Graduate Thesis Or Dissertation

 

Performance Analysis and Design of Distributed Static Series Compensators for Transmission Line Reactance Control Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/td96k266v
Abstract
  • The growth and diversification of the electric utility grid has required the expanded use of compensation devices. One class of compensation devices of interest are distributed static series compensators (DSSCs). DSSCs are power electronics devices that can inject positive or negative reactive impedance into a transmission line by connecting to it in series through a transformer suspended from the line. This thesis addresses the deployment, performance, and design of DSSCs. In order to analyze the impact of DSSCs on a transmission network, a method for linearizing the network is presented. The linearized network model allows the relationships between the network operating points and the injected reactances to be easily derived, thereby illuminating how best to deploy DSSCs. The model, which is general and applies to arbitrarily complex systems, is further simplified into a proposed new form called "line efficacy," which provides additional insights without knowledge of the system topology or operating state. This thesis additionally proposes an advanced design for DSSCs, allowing them to improve upon the compensation performance requirements given by the linearized transmission system model. The advanced design is an alternative method for controlling the inverter stage of active DSSCs. It is shown that three-level, constant duty cycle switching increases the energy available from the inverter dc-side capacitor and thus the magnitude of injected reactance, compared to traditional, sinusoidally modulated three-level switching. These results are validated on a 5kVA single-phase inverter implemented in hardware. Both the design and experimental results are presented in detail.
Creator
Date Issued
  • 2014
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-14
Resource Type
Rights Statement
Language

Relationships

Items