Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

William W Adams, University of Colorado Boulder
Jared J Stewart, University of Colorado Boulder
Christopher M Cohu, University of Colorado Boulder
Onno Muller, University of Colorado Boulder
Barbara Demmig-Adams, University of Colorado Boulder

Publication of this article was funded by the University of Colorado Boulder Libraries Open Access Fund.

This document is protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.


Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross-sectional areas increased linearly with decreasing precipitation level in the habitats of origin in response to experimental growth at high temperature. This represents a situation where temperature acclimation of the apparent capacity for water flux through the xylem and transpiration rate in a winter annual responded differently from that of photosynthetic capacity, in contrast to previous reports of strong relationships between hydraulic conductance and photosynthesis in other studies.