Graduate Thesis Or Dissertation

 

Achieving a Large Density of Hydroxyl Radicals for Cold Collisions Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/9880vr04n
Abstract
  • Molecular physics has experienced groundbreaking progress in the fields of precision spectroscopy, chemical reaction kinetics, quantum state engineering and many-body physics. In order to better observe these phenomena, there is an insatiable pursuit of larger trapped molecular densities and longer lifetime. In this thesis, several key milestones that we have recently achieved towards these goals for hydroxyl radicals (OH) are reported. First, we discovered an enhanced spin-flip behavior of dipolar molecules due to the existence of dual (electric and magnetic) dipole moments and obtained a better understanding of complex spin-dynamics for both Hund's case (a) and (b) molecules in mixed electric and magnetic fields. Second, we demonstrated that the skimmer cooling technique can be applied to radicals and the production of OH can be enhanced by factor of 30 due to both clogging mitigation and more favorable skimmer-valve distance. Finally, we showed some preliminary results that it is possible to use a newly built Stark decelerator to study electric field controlled sub-kelvin collisions in an intra-beam.
Creator
Date Issued
  • 2019
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-15
Resource Type
Rights Statement
Language

Relationships

Items