Graduate Thesis Or Dissertation

 

As-Grown Gallium Nitride Nanowire Electromechanical Resonators Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/zw12z5310
Abstract
  • Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size.

    In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values {in vacuum at room temperature{ indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors.

    We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of individual nanowire properties. We observe nanowire-to-nanowire variations in the temperature dependence of GaN nanowire resonance frequency and in the observed mechanical dissipation. We also use this ensemble measurement technique to demonstrate unique, very low-loss resonance behavior at low temperatures. The low dissipation (and corresponding large Q values) observed in as-grown GaN nanowires also provides a unique opportunity for studying fundamental energy loss mechanisms in nano-scale objects. With estimated mass sensitivities on the level of zeptograms (10-21 g) in a one second averaging time, GaN nanowires may be a significant addition to the field of resonant sensors and worthy of future research and device integration.

Creator
Date Issued
  • 2013
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2020-01-17
Resource Type
Rights Statement
Language

Relationships

Items