Article

 

Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands. Público Deposited

https://scholar.colorado.edu/concern/articles/6682x450d
Abstract
  • The myoelectric controller (MEC) remains a technological bottleneck in the development of multifunctional prosthetic hands. Current MECs require physiologically inappropriate commands to indicate intent and lack effectiveness in a clinical setting. Postural control schemes use surface electromyography signals to drive a cursor in a continuous two-dimensional domain that is then transformed into a hand posture. Here, we present a novel algorithm for a postural controller and test the efficacy of the system during two experiments with 11 total subjects. In the first experiment, we found that performance increased when a velocity cursor-control technique versus a position cursor-control technique was used. Also, performance did not change when using 3, 4, or 12 surface electrodes. In the second experiment, subjects commanded a six degree-of-freedom virtual hand into seven functional postures without training, with completion rates of 82 +/- 4%, movement times of 3.5 +/- 0.2 s, and path efficiencies of 45 +/- 3%. Subjects retained the ability to use the postural controller at a high level across days after a single 1 hr training session. Our results substantiate the novel algorithm for a postural controller as a robust and advantageous design for a MEC of multifunction prosthetic hands.
Creator
Date Issued
  • 2015-01-01
Academic Affiliation
Journal Title
Journal Issue/Number
  • 4
Journal Volume
  • 52
File Extent
  • 449-466
Subject
Última modificación
  • 2019-12-05
Identifier
  • PubMed ID: 26348320
Resource Type
Declaración de derechos
DOI
ISSN
  • 1938-1352
Language

Relaciones

Elementos