Date of Award

Spring 1-1-2015

Document Type


Degree Name

Doctor of Philosophy (PhD)



First Advisor

Deborah S. Jin

Second Advisor

Eric A. Cornell

Third Advisor

Jun Ye

Fourth Advisor

Victor Gurarie

Fifth Advisor

Kelvin Wagner


An ultracold Bose-Fermi gas mixture of 40K and 87Rb atoms has tunable interspecies interactions and therefore provides a fantastic platform for exploring not only few-body physics such as Feshbach molecule formation and Efimov trimers, but also many-body physics including Bose polarons, quantum Hall physics and so on. In this thesis, I present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic 40K impurities resonantly interacting with a BEC of 87Rb atoms. These Bose polarons originate from the dressing of an impurity coupled to its environment, which is an important paradigm in quantum many-body physics. I also present initial work that launches an exciting new direction for our experiment, which is exploring rotating quantum gases. Goals for this work include studying both rotating Bose and Fermi superfluids with tunable interactions as well as working toward rapidly rotating quantum gases in the quantum Hall regime. For these goals, a new all-optical trap for rotating gases was designed, implemented, and tested using a 87Rb Bose-Einstein condensate.