Date of Award

Spring 1-1-2013

Document Type


Degree Name

Doctor of Philosophy (PhD)

First Advisor

Leslie A. Leinwand

Second Advisor

Ravinder Singh

Third Advisor

Robin D. Dowell

Fourth Advisor

Debra S. Goldberg

Fifth Advisor

Rui Yi


The RNA-binding proteins U2AF and PTB play important roles in gene expression in many eukaryotic species. Although U2AF and PTB have been well-studied, their functional requirements have not been investigated on a genome-wide scale. In this thesis, I analyze RNA expression data to determine the requirement of the general splicing factor U2AF in S. pombe and to identify genes misregulated in Drosophila PTB mutants. I find that many introns are insensitive to U2AF inactivation in a Schizosaccharomyces pombe U2AF59 mutant, prp2.1. Bioinformatics analysis indicates that U2AF-insensitive introns have stronger 5' splice sites and higher A/U composition. The importance of intronic nucleotide composition was further investigated using wild type RNA expression data sets. I show that nucleotide composition is a relatively important factor for regulated intron retention in a variety of species. I also analyzed the RNA-binding protein PTB using RNA Seq data to reveal genes misregulated in PTB mutants in D. melanogaster. I identify misregulation of alternative splicing in PTB mutants and putative PTB binding sites. In the PTB embryonic lethal mutant, which shows dorsoventral patterning defects, I show that dorsal fate genes are significantly up-regulated. I present a model to link PTB to dorsal closure defects. This thesis provides the first genome-wide analysis of U2AF in S. pombe and PTB in Drosophila melanogaster.