Date of Award

Spring 1-1-2015

Document Type


Degree Name

Doctor of Philosophy (PhD)


Mechanical Engineering

First Advisor

Se-Hee Lee

Second Advisor

Rich Noble

Third Advisor

Y.C. Lee

Fourth Advisor

Yifu Ding

Fifth Advisor

Ronggui Yang


This dissertation presents a series of studies aimed towards the development of a compelling and commercially viable Li-ion battery containing a non-flammable room temperature ionic liquid (RTIL) electrolyte. Each study builds upon the previous, culminating in the demonstration of a high energy Li-ion system approaching the 700 Wh/L energy density benchmark. We begin by tackling several major issues associated with RTIL compatibility with the battery’s passive, non- electroactive components, engineering solutions to each and enabling the utilization of certain RTIL materials in high voltage Li-ion systems. Since enabling the simple use of our RTIL electrolytes, we have been able to explore RTIL compatibility with a number of attractive, next-generation electrode chemistries including the high capacity silicon (Si) anode and high voltage, high capacity lithium- manganese-rich (LMR) cathode. Each of these studies contributes to a deeper understanding of the interfacial mechanisms occurring between the RTIL materials and various electrode surfaces, in several cases resulting in unprecedented half- and full-cell performance. The accomplishments presented herein represent important progress in working towards a safer, higher performance Li-ion system.