Graduate Thesis Or Dissertation

 

Low Profile, High Power Density and High Efficiency DC-DC Converters Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/5138jf135
Abstract
  • Due to the ever decreasing thickness and increasing battery size of modern cellphones, battery chargers inside cellphones are required to meet increasingly stringent power density requirements, including small printed circuit board (PCB) area and component height. This thesis is focused on low-profile, high-power-density, and high-efficiency dc-dc converters for battery charging applications.This thesis investigates five topologies, including ZVS-QSW buck converter, three-level buck converter, four-level buck converter, a resonant switched capacitor converter, and a new reconfigurable hybrid switched capacitor converter. The operation principle of each topology is described, and the advantages and disadvantages of each topology are analyzed and compared in terms of efficiency and power density. To accurately evaluate the performance of each topology, this thesis utilizes the augmented state-space modeling method that efficiently calculates the steady-state waveforms of a converter. To accurately predict losses, the dynamic on-resistance of GaN transistors and core loss of inductors have been modeled. Furthermore, a comprehensive optimization methodology is utilized to select circuit and component parameters.For 2:1 conversation ratio application scenario, two prototypes using GaN transistors and low-voltage Silicon MOSFET have been designed, built and tested for an input voltage range of 5 V to 20 V, an output voltage range of 3 V to 4.2 V, and a maximum output current of 10 A. The prototype with GaN transistors (EPC2023) occupies a PCB area of 358 mm2 with component height of 1 mm. To maximize efficiency, the converter is designed to achieve ZVS at light-to-medium loads, while sacrificing ZVS to reduce transistor conduction and inductor losses. This GaN-based prototype converter achieves a peak efficiency of 98.5% at 2:1 conversion ration and high efficiency at other operating conditions with a power density of 704 W/in3 . The prototype using low-voltage Silicon MOSFET (CPF03433) occupies a PCB area of 310 mm2. A prototype of four-level buck converter with a PCB area of 410 mm2, optimized for 3:1 conversion ratio, has also been built and tested. For extreme-power-density application, a prototype with a PCB area of 79.6 mm2 and component height of 1 mm is built and tested. The prototype converter achieves a peak efficiency of 96.7% and a power density of 3230 W/in3.

Creator
Date Issued
  • 2018
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2020-02-10
Resource Type
Rights Statement
Language

Relationships

Items