Date of Award

Spring 1-1-2012

Document Type


Degree Name

Doctor of Philosophy (PhD)



First Advisor

Ana Maria Rey

Second Advisor

Murray J Holland

Third Advisor

John Bohn

Fourth Advisor

Matthew Glaser

Fifth Advisor

Juan G Restrepo


In this thesis, we present a theoretical study of the dynamics of strongly interacting ultracold atoms in optical lattices. At ultracold temperatures, the dynamics cannot be described classically, but instead, must take into account quantum effects. Here, our focus is on transport and precision measurement. We use exact analysis of few-body systems and mean field analysis. For larger systems, we use a numerical approach called the density matrix renormalization group (DMRG) method which is considered an efficient computational tool for the quantum evolution of 1D systems.

After introducing basic concepts, we treat the motional properties of particles in a tilted lattice in a regime where the inter-particle interactions are resonant with the linear potential. In this regime, the dynamics is described by an Ising model with a transverse field which is a basic system to study quantum magnetism and quantum phase transitions. We introduce analytical and numerical methods to draw a simple picture of the dynamics. This helps us to formulate a slinky-like transport scheme that provides full control of the motional direction of particles.

After a study of transport on a tilted lattice, we treat the transport of nonlinear waves in strongly interacting systems. These nonlinear waves are called solitons, which are described as local perturbations of a medium that survive after collisions. We identify two species of classical soliton solutions in our system and study their stability under quantum evolution via DMRG.

We shift focus from the dynamics related to transport and turn to precision measurements in optical lattice clocks. Here, we investigate one aspect of their limitations which is due to collisions of atoms loaded onto a single site. These collisions introduce a frequency shift in the clock measurement. We provide a microscopic description of the origin of this frequency shift. Our results have motivated improvement in the accuracy and precision of next generation optical lattice clocks.