Graduate Thesis Or Dissertation

 

Understanding and Manipulating the Thermal Conductance of Sin Membranes in Sub-Kelvin Refrigerators and Sensors Public Deposited

https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/2f75r8102
Abstract
  • In superconducting transition-edge sensors (TES) and superconducting tunnel junction refrigerators, thermal conductance of the silicon nitride membrane is a key design character. Thermal conductance engineering in silicon nitride membrane is still challenging, especially not introducing extra noise to sensors and diminish its mechanical strength. In this thesis, we introduce our new generation of macroscopic general-purpose refrigerator using superconducting tunnel junction. Using the product of the cooled mass and the temperature reduction as a performance metric, this work is a more than tenfold advance over previous efforts. Based on our model, a better understanding of phonon thermal conductance of silicon nitride membrane and a method to reduce it is needed to get a better phonon cooling performance. We present a theory that quantitative and qualitative agree with our measurements of the thermal conductance G of thin silicon nitride beams in various geometries and with various metal patterns as a function of temperature over the range 0.075 to 0.5 K. We demonstrate that the method of deposit metal patterns on top of silicon nitride manipulates the thermal conductance of freestanding SiN membranes without compromising the robustness of the membrane or the noise of a co-located TES sensor. We deposit and pattern an additional metal layer in different geometries on the SiN membrane thereby achieving a maximum of 56% reduction in G and the change in G is precisely controlled by the details of the patterning.
Creator
Date Issued
  • 2019
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-15
Resource Type
Rights Statement
Language

Relationships

Items