
Undergraduate Honors Theses
Thesis Defended
Spring 2018
Document Type
Thesis
Type of Thesis
Departmental Honors
Department
Molecular, Cellular, & Developmental Biology
First Advisor
Dr. Shelley Copley
Second Advisor
Dr. Brian DeDecker
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Abstract
Catalytic promiscuity provides a starting point for the evolution of new enzymes. Taking this concept further, a series of promiscuous enzymes may assemble to form the basis of a new metabolic pathway (termed “serendipitous pathway”) that may emerge and become more efficient in adapting bacterial cells that require it to grow. The Copley lab at the University of Colorado at Boulder has been observing genetic changes that improve growth of Escherichia coli cells that lack the essential gene pdxB. These genetic changes are believed to improve the flux of metabolites through one or more serendipitous pathways that make up for the missing gene. The experiments described in this thesis use gene disruption and growth testing to investigate emerging serendipitous pathways in adapted lineages of ∆pdxB cells. In addition to confirming the emergence of two serendipitous pathways in the adapted cell lineages, I aimed to identify two of the enzymes that catalyze key steps in those pathways, and assess the adaptive benefit that a large deletion provided to one of the adapted lineages.
Recommended Citation
Kristofich, Michael, "Emergence of New Metabolic Pathways in Escherichia Coli" (2018). Undergraduate Honors Theses. 1634.
https://scholar.colorado.edu/honr_theses/1634
Included in
Bacteriology Commons, Biochemistry Commons, Genetics Commons, Microbial Physiology Commons, Molecular Biology Commons, Molecular Genetics Commons, Organismal Biological Physiology Commons