Date of Award

Spring 1-1-2017

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mechanical Engineering

First Advisor

Mark E. Rentschler

Second Advisor

Richard A. Regueiro

Third Advisor

Virginia L. Ferguson

Fourth Advisor

Rong Long

Fifth Advisor

Scott Runnels

Abstract

This work provides modeling efforts and supplemental experimental work performed towards the ultimate goal of modeling heat transfer, mass transfer, and deformation occurring in biological tissue, in particular during arterial fusion and cutting. Developing accurate models of these processes accomplishes two goals. First, accurate models would enable engineers to design devices to be safer and less expensive. Second, the mechanisms behind tissue fusion and cutting are widely unknown; models with the ability to accurately predict physical phenomena occurring in the tissue will allow for insight into the underlying mechanisms of the processes. This work presents three aims and the efforts in achieving them, leading to an accurate model of tissue fusion and more broadly the thermo-poromechanics (TPM) occurring within biological tissue. Chapters 1 and 2 provide the motivation for developing accurate TPM models of biological tissue and an overview of previous modeling efforts. In Chapter 3, a coupled thermo-structural finite element (FE) model with the ability to predict arterial cutting is offered. From the work presented in Chapter 3, it became obvious a more detailed model was needed. Chapter 4 meets this need by presenting small strain TPM theory and its implementation in an FE code. The model is then used to simulate thermal tissue fusion. These simulations show the model’s promise in predicting the water content and temperature of arterial wall tissue during the fusion process, but it is limited by its small deformation assumptions. Chapters 5-7 attempt to address this limitation by developing and implementing a large deformation TPM FE model. Chapters 5, 6, and 7 present a thermodynamically consistent, large deformation TPM FE model and its ability to simulate tissue fusion. Ultimately, this work provides several methods of simulating arterial tissue fusion and the thermo-poromechanics of biological tissue. It is the first work, to the author’s knowledge, to simulate the fully coupled TPM of biological tissue and the first to present a fully coupled large deformation TPM FE model. In doing so, a stepping stone for more advanced modeling of biological tissue has been laid.

Available for download on Tuesday, August 28, 2018

Share

COinS