Undergraduate Honors Thesis

 

The Efficacy and Specificity of Gold Nanoparticles as Antibiotics for Klebsiella pneumoniae Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/undergraduate_honors_theses/n870zr22b
Abstract
  • In 2013, the Centers for Disease Control and Prevention (CDC) declared antibiotic resistance a serious health threat to the global community. Multi-drug resistant (MDR) Gram-negative bacteria have become particularly problematic, as very few new classes of small-molecule antibiotics for Gram-negative bacteria have emerged in recent decades. The Feldheim Lab has developed a combinatorial screening process for identifying mixed-ligand monolayer gold nanoparticle conjugates with antibiotic activity. The gold nanoparticle conjugates have been found to be highly active against E. coli. The bacteria develop resistance to the nanoparticles at a significantly slower rate than commercially available small-molecule drugs.

    The Feldheim Research Team has shown that the antimicrobial property of the nanoparticles depends on the identity and ratio of the ligands in the monolayer. Altering the ratio of one of the ligands from a conjugate designed for E. coli produced an altered conjugate with high levels of activity towards K. pneumoniae, and turned a bacteriostatic conjugate into a bactericidal conjugate. The altered conjugate also doubled the time to resistance over the initial nanoparticle formulation.

    A differential gene expression experiment performed with K. pneumoniae determined that more active conjugates may alter the expression of many cell division proteins unchanged with exposure to less active nanoparticles. In addition, the altered conjugate induced the expression of many antibiotic resistance genes, yet the bacteria remained susceptible to the conjugate for a number of days. The nanoparticle highly active toward K. pneumoniae was ineffective against M. avium and M. abscessus, possibly indicating bacterial specificity. The altered gold-nanoparticle conjugate was found to be an effective inhibitor of K. pneumoniae growth, with the possible ability to avoid resistance mechanisms.

Creator
Date Awarded
  • 2015-01-01
Academic Affiliation
Advisor
Committee Member
Granting Institution
Subject
Last Modified
  • 2020-01-30
Resource Type
Rights Statement
Language

Relationships

In Collection:

Items