Graduate Thesis Or Dissertation

 

Coherent Tunable Coupling of Quantum Circuits Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/h702q6403
Abstract
  • This thesis presents a detailed investigation of coherent tunable coupling between two coupled quantum circuits. Quantum circuits have the potential to be used as the fundamental building blocks in quantum processors. Any large scale quantum processor will be composed of a large number of these coupled circuits. The efficient implementation of quantum algorithms will be difficult without a reliable mechanism for controlling the interaction strength between coupled systems, while preserving the delicate quantum information stored in the coherent superpositions of quantum states. We show that a flux-biased rf-SQUID can be used to coherently mediate the interaction between two coupled quantum circuits, a phase qubit and LC resonator. This interaction results from an effective mutual inductance between the qubit and resonator as a result of their direct coupling to the rf-SQUID. The sign and magnitude of this effective mutual inductance can be tuned with applied flux to the rf-SQUID, thus controlling the coupled interactions over a large range. We observe the modulation in coupling strength using measurements in both the frequency and time domains. The measurements are shown to agree well with theoretical predictions. This thesis discusses all aspects of the experiments from a theoretical description of each component to the design, fabrication, experimental setup and measurements.
Creator
Date Issued
  • 2011
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-16
Resource Type
Rights Statement
Language

Relationships

Items