Date of Award

Spring 1-1-2016

Document Type


Degree Name

Doctor of Philosophy (PhD)



First Advisor

Murray J. Holland

Second Advisor

James K. Thompson

Third Advisor

Ana Maria Rey

Fourth Advisor

Lijun Chen

Fifth Advisor

Thomas DeGrand


In this thesis, I describe the theoretical development of the superradiant laser, or laser in the extreme bad-cavity regime. In this regime, the cavity decay rate is much greater than the atomic dynamics. The atoms emit photons into the cavity mode superradiantly in steady state. We develop group-theoretic methods that enable us to exactly solve mesoscopic systems with hundreds of atoms. We demonstrate the synchronization of atomic dipoles in steady-state superradiance. With this synchronized system, we propose conditional Ramsey spectroscopy which allows us to observe Ramsey fringes indefinitely, even in the presence of atomic decoherence. Furthermore, we explore manifestations of synchronization in the quantum realm with two superradiant atomic ensembles. We show that two such ensembles exhibit a dynamical phase transition from two disparate oscillators to quantum phase-locked dynamics. Finally, we study the mechanical eect of the light-atom interaction in the steady-state superradiance. We find efficient many-body cooling of atoms. The work described in this thesis lays the theoretical foundation for the superradiant laser and for a potential future of active optical frequency standards.