Document Type

Article

Publication Date

Fall 2017

Publication Title

Elementa Science of the Anthropocene

Volume

5:65

DOI

http://doi.org/10.1525/elementa.250

Abstract

The Ganges-Brahmaputra-Meghna (Bengal) Delta in Bangladesh has been described as a delta in peril of catastrophic coastal flooding because sediment deposition on delta plain surfaces is insufficient to offset rates of subsidence and sea level rise. Widespread armoring of the delta by coastal embankments meant to protect crops from flooding has limited natural floodplain deposition, and in the tidally dominated delta, dikes lead to rapid compaction and lowered land surface levels. This renders the deltaic floodplains susceptible to flooding by sea level rise and storm surges capable of breaching poorly maintained embankments. However, natural physical processes are spatially variable across the delta front and therefore the impact of dikes on sediment dispersal and morphology should reflect these variations. We present the first ever reported sedimentation rates from the densely populated and human-controlled floodplains of the central lower Bengal Delta. We combine direct sedimentation measurements and short-lived radionuclides to show that transport processes and lateral sedimentation are highly variable across the delta. Overall aggradation rates average 2.3 ± 9 cm y–1, which is more than double the estimated average rate of local sea level rise; 83% of sampled sites contained sediment tagged with detectable 7Be, indicating flood-pulse sourced sediments are widely delivered to the delta plain, including embanked areas. A numerical model is then used to demonstrate lateral accretion patterns arising from 50 years of sedimentation delivered through smaller order channels. Dominant modes of transport are reflected in the sediment routing and aggradation across the lower delta plain, though embankments are major controls on sediment dynamics throughout the delta. This challenges the assumption that the Bengal Delta is doomed to drown; rather it signifies that effective preparation for climate change requires consideration of how infrastructure and spatially variable physical dynamics influence sediment dispersal on seasonal and decadal time scales.

Share

COinS