Document Type

Article

Publication Date

1-1-2017

Publication Title

PLoS One

ISSN

1932-6203

Volume

12

Issue

5

First Page

0176021

Last Page

0176021

DOI

https://doi.org/10.1371/journal.pone.0176021

PubMed ID

28472046

Abstract

It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS