Date of Award

Spring 1-1-2017

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

First Advisor

Mark C. Serreze

Second Advisor

David W. Gallaher

Third Advisor

Stefan Leyk

Fourth Advisor

Waleed Abdalati

Fifth Advisor

Qin Lv

Abstract

Satellite observations have revolutionized the Earth Sciences and climate studies. However, data and imagery continue to accumulate at an accelerating rate, and efficient tools for data discovery, analysis, and quality checking lag behind. In particular, studies of long-term, continental-scale processes at high spatiotemporal resolutions are especially problematic. The traditional technique of downloading an entire dataset and using customized analysis code is often impractical or consumes too many resources.

The Condensate Database Project was envisioned as an alternative method for data exploration and quality checking. The project’s premise was that much of the data in any satellite dataset is unneeded and can be eliminated, compacting massive datasets into more manageable sizes. Dataset sizes are further reduced by retaining only anomalous data of high interest. Hosting the resulting “condensed” datasets in high-speed databases enables immediate availability for queries and exploration.

Proof of the project’s success relied on demonstrating that the anomaly database methods can enhance and accelerate scientific investigations. The hypothesis of this dissertation is that the condensed datasets are effective tools for exploring many scientific questions, spurring further investigations and revealing important information that might otherwise remain undetected.

This dissertation uses condensed databases containing 17 years of Antarctic land surface temperature anomalies as its primary data. The study demonstrates the utility of the condensate database methods by discovering new information. In particular, the process revealed critical quality problems in the source satellite data. The results are used as the starting point for four case studies, investigating Antarctic temperature extremes, cloud detection errors, and the teleconnections between Antarctic temperature anomalies and climate indices.

The results confirm the hypothesis that the condensate databases are a highly useful tool for Earth Science analyses. Moreover, the quality checking capabilities provide an important method for independent evaluation of dataset veracity.

Share

COinS