X = [x, y, z, ẋ, ẏ, ż]T . The deviation vectors are

compiled to form a (50 · 100)× 6 array dX for which the column-wise variance is taken and used to

form a diagonal spawn component covariance as

Q
(QB50)
T,k−1 = diag

(
var(dX)

)
. (5.4)

For the RB scenario, a spawn component covariance Q
(RB)
T,k−1, for filter use in (4.24), is con-

structed by Monte Carlo simulations in which the NBM is used one hundred times to yield a large

sample of ∆v’s. A ∆v histogram using one-hundred bins is presented in Figure 5.1 where the verti-

cal axis (number of objects in each bin) is log-scaled to reveal more detail. The standard deviation
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of ∆v’s, σ∆v, is used to construct Q
(RB)
T,k−1 as

Q
(RB)
T,k−1 =

(σ∆v ·∆t)213 03

03 σ2
∆v13

 , (5.5)

where ∆t is the simulated scan interval, 1n denotes the n× n identity matrix, and 0n denotes the

n×n zero matrix. It is noted that the standard deviation σ∆v is taken from a highly non-Gaussian

distribution. For potential follow study, it is suggested that a more appropriate spawn model that

will include a Gaussian mixtures approximation of the distribution represented in Figure 5.1.
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Figure 5.1: Histogram of RB fragment ∆v’s generated with the NASA breakup model.

5.1.2 Measurements

Simulations in this work assume a homogeneous sensor network consisting of seventy-two

identical sensors distributed about the surface of the Earth as illustrated in Figure 5.2, providing

full coverage of both scenarios with no missed detections or clutter returns. This is done as a

prototyping step, as future work will move towards a more realistic sensor network model.

At each scan k, only one sensor collects range ρ, range-rate ρ̇, azimuth β, and elevation

e` measurements of the observable objects, generating a set of measurements Zk = {z1, . . . , zm},

where each z ∈ Zk is given as

z = [ρ, ρ̇, β, e`]T . (5.6)
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Figure 5.2: Each � indicates the location of a sensor within a homogeneous network.

Each z ∈ Zk includes independent Gaussian white noise on each component with standard devia-

tions σρ = 15 m, σρ̇ = 1 mm/s, and σβ = σe` = 1◦.

Each sensor is assumed to have an azimuth interval of 0◦ ≤ β ≤ 360◦, an elevation interval

of 0◦ ≤ e` ≤ 90◦, a maximum range ρmax ≈ 4500 km, and a FOV volume VFOV computed via

VFOV =
2

3
πρ3

max. (5.7)

5.1.3 Filter Configuration

Filter configurations for the RB and QB50 simulations are presented in Table 5.3. Pruning ε

and merging δ thresholds and the maximum number of (posterior) GM components nmax are con-

sidered tuning parameters, allowing for some control over tractability for a given implementation:

see [89] for details on their implementation. The maximum number of (allowable) objects Nmax

is used to circumvent infinitely tailed cardinality distribution issues [96], i.e., the inner summation

of Eq. (4.4) becomes a sum from m ≥ j to Nmax,
∑Nmax

m≥j . Though object death is not simulated,

and there are no missed detections, the probabilities of survival and detection are set to 0.99 as

opposed to 1.0, to avoid numerical issues.

In a real-world application of the proposed spawn model configured filter, pre-analysis for a

given scenario would be required to determine appropriate values for spawn rates and probabilities.
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Table 5.3: GM-CPHD filter configurations

Parameter RB QB50

Prune Threshold (ε) 10−5 10−5

Merge Threshold (δ) 4 4
Maximum Number of GM components (nmax) 500 500

Maximum Number of Targets (Nmax) 20 100
Survival Probability (pS) 0.99 0.99

Detection Probability (pD) 0.99 0.99
Spawn Probability (pT) 3.115× 10−3 1.042× 10−2

Spawn Rate (λT) 6 1
Position/Velocity OSPA Cutoff (c) 100 (m)

/
1 (m/s) 100 (m)

/
1 (m/s)

For instance, in the case of the anticipated collision of two RSOs, a probability of spawning could

be determined by performing a conjunction assessment and a spawn rate could be deduced by

leveraging trajectory and physical characteristic information for each RSO. Developing such meth-

ods for determining spawn model parameters is beyond the scope of the presented work, hence, it

is assumed that such prior-analysis has been performed. For the presented simulations, Poisson

spawn rate λT is determined by the true average number of spawned objects per each spawning

event in a given simulation. The probability of spawning pT is determined by a method that takes

into consideration the total number of filter steps per truly existing objects and the true number

of spawning events.

Example 1: Consider a scenario that includes only 3 time steps. At step 1, only 1 object truly

exists. At step 2, a second object is spawned, so 2 objects truly exist at steps 2 and 3. Assuming

a spawned object that cannot spawn new objects itself at the time of its spawning, then the

total number of time steps that spawning can occur is Nsteps = 4. Assuming the number of true

spawning events is Nspawn = 1, then the probability of spawning for this example scenario is given

by pT = Nspawn/Nsteps = 0.25.
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5.2 Results

5.2.1 QB50

MAP cardinality estimates and the number of posterior GM components (i.e., the number of

mixture components used to represent the measurement updated intensity) for the QB50 simulation

are presented in Figure 5.3. The cardinality estimates, plotted over the true number of objects for

the scenario, indicate that the filter correctly estimated the number of objects at each time step

throughout the simulation with no lag. It is expected that with a more realistically modeled

simulation, the cardinality estimate plot will potentially lag behind the true cardinality plot due

to missed detections (particularly if they occur at the time when CubeSats are first observable),

clutter returns, observation gaps, increase in CubeSat number, etc., however, convergence on the

true number of objects is anticipated with the development of a more robust spawn model designed

to address such issues: the focus of future work.

The number of posterior GM components plot (bottom of Figure 5.3) serves to indicate com-

putational effort for the given scenario. Until CubeSat deployment is initiated, only one component

is passed from one time to the next, reflecting the presence of only one object. As expected, com-

ponent number increases with time in the deployment phase. This increase is attributed to the

proximity of CubeSats to each other and the LV shortly after deployments. Component number

exhibits a downward trend after the deployment phase due to the CubeSats spreading out over

time and the filter converging on more accurate single-object state estimates.

QB50 scenario OSPA position and velocity error plots are presented in Figure 5.4. Both plots

indicate large errors at the beginning of the simulation due to the initial error placed on a priori

object states. The filter converges on state error levels commensurate with observation errors

until the CubeSat deployment phase begins, as expected. The OSPA errors follow a downward

trend throughout the deployment phase as the filter converges on more accurate cardinality and

single-object state estimates.
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Figure 5.3: QB50 cardinality estimates (top) and posterior number of GM components (bottom).
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Figure 5.4: QB50 OSPA position (top) and velocity (bottom) errors.

5.2.2 Rocket Body Explosion

Cardinality estimate, component number, and OSPA position and velocity error plots for

the QB50 simulation are presented in Figures 5.5 and 5.6, respectively, indicating filter behavior

that follows suit with that presented by their QB50 simulation counterparts: the major differences

stemming from the nature of the simulated scenarios.

In contrast to the QB50 scenario where a number of new objects are generated over a period
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of time, the appearance of new objects occurs instantaneously, hence the sharp cardinality jump

in the top of Figure 5.5. Cardinality estimates, again plotted over the true number of objects for

the scenario, indicate that the filter correctly estimated the number of objects at each time step.

Component number increases with cardinality, illustrating the filter’s increased computational effort

as more objects enter the scene. The large spike in component number and OSPA errors lasts for a

short time, which is an anticipated behavior due to fragments starting off in close proximity, then

separating quickly due to larger ∆v’s (relative to the CubeSat scenario).
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Figure 5.5: RB cardinality estimates (top) and posterior number of GM components (bottom).

Both plots in Figure 5.6 indicate large errors at the beginning of the simulation, again, due

to the initial error placed on a priori object states. The filter converges on noise level errors

until the time of breakup, as expected. The duration of increased error follows the period of

increased component number in Figure 5.5, indicating the filter’s need for more measurements

before converging on noise level errors again. It is anticipated that the duration of increased error

will increase with fragmentation event complexity, which future work will consider.
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Figure 5.6: RB OSPA position (top) and velocity (bottom) errors.



Chapter 6

The GLMB Tracking Filter with Object-Spawning

This chapter presents a labeled RFS spawning model and a tractable multi-object filter

for it. The labeled RFS spawning model is detailed in Section 6.1. In Section 6.2 the resulting

prediction multi-object density at the next time, for a given GLMB at the current time, is derived.

In Section 6.3, the method of GLMB approximation which matches first moment and cardinality

is discussed, then utilized in the derivation of the multi-object filtering density at the next time.

Implementation of the resulting GLMB recursion is detailed in Subsection 6.4. Simulations are

presented in Section 6.5. The contents of this chapter are currently under review for publication in

a journal.

6.1 Multi-object Labeled Spawning Model

Recall the labeling convention described in Section 2.2.3.1, where a label ` = (t, i) in the

space L of labels at the current time k is an ordered pair, where the first term t ≤ k denotes time

of birth, and the second term i ∈ N is a unique index distinguishing objects born at the same time.

The label space at the next time was defined as L+ = L ∪ B+, where birth labels at the next time

belong to the space B+ = {(k + 1, i) : i ∈ N}.

To encode ancestry information in the labels, the following labeling convention for spawned

tracks is observed. An object spawned from a parent with label `, at time k + 1, has label ς =

(`, k + 1, i), where i is an index that distinguishes multiple objects simultaneously spawned by the

same parent. As a result, spawn labels consist of an ancestral element, i.e., the parent’s label, and a
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Figure 6.1: An example of label assignment for birth and spawn tracks. Two tracks are born at time 1 and
are assigned labels (1, 1) and (1, 2). At time 5, a track is spawned from track (1, 2) and is assigned label
(1, 2, 5, 1).

non-ancestral element that distinguishes multiple spawned objects originating simultaneously from

the same parent. Hence, given the label space Lk for objects at the current time, the label space

Tk+1 for tracks spawned at the next time is given by Tk+1 = Lk × {k + 1} × N.

Reverting to the convention of letting the symbol + denote the “next time” index, the same

construction in [95] is followed by letting T+ denote the label space for objects spawned at the next

time such that the label space at the next time is L+ = L ∪ T+ ∪ B+. Note that L, T+, and B+

are mutually disjoint, i.e., L ∩ T+ = L ∩ B+ = T+ ∩ B+ = ∅. Hence, surviving, spawn, and birth

objects can be distinguished from their labels. Fig. 6.1, modeled after [94, Fig.1] in the interest of

consistency, illustrates label assignment to birth and spawn tracks.

The elements of a given current multi-object state X spawn new objects independently of

each other. In addition, the set U of objects spawned at the next time by a single-object state

x , (x, `), is an LMB1 with parameter set {(pT(x;ς), fT,+(·|x;ς)) : ς ∈ T+(L(x))}, where

T+(`) , {(`, k + 1)} × {1 : M`} (6.1)

is a finite subset set of T+. In other words, for each LMB component ς ∈ T+(L(x)), the state x

either spawns a state (x+, ς) with probability pT(x;ς) and probability density fT,+(x+|x;ς), or it

1 It is possible to derive a GLMB based spawning model, but an LMB is presented for compactness
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does not with probability qT(x;ς) = 1− pT(x;ς). The density of the set of objects spawned from x

can be written as

fT,+(U|x) = ∆(U)1T+(L(x))(L(U))[ΦT,+(U|x; ·)]T+(L(x)) , (6.2)

where

ΦT,+ (U|x;ς) =
∑

(x+, +̀)∈U

δς( +̀)pT(x;ς)fT,+(x+|x;ς) + [1− 1L(U)(ς)]qT(x;ς). (6.3)

Since X has distinct labels, the LMB label sets T+(L(x)) for all x ∈ X are mutually disjoint,

and the set of possible labels spawned from X is the disjoint union

T+(L(X)) =
⊎
x∈X

T+(L(x)).

Note that when a labeled set V is spawned from X, L(V) ⊆ T+(L(X)), i.e., 1T+(L(X))(L(V)) = 1,

otherwise L(V) * T+(L(X)), i.e., 1T+(L(X))(L(V)) = 0. Hence, the inclusion 1T+(L(X))(L(V)) is

an indicator of whether V is spawned by X or not. Moreover, if V is not spawned from X, then

the spawning density fT,+(V|X) = 0. On the other hand if V is spawned from X, then

V =
⊎
x∈X

V ∩ (X× T+(L(x)),

and since V ∩ (X × T+(L(x)) is the set of objects spawned by x, it follows from the FISST

fundamental convolution theorem [63], and arguments presented in [95] that the spawning density

fT,+(V|X) =
∏
x∈X

fT,+(V ∩ (X× T+(L(x))|x).

Hence, fT,+(V|X) can be written as

fT,+(V|X) =1T+(L(X))(L(V))
∏
x∈X

fT,+(V ∩ (X× T+(L(x))|x). (6.4)

Substituting (6.2) into the above equation and noting that when 1T+(L(X))(L(V)) = 1,

1T+(L(x))(L(V ∩ (X× T+(L(x)))) = 1,∏
x∈X

∆(V ∩ (X× T+(L(x))) = ∆(V),
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we have

fT,+(V|X) = ∆(V)1T+(L(X))(L(V)) [ΦT,+ (V|·)]X , (6.5)

where

ΦT,+(V|x)=[ΦT,+(V∩(X× T+(L(x))|x; ·)]T+(L(x)) . (6.6)

The multi-object state at the next time X+ = XS,+ ∪XT,+ ∪XB,+ is the superposition of

surviving objects XS,+ = X+ ∩ (X×L), birth objects XB,+ = X+ ∩ (X×B+) and spawned objects

XT,+ = X+ ∩ (X×T+). Since the label spaces L, T+, and B+ are mutually disjoint, it follows that

XS,+, XT,+, and XB,+ are also mutually disjoint. Further, using the conditional independence of

XS,+, XT,+, and XB,+, it follows from the FISST fundamental convolution theorem [63], [95] that

the multi-object transition kernel is given by

f+(X+|X)= fS,+(XS,+|X)fT,+(XT,+|X)fB,+(XB,+). (6.7)

6.2 Multi-object prediction with spawning

In general, for a multi-object transition density with spawning (6.7), the GLMB family is not

necessarily closed under the Chapman-Kolmogorov equation

π(X+) =

∫
f+(X+|X)π(X)δX. (6.8)

Proposition 8. If the current multi-object filtering density is GLMB of the form (2.21), then the

multi-object prediction density formed by surviving, birth and spawning processes is given by

π(X+) = ∆(X+)
∑
I,ξ

w
(I,ξ)
+ (L(X+))p(I,ξ)(X+), (6.9)

where

w
(I,ξ)
+ (L(X+)) = w(I,ξ)1I(L(XS,+))1T+(L(X))(L(XT,+))1B+(L(XB,+))

× [1− rB,+]B+−L(XB,+)[rB,+]L(XB,+), (6.10)

p(I,ξ)(X+) = [pB,+]XB,+
∏
`∈I

〈
ΦS,+(XS,+|·, `)ΦT,+(XT,+|·, `), p(ξ)(·, `)

〉
, (6.11)

XS,+ = X+ ∩ (X× L), XT,+ = X+ ∩ (X× T+), and XB,+ = X+ ∩ (X× B+).
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Proof. Using the Chapman-Kolmogorov equation (6.8) and (6.7) with fS,+(XS,+|X) from (2.25)

and fT,+(XT,+|X) from (6.2), we have

π(X+) = fB,+(XB,+)

∫
∆(XS,+)1L(X)(L(XS,+)) [ΦS,+(XS,+|·)]X

×∆(XT,+)1T+(L(X))(L(XT,+)) [ΦT,+(XT,+|·)]X

×∆(X)
∑
I,ξ

w(I,ξ)δI(L(X))
[
p(ξ)
]X

δX, (6.12)

= ∆(XS,+)∆(XT,+)fB,+(XB,+)

×
∑
I,ξ

∫
∆(X)w(I,ξ)δI(L(X))1L(X)(L(XS,+))1T+(L(X))(L(XT,+))

×
[
ΦS,+(XS,+|·)ΦT,+(XT,+|·)p(ξ)

]X
δX, (6.13)

= ∆(XS,+)∆(XT,+)fB,+(XB,+)
∑
I,ξ

∑
J∈F(L)

w(I,ξ)δI(J)1J(L(XS,+))1T+(L(X))(L(XT,+))

×
∏
`∈I

〈
ΦS,+(XS,+|·, `)ΦT,+(XT,+|·, `), p(ξ)(·, `)

〉
, (6.14)

where the last line follows from [95, Lemma 3]. Using ∆(X+) = ∆(XS,+)∆(XT,+)∆(XB,+),

fB,+(XB,+) from (2.26), and noting that the only non-zero inner summand occurs when I = J ,

we have (6.9).

Implicit in (6.9) is that, even though the survival and spawn RFSs are mutually disjoint due

to their labels (see (6.7)), they are both conditioned on the same multi-object state X. Further,

the objects spawned by a state x ∈ X and its state at the next time (if survived) are all distinct,

but conditioned on x.

6.3 Multi-Object Update with Spawning

Since the predicted multi-object density is not a GLMB, the updated multi-object density

π+(X+|Z+) =
π(X+)g(Z+|X+)∫
π(X)g(Z+|X)δX

. (6.15)

with the standard multi-object likelihood, is also not a GLMB. One strategy of using the GLMB

filter to track with spawnings is to approximate the multi-object prediction density (6.9) by a
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GLMB prior to performing a measurement update. A more prudent approach is preferred in this

work whereby the GLMB approximation is performed on the updated multi-object density to reduce

information loss, albeit at the cost of increased complexity. Such approximation can be achieved by

finding a GLMB that matches the multi-object filtering density in the first moment and cardinality,

which is done as follows.

An arbitrary labeled multi-object density on F(X×L) can be writen in the form [70, Propo-

sition 3]

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))p(c)(X), (6.16)

where C is a discrete index set, the weights w(c)(·) satisfy (2.22), and with n = |X|,∫
p(c) ({(x1, `1), . . . , (xn, `n)}) d(x1, . . . , xn) = 1.

Moreover, it was shown in [70, Proposition 3], that such a labeled multi-object density can be

approximated by the GLMB

π̂(X) = ∆(X)
∑

(c,I)∈C×F(L)

δI(L(X))ŵ(c,I)
[
p̂(c,I)

]X
, (6.17)

where

ŵ(c,I) = w(c)(I), (6.18)

p̂(c,I)(x, `) = 1I(`)p
(c)
I−{`}(x, `), (6.19)

p
(c)
{`1,...,`n}(x, `) =

∫
p(c)({(x, `), (x1, `1), . . . , (xn, `n)})d(x1, . . . , xn). (6.20)

A salient feature of this approximation method is that both the cardinality distribution and PHD

of π are preserved. Additionally, note that C can take the form of any discrete index set, including

the set of indices for the Cartesian product of a collection of finites subsets of some label space and

an association history space, i.e., letting C = F(L)× Ξ is possible.

The exact form of the multi-object filtering density at the next time, and its GLMB approx-

imation as per the result above, is given below in Proposition 2.



88

Proposition 9. If the current filtering density is GLMB of form (2.21) and given the multi-object

likelihood (2.28), then the multi-object filtering density at the next time is given by

π+(X+|Z+) ∝ ∆(X+)
∑
I,ξ,θ+

w
(I,ξ)
+ (L(X+))

[
pB,+ψ

(θ+)
+ (·|Z+)

]XB,+

p
(I,ξ,θ+)
+ (XS,+ ∪XT,+|Z+), (6.21)

where I ∈ F(L), ξ ∈ Ξ, θ+ ∈ Θ+(L(X+)), XB,+ = X+ ∩ (X × B+), XS,+ = X+ ∩ (X × L),

XT,+ = X+ ∩ (X× T+), and

p
(I,ξ,θ+)
+ (XS,+ ∪XT,+|Z+) =

[
ψ

(θ+)
+ (·|Z+)

]XS,+∪XT,+

×
∏
`∈I

〈
ΦS,+(XS,+|·, `)ΦT,+(XT,+|·, `), p(ξ)(·, `)

〉
. (6.22)

Moreover, it can be approximated by the GLMB given by

π̂+(X+|Z+) = ∆(X+)
∑

I,ξ,I+,θ+

δI+(L(X+))ŵ
(I,ξ,I+,θ+)
+ (Z+)

[
pB,+ψ

(θ+)
+ (·|Z+)

]XB,+

×

[
p̂

(I,ξ,I+,θ+)
+ (·|Z+)

]XS,+∪XT,+

[
p̄

(I,ξ,I+,θ+)
+ (·|Z+)

]I+ , (6.23)

ŵ
(I,ξ,I+,θ+)
+ (Z+) =

w
(I,ξ)
+ (I+)

[
p̄

(I,ξ,I+,θ+)
+ (·|Z+)

]I+
∑

I,ξ,I+,θ+

w
(I,ξ)
+ (I+)

[
p̄

(I,ξ,I+,θ+)
+ (·|Z+)

]I+ , (6.24)

p̂
(I,ξ,I+,θ+)
+ (x+, `+|Z+) = 1I+(`+)

∫
p

(I,ξ,θ+)
+ ({(x+, `+), (x1:n,+, `1:n,+)} |Z+) d(x1:n,+), (6.25)

p̄
(I,ξ,I+,θ+)
+ (`+|Z+) = 1B+(`+)

〈
pB,+(·, `+), ψ

(θ+)
+ (·|Z+)

〉
+ (1− 1B+(`+))

〈
p̂

(I,ξ,I+,θ+)
+ (·, `+|Z+), 1

〉
, (6.26)

which preserves the first moment and cardinality distribution, where I+ ∈ L+.
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Proof. With g(Z+|X+) from (2.28) and π(X+) from (6.9), we have

π+(X+|Z+) ∝ π(X+)g(Z+|X+), (6.46)

= ∆(X+)
∑
I,ξ,θ+

w
(I,ξ)
+ (L(X+))p

(I,ξ)
+ (X+)

[
ψ

(θ+)
+ (·|Z+)

]X+

, (6.47)

= ∆(X+)
∑
I,ξ,θ+

w
(I,ξ)
+ (L(X+))

[
pB,+ψ

(θ+)
+ (·|Z+)

]XB,+

×
∏
`∈I

〈
ΦS,+(XS,+|·, `)ΦT,+(XT,+|·, `), p(ξ)(·, `)

〉 [
ψ

(θ+)
+ (·|Z+)

]XS,+∪XT,+

, (6.48)

= ∆(X+)
∑
I,ξ,θ+

w
(I,ξ)
+ (L(X+))

[
pB,+ψ

(θ+)
+ (·|Z+)

]XB,+

p
(I,ξ,θ+)
+ (XS,+ ∪XT,+|Z+). (6.49)

Now apply the GLMB approximation (6.17) to (6.49), and note that determining the product

of the marginals of the single-object birth densities encapsulated in [pB,+ψ
(θ+)
+ (·|Z+)]XB,+ is redun-

dant. Only the single-object densities encapsulated in p
(I,ξ,θ+)
+ (XS,+ ∪XT,+|Z+) require marginal-

ization. Hence, applying the GLMB approximation from (6.17) gives

π̂+(X+|Z+) = Ĉ∆(X+)
∑

I,ξ,I+,θ+

δI+(L(X+))w
(I,ξ)
+ (L(X+))

[
pB,+ψ

(θ+)
+ (·|Z+)

]XB,+

×
[
p̂(I,ξ,I+,θ+)(·|Z+)

]XS,+∪XT,+

, (6.50)

where I+ ∈ F(L+), p̂(I,ξ,I+,θ+)(·|Z+) is defined in (6.25), and

Ĉ−1 =
∑

I,ξ,I+,θ+

∫
∆(X+)δI+(L(X+))w(I,ξ)(L(X+))

[
pB,+ψ

(θ+)
+ (·|Z+)

]XB,+

×
[
p̂

(I,ξ,I+,θ+)
+ (·|Z+)

]XS,+∪XT,+

δX+, (6.51)

=
∑

I,ξ,I+,θ+

∑
L⊆L+

δI+(L)w
(I,ξ)
+ (L)

∏
`+∈L

p̄
(I,ξ,I+,θ+)
+ (`+|Z+), (6.52)

=
∑

I,ξ,I+,θ+

w
(I,ξ)
+ (I+)

[
p̄

(I,ξ,I+,θ+)
+ (·|Z+)

]I+
, (6.53)

where (6.52) follows from [95, Lemma 3], which simplifies in (6.53) since the only non-zero inner

summand occurs when L = I+, and p̄
(I,ξ,I+,θ+)
+ (`+|Z+) is defined in (6.26). Substituting (6.53) into

(6.50) we have (6.23).
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6.4 Efficient Implementation

Expanding on the material discussed in Section 2.4.2, in this section we leverage the joint

prediction and update of the fast GLMB implementation to truncate the number of components

used to generate the updated multi-object density in (6.23). Note that a GLMB density of form

(2.21) at the current time can be represented by

{(I(h), ξ(h), w(h), p(h))}Hh=1, (6.54)

which is an enumeration of the set of density parameters {(w(I,ξ), p(ξ)) : (I, ξ) ∈ F(L)× Ξ} where

w(h) , w(I(h),ξ(h)) and p(h) , p(ξ(h)). The objective is to generate a parameter set

{(I(h+)
+ , ξ

(h+)
+ , w

(h+)
+ , p

(h+)
+ )}H+

h+=1 (6.55)

that represents the GLMB density at the next time given by (6.23). Following the development

in [92, Section III-E], the first step toward doing so requires drawing Hmax
+ samples from the

distribution π given as

π(I, ξ) ∝ w(I,ξ), (6.56)

noting that T
(h)
+ duplicates of a distinct sample (I(h), ξ(h)) can be drawn. Then, we determine a

set of T̃
(h)
+ candidate components of the form

{(I(h,t)
+ , θ

(h,t)
+ )}T̃

(h)
+

t=1 (6.57)

from each (distinct) (I(h), ξ(h)) that together yield significant weights, as in ŵ
(I,ξ,I+,θ+)
+ (Z+) in

(6.23).

Recall from Section 2.4.2 that a set of positive 1-1 vectors γ specifies a significant weight

ŵ
(I,ξ,I+,θ+)
+ (Z+), if γ generates a significant ω(γ) =

∏P
i=1 ηi(γi). Hence, determining a set of candi-

date components amounts to finding sets of γ’s that yield ω(γ) above a given threshold; it follows

that such vector sets can be generated using (6.23). However, complexity of the GLMB filter is

naturally increased with the inclusion of spawn modeling and the involvement of marginalization

in the truncation procedure is inefficient, especially in cases where many GLMB components are
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ultimately discarded. Therefore, the following proposal density is exploited for the purpose of

generating candidate components (6.57) in an effort to offset complexity and minimize inefficiency.

Definition 6.1. Given a GLMB density (2.21) at the current time, let the proposal density π̃ at

the next time be of form (2.86) such that

π̃+(X+|Z+) ∝ ∆(X+)

H∑
h=1

T̃
(h)
+∑
t=1

w(h)w̃
(h,t)
+ (Z+)δ

I
(h)
+

(L(X+))
[
p̃(h,t)(Z+)

]X+

, (6.58)

where ψ
(h,t)
+ , ψ

(θ
(h,t)
+ )

+ , ψ̃
(h,t)
+ , ψ̃

(θ
(h,t)
+ )

+ ,

w̃
(h,t)
+ (Z+)= [rB,+]B+∩I(h,t)

+ [1− rB,+]B+−I(h,t)
+

[
p̄

(h)
S

]I(h)∩I(h,t)
+

[
1− p̄(h)

S

]I(h)−I(h,t)
+

×
[
p̄

(h)
T

]T+∩I(h,t)
+

[
1− p̄(h)

T

]T+−I(h,t)
+

[
ψ̃

(h,t)
+ (·|Z+)

]I(h,t)
+

, (6.59)

p̃(h,t)(x+, `+|Z+)=
p̃

(h)
+ (x+, `+)ψ(h,t)(x+, `+|Z+)

ψ̃(h,t)(x+, `+|Z+)
, (6.60)

p̃
(h)
+ (x+, `+)= 1B+(`+)pB,+(x+, `+) + 1L(`+)p̃

(h)
S (x+, `+) + 1T+(`+)p̃

(h)
T (x+, `+), (6.61)

p̃
(h)
S (x+,`+)=

〈pS(·,`+)fS,+(x+|·, `), p(h)(·,`+)〉
p̄

(h)
S (`+)

, (6.62)

p̃
(h)
T (x+, `+)=

〈pT(`+)fT,+(x+|·, `), p(h)(·, `)〉
p̄

(h)
T (`+)

, (6.63)

p̄
(h)
S (`+)= 〈p(h)(·, `), pS(`+)〉, (6.64)

p̄
(h)
T (`+)= 〈p(h)(·, `), pT(`+)〉, (6.65)

ψ̃(h,t)(x+, `+|Z+)=〈p̃(h)
+ (x+, `+), ψ(h,t)(x+, `+|Z+)〉. (6.66)

Enumerate Z+ = {z1:|Z+|}, B+ = {`1:K}, I(h) = {`K+1:L}, along with the additional set of

spawn labels at the next time T+(I(h)) = {`L+1:P }. Next, define a P dimensional vector γ(h,t) that

inherits the 1-1 mapping from θ
(h,t)
+ (see (2.93)), then is recovered (I

(h,t)
+ , θ

(h,t)
+ ) via

I
(h,t)
+ = {`i ∈ B+ ∪ I(h) ∪ T+(I(h)) : γ

(h,t)
i ≥ 0}, (6.67a)

θ
(h,t)
+ (`i) = γ

(h,t)
i , (6.67b)
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such that θ
(h,t)
+ : I

(h,t)
+ → {0 : |Z+|}. Then, for each j ∈ {−1 : |Z+|} define

η
(h)
i (j) =



1− rB,+(`i), `i∈B+, j<0,

rB,+(`i)ψ̃
(h,j)
+ (`i|Z+), `i∈B+, j≥0,

1− p̄(h)
S (`i), `i∈I(h), j < 0,

p̄
(h)
S (`i)ψ̃

(h,j)
+ (`i|Z+), `i∈I(h), j≥0,

1− p̄(h)
T (`i), `i ∈T+(I(h)), j<0,

p̄
(h)
T (`i)ψ̃

(h,j)
+ (`i|Z+), `i∈T+(I(h)), j≥0,

(6.68)

assuming that, for all i ∈ {1 : P}, p̄(h)
D,+(`i) ,

〈
p̃

(h)
+ (·, `i), pD,+(·, `i)

〉
∈ (0, 1), p̄

(h)
S (`i) ∈ (0, 1), and

p̄
(h)
T (`i) ∈ (0, 1). Equation (6.68) is used in conjunction with the Gibbs sampler to yield mostly

high-weighted positive 1-1 vectors γ(h,t), then each γ(h,t) is converted to candidate component

(I
(h,t)
+ , θ

(h,t)
+ ) using (6.67).

Moving forward, the candidate components determined using the proposal density (6.58)-

(6.68) are subsequently used to generate the GLMB density in (6.23). For each sample component

(I(h), ξ(h)) and each of its candidate components (6.57) formed using (6.67) and (6.68), generate

intermediate components of form (I
(h,t)
+ , ξ

(h,t)
+ , w

(h,t)
+ , p

(h,t)
+ ). Letting

p̂
(h,t)
+ , p̂

(I(h),ξ(h),I
(h,t)
+ ,θ

(h,t)
+ )

+ ,

and

p̄
(h,t)
+ , p̄

(I(h),ξ(h),I
(h,t)
+ ,θ

(h,t)
+ )

+ ,

compute

w̄
(h,t)
+ = w(h) [rB,+]B+∩I(h,t)

+ [1− rB,+]B+−I(h,t)
+

[
p̄

(h,t)
+ (·|Z+)

]I(h,t)
+

, (6.69)

p
(h,t)
+ (·, `i) ∝ 1B+(`i)pB,+(·, `i)ψ(h,t)

+ (·, `i|Z+) + (1− 1B+(`i))p̂
(h,t)
+ (·, `i|Z+), (6.70)

define ξ
(h,t)
+ = (ξ(h), θ

(h,t)
+ ), and let

Ĉ =
∑
h,t

w̄
(h,t)
+

[
p̄

(h,t)
+ (·|Z+)

]I(h,t)
+

(6.71)
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be a normalizing constant. Equations (6.69)-(6.71) follow directly from (6.23)-(6.26). Algorithm 1

(see Appendix C) summarizes the joint prediction and update procedure for one iteration, including

how the intermediate component set {(I(h,t)
+ , ξ

(h,t)
+ , w

(h,t)
+ , p

(h,t)
+ )}H,T̃

(h)
+

h,t=1,1 is formed.

Note that a given set {(I(h,t)
+ , ξ

(h,t)
+ , p

(h,t)
+ )}H,T̃

(h)
+

h,t=1,1 may not be unique, accordingly, the pa-

rameter set (6.55) is determined by summing all w
(h,t)
+ with (I

(h,t)
+ , ξ

(h,t)
+ ) = (I

(h+)
+ , ξ

(h+)
+ ), then

normalizing the weights w
(h,t)
+ . This procedure follows from the relationship presented in (2.92)

and is summarized in Algorithm 2 , which comes from the bottom portion of [92, Algorithm 2]

and is replicated here for convenience. All algorithms are relegated to Appendix C and follow the

format of those presented in [92] in the interest of consistency. Additionally, we use the Gibbs and

Unique functions as described in [92, Algorithm 1] and [92, Section III-E], respectively.

6.5 Simulation

A linear Gaussian example is used to verify the proposed GLMB filter and compare its

performance to the CPHD filter; both filters incorporate object spawning. Fig. 6.2 illustrates the

multiple trajectories in a [−1000, 1000] m × [−1000, 1000] m surveillance region considered in this

scenario. Over the 100 s scenario duration, the number of objects varies due to birth, spawning,

and death. In total, there are 6 spontaneous births and 6 spawning events.

At the start, an object is born in each of the three birth regions. Each birth object goes

on to generate a single first generation spawn, then dies. After crossing at the origin at time

k = 45, each spawn object generates a single second generation spawn. Towards the end, an object

appears in each birth region that goes on to cross paths with a second generation spawn; crossings

occur at times k = 82, k = 84, and k = 86 at positions (−250,−433), (−260, 430), and (507, 26),

respectively.

The single-object state describing an object’s planar position and velocity coordinates is

x+ = [px,+, py,+, ṗx,+, ṗy,+]T . Each object has a probability of survival pS = 0.99 and follows linear
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Figure 6.2: Object trajectories in the xy plane. A circle “#” indicates where an object is born, a square
“�” indicates where a spawned object may be detected, and a triangle “4” indicates where an object dies.

Gaussian dynamics with transition density fS,+(x+, `+|x, `) = N (x+;Fx,Q) such that

F =

I2 ∆I2

02 I2

 , Q = σ2
ν

∆4

4 I2
∆3

2 I2

∆3

2 I2 ∆2I2

 ,
where ∆ = 1 s, σν = 1 m s−2, and In and 0n denote the n×n identity and zero matrices, respectively.

Each object is detected with probability pD,+ = 0.88 and each object generated measurement

z+ = [zx,+, zy,+]T consists of the object’s position with noise added to each component. Mea-

surements follow the linear Gaussian measurement model g+(z+|x+, `+) = N (z+;Hx+, R) such

that

H = [I2 02] , R = σ2
ε I2,

where σε = 10 m. Clutter is modeled as a Poisson RFS with an average intensity of λc = 1.65 ×

10−5m−2 yielding an average of 66 clutter returns per scan.



95

Objects can appear either by birth or spawning. The birth model is an LMB RFS with

parameters πB,+ = {rB,+(`i), pB,+(`i)}3i=1 where rB,+(`i) = 0.02 and pB,+(`i) = N (x;m
(i)
B , PB)

with m
(1)
B = [0, 500, 0, 0]T , m

(2)
B = [433,−250, 0, 0]T , m

(3)
B = [−433,−250, 0, 0]T , and PB = σ2

BI4

where σB = 10.

Given a parent state x = (x, `) at the current time k and setting M` = 1, from (6.1), the set

of spawn labels at the next time k + 1 is defined as

T+(`) = {(`, k + 1)× {1}} = {(`, k + 1, 1)}.

Additionally, the probability of detection is set constant, i.e., pT , pT(x; ς). Then, the spawn

model is a conditional LMB RFS with parameters {(pT, fT,+(·|x;ς)) : ς ∈ T+(`)} where pT = 0.01

and fT,+(·|x, `; ς) =
∑3

i=1N (·;Fx+d
(i)
T , QT) with QT = σ2

TI4, σT = 5. Each d
(i)
T is configured such

that a spawn track with zero velocity is generated at a distance of 70 m from a parent state xk and

in a direction relative to the parent’s bearing θ, i.e.,

d
(i)
T = [70 cos(θ + φ(i)), 70 sin(θ + φ(i)),−ṗx,k,−ṗy,k]T ,

where φ(1)= −80 deg, φ(2) = −90 deg, and φ(3) = −100 deg.

The maximum number of GLMB filter components is capped at 1000. Using the Gibbs

sampler to randomly generate hypotheses, the probabilities of survival and detection are tempered

with values set to p̆S,k = 0.90pS,k and p̆D,k = 0.90pD,k, respectively. This induces the sampler to

yield more track termination and miss detection hypotheses, which expedites the termination of

truly dead tracks while reducing the occurrence of dropped tracks. For more details on tempering

techniques, see [92]. The CPHD filter is configured with a Bernoulli spawn model following the

presentation in [14] and is capped at 1000 Gaussian mixture components.

Results are presented for 100 Monte Carlo simulations. The mean and standard deviation of

cardinality estimates over time are shown in Figs. 6.3 and 6.4, while mean OSPA [75] distances are

shown in Fig. 6.5. Mean OSPA localization and cardinality components are shown in Fig. 6.6.

Similar to the results presented in [94], both filters accurately estimate cardinality with the

GLMB filter providing a better cardinality variance estimate. The GLMB also exhibits better miss
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Figure 6.3: Cardinality statistics for GLMB filter (100 Monte Carlo trials).
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Figure 6.4: Cardinality statistics for CPHD filter (100 Monte Carlo trials).
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Figure 6.5: OSPA distance for GLMB and CPHD filters (100 Monte Carlo trials).

distance performance throughout the majority of the simulation. From Fig. 6.6 we see that the

GLMB outperforms the CPHD in both cardinality and localization components overall. Consistent

with the assessment in [94], lower estimated cardinality variance promotes improved cardinality
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Figure 6.6: OSPA components for GLMB and CPHD filters (100 Monte Carlo trials).

performance. Improved localization performance is attributed to the GLMB’s ability to propagate

the filtering density more accurately and its immunity to the “spooky-effect”. The CPHD filter is

susceptible to this effect where in the event of a miss detection the PHD mass shifts away from

undetected components to detected ones, regardless of the distance between them [32,94].

The proposed GLMB filter’s ability to capture ancestry information is demonstrated in

Figs. 6.7-6.9. For each Monte Carlo run, the final label estimates at time k = 100 are com-

pared to the set of true labels of the same time which are presented in Table 6.1. The true labels

are presented horizontally and are enumerated by the far left column. Shading is used to divide

labels 1-6 into segments correlating with birth and spawning events in Figs. 6.7-6.9, where red,

green, and yellow represent a birth track from which spawn originate, first generation spawn, and

second generation spawn, respectively. Labels 7-9 are not considered for this analysis since they

have no ancestry.
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When comparing the final label estimates at time k = 100 of each Monte Carlo run with

the truth, estimated labels are segregated by common ancestry, e.g., from Table 6.1, labels 1 and

4 belong to one group, labels 2 and 5 belong to another, etc. For a given label group, the time

of birth for their common birth ancestor track may differ from the truth, therefore it is necessary

to trace the common ancestor track’s label and state estimates toward the beginning of the given

Monte Carlo run. Comparing this time history of state estimates with the truth, the originating

birth region is determined. Then, the birth track’s time of death is found by tracing its label from

the beginning of the given run to the point in time when its label is no longer present in the set

of label estimates. The remaining event times represented in Figs. 6.7-6.9, i.e., times of birth and

spawning, are extracted from the labels of a final label estimates at time k = 100 of the given

Monte Carlo run.

Table 6.1: Label Ground Truth at Time k = 100

Label # Label

1 1 1 10 1 56 1
2 2 2 11 1 58 1
3 3 3 12 1 60 1
4 1 1 10 1
5 2 2 11 1
6 3 3 12 1
7 55 3
8 57 1
9 59 2

The formats of Figs. 6.7-6.9 are generally the same. Each birth region’s true ancestry tree is

at the far left and is aligned with a gridded area to the right with markers indicating GLMB filter

estimated birth, death, and spawn times for 100 Monte Carlo runs. Each figure corresponds to one

of the three modeled birth regions as indicated by the true track labels. Each birth region’s true

ancestry tree is at the far left and begins with a red circle at the top. Moving down the vertical

axis in time, the first and second generation spawn times are denoted by a green square and yellow

diamond, respectively, while the birth track’s time of death is marked by a pink diamond. Moving
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from left to right across the gridded area, markers indicate GLMB filter estimated birth, death,

and spawn times for 100 Monte Carlo runs. Each figure corresponds to one of the three modeled

birth regions as indicated by the true track labels.

We see from Figs. 6.7-6.9 that the GLMB filter accurately captures ancestry information

overall, where the results in Fig. 6.9 exhibit the best performance. Fig. 6.7 indicates that the

second generation spawn track (1, 1, 10, 1, 56, 1) was not spawned during run 46 and that the same

generation track was estimated as originating from a different parent during run 90. In this specific

case, track (1, 1, 10, 1) dropped prior to tracks crossing at the origin (see Fig. 6.2) and was later

estimated as having spawned from one of the remaining first generation spawn tracks, subsequently

spawning an object at time k = 56. Similarly, Fig. 6.8 shows that track (2, 2, 11, 1, 58, 1) did not

spawn during run 52, while during run 34, a label switch occurred when track (2, 2) essentially took

the place of track (2, 2, 11, 1), going on to spawn track (2, 2, 58, 1) at time k = 58. These inaccurate

ancestry estimates are due to missed detections of either the parent track, spawn track, or both.



Chapter 7

Spawned Object Orbit Determination Simulations: GM-GLMB

This chapter includes the first application of the GLMB filter, with spawning, to an orbit

determination problem. The CubeSat deployment scenario is revisited, similar to that in Chapter

5, but not identical. Since the 50 CubeSat deployment simulations presented in Chapter 5 were

performed, the Indian Space Research Organisation (ISRO) has successfully executed a more ambi-

tious real-world mission in which a total of 104 objects, 100 of them CubeSats, were deployed from

a single LV. The simulations presented in this chapter are modeled after the ISRO’s mission, details

of which are provided in Section 7.1. The most significant difference between the scenario presented

in this chapter is that the GLMB filter does not require the same high observation density as the

CPHD filter did in Chapter 5. Hence, a more realistic surveillance scheme is implemented, which

is detailed in Section 7.1.1. The simulated dynamics in this chapter, however, are quite similar to

those of Chapter 5, and are discussed in Section 7.1.2. Section 7.1.3 details filter configuration and

results are presented in Section 7.2. Section 7.2.3 discusses what remains to be done for the material

presented in this chapter to become a more well-rounded exploration of appying the GLMB filter

to spawning event orbit determination.

7.1 Scenario Description

Simulation begins with only one object at epoch, i.e., the PSLV-C37 launch vehicle, initial

conditions for which are presented in Table 7.1. The models for LV trajectory and CubeSat deploy-
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ment are based on information available at the time of analysis1,2. The scan interval is ∆t = 60 sec

and scenario duration is just over 25 hours.

Table 7.1: PSLV-C37 Initial Conditions

Parameter Setting

Epoch Time (Julian Date) 2457799.645833
Semimajor Axis (km) 6862.340

Eccentricity 2.4234× 10−3

Inclination (deg) 97.604
Right Asc. of Node (deg) 134.959

Arg. of Perigee (deg) 80.761
True Anomaly (deg) 274.512

CubeSat deployment is initiated 295 min after epoch, at which time two CubeSats are ejected

from the LV. Then, two more every 10 s until 50 CubeSats are deployed. For analysis and trou-

bleshooting purposes, only half of the full 100 CubeSat deployments were executed for analysis

presented in this document.

With the absence of elaborate CubeSat deployment details, much of the deployment model

is assumed. In part, the QB50 deployment model [53] from Chapter 5 is used, but with some

adjustment. Two different deployment models are used, i.e., the scenario is run twice, once with

each of the deployment models. This is done to demonstrate filter efficacy when the disparity

between (filter) spawn and (true) deployment models varies, and to highlight the need for expanding

spawn model versatility. Both models are used to simulate ground truth and are implemented in

the NTW frame, a coordinate system that moves with the LV where the N axis lies in the orbital

plane, the T axis is always parallel to the LV’s velocity vector, and the W axis completes the

right-handed system.

Like the QB50 deployment model, CubeSats are deployed in the anti-velocity direction of

PSLV-C37’s motion. The first deployment model, hereafter referred to as the PSLV-deploy-1 model,

assumes very precise control over the LV’s motion such that rotation about any axis in the NTW

1 “India launches more than 100 satellites into orbit.” USA Today, February 15, 2017. Web. June 8, 2017.
2 PSLV-C37 Brochure-ISRO. Web. June 8, 2017.
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frame is negligible. CubeSats are ejected with a speed of 1.5 m/s such that, after one second elapses,

they appear precisely at the two points indicated by red and blue squares in Fig 7.1.
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Figure 7.1: PSLV-deploy-1 model depicted in the NTW frame. (A) View from aft of LV, looking forward (T
axis points into the page). (B) Side view (N-axis points into the page). (C) Perspective view. (D) W-axis
points out of page.



106

The second deployment model, PSLV-deploy-2, assumes that less accurate knowledge of

CubeSat ejection dynamics is available. Instead of deploying at two rigid points, slight directional

variations are assumed for CubeSat ejection such that objects can randomly appear in the arc-

shaped regions illustrated in Fig. 7.2.
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Figure 7.2: PSLV-deploy-2 model depicted in the NTW frame. (A) View from aft of LV, looking forward (T
axis points into the page). (B) Side view (N-axis points into the page). (C) Perspective view. (D) W-axis
points out of page.
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7.1.1 Measurements

A surveillance network consisting of 8 phased array radars is simulated. Figure 7.3 illustrates

radar locations and groundtracks for the LV’s first four passes. Simulating observations consists

of generating ground truth3 states in the Geocentric Celestial Reference Frame (GCRF) for all

considered objects at every point in time, as per the modeled scenario period and time interval ∆t.

At each point in time, each GCRF state is converted to an observation vector consisting of range ρ,

range-rate ρ̇, azimuth β, and elevations e`, i.e., zk = [ρ, ρ̇, β, e`]T , for each sensor. The parameters

in Table 7.2, transcribed here from [88] for convenience, are used to determine sensor-to-RSO

access, i.e., whether the sensor has line of sight (LOS) to the RSO. If no access is determined for

all sensor-RSO pairings, then data for the current time are discarded, thus forming an observation

gap. When access is determined for only a single sensor, the m available observation vectors form

a set Zk = {z1, . . . , zm}.

Tractability issues can arise when more than one sensor is used to form a multi-object ob-

servation at the same point in time. Such issues are addressed in [91], specifically for GLMB filter

implementations, however, doing so here is beyond the scope of this thesis. Hence, only one sensor

at each time is selected when simulating observations. When access is determined for multiple

sensors, the sensor with access to the most objects is selected. Furthermore, in the event that

multiple sensors have access to the same number of objects, the sensor with the shortest range to

the LV is selected.

3 The term ground truth refers to a data set that is unaltered by bias or noise, which serves as a means of determining

a filter’s efficacy in providing estimates when provided a biased and/or noisy version of the same data set. The term

is commonly used in tracking literature, e.g., see [5].
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Figure 7.3: Sensor locations and first 4 launch vehicle passes.

Table 7.2: Phased Array Radar Locations and Physical Limits [88]

Physical Limits
Location Range (km) Azimuth (deg) Elevation (deg)

Name Lat. (deg) Lon. (deg) Alt. (m) Max Min Max Min Max

Eglin 30.57 273.79 34.7 13,210 145 215 1 90

Fylingdales 54.37 359.33 338.9 4,820 285 189 4 70

Clear 64.29 210.81 213.3 4,910 170 110 1 90

Cape Cod 41.75 289.46 80.3 5,555 347 227 3 80

Beale 39.14 238.65 115.7 5,555 126 6 3 80

Shemya 52.74 185.91 89.8 4,910 259 379 1 30

Thule 76.57 291.7 424.7 5,555 297 177 3 80

Cavalier 48.72 262.1 347.3 3,300 313 62 2 45
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Zero-mean Gaussian white noise is added to each zk ∈ Zk with covariance Cholesky factor

D = diag(σρ, σρ̇, σβ, σe`), where σρ, σβ, and σe` are defined in Table 7.3 [88] for all sensors and

σρ̇ = σρ × 10−4 is assumed.

Table 7.3: Phased Array Radar Error and Resolution Characteristics

Noise

Name Range [σρ] (m) Azimuth [σβ] (deg) Elevation [σe`] (deg) # Elements θ3dB (deg)

Eglin 32.1 0.0154 0.0147 5,184 1.4

Fylingdales 50.0 0.0220 0.0200 2,560 2.0

Clear 62.5 0.0791 0.0240 4,910 1.4

Cape Cod 26.0 0.0260 0.0220 1,792 2.4

Beale 35.0 0.0320 0.0330 1,792 2.4

Shemya 2.9 0.0540 0.0530 15,000 0.8

Thule 26.0 0.0260 0.0220 2,560 2.0

Cavalier 28.0 0.0125 0.0086 6,888 1.2

The last two columns of Table 7.3 include characteristics used for determining the volume of

each sensor’s FOV, and ultimately its clutter intensity κk. Each phased array radar consists of N

radiating elements, tabulated in the fifth column [12, 54, 71]. The number of elements of a given

radar is related to its 3 dB (decibel) angular beamwidth4 θ3dB
via [79]

θ3dB
=

100√
N
. (7.1)

Angular beamwidth values are in the sixth column of Table 7.3. For each observation set, the

predicted LV state is used to determine a reference range ρref between it and the radar for use

with track gating. For a given radar and ρref , range gates are set at ρref ± σρ, thus defining range

boundaries for the radar’s FOV. Using the formula for the volume of a cone, the FOV volume VFOV

is approximated by

VFOV =
π

3
(tan θ3dB

)2[(ρref + σρ)
3 − (ρref − σρ)3]. (7.2)

See Fig. 7.4 for a depiction of θ3dB
and ρref ± σρ.

4 The 3 dB (decibel) angular beamwidth is also known as the half power beamwidth. For more information, see [54,79].
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Figure 7.4: Phased array radar field of view volume.

7.1.2 Dynamics

As in Chapter 5, two-body dynamics with Earth gravity and drag perturbations are used,

and model error is simulated by including up to the J3 zonal harmonic in the gravity perturbations

model when simulating the ground truth, but only up to the J2 zonal harmonic is used in the filter’s

model. Dynamics model parameters for simulations in this chapter are presented in Table 7.4.

For both truth simulation and filtering, the CU-TurboProp orbit propagation package [40]

was used, with an embedded Runge-Kutta 8(7) integrator [29] with a relative tolerance of 10−10.

Process noise is modeled as state noise compensation [86] where the process noise covariance Q is

given by

Q =

(5× 10−6)213 03

03 (10−5)213.

 (7.3)

Position and velocity errors are placed on initial a priori objects states with standard deviations

σpos = 100 m and σvel = 0.5 m/s, respectively.
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Table 7.4: Propagation for Observation Simulation and Filter Dynamics

Parameter Truth Model Filter Model

Gravity Perturbation GGM02C [85] GGM02C [85]
Spherical Harmonic Degree/Order 3× 0 2× 0

Area-to-Mass Ratio (m2/kg) 0.01 0.01
Drag Coefficient Cd 2.0 2.0

Process Noise σQ (km/s2) N/A 10−10

7.1.3 Filter Configuration

A single spawn model is used with both CubeSat deployment models. Spawn track position

deviation vectors are depicted by red and blue squares inf Figs. 7.1-7.2. Spawn track velocity

deviation vectors are defined as equivalent to their position deviation counterparts. Each track is

represented as a single Gaussian component, with a covariance QT given as

QT =

(10−4)213 03

03 (10−8)213

 . (7.4)

Like the CPHD filter, special considerations must be made for the probability of detection

pD,k, due to the nature in which RSOs move in and out of a sensor’s FOV. Detection probability

augmentation is handled in the same way, as discussed in Section 2.8. Note, however, that additional

considerations must be made for the GLMB filter regarding hypotheses updating. Care must be

taken to ensure that when objects are out of the FOV, that the assignment costs of objects in the

FOV are not improperly down-weighted. Essentially, the indexing scheme within the filter code

must be partitioned to account for varying RSO access.

Pertinent filter parameters are presented in Table 7.5.
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Table 7.5: GLMB filter configurations

Parameter Setting

Survival Probability pS/pS,tempd 0.99 / 1− 10−6

Detection Probability pD/pD,tempd 0.95 / 0.75× pD

Spawn Probability pT/pT,tempd 0.07 / 1− 10−4

Clutter Rate λc 10
Prune Threshold (Hypotheses) 10−19

Maximum Number of Hypotheses 2000
Maximum Number of Tracks 1000

Prune Threshold (GM) 10−12

Merge Threshold (GM) 4
Maximum Number of Components (GM) 5

OSPA Cutoff/Order (c/p) 10 (km)/2

7.2 Results

7.2.1 PSLV-deploy-1

Results from the PSLV-deploy-1 simulations are presented in Figs. 7.5-7.9. Cardinality statis-

tics and OSPA errors are plotted over time in Figs. 7.5 and 7.6, respectively, showing that the filter

accurately estimated the number of objects and their states throughout the entire scenario. Spikes

in OSPA error occur many times, which is primarily due to long time intervals between observations

as discussed below, however, the overall converging trend toward lower error is very apparent.
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Figure 7.5: [PSLV-deploy-1 ] Cardinality statistics vs. time (single run).
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Figure 7.6: [PSLV-deploy-1 ] OSPA vs. time (single run).

Figs. 7.5 and 7.6 included plots over time, which gives a sense of overall scenario duration and

the lengthy periods of time without observation. However, many times it is useful to investigate

tracking results that are plotted over filter step, as it allows us to more closely examine behaviors

by evenly distributing plot points horizontally, as opposed the how many of them get bunched

together and mask variability in the plots above. Hence, the remainder of figures in this section

include plots over filter step.

Figure 7.7 includes three subplots; the top is (total) OSPA error, OSPA localization errors

in the middle, and OSPA cardinality errors at the bottom. Since the filter correctly estimated the

number of objects throughout the entire scenario, both the top and middle plots are identical. As

expected, at the beginning of CubeSat deployments, and for a short duration after, localization

errors are increased, then eventually converge on noise level errors. The most prominent features

of these plots are the intermittent spikes, which are primarily due to observation gaps. In Fig. 7.8,

scenario time intervals vs. filter step are plotted over localization errors vs. filter step. The figure

shows that the majority of peak localization errors occur just after a long observation gap, most of

which are over an hour in duration.
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Figure 7.7: [PSLV-deploy-1 ] OSPA, localization, and cardinality errors vs. filter step (single run).
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Figure 7.8: [PSLV-deploy-1 ] Localization errors plotted on the left vertical axis with the time intervals
between filter steps plotted on the right vertical axis. Both are plotted over filter step (single run).

Another prominent feature of the localization error plots is the region of increased error

centered at about the 120th filter step. Reviewing the number of missed detections vs. filter step

plotted over localization errors vs. filter step in Figure 7.9, we see that two of the largest peaks

in the number of missed detections occur at the beginning of this region, indicating that, at a
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minimum, missed detections are a contributing factor to this period of increased error.
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Figure 7.9: [PSLV-deploy-1 ] Localization errors plotted on the left vertical axis with the number of missed
detections plotted on the right vertical axis. Both are plotted over filter step (single run).

7.2.2 PSLV-deploy-2

Results from the PSLV-deploy-2 simulations are presented in Figs. 7.10-7.14. Recall that a

discrepancy between CubeSat deployment and filter spawn models was imposed in this scenario,

so it is no surprise that the filter converged on a lower cardinality estimate, evidenced in Fig 7.10.

Two CubeSat tracks were lost during simulation; one approximately 11.5 hours past epoch, the

other at approximately 13 hours past epoch. The elevated OSPA error plotted in Fig 7.11 is due

to the cardinality error, which is more easily seen in Fig. 7.12 where the OSPA error is broken into

its components, plotted over filter step.



117

0 5 10 15 20 25 30

Time since epoch [hr]

0

10

20

30

40

50

60

C
a

rd
in

a
lit

y
 S

ta
ti
s
ti
c
s

Truth

Est

Figure 7.10: [PSLV-deploy-2 ] Cardinality statistics vs. time (single run).
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Figure 7.11: [PSLV-deploy-2 ] OSPA vs. time (single run).
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Figure 7.12: [PSLV-deploy-2 ] OSPA, localization, and cardinality errors vs. filter step (single run).

As with the first scenario, we see that peak observation gaps align perfectly with the majority

of peak localization errors in Fig. 7.13. Similarly, the two more prominent number of miss detection

peaks had a similar influence on the filter in this scenario as seen in Fig. 7.14, though for a shorter

period of time as the miss detections occur near times of track loss.
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Figure 7.13: [PSLV-deploy-2 ] Localization errors plotted on the left vertical axis with the time intervals
between filter steps plotted on the right vertical axis. Both are plotted over filter step (single run).
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Figure 7.14: [PSLV-deploy-2 ] Localization errors plotted on the left vertical axis with the number of missed
detections plotted on the right vertical axis. Both are plotted over filter step (single run).

Perhaps the most prominent feature of the localization error plot is the elevated region

centered at approximately the 252nd filter step, a feature not present in the plots for the first

scenario. Note that in Fig. 7.13, this region is bounded by two large observation gaps. Additionally,

seen in Fig. 7.15, is that the region is also bounded by a sharp increase in observed range error,

coinciding with the increase in localization error, and a sharp decrease in range error that coincides

with the decrease in localization error. So it makes sense that there is an elevated error region in

this case, because the filter is operating with a significant portion of its observation error increasing

throughout a period of time that is bounded by two relatively lengthy periods where it is deprived

of information.
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Figure 7.15: [PSLV-deploy-2 ] Localization errors plotted on the left vertical axis with Range error standard
deviations plotted on the right vertical axis. Both are plotted over filter step (single run).

7.2.3 Discussion

These results have shown that the spawn model inclusive GLMB filter performs as expected.

When sufficient information is available to model a spawning event with relatively high accuracy,

the filter performs exactly as it was intended to. Furthermore, it was demonstrated that with a

less accurate spawn model the filter does lose tracks, a behavior which was anticipated. However,

in the given case, the filter was able to instantiate tracks for the majority of objects and provide

comparable estimates for individual states, which demonstrates the filter’s robustness.

One of the goals of this chapter is to demonstrate a proof of concept, in that the GLMB

filter, configured with spawning, is capable of initial orbit determination. However, for the sake of

demonstration, simplifying assumptions were made to accommodate the lack of available informa-

tion pertaining to, e.g., the actual dynamics of small-sat deployments. In general, it is unlikely that

prior information such as the timing of a spawning event will be available, especially if the event

is a rocket body explosion, or the like. Hence, an additional goal of this chapter is to demonstrate

to the SSA community that IOD within an RFS tracking framework, as applied to space based

spawning events, is possible, and, to indicate areas in need of further investigation. The exploration
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of more versatile spawn models for the IOD of a variety of space based spawning events is one such

area.



Chapter 8

Conclusions and Future Work

This dissertation presented derivations of new, spawn model inclusive, multi-object filtering

implementations and demonstrations of their ability to perform initial orbit determination for

objects originating from a spawning event. This chapter summarizes the main results, discusses

their contributions, and suggests future work with the potential for further improvement of multi-

object filter implementations for SSA applications.

8.1 Summary of Results

The motivation for the work presented in Chapter 4 is the resolution of multi-object detection

and tracking problems in which newborn objects are spawned from preexisting ones. To this end,

the construction of a CPHD filter in which the appearance of newborn objects is modeled with a

spawning mechanism rather than spontaneous birth was proposed, based on a principled derivation

procedure within the FISST framework.

A GM implementation of the CPHD filter with spawning was presented, considering three

different models for the spawning mechanism based on a Bernoulli, a Poisson, or a zero-inflated

Poisson process. The three resulting filters were then illustrated, analyzed, and compared to a usual

CPHD filter with spontaneous birth but no spawning, on the same simulated scenario involving two

parent objects spawning a total of five new objects. Results demonstrated that a spawning model,

appropriately chosen for a given application, can provide better estimates than a spontaneous birth

model.
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Spawning event orbit determination capabilities of the GM-CPHD filter were demonstrated

in Chapter 5. CubeSat deployment and RB explosion models for the two different scenarios were

detailed. Simulations involved the use of a full coverage, homogeneous sensor network capable

of observing all objects at all times, and results demonstrated the implemented filter’s efficacy of

tracking the two event types.

Chapter 6 presented the first GLMB filter to consider object spawning. Using a top-down

formulation, a general labeled RFS density characterizing the predicted multi-object density of

surviving, birth and spawn objects was derived. A joint prediction-update was performed yielding

a density that was then approximated to form a posterior GLMB density while preserving its

cardinality and PHD. A key innovation of the proposed filter is the capacity of spawn track

labels to encapsulate their ancestry. The filter’s ability to instantiate new tracks originating from

previously known objects was verified by simulation.

The first ever application of the GLMB multi-object tracking filter to the IOD of space based

spawning events was presented in Chapter 7. It was shown that, even with discrepancy between

spawn model and ground truth, the filter is capable of performing IOD for the majority of objects

in a demanding scenario. The need for further exploration of spawn models for SSA applications

was highlighted, and what remains to complete the presented research was discussed.

8.2 Contributions

Prior to this research, spawn model inclusive CPHD filter derivations existed, however, they

were presented by a disjoint combination of FISST and non-FISST based derivations requiring spe-

cial considerations for different spawn models, and, without a concise method for implementation.

This research used a more fundamental approach to CPHD spawning derivations that not only

yielded a highly configurable filter with an explicit means of implementation, but demonstrated a

derivation method useful for extending first order approximate RFS filter implementations. Exploit-

ing the p.g.fl. representation of point processes, i.e., RFSs, one can formulate a multi-object filtering

problem of interest and develop a filter via differentiation. Furthermore, this research introduced
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the Zero-Inflated Poisson spawn model whose development was directly inspired by the nature of

fragmentation events. Tractability is a key concern with multi-object filtering, and maintaining it

typically comes down to managing the number of filter components propagated from one time to

the next. Fragmentation events occur infrequently, so it does not make sense to use a spawn model

that consistently introduces components that persist through multiple filter steps, e.g., the Poisson

model. Assuming the same Poisson rate is applied, the Zero-Inflated Poisson model will introduce

the same number of components, however, they will be tempered by a probability of spawning

that promotes more efficient component number management. The Zero-Inflated Poisson model

was shown to be effective in initial orbit determination of objects originating from spawning events

via simulation. When high observation density is achievable, the GM-CPHD filter can be a useful

tool in estimating the number of objects generated by CubeSat deployments and/or fragmentation

events and their states.

Significant contribution to the multi-object tracking community was also made by deriving a

GLMB filter implementation that includes spawning. It is the first multi-object filter ever derived

capable of providing ancestry information estimates, along with number of objects and individual

object state estimates. The filter implementation itself has applications beyond that of the im-

mediate goal of tracking space based spawning events. For instance, an imminent and exciting

application involves the tracking of cancer cells, where the goal is to gain insight on their behavior

via ancestry information. With the filter derivations presented in a fundamental form, the results

of this research are accessible to any sub-discipline of the multi-object filtering/tracking field where

spawning is applicable.

Further, this research has shown that on-line multi-object orbit determination in the presence

of spawning is possible within the RFS filtering paradigm. Prior to this work, the only known means

of determining the source of spawned RSOs and instantiating their tracks was by complex brute

force methods with a strong potential need for analyst intervention. Having shown that the GLMB

filter can perform initial orbit determination for spawned RSOs, this research has established a

foundation upon which further SSA improvements can be investigated.
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8.3 Future Work

There are several areas where further investigation can extend the presented research, at

both fundamental and specific application levels. This section recommends lines of research for

expanding filter versatility and implementation methods for improved SSA tracking.

There are at least two opportunities for exploring fundamental extensions to the GLMB

tracking filter. The first is development of a measurement-based spawn model implementation. This

thesis presented cases in which prior knowledge of spawning events was assumed, including the time

at which they occur and the dynamics of spawned objects. In reality, such prior information is likely

unavailable and configuring a filter to anticipate the spawning of multiple objects at every scan time

is bound to be computationally cost prohibitive. A more elegant and potentially tractable approach

would be to leverage information gathered from each observation scan to form spawn models. The

caveat is, if special considerations are not made when using measurements in a prediction model,

the filter can become biased and yield poor estimates.

Another potential area of fundamental filter research is exploring the implementation of Rao-

Blackwellization with the GLMB filter. Rao-Blackwellization is a technique often used in particle

filtering to maintain tractability when sampling in high-dimensional spaces, i.e., long state vectors,

is required [30]. The state-vector is partitioned into two components, e.g., a conditionally linear

Gaussian state-space model component that can be processed by Kalman filter and a non-linear

non-Gaussian component processed by particle filter [73]. Use of this technique is prevalent in the

Simultaneous Localization and Mapping (SLAM) community [15]; for example, a robot’s trajectory

is represented by the non-linear component of the state-vector estimated by a particle filter, and the

robot’s pose (orientation, attitude) is represented by the other state-vector component estimated

by more tractable means [37,38]. Another application is group tracking, as described in [73], where

individual object trajectories are estimated via particle filter and the behavior of the group as a

whole is estimated by Kalman filter. Future work could explore a Rao-Blackwellization technique

implemented with a GLMB filter instead of a particle filter.
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The fundamental advancements discussed above would provide the opportunity to explore

SSA specific applications. For example, a measurement based spawn model could be used in

conjunction with a Lambert Solver for spawning event initial orbit determination. Determining the

orbit between two known position vectors is typically referred to as Lambert’s problem, solutions for

which are provided by a Lambert Solver. Several variants exist, with the most commonly known

solvers considering only two-body dynamics, i.e., perturbations, gravity, drag, or otherwise, are

not considered, which would undoubtedly lead to issues with accuracy. However, a perturbation

inclusive Lambert Solver was developed in [31] and is also the focus of more recent work [100].

With an object’s estimated position at a given time and assuming that position information can

be extracted from an observation at the next time, spawn model tracks could be instantiated by

solving Lambert’s problem.

Another area of active research is space debris cloud behavior [2, 3, 17, 24, 41, 44, 56]. It may

be possible to leverage this wealth of information by using it to model the common behavior of a

group of objects generated by fragmentation event, and subsequently using that model in a Rao-

Blackwellized GLMB implementation. For example, studies have shown that there are multiple

phases of debris cloud behavior, the first of which is a pulsating ellipsoid that lasts only a matter

of hours [43]. Treating the debris fragments as if they were moving in an ellipsoidal formation, the

tracking problem can be formulated such that a given state vector is partitioned into a component

representing, e.g., an objects relative position in formation, and another component representing

an individual object’s state.

Finally, one line of research is the development of more robust small-sat deployment and

fragmentation event spawn models for use with the currently available filter configurations. The

small-sat deployment spawn models presented in this research worked for their given scenarios, but

are by no means robust enough to handle any conceivable small-sat deployment scenario. Further

investigation into the real-world mechanics of small-sat deployment from various types of launch

vehicles and in various types of orbits is necessary for more robust spawn model development.

The research presented here has provided a strong starting point for further investigation of the
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challenging problem of fragmentation event filtering/tracking within the RFS framework; when

coupled with models like the NASA breakup model, or with methods such as those used to solve

Lambert’s Problem, it could provide a fully automated means of performing data association for

fragmentation event generated UCTs.
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Appendix A

Derivations: CPHD with Spawning

A.1 Proof of theorem 1

For the sake of simplicity, the time subscripts will be omitted throughout the proof when

there is no ambiguity. Additionally, the π’s used notationally in this appendix are not related to

the multi-object densities in other chapters. Here they are simply variables used to denote sets.

A.1.1 Predicted p.g.fl.

Let us focus first on the p.g.fl. Gk|k−1 of the predicted multi-object point process Ωk|k−1. Each

parent object in the population, represented by the prior point process Ωk−1, generates spawned

objects in the predicted population in two ways:

• a spawned object stemming from the (eventual) survival of the parent object, represented

by a survival point process ΩS,

• a population of spawned objects from the parent object, represented by a spawning point

process ΩT.

Using Eq. (3.8), and denoting byGS andGT the p.g.fl.s of the survival and spawning point processes,

respectively, we can describe the evolution of a parent object with state x ∈ X with a compound

process with p.g.fl.

Gc(h|x) = GS(h|x)GT(h|x). (A.1)
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In addition, a population of newborn objects is generated independently of the prior objects,

represented by a spontaneous birth process ΩB whose p.g.fl. is denoted by GB. Exploiting the

Galton-Watson equation (3.9), we may finally write

Gk|k−1(h) = Gk−1(Gc(h|·))GB(h) (A.2a)

= Gk−1(GS(h|·)GT(h|·))GB(h). (A.2b)

A.1.2 Predicted intensity

Let us now focus on the expression of the predicted intensity µk|k−1. For that, let us fix

an arbitrary measurable subset B ∈ BX. The expression of the intensity evaluated in B can be

recovered from the first derivative of the p.g.fl. Gk|k−1 using Eq. (3.20):

µk|k−1(B) = δGk|k−1(h; 1B)
∣∣
h=1

, (A.3)

= δ
(
Gk−1(Gc(h|·))GB(h); 1B

)∣∣
h=1

. (A.4)

Using the product rule (3.14) it becomes

µk|k−1(B) = δ
(
Gk−1(Gc(h|·)); 1B

)∣∣
h=1

GB(1)︸ ︷︷ ︸
=1

+Gk−1(Gc(1|·))︸ ︷︷ ︸
=1

δGB(h; 1B)|h=1. (A.5)

Using the definition of the p.g.fl. (3.5a) then yields

µk|k−1(B) = δ

(∫
X

[∏
x∈ϕ

Gc(h|x)

]
Pk−1(dϕ); 1B

)∣∣∣∣
h=1

+ δGB(h; 1B)|h=1, (A.6)

=

∫
X
δ

(∏
x∈ϕ

Gc(h|x); 1B

)∣∣∣∣
h=1

Pk−1(dϕ) + δGB(h; 1B)|h=1. (A.7)

From the product rule (3.14) it follows that

µk|k−1(B) =

∫
X

∑
x∈ϕ

[
δGc(h|x; 1B)

∣∣∣∣
h=1

∏
x̄∈ϕ
x̄ 6=x

Gc(1|x̄)︸ ︷︷ ︸
=1

]
Pk−1(dϕ) + δGB(h; 1B)|h=1. (A.8)

Using the product rule (3.14) on Gc(·|x) = GS(·|x)GT(·|x) then yields

µk|k−1(B) =

∫
X

∑
x∈ϕ

[
δGS(h|x; 1B)

∣∣
h=1

GT(1|x)︸ ︷︷ ︸
=1

GS(1|x)︸ ︷︷ ︸
=1

δGT(h|x; 1B)
∣∣
h=1

]
Pk−1(dϕ)

+ δGB(h; 1B)|h=1. (A.9)
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Using Eq. (3.20) we introduce the intensities µS, µT, and µB of the survival, spawning, and spon-

taneous birth processes and we obtain:

µk|k−1(B) =

∫
X

∑
x∈ϕ

[µS(B|x)+µT(B|x)]Pk−1(dϕ) +µB(B), (A.10)

which becomes, using Campbell’s theorem [25, p. 271]:

µk|k−1(B) =

∫
[µS(B|x) + µT(B|x)]µk−1(dx) + µB(B). (A.11)

Note that the validity of the expression of the predicted intensity above is not restricted to specific

models for the prior process Ωk−1. As such, the construction of the predicted intensity is identical

in the case of the PHD filter with spawning (see Mahler’s original proof in [61]). Let us now

focus on the explicit expression of the intensity measure µS. Since the survival process is assumed

Bernoulli with parameter pS(·) and spatial distribution fS(·|·), we can exploit Eq. (3.20) to retrieve

the intensity µS through the expression of the p.g.fl. GS given by Eq. (3.22):

µS(B|·) = δGS(h|·; 1B)|h=1 (A.12a)

= δ

(
1− pS(·) + pS(·)

∫
h(x)fS(dx|·); 1B

)∣∣∣∣
h=1

(A.12b)

= pS(·)fS(B|·). (A.12c)

A.1.3 Predicted cardinality

Let us now focus on the expression of the predicted cardinality ρk|k−1. From Eq. (3.4) the

cardinality distribution of an arbitrary point process can be retrieved through its Janossy measures;

let us then compute the predicted nth-order Janossy measure J
(n)
k|k−1 evaluated at the neighborhood

of a collection of n arbitrary points y1, . . . , yn. Using Eq. (3.19) yields

J
(n)
k|k−1(d(y1, . . . , yn)) = δnGk|k−1(h; 1dy1 , . . . , 1dyn)

∣∣
h=0

, (A.13)

= δn(Gk−1(Gc(h|·))GB(h); 1dy1 , . . . , 1dyn)|h=0 . (A.14)

Applying the product rule (3.14) then gives

J
(n)
k|k−1(d(y1, . . . , yn)) =

∑
τ⊆{1,...,n}

δ|τ |(Gk−1(Gc(h|·)); (1dyi)i∈τ )
∣∣
h=0

δn−|τ |GB(h; (1dyi)i∈τc)
∣∣
h=0

. (A.15)
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Using Eq. (3.19) on the instantaneous birth process then gives

J
(n)
k|k−1(d(y1, . . . , yn)) =

∑
τ⊆{1,...,n}

C|τ |(d(yi)i∈τ )J
(n−|τ |)
B (d(yi)i∈τc), (A.16)

where

C|τ |(d(yi)i∈τ ) = δ|τ |(Gk−1(Gc(h|·)); (1dyi)i∈τ )
∣∣
h=0

, (A.17)

and where J
(n−|τ |)
B is the (n− |τ |)th-order Janossy measure of the instantaneous birth process.

We shall now detail the expression of the quantity Cq, evaluated at the neighborhood of a

collection of q arbitrary points z1, . . . , zq. Applying the general chain rule (3.12) yields

Cq(d(z1, . . . , zq)) = δq(Gk−1(Gc(h|·)); 1dz1 , . . . , 1dzq)
∣∣
h=0

, (A.18a)

=
∑
π∈Πq

δ|π|Gk−1

(
Gc(h|·);

(
δ|ω|Gc(h|·; (1dzi)i∈ω)

)
ω∈π

)∣∣∣∣
h=0

. (A.18b)

Developing the predicted p.g.fl. Gk−1 through Janossy measures with Eq. (3.2) then gives

Cq(d(z1, . . . , zq)) =
∑
π∈Πq

∑
m≥|π|

1

(m− |π|)!

∫
Xm

|π|∏
i=1

δ|ωi|Gc(h|xi; (1dzj )j∈ωi)

∣∣∣∣
h=0

,

×
m∏

i=|π|+1

Gc(0|xi)J (m)
k−1(d(x1, . . . , xm)). (A.18c)

Since the prior process is assumed i.i.d., we can substitute the expression given by Eq. (3.27) to

the prior Janossy measures J
(m)
k−1 and obtain

Cq(d(z1, . . . , zq)) =
∑
π∈Πq

∑
m≥|π|

m!

(m− |π|)!
ρ(m)Cπ(d(z1, . . . , zq)), (A.18d)

where

Cπ(d(z1, . . . , zq)) =

∫
· · ·
∫ |π|∏

i=1

δ|ωi|Gc(h|xi; (1dzj )j∈ωi)
∣∣
h=0

m∏
i=|π|+1

Gc(0|xi)
m∏
i=1

s(dxi) (A.19a)

=

(∫
Gc(0|x)s(dx)

)m−|π|∏
ω∈π

(∫
δ|ω|Gc(h|x; (1dzi)i∈ω)

∣∣
h=0

s(dx)

)
. (A.19b)

Recall from Eq. (A.1) that Gc(h|x) = GS(h|x)GT(h|x); using the product rule (3.14) on Eq. (A.19b)
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then yields

Cπ(d(z1, . . . , zq))

=

(∫
GS(0|x)GT(0|x)s(dx)

)m−|π|
×
∏
ω∈π

(∫ ∑
ν⊆ω

δ|ν|GS(h|x; (1dzi)i∈ν)

∣∣∣∣
h=0

δ|ω|−|ν|GT(h|x; (1dzi)i∈ω\ν)

∣∣∣∣
h=0

s(dx)

)
. (A.20)

Now, from the derivation shown in Eq. (A.12), we see that:

δ|ν|GS(h|x; (1dzi)i∈ν)
∣∣
h=0

=



1− pS(x), ν = ∅,

pS(x)fS(dzi|x), ν = {i},

0, |ν| > 1.

(A.21)

Therefore, Eq. (A.20) simplifies as follows:

Cπ(d(z1, . . . , zq)) =

(∫
qS(x)GT(0|x)s(dx)

)m−|π|
×
∏
ω∈π

(∫
qS(x)δ|ω|GT(h|x; (1dzi)i∈ω)

∣∣
h=0

s(dx)

+

∫∑
i∈ω

pS(x)fS(dzi|x)δ|ω|−1GT(h|x; (1dzj )j∈ω\i)
∣∣
h=0

s(dx)

)
, (A.22a)

Which becomes, using Eq. (3.19):

Cπ(d(z1, . . . , zq)) =

(∫
qS(x)J

(0)
T (x)s(dx)

)m−|π|
×
∏
ω∈π

(∫
qS(x)J

(|ω|)
T (d(zi)i∈ω|x)s(dx)

+

∫ ∑
i∈ω

pS(x)fS(dzi|x)J
(|ω|−1)
T (d(zj)j∈ω\i|x)s(dx)

)
, (A.22b)

where J
(|ω|)
T is the |ω|th-order Janossy measure of the spawning process. Exploiting Eq. (3.4), it

follows from Eq. (A.22b) that∫
Xq
Cπ(d(z1, . . . , zq)) =

(∫
qS(x)ρT(0|x)s(dx)

)m−|π|
×
∏
ω∈π
|ω|!

∫
[qS(x)ρT(|ω||x) + pS(x)ρT(|ω| − 1|x)]s(dx) (A.23a)

= b
m−|π|
0

∏
ω∈π

b|ω|, (A.23b)
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where the coefficients bi are defined by

bi =


∫
qS(x)ρT(0|x)s(dx), i = 0,

i!
∫

[qS(x)ρT(i|x) + pS(x)ρT(i− 1|x)] s(dx), i > 0.

(A.24)

Exploiting Eq. (A.23b), it follows from Eq. (A.18d) that∫
Xq
Cq(d(z1, . . . , zq)) =

∑
π∈Πq

∑
m≥|π|

m!

(m− |π|)!
ρ(m)b

m−|π|
0

∏
ω∈π

b|π|. (A.25)

We may finally retrieve the scalar ρk|k−1(n) through Eq. (3.4):

ρk|k−1(n) =
1

n!

∫
Xn
J

(n)
k|k−1(d(y1, . . . , yn)) (A.26a)

=
∑

ν⊆{1,...,n}

1

(n− |ν|)!

∫
Xn−|ν|

J
(n−|ν|)
B (d(yi)i∈νc)

(n− |ν|)!
n!

∫
X|ν|

C|ν|(d(yi)i∈ν) (A.26b)

=
n∑
q=0

(
n

q

)
ρB(n− q)(n− q)!

n!

∑
π∈Πq

∑
m≥|π|

m!

(m− |π|)!
ρ(m)b

m−|π|
0

∏
ω∈π

b|ω| (A.26c)

=
n∑
q=0

ρB(n− q)
∑
π∈Πq

∑
m≥|π|

m!

q!(m− |π|)!
ρ(m)b

m−|π|
0

∏
ω∈π

b|ω|. (A.26d)

Using the definition of the Bell polynomial (4.5) then yields the desired result.

A.2 Proof of corollary 1

For the sake of simplicity, the time subscripts will be omitted throughout the proof when

there is no ambiguity. Also, we will denote by qS and qD the functions 1 − pS,k and 1 − pD,k,

respectively.

A.2.1 Predicted intensity

Let us first focus on the explicit expression of the intensity measure µT of the spawning

process in Eq. (4.3), depending on the modeling choices for the spawning process.

a) Bernoulli process with parameter pT(·) and spatial distribution sT(·|·):

Using the same construction as in Eq. (A.12) we have immediately

µT(B|·) = pT(·)sT(B|·). (A.27)
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b) zero-inflated Poisson process with parameter pT(·), rate λT(·) and spatial distribution

sT(·|·):

Exploiting Eq. (3.26) yields

µT(B|·) = δGT (h|·; 1B)|h=1 (A.28a)

= δ

(
qT(·)+pT(·) exp

[
λT(·)

(∫
h(x)sT(dx|·)−1

)]
; 1B

)∣∣∣∣
h=1

(A.28b)

= pT(·)λT(·)δ
(∫

h(x)sT(dx|·)− 1; 1B

)∣∣∣∣
h=1

exp

[
λT(·)

(∫
sT(dx|·)− 1

)]
︸ ︷︷ ︸

=0

(A.28c)

= pT(·)λT(·)sT(B|·). (A.28d)

A.2.2 Predicted cardinality

Let us now detail the expression of the coefficients bi of the Bell polynomial in Eq. (4.6),

depending on the modeling choices for the spawning process.

a) Bernoulli process with parameter pS(·) and spatial distribution fS(·|·):

From the description of the Bernoulli process (3.21) it follows that

ρT(n|x) =



qT(x), n = 0,

pT(x), n = 1,

0, otherwise.

(A.29)

Thus, the coefficients bi in Eq. (4.6) become

bi =



∫
qS(x)qT(x)s(dx), i = 0,∫
[pS(x)qT(x) + qS(x)pT(x)] s(dx), i = 1,

2
∫
pS(x)pT(x)s(dx), i = 2,

0, i > 2.

(A.30)

b) zero-inflated Poisson process with parameter pT(·), rate λT(·), and spatial distribution

sT(·|·):
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From the description of the zero-inflated Poisson process (3.25) it follows that

ρT(n|x) =


qT(x) + pT(x)e−λT(x), n = 0,

pT(x)e−λT(x) λT(x)n

n! , otherwise.

(A.31)

Thus, the coefficients bi in Eq. (4.6) become

bi =



∫
qS(x)

[
qT(x) + pT(x)e−λT(x)

]
s(dx), i = 0,∫ [

qS(x)pT(x)e−λT(x)λT(x) + pS(x)
[
qT(x) + pT(x)e−λT(x)

] ]
s(dx), i = 1,∫

pT(x)λi−1
T (x)e−λT(x) [qS(x)λT(x) + ipS(x)] s(dx), i ≥ 2.

(A.32)

A.3 Comparison of expressions [59, (A.15)] and Eq. (4.4)

The construction of the predicted cardinality in [59] relies on the derivation of p.g.f.s, de-

scribing the cardinality distribution of specific processes, through the Faà di Bruno’s general chain

formula for usual derivatives (more information on p.g.f.s in the context of multi-object filtering

can be found in [61, 63]). The connection between the two expressions can be established through

the version of Faà di Bruno’s formula involving partial Bell polynomials [16, p.420], i.e.

dn

dxn
F
(
G(x)

)
=

n∑
k=0

F (k)
(
G(x)

)
Bn,k

(
G(1)(x), . . . , G(n)(x)

)
, (A.33)

where F,G denote some suitable functions. Substituting Eq. (A.33) in [59, (A.9)] yields

1

q!

dq

dxq
Gk−1(g(x)) =

1

q!

q∑
j=0

G
(j)
k−1

(
g(x)

)
Bq,j

(
g(1)(x), . . . , g(q)(x)

)
, (A.34)

where

g(x) =

∫ [
qS,k(x) + pS,k(x)x

]
GT,k(x|x)sk−1(dx), (A.35)

g(i)(x) =

∫ [
qS,k(x)G

(i)
T,k(x|x) + ipS,k(x)G

(i−1)
T,k (x|x)

]
sk−1(dx), (A.36)

where i ≥ 1, and where Gk−1 and GT,k denote the p.g.f.s of the prior and spawning processes,

respectively. (Note that, for the sake of simplicity, we use the same notation for the p.g.f. and
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p.g.fl. of a process, though the quantities are different in nature.) Following [59, (A.7)], we then

have

1

n!

dn

dxn
Gk|k−1(x)

∣∣∣∣
x=0

=
n∑
q=0

ρB,k(n− q)
1

q!

q∑
j=0

G
(j)
k−1

(
g(0)

)
Bq,j

(
g(1)(0), . . . , g(n)(0)

)
, (A.37)

where Gk|k−1 denotes the p.g.f. of the predicted process. Using basic calculus properties on p.g.f.s,

we have

G
(j)
k−1

(
g(0)

)
=
∑
m≥j

m!

(m− j)!
ρk−1(m)

(
g(0)

)m−j
(A.38a)

=
∑
m≥j

m!

(m− j)!
ρk−1(m)bm−j0 . (A.38b)

Also, from Eq. (A.36) we have

g(i)(0) =

∫ [
qS,k(x)G

(i)
T,k(0|x) + ipS,k(x)G

(i−1)
T,k (0|x)

]
sk−1(dx) (A.39a)

= i!

∫ [
qS,k(x)ρT,k(i|x) + ipS,k(x)ρT,k(i− 1|x)

]
sk−1(dx) (A.39b)

= bi, (A.39c)

where i ≥ 1. Substituting Eq. (A.38b) and Eq. (A.39c) into Eq. (A.37), the predicted cardinality [59,

(A.15)] then takes the form (4.4).



Appendix B

CPHD with Spawning Algorithm

Input
Posterior cardinality distribution: ρk−1

Posterior spatial distribution: sk−1

Parameters
Cardinality distribution of spawning: ρT,k

Cardinality distribution of spontaneous birth: ργ,k
Probability of survival: pS,k

Initialisation
for n ∈ [0 nmax] do

Predicted card. dist.: ρk|k−1(n) := 0

Mult. coefficient: cn :=
∑nmax

m=n
m!

(m−n)!ρk−1(m)bm−n0

Bell polynomial: Bn,0 := [n == 0]
Bell coefficient: bn := (see Eq. (4.6))
Bell sum: Bn := Bn,0c0

end for

Prediction
for n ∈ [0 nmax] do

for m ∈ [1 n] do
Bell pol.: Bn,m :=

∑n−1
q=m−1

(
n−1
n−1−q

)
bn−qBq,m−1

Bell sum: Bn+= Bn,mcm
end for
Bell sum: Bn×= 1

n!
for m ∈ [0 nmax − n] do

Predicted card. dist.: ρk|k−1(n+m)+= ργ,k(m)Bn
end for

end for

Output
Predicted cardinality distribution: ρk|k−1



Appendix C

GLMB with Spawning Algorithm

Algorithm 1: Joint Prediction and Update with Spawning

• input:
{(
I(h), ξ(h), w(h), p(h)

)}H
h=1

, Z+, H
max
+ ,

• input: {(r(`)
B,+, p

(`)
B,+)}`∈B+ , pS, fS,+(·|·),

• input: pT, fT,+(·|·), T+(·), κ+, pD,+, g+(·|·)

• output:
{(
I(h+), ξ(h+), w(h+), p(h+)

)}H+

h+=1

1: sample counts [T
(h)
+ ]Hh=1 from a multinomial distribution with parameters Hmax

+ trials and

weights [w(h)]Hh=1,
2: for h = 1 : H
3: generate T+(I(h))={{(`, k + 1)}×{1:M`} :` ∈ I(h)}
4: initialize γ(h,1)

5: compute η(h)=[η
(h)
i (j)]

(|B+∪I(h)∪T+(I(h))|,|Z+|)
(i,j)=(1,−1) using (6.68)

6: {γ(h,t)}T̃
(h)
+

t=1 := Unique(Gibbs(γ(h,1), T
(h)
+ , η(h)))

7: for t = 1 : T̃
(h)
+

8: convert γ(h,t) to (I
(h,t)
+ , θ

(h,t)
+ ) using (6.67)

9: compute w̄
(h,t)
+ from w(h) and I

(h,t)
+ using (6.69)

10: compute and normalize p
(h,t)
+ using (6.70)

11: ξ
(h,t)
+ = (ξ(h), θ

(h,t)
+ )

12: end
13: end
14: compute Ĉ given in (6.71)

15: compute w
(h,t)
+ = w̄

(h,t)
+ /Ĉ

16: {(I(h+)
+ , ξ

(h+)
+ , w

(h+)
+ , p

(h+)
+ )}H+

h+=1 := Aggregate({(I(h,t)
+ , ξ

(h,t)
+ , w

(h,t)
+ , p

(h,t)
+ )}H,T̃

(h)
+

h,t=1,1)
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Algorithm 2: Aggregate
From the bottom portion of [92, Algorithm 2] replicated here for convenience, though with the

addition of ξ
(h,t)
+ terms

• input:{(I(h,t)
+ , ξ

(h,t)
+ , w

(h,t)
+ , p

(h,t)
+ )}H,T̃

(h)
+

h,t=1,1

• output: {(I(h+)
+ , ξ

(h+)
+ , w

(h+)
+ , p

(h+)
+ )}H+

h+=1

1: ({(I(h+)
+ , ξ

(h+)
+ , p

(h+)
+ )}H+

h+=1,∼, [Uh,t])

:= Unique({(I(h,t)
+ , ξ

(h,t)
+ , p

(h,t)
+ )}H,T̃

(h)
+

h,t=1,1)
2: for h+ = 1 : H+

3: w
(h+)
+ =

∑
h,t:Uh,t=h+

w
(h,t)
+

4: end
5: normalize weights {w(h+)

+ }H+

h+=1


