Document Type

Article

Publication Date

10-1-2017

Publication Title

Ecology

ISSN

0012-9658

Volume

98

Issue

10

First Page

2698

Last Page

2707

DOI

https://doi.org/10.1002/ecy.1963

PubMed ID

28752623

Abstract

This study used Landsat-based detection of spruce beetle (Dendroctonus rufipennis) outbreak over the years 2000-2014 across the Southern Rocky Mountain Ecoregion to examine the spatiotemporal patterns of outbreak and assess the influence of temperature, drought, forest characteristics, and previous spruce beetle activity on outbreak development. During the 1999-2013 period, time series of spruce beetle activity were highly spatially correlated (r > 0.5) at distances <5 >km, but remained weakly correlated (r = 0.08) at distances >400 km. Furthermore, cluster analysis on time series of outbreak activity revealed the outbreak developed at multiple incipient locations and spread to unaffected forest, highlighting the importance of both local-scale dispersal and regional-scale drivers in synchronizing spruce beetle outbreak. Spatial overlay analysis and Random Forest modeling of outbreak development show that outbreaks initiate in areas characterized by summer, winter, and multi-year drought and that outbreak spread is strongly linked to the proximity and extent of nearby outbreak, but remains associated with drought. Notably, we find that spruce beetle outbreak is associated with low peak snow water equivalent, not just summer drought. As such, future alterations to both winter and summer precipitation regimes are likely to drive important changes in subalpine forests.

Comments

© 2017 by the Ecological Society of America

Share

COinS