Document Type

Article

Publication Date

11-28-2016

Publication Title

Optics Express

ISSN

1094-4087

Volume

24

Issue

24

First Page

27910

Last Page

27921

DOI

https://doi.org/10.1364/OE.24.027910

PubMed ID

27906360

Abstract

We demonstrate large amplitude wavelength modulation spectroscopy (WMS) with a MEMS-tunable vertical cavity surface-emitting laser (MEMS-VCSEL) to measure high-density gases. WMS enables sensitive measurements of gas phase thermodynamic properties in harsh environments, but has been limited to moderate pressure and density conditions because of the narrow tuning range of traditional DFB lasers. The MEMS-tunable laser is able to rapidly modulate across the broadened features of high-density gas mixtures to produce the harmonic signals in the detected light intensity typical of WMS. We illustrate the technique on high-pressure mixtures of CO2 in air that are 2.5 times higher density than previously published WMS measurements (equivalent to greater than 255 atm at 1500 K). We develop a WMS model that accounts for nonlinear tuning of the laser to enable extraction of thermodynamic properties from measured data. The agreement of the measured data and model suggests that this technique could be used now for calibrated measurements of gas concentration, and in the future for calibration-free operation with further high-pressure absorption model development and laser tuning characterization.

Share

COinS