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Abstract

We study the stochastic solution to a Cauchy problem for a degenerate parabolic equation

arising from option pricing. When the diffusion coefficient of the underlying price process is

locally Hölder continuous with exponent δ ∈ (0, 1], the stochastic solution, which represents

the price of a European option, is shown to be a classical solution to the Cauchy problem.

This improves the standard requirement δ ≥ 1/2. Uniqueness results, including a Feynman-

Kac formula and a comparison theorem, are established without assuming the usual linear

growth condition on the diffusion coefficient. When the stochastic solution is not smooth, it

is characterized as the limit of an approximating smooth stochastic solutions. In deriving the

main results, we discover a new, probabilistic proof of Kotani’s criterion for martingality of a

one-dimensional diffusion in natural scale.

Key words. Local martingales, stochastic solutions, degenerate Cauchy problems, Feynman-

Kac formula, necessary and sufficient condition for uniqueness, comparison principle
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1 Introduction

We study the one-dimensional diffusion in natural scale

dXt,x
s = σ(Xt,x

s )dWs, Xt,x
t = x ∈ I = (0,∞), (1.1)
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where W is a standard Brownian motion and σ : I 7→ R is a Borel function satisfying the standing

assumption

σ(·) 6= 0 and σ−2(·) is locally integrable on I. (1.2)

We also assume that X is absorbed at 0, once it arrives there.

Under the paradigm of no-arbitrage pricing, one usually postulates a diffusion model as (1.1) for

the price process X of the underlying asset, under a risk-neutral measure calibrated to market data.

Given a payoff function g : [0,∞) 7→ R and a terminal time T > 0, the price of the corresponding

European option is formulated as

U(t, x) := Et,x[g(Xt,x
T )], (1.3)

where Et,x denotes the expectation taken under a law Pt,x such that Xt,x
t = x a.s. A heuristic use

of Itô’s rule shows that if U is smooth, it is a classical solution to the Cauchy problem





∂tu+ 1
2σ

2(x)∂xxu = 0, (t, x) ∈ [0, T ) × (0,∞);

u(T, x) = g(x), x ∈ (0,∞);

u(t, 0) = g(0), t ∈ [0, T ].

(1.4)

It is, however, difficult to establish the smoothness of U a priori: standard results of parabolic

equations (see e.g. [11, Chapter 6]) cannot be applied here, as σ may (i) grow faster than linearly and

(ii) degenerate on the boundary of the state space I. By contrast, under fairly general conditions,

the strong Markov property of X readily implies that U is the unique stochastic solution to (1.4).

The notion of stochastic solution was introduced by Stroock & Varadhan [25], and further developed

in the literature of stochastic analysis and mathematical finance, see e.g. [2, 3, 7, 15] and the

references therein.

The goal of this paper is to characterize the stochastic solution U , from both probabilistic and

analytic perspectives. We focus on the following questions:

(Q1) What condition gives a Feynman-Kac formula for (1.4) (i.e. if u is a classical solution to (1.4),

then u must coincide with U)?

(Q2) What condition guarantees that U is a classical solution to (1.4))?

(Q3) If U is not smooth, how do we characterize U?

As a preparatory step, we study the martingality of X. Our contribution is a new proof of

Kotani’s criterion for X being a martingale (Theorem 2.1). Kotani’s original proof in [19], together

with the detailed exposition in [14], is based on analytic methods. We provide a probabilistic proof,

which is more concise than the arguments in [19, 14]. Note that Kotani’s criterion deals with a

general state space I = (ℓ, r) for X, with −∞ ≤ ℓ < r ≤ ∞. For the special case I = (0,∞), the

criterion reduces to: X is a martingale if and only if

∫ ∞

1

x

σ2(x)
dx = ∞. (1.5)

This result was proved under several different approaches in [6, 22, 16]; see Remark 2.2 for details.
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Our strategy for (Q1) is to leverage on the connection between local stochastic solutions (Defini-

tion 3.2) and martingality of X. We identify that “U is the unique local stochastic solution to (1.4)”

if and only if “X is a martingale”, i.e. “(1.5) holds” (Proposition 3.11). Since a classical solution

is necessarily a local stochastic solution as mentioned in Remark 3.3, a Feynman-Kac formula for

(1.4) holds under (1.5) (Corollary 3.14). This result is non-standard, compared to [11, Chapter 6]

and [17, Section 5.7], in that under (1.5) σ may grow faster than linearly and there is no continuity

assumption on σ. Moreover, this Feynman-Kac formula generalizes Bayraktar & Xing [4, Theorem

1]; see Remark 3.16.

Ekström & Tysk [7, Section 3] studied (Q2), and showed that local Hölder continuity of σ with

exponent δ ≥ 1/2 is sufficient for U being a classical solution to (1.4). Our contribution is proving

that δ > 0 is already enough. With this relaxed Hölder continuity, (1.1) no longer admits a unique

strong solution, and the strong formulation in [7] cannot be used anymore. For the interior smooth-

ness of U , we first rely on a fundamental result in Lieberman [21] (which requires only δ > 0) to

construct a smooth function solving (1.4) away from the boundary; then, we prove by probabilistic

methods that this smooth function coincides with U (Lemma 4.1). For the continuity of U up to

the boundary, we take a novel approach by using techniques of viscosity solutions developed in

Bayraktar and Ŝırbu [3]. Since [3] does not require any regularity of σ, the continuity of U up

to the boundary holds under very general conditions (Lemma 4.2). This, together with the afore-

mentioned non-standard Feynman-Kac formula, characterizes U as the unique classical solution to

(1.4), under local Hölder continuity of σ with exponent δ ∈ (0, 1] and (1.5) (Theorem 4.5). This in

particular generalizes [4, Theorem 2].

A comparison theorem for (1.4) is also proved under (1.5), without assuming the usual linear

growth condition on σ. Moreover, we establish the equivalence between “the uniqueness of solutions

to (1.4)” and “a comparison theorem for (1.4) holds” (Theorem 4.9). While the latter clearly implies

the former, the converse is nontrivial.

Finally, we turn to (Q3), the case where U is not guaranteed to be smooth (e.g. due to the

lack of local Hölder continuity of σ). Assuming that σ is positive, continuous and satisfies (1.5),

we construct {σn}n∈N of locally Hölder continuous functions such that σn ↑ σ. Each σn gives rise

to a price process X(n), and the corresponding stochastic solution Un can be characterized as the

unique classical solution to (1.4) with σ replaced by σn. By expressing X
(n)
T and XT as time-

changed Brownian motions, we show that X
(n)
T → XT in distribution (Lemma 5.1), which leads to

the characterization of U as a limit of the approximating stochastic solutions Un (Theorem 5.2 and

Remark 5.4).

The paper is organized as follows. Section 2 presents a new proof of Kotani’s criterion for X

being a martingale. Section 3 studies the existence and uniqueness of local stochastic solutions. A

Feynman-Kac formula is obtained as a by-product. Section 4 establishes the interior smoothness

of U and the continuity of U up to the boundary. This enables us to characterizes U as the unique

classical solution to (1.4), under conditions more general than those in the literature. A comparison

theorem for (1.4) is derived, without the linear growth condition on σ. Section 5 deals with the

case where U may not be smooth, and approximates U by a sequence of Cauchy problems.
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2 A New Proof of Kotani’s Criterion for Martingality of X

In this section, we assume without loss of generality that t = 0 in (1.1), and consider a more general

state space I:

dXx
s = σ(Xx

s )dWs, Xx
0 = x ∈ I = (ℓ, r), (2.1)

where −∞ ≤ ℓ < r ≤ ∞. The endpoints of I = (ℓ, r) are assumed to be absorbing for X; that is,

when X reaches an endpoint in finite time, it stays at the endpoint.

By the arguments in [9, 10], or [17, Theorem 5.5.15], the standing assumption (1.2) implies that

(1.1) admits a weak solution, unique in the sense of probability distribution, up to the “exit time”

τ∞ := lim
n→∞

τn, τn := inf{t ≥ 0 : Xt /∈ (ℓ+ 1/n, r − 1/n)}.

The process X is by definition a local martingale, and it is of interest to establish a criterion for X

being a true martingale. If ℓ and r are both finite, as a bounded local martingale, X is trivially a

martingale. When either ℓ or r is infinite, the following criterion holds.

Theorem 2.1. Let (X,W,Ω,F ,P, {Fs}s≥0) be a weak solution to (2.1).

(i) If ℓ ∈ R and r = ∞, then X is a martingale if and only if

∫ ∞

c

x

σ2(x)
dx = ∞ for some c ∈ I. (2.2)

(ii) If ℓ = −∞ and r ∈ R, then X is a martingale if and only if

∫ c

−∞

−x
σ2(x)

dx = ∞ for some c ∈ I. (2.3)

(iii) If ℓ = −∞ and r = ∞, then X is a martingale if and only if both (2.2) and (2.3) hold.

Remark 2.2. For the special case I = (0,∞), Theorem 2.1 (i) reduces to: X is a martingale if and

only if (1.5) holds. This result was first established in Delbaen and Shirakawa [6, Theorem 1.6],

under the stronger assumption that σ and 1/σ are positive and locally bounded. Through studying

exponential martingales, Mijatović and Urusov recovered this result in [22, Corollary 4.3], without

the stronger assumption on σ. Karatzas & Ruf [16] recently derived the same result by analyzing

the h-transform of X; see [16, Corollary 6.5].

For the general case I = (ℓ, r) with −∞ ≤ ℓ < r ≤ ∞, Theorem 2.1 was first established in

Kotani [19, Theorem 1] in the form of a short lecture note. Hulley and Platen [14, Section 3] gives

a comprehensive exposition, with detailed proofs, of Kotani’s result. Kotani’s analytic method

utilizes the fundamental solutions to the associated generalized differential equation. We provide a

probabilistic proof, which is very different from and more concise than the arguments in [19, 14].

Remark 2.3. In view of Feller’s classification of boundary points (see, for example, Chapter 15 of

Karlin and Taylor [18]), since X of (1.1) is on natural scale, (2.2) implies that the right boundary

∞ is a natural boundary. Likewise, (2.3) implies that the left boundary −∞ is a natural boundary.

Therefore we can also restate Theorem 2.1 as follows: X is a martingale if and only if all its infinite

boundary points are natural boundaries.
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We first present a useful lemma.

Lemma 2.4. Let Y : Ω × R+ 7→ R be a continuous local martingale defined on some filtered

probability space (Ω,F , {Ft}t≥0,P), with Y0 = y ∈ R P-a.s. If Y is bounded from below P-a.s., then
Y is a P-martingale if and only if

lim
β→∞

βP[τβ < T ] = 0 for all T ≥ 0, (2.4)

where τβ := inf{t ≥ 0 : Yt ≥ β}.

Proof. Since Y·∧τβ is a bounded local martingale and thus a martingale, for all T ≥ 0,

y = E[Yτβ∧T ] = E[Yτβ1{τβ<T}] + E[YT 1{τβ≥T}] = βP[τβ < T ] + E[YT 1{τβ≥T}]. (2.5)

As a local martingale bounded from below, Y is a supermartingale. The supermartingale con-

vergence theorem, see e.g. [17, Theorem 1.3.15], asserts that Y∞(ω) := limt→∞ Yt(ω) exists for

a.e. ω ∈ Ω and E[|Y∞|] < ∞. This implies that Y does not explode in finite time P-a.s., and
thus τβ ↑ ∞ P-a.s. as β ↑ ∞. Then, applying the monotone convergence theorem to (2.5) yields

E[YT ] = y for all T ≥ 0 if and only if (2.4) holds. Finally, since Y is a supermartingale and thus

E[Yt | Fs] ≤ Ys P-a.s. for all 0 ≤ s ≤ t, Y is a martingale if and only if E[YT ] = y for all T ≥ 0.

The result of this lemma can be traced back to equation (5) in Cox and Hobson [5], where the

authors did not prove the result, but cited the lecture note by Azéma, Gundy, and Yor [1]. Here,

we provide a simpler proof of the same result. Note that results similar to Lemma 2.4, but for much

more general processes Y , have been established in Elworthy, Li, and Yor [8]; see e.g. Lemma 2.1

and Lemma 3.2 in [8].

Proof of Theorem 2.1. (i) Without loss of generality, we assume that ℓ = 0, and then (2.2) reduces

to (1.5). Indeed, if ℓ 6= 0, one may consider the shifted process X̃ := X − ℓ, which admits the

dynamics dX̃t = σ̃(X̃)dWt, with σ̃(z) := σ(z + ℓ) satisfying (1.2) on (0,∞). Direct calculation

shows that σ̃ satisfying (1.5) is equivalent to σ satisfying (2.2).

Define the function σ̂(y) := σ(y)
1+y . Consider the stochastic differential equation (SDE)

dYt = σ(Yt)[σ̂(Yt)dt+ dWt], Y0 = x ∈ I = (0,∞), (2.6)

and assume that Y is absorbed at 0 once it arrives there. Thanks to (1.2), we may conclude

from Theorem 5.5.15 of [17] that the SDE (2.6) admits a weak solution (Y,W ′,Ω′,F ′,P′, {F ′
s}s≥0),

unique in distribution, up to a possibly finite explosion time S∞, defined by

S∞(ω) := lim
n→∞

Sn(ω), with Sn(ω) := inf{t ≥ 0 : Yt(ω) ≥ n} ∀n ∈ N.

By (1.2) again, conditions (ND)′ and (LI)′ on p. 343 of [17] are satisfied. We can therefore apply to

the process Y Feller’s test for explosions (see, for example, Theorem 5.5.29 in [17]), which implies

that P′{S∞ <∞} = 0 if and only if v(∞−) = ∞, with v(·) defined as

v(z) := 2

∫ z

1

( 1

1 + y
− 1

1 + z

) (1 + y)2

σ2(y)
dy. (2.7)
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By direct computation,

z

1 + z

∫ z/2

1

y

σ2(y)
dy ≤ v(z) ≤ 4

∫ z

1

y

σ2(y)
dy. (2.8)

We therefore conclude that P′{S∞ <∞} = 0 if and only if (1.5) holds.

Now, consider the process Zt :=
1+x
1+Yt

for t ≥ 0. By definition, Z is a bounded process taking

values in [0, 1+x]. Moreover, it satisfies the dynamics dZt = −Ztσ̂(Yt)dW
′
t , thanks to Itô’s formula.

Thus, Z is a bounded P′-local martingale, whence a P′-martingale, with respect to {F ′
t}t≥0. For

each n ∈ N, consider the stopping time S̃n := Sn ∧ n, and note that

lim
n→∞

S̃n(ω) = lim
n→∞

Sn(ω) = S∞(ω), ∀ω ∈ Ω′. (2.9)

For each n ∈ N, define the probability measure Qn on (Ω′,F ′
S̃n

) by dQn := Z
S̃n
dP′. Using the

martingality of Z, we can verify that Qn, n ∈ N, are consistent in the sense that Qn+1 = Qn on

F ′
S̃n
. In addition, for any t ≥ 0,

lim
n→∞

Qn{S̃n ≤ t} = lim
n→∞

EP′

[Z
S̃n
1
{S̃n≤t}

] = lim
n→∞

EP′

[ZSn1{Sn≤t}] = lim
n→∞

1 + x

1 + n
P′(Sn ≤ t) = 0,

where the second equality follows from the observation that for all n > t, we have (a) S̃n ≤ t if and

only if Sn ≤ t, and (b) Sn ≤ t implies Z
S̃n

= ZSn . Thus, by Theorem 1.3.5 of [26], there exists a

unique probability Q on (Ω′,F ′) such that Q = Qn on F ′
S̃n

for all n ∈ N.

Observe that the process W̃t :=W ′
t +

∫ t
0 σ̂(Ys)ds is well-defined up to Sn, for all n ∈ N. Indeed,

since Y is a weak solution to (2.6) up to S∞, P′{
∫ t∧Sn

0 σ2(Ys)ds < ∞} = 1 for all t ≥ 0 and n ∈ N
(Definition 5.5.20 of [17]). It follows that for any fixed t ≥ 0, it holds P′-a.s. that for all n ∈ N,

∫ t∧Sn

0
|σ̂(Ys)|ds =

∫ t∧Sn

0

|σ(Ys)|
1 + Ys

ds ≤
∫ t∧Sn

0
|σ(Ys)|ds ≤ t1/2

(∫ t∧Sn

0
σ2(Ys)ds

)1/2

<∞.

Now, by Girsanov’s theorem, W̃
·∧S̃n

is a Qn- (and hence a Q-) Brownian motion on [0, S̃n], for all n ∈
N. Thanks to (2.9) and Lemma A.3, W̃·∧S∞− := lims↑(·∧S∞) W̃s is a Q-Brownian motion on [0, S∞).

Consequently, for any Q-Brownian motion {Bt}t≥0, the process Ŵt := W̃t∧S∞−+Bt∨S∞ −BS∞ is a

Q-Brownian motion on [0,∞). In view of the P′-dynamics (2.6), Y satisfies under Q the dynamics

Yt∧Sn = x+

∫ t∧Sn

0
σ(Ys)dŴs t ≥ 0, ∀n ∈ N.

In other words, (Y, Ŵ ,Ω′,F ′,Q, {F ′
t}t≥0) is a weak solution to (2.1) up to S∞. But a weak solution

to (2.1) does not explode in finite time (Problem 5.5.3 of [17]), and thus S∞ = ∞ Q-a.s.

Consider Tn := inf{t ≥ 0 : Xt ≥ n}, for all n ∈ N. Since weak solutions to (2.1) are unique in

the sense of probability distribution, for each fixed T ≥ 0 we must have P(Tn ≤ T ) = Q(Sn ≤ T )

for all n ∈ N. It follows that for each T ≥ 0,

lim
n→∞

nP(Tn < T ) = lim
n→∞

nQ(Sn < T ) = lim
n→∞

nQn(Sn < T )

= lim
n→∞

nEP′

[ZSn1{Sn<T}] = lim
n→∞

n(1 + x)

1 + n
P′(Sn < T )

= (1 + x) lim
n→∞

P′(Sn < T ).

(2.10)
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By Lemma 2.4, (2.10) gives the equivalence between “X is a martingale” and “limn→∞ P′(Sn <

T ) = 0 for all T ≥ 0”. On the other hand, since S∞ < ∞ if and only if there exists T < ∞ such

that Sn < T for all n ∈ N,

P′{S∞ <∞} = P′

{
∞⋃

T=1

∞⋂

n=1

{Sn < T}
}

= lim
T→∞

lim
n→∞

P′{Sn < T}.

As the map T 7→ limn→∞ P′(Sn ≤ T ) is nondecreasing, the above equation implies “limn→∞ P′(Sn <

T ) = 0 for all T ≥ 0” if and only if “P′{S∞ < ∞} = 0”. Thus, we obtain the equivalence between

“X is a martingale” and “P′{S∞ < ∞} = 0”. The proof is complete once we recall that the latter

condition is equivalent to (1.5).

(ii) The process Y· := −X· is a local martingale evolving in Ĩ := (−r,∞), satisfying the dynamics

dYt = σ̃(Yt)dWt, where σ̃(z) := −σ(−z). Applying part (i) to Y , we have Y is a martingale if and

only if
∫∞
c

z
σ̃2(z)

dz = ∞ for some c ∈ Ĩ . By the definition of σ̃, this is equivalent to (2.3).

(iii) Consider I = (−∞,∞). We will first show that E[|XT |] < ∞ for all T ≥ 0, by using an

argument in [14, Theorem 3.10 (a)]. Let {La
t : a ∈ I, t ≥ 0} be the family of local times of X, where

La
t = limǫ↓0

1
2ǫ

∫ t
0 1{Xs∈(a−ǫ,a+ǫ)}σ

2(Xs)ds P-a.s. Note that [24, Corollary 1.8, p.226] particularly

implies that we can choose a version of La
t , such that a 7→ La

t is continuous for each t ≥ 0 P-a.s. For
any T ≥ 0, Takana’s formula (see e.g. [24, p.222]) and Fatou’s Lemma lead to E[|XT |] ≤ |x|+E[L0

T ].

Fix δ > 0. By the occupation times formula (see e.g. [24, Corollary 1.6, p.224]) and the mean value

theorem, for P-a.e. ω ∈ Ω, there exists y∗ ∈ (−δ, δ) such that

∫ T

0
1(−δ,δ)(Xt(ω))dt =

∫

I
1(−δ,δ)(y)L

y
T (ω)dy =

∫ δ

−δ
Ly
T (ω)dy = 2δLy∗

T (ω). (2.11)

For any α ∈ (0, 1/2), [24, Corollary 1.8, p.226] asserts that there exists a K = K(T ) > 0 such that

sup{|La
t − L0

t | : t ∈ [0, T ]} ≤ K(T )|a|α P-a.s. for all a ∈ R. This, together with (2.11), gives

E[L0
T ] ≤ E[K(t)δα + Ly∗

T ] = K(T )δα +
1

2δ

∫ T

0
P[Xt ∈ (−δ, δ)]dt ≤ K(T )δα +

T

2δ
,

which implies E[|XT |] ≤ |x|+K(T )δα + T
2δ <∞.

Now, if X is a martingale on (−∞,∞), then (2.2) and (2.3) hold as a consequence of parts (i)

and (ii). To prove the converse, suppose (2.2) and (2.3) hold, and let S+
n := inf{s ≥ 0 : Xs ≥ n}

and S−
n := inf{s ≥ 0 : Xs ≤ −n}. By parts (i) and (ii), X·∧S−

n
and X·∧S+

n
are martingales, for all

n ∈ N. Thus, for any T ≥ 0,

x = E[XS+
n ∧T ] = E[XS+

n
1{S+

n <T}] + E[XT 1{S+
n ≥T}] = nP

[
S+
n < T

]
+ E[XT 1{S+

n ≥T}],

x = E[XS−
n ∧T ] = E[XS−

n
1{S−

n <T}] + E[XT 1{S−
n ≥T}] = −nP

[
S−
n < T

]
+ E[XT 1{S−

n ≥T}].

Since X does not explode in finite time P-a.s. (see e.g. [17, Problem 5.5.3]), S+
n ↑ ∞ and S−

n ↑ ∞
P-a.s. as n ↑ ∞. Thanks to E[|XT |] < ∞, applying the dominated convergence theorem to the

above equations yield

x = lim
n→∞

nP
[
S+
n < T

]
+ E[XT ] and x = − lim

n→∞
nP

[
S−
n < T

]
+ E[XT ],

which implies x ≥ E[XT ] and x ≤ E[XT ]. Thus, x = E[XT ] for all T ≥ 0, and we conclude that X

is a martingale.
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3 Local Stochastic Solutions

3.1 Preliminaries

In this section, we introduce the notion of local stochastic solutions to a linear parabolic equation,

and present several existence and uniqueness results.

Let G be an open subset of Rd. For any (t, v) ∈ (0,∞)×G, we consider an Rd-valued diffusion

dVs = b(Vs)ds+ a(Vs)dWs, Vt = v ∈ G, (3.1)

where b : Rd 7→ Rd and a : Rd 7→ Md are Borel functions (here Md denotes the set of d×d matrices),

and W is a standard d-dimensional Brownian motion. We only assume that b and a are such that

(3.1) has a weak solution. Define the differential operator

La,b := b′∇+
1

2
Tr(aa′∇2).

Fix a time horizon T > 0. Given a Borel function g : Ḡ 7→ R, we consider the following boundary

value problem

{
∂tu(t, v) + La,bu(t, v) = 0, (t, v) ∈ (0, T ) ×G;

u(t, v) = g(v), (t, v) ∈ [0, T ] × ∂G ∪ {T} ×G.
(3.2)

Definition 3.1. We say u : [0, T ]× Ḡ 7→ R is a classical solution to (3.2) if u ∈ C1,2([0, T )×G)∩
C([0, T ]× Ḡ) and satisfies (3.2).

Under current general set-up, (3.2) may not admit a classical solution. Motivated by [25,

Section 5] and the specific formulation in [3, Definitions 2.1 and 2.2], we introduce a weaker notion

of solutions to (3.2) as follows.

Definition 3.2. A Borel function u : [0, T ]× Ḡ 7→ R is a stochastic solution (resp. local stochastic

solution) to (3.2) if

(i) for any (t, v) ∈ [0, T ]×G and any weak solution (V t,v,W t,v,Ωt,v,F t,v ,Pt,v, {F t,v
s }s≥t) of (3.1),

u
(
r ∧ τ t,v, V t,v

r∧τ t,v

)
is a Pt,v-martingale (resp. Pt,v-local martingale), where

τ t,v := inf{s ≥ t : V t,v
s /∈ G} ∧ T.

(ii) u(t, v) = g(v) for (t, v) ∈ [0, T ]× ∂G ∪ {T} ×G.

Remark 3.3. In [25] and [3], the authors introduce stochastic solutions, but not their local ver-

sions. Since they only take bounded functions as solutions, every local stochastic solution is a

stochastic solution under their consideration. Here, without the boundedness restriction, the addi-

tional notion of local stochastic solutions is necessary. In particular, by applying Itô’s rule to the

process u(r,Xt,x
r ), a classical solution u to (3.2) is a local stochastic solution to (3.2). However, a

classical solution u to (3.2) is not necessarily a stochastic solution. Example 3.9 below serves as an

counterexample.
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Remark 3.4. Our formulation in Definition 3.2 is more general than those in the literature (see

e.g. [13, Definition 3.1], [15, Defnition 2.2], and [2, Definition 5.1]), as it requires neither regularity

nor boundedness of solutions and allows for local martingale property.

Uniqueness of stochastic solutions is inherent in Definition 3.2.

Proposition 3.5. If (3.2) admits a stochastic solution u, then u(t, v) = Et,v[g(V t,v
τ t,v )] for any weak

solution (V t,v,W t,v,Ωt,v,F t,v ,Pt,v, {F t,v
s }s≥t) to (3.1).

Proof. If u is a stochastic solution to (3.2), then

u(t, v) = Et,v[u(T ∧ τ t,v, V t,v
T∧τ t,v)] = Et,v[u(τ t,v , V t,v

τ t,v)] = Et,v[g(V t,v
τ t,v )].

In spite of Proposition 3.5, the function u(t, v) := Et,v[g(V t,v
τ t,v )] a priori may not be a stochastic

solution to (3.2). Indeed, since we currently assume only existence, but not uniqueness in distribu-

tion, of weak solutions to (3.1), the function u may not be well-defined. For instance, when G is a

subset of R and b ≡ 0, “(3.1) admits a weak solution while uniqueness in distribution fails” can be

completely characterized by the condition

{
x ∈ R :

∫ ǫ

−ǫ

dy

a2(x+ y)
= ∞, ∀ǫ > 0

}
$ {x ∈ R : a(x) = 0}.

We refer the readers to Section 5.5 A and B in [17] for details. In particular, Remark 5.5.6 explains

how uniqueness fails and provides a few concrete examples.

In the following, we provide a sufficient condition for u(t, v) := Et,v[g(V t,v
τ t,v )] being a stochastic

solution to (3.2).

Proposition 3.6. Assume uniqueness in distribution of weak solutions to (3.1), for any initial

condition (t, v) ∈ [0,∞) × Ḡ. If g(V t,v
τ t,v ) is Pt,v-integrable for all (t, v) ∈ [0, T ] × Ḡ, then the

function u(t, v) := Et,v[g(V t,v
τ t,v )] is the unique stochastic solution to (3.2).

Proof. Thanks to the uniqueness in distribution of weak solutions to (3.1), the function u(t, v) :=

Et,v[g(V t,v
τ t,v )] is well-defined, and the unique weak solution V t,v to (3.1) has the strong Markov

property (see e.g. [10, Corollary 4.23]). Fix t ≥ 0. For simplicity, we write ℓt,v for (ℓ ∧ τ t,v, V t,v
ℓ∧τ t,v )

for any ℓ ≥ t. For any t ≤ s ≤ r, we have

Et,v
[
u
(
r ∧ τ t,v, V t,v

r∧τ t,v

) ∣∣∣ Fs

]
= Et,v

[
Ert,v

[
g
(
V rt,v

τr
t,v

)] ∣∣∣ Fs

]
= Et,v

[
Et,v

[
g
(
V t,v
τ t,v

) ∣∣∣ Fr

] ∣∣∣ Fs

]

= Et,v
[
g
(
V t,v
τ t,v

) ∣∣∣ Fs

]
= Est,v

[
g
(
V st,v

τs
t,v

)]
= u

(
s ∧ τ t,v, V t,v

s∧τ t,v

)
,

where the Markov property of V t,v is used in the second and the fourth equalities. This shows

that u
(
r ∧ τ t,v, V t,v

r∧τ t,v

)
is a martingale. Since u(t, v) = g(v) for (t, v) ∈ [0, T ] × ∂G ∪ {T} × G

by definition, we conclude that u is a stochastic solution to (3.2). The uniqueness follows from

Proposition 3.5.
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Remark 3.7. In view of [15, Theorem 2.7], one may expect the relation“a continuous local stochas-

tic solution to (3.2) must be a classical solution”. However, since [15, Theorem 2.7] relies on the

arguments in [20, Theorem 16.1], which demands Hölder continuity of the coefficients a and b in

(3.1), it is unclear if the expected relation holds under current general set-up. It is of interest to

either establish the relation using different arguments or find a counterexample.

In Section 4, we will impose Hölder continuity on the coefficient σ of (1.1). We can then prove

the above relation by the same arguments in [15, Theorem 2.7]. This relation, nonetheless, is not

useful in Section 4, as proving the continuity of the stochastic solution is difficult; see Section 4.1.

3.2 Local Stochastic Solutions to the Cauchy Problem (1.4)

In this section, we apply the set-up in Section 3.1 to the Cauchy problem (1.4). Our main result is

a characterization for the existence of a unique local stochastic solution to (1.4) (Theorem 3.13).

This in particular gives a non-standard Feynman-Kac formula (Corollary 3.14).

Consider the process X in (1.1) with I = (0,∞). The corresponding boundary value problem

(3.2) becomes the Cauchy problem (1.4). From the fact that X is non-exploding (see e.g. [17,

Problem 5.5.3]) and is absorbed at the origin once it arrives there, we observe that

u
(
r ∧ τ t,x,Xt,x

r∧τ t,x

)
= u(r ∧ T,Xt,x

r∧T ) for all r ≥ t,

where τ t,x = inf{s ≥ t : Xt,x
s /∈ (0,∞)} ∧ T . Definition 3.2 then reduces to:

Definition 3.8. A Borel function u : [0, T ] × [0,∞) 7→ R is a stochastic solution (resp. local

stochastic solution) to (1.4) if

(i) for any (t, x) ∈ [0, T ]× [0,∞) and any weak solution (Xt,x,W t,x,Ωt,x,F t,x,Pt,x, {F t,x
s }s≥t) of

(1.1), u
(
r ∧ T,Xt,x

r∧T

)
is a Pt,x-martingale (resp. Pt,x-local martingale).

(ii) u(T, x) = g(x) for x ∈ (0,∞), u(t, 0) = g(0) for t ∈ [0, T ].

The next example shows that a classical solution may not be a stochastic solution.

Example 3.9. With g(x) := x, the Cauchy problem (1.4) is





∂tu+ 1
2σ

2(x)∂xxu = 0, (t, x) ∈ [0, T ) × (0,∞);

u(T, x) = x, x ∈ (0,∞);

u(t, 0) = 0, t ∈ [0, T ].

(3.3)

While u(t, x) := x is a classical solution to (3.3), it is in general only a local stochastic solution. It

is a stochastic solution if and only if X is a true martingale.

Let D̂ denote the set of functions which have linear growth in x, i.e.

D̂ := {u : [0, T ]× [0,∞) 7→ R : ∃K > 0 s.t. |u(t, x)| ≤ K(1 + x) for all (t, x) ∈ [0, T ]× [0,∞)}.

For any v : [0,∞) 7→ R, we will slightly abuse the notation by saying that v ∈ D̂ if there exists

K > 0 such that |v(x)| ≤ K(1 + x) for all x ∈ [0,∞).
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Proposition 3.10. If g : [0,∞) 7→ R belongs to D̂, then U defined in (1.3) is the unique stochastic

solution to (1.4). Moreover, U belongs to D̂.

Proof. First, recall that the standing assumption (1.2) implies the existence of a weak solution to

(1.1) unique in distribution (as explained in the beginning of Section 2). Moreover, take K > 0

such that |g(x)| ≤ K(1 + x) for all x ∈ [0,∞). Then, for any [0, T ] × [0,∞), |Et,x[g(Xt,x
τ t,x)]| ≤

Et,x[|g(Xt,x
τ t,x)|] ≤ Et,x[K(1 +Xt,x

τ t,x)] ≤ K(1 + x) < ∞. We can now conclude from Proposition 3.6

that the function u(t, x) := Et,x[g(Xt,x
τ t,x)] is the unique stochastic solution to (1.4), and u ∈ D̂.

Finally, we observe that u coincides with U defined in (1.3):

u(t, x) = Et,x[g(Xt,x
τ t,x)] = Et,x[g(0)1{τ t,x<T} + g(Xt,x

T )1{τ t,x=T}] = Et,x[g(Xt,x
T )] = U(t, x),

where the third equality follows from Xt,x being absorbed at the origin once it arrives there.

The next result connects the uniqueness of local stochastic solutions to the martingality of X.

Parts of the proof are motivated by [4].

Proposition 3.11. The following are equivalent:

(i) X is a martingale.

(ii) For any T > 0, (3.3) admits a unique local stochastic solution in D̂.

(iii) For any T > 0 and g ∈ D̂, (1.4) admits a unique local stochastic solution in D̂.

Proof. (i) ⇐ (ii): Suppose X is a strict local martingale. Then there must exist a T ∗ > 0 such

that U(t, x) := Et,x[Xt,x
T ∗ ] < x. In view of Proposition 3.10 and Example 3.9, U(t, x) and x are two

distinct local stochastic solutions to (3.3) in D̂ with the time horizon T := T ∗.

(i) ⇒ (ii): Suppose X is a martingale. Fix an arbitrary T > 0, and let u be a local stochastic

solution to (3.3) in D̂. Since Zr := u(r∧T,Xt,x
r∧T ) is a local martingale and there exists some K > 0

such that |u(t, x)| ≤ K(1 + x) for all (t, x) ∈ [0, T ] × [0,∞), Zr∧τβ is a martingale for each β > 0,

where τβ := inf{s ≥ t : Xt,x
s ≥ β}. It follows that

u(t, x) = Et,x[ZT∧τβ ] = Et,x[u(τβ , β)1{τβ<T}] + Et,x[Xt,x
T 1{τβ≥T}]. (3.4)

Note that

lim
β→∞

∣∣∣Et,x[u(τβ , β)1{τβ<T}]
∣∣∣ ≤ lim

β→∞
K(1 + β)Pt,x[τβ < T ] = 0,

where the equality follows from Lemma 2.4. Also, since Xt,x is non-explosive (as a martingale

bounded from below), τβ ↑ ∞ Pt,x a.s. as β ↑ ∞. We thus conclude from (3.4) and the monotone

convergence theorem that

u(t, x) = lim
β→∞

Et,x[Xt,x
T 1{τβ≥T}] = Et,x[Xt,x

T ] = x,

which implies the uniqueness of local stochastic solutions to (3.3) in D̂.

(ii) ⇐ (iii): This is trivial.

(ii) ⇒ (iii): By Proposition 3.10, u1(t, x) := Et,x[g(Xt,x
T )] is a stochastic solution (and thus a

local stochastic solution) to (1.4) in D̂. By contradiction, assume that there exists a local stochastic
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solution u2 to (1.4) in D̂ such that u2 6≡ u1. Define ℓ := u1 −u2 6≡ 0. It can be checked that ℓ ∈ D̂,

ℓ(·∧T,Xt,x
·∧T ) = u1(·∧T,Xt,x

·∧T )−u2(·∧T,X
t,x
·∧T ) is a local martingale, ℓ(T, x) = u1(T, x)−u2(T, x) = 0

for x ∈ [0,∞), and ℓ(t, 0) = u1(t, 0) − u2(t, 0) = 0 for all t ∈ [0, T ]. Thus, by Proposition 3.10

again, Et,x[Xt,x
T ] and Et,x[Xt,x

T ] + ℓ(t, x) are distinct local stochastic solutions to (3.3) in D̂, which

contradicts (ii).

Remark 3.12. In view of Propositions 3.10 and 3.11, X is a martingale if and only if U defined in

(1.3) is the unique local stochastic solution to (1.4) in D̂. A similar relation has been established

in [2, Proposition 5.4] in a stochastic volatility model, under additional regularity and growth

condition on the coefficients of the associated state dynamics.

We obtain the main result of this section, as a consequence of Theorem 2.1, Propositions 3.10

and 3.11.

Theorem 3.13. U defined in (1.3) is the unique local stochastic solution to the Cauchy problem

(1.4) in D̂ for any T > 0 and g ∈ D̂ if and only if (1.5) holds.

Theorem 3.13 and Remark 3.3 yield a non-standard Feynman-Kac formula.

Corollary 3.14 (Feynman-Kac formula). Suppose (1.5) holds. For any T > 0 and g ∈ D̂, if u ∈ D̂

is a classical solution to (1.4), then u admits the stochastic representation u(t, x) = Et,x[g(Xt,x
T )].

Remark 3.15. Note that the standing assumption (1.2) does not impose any continuity on σ, and

(1.5) is weaker than the linear growth condition on σ. This is in contrast to the usual conditions

assumed on σ, continuity and linear growth, for a Feynman-Kac formula to hold (see e.g. [11,

Section 6.5] and [17, Section 5.7.B]).

Remark 3.16. Corollary 3.14 extends [4, Thoerem 1] to the case where σ and 1/σ need not be

locally bounded. Note that local boundedness of σ and 1/σ is required in [4, Thoerem 1], while it

is not explicitly stated there. A convex function Ψ is introduced in the proof of [4, Theorem 1],

and the authors, by referring to an argument in [6, Theorem 1.6], states that

Et,x[Ψ(Xt,x
τn )] is uniformly bounded in n, (3.5)

where τn := inf{s ≥ t : Xt,x
s /∈ (1/n, n)}∧T . Then, the de la Vallée Poussin criterion can be applied

to establish the uniform integrability of {Xt,x
τn }n∈N, a crucial step in their proof. The argument in

[6, Theorem 1.6], however, requires local boundedness in σ and 1/σ. In particular, on p. 163 of

[6], (3.5) is established under the condition E[
∫ τn
0 Ψ′(Xt)dXt] = 0. In view of (1.1) and (1.2) in [6],

this is equivalent to

E
[∫ τn

0

(∫ Xt

1

u

σ2(u)
du

)
σ(Xt)dWt

]
= 0.

This condition holds when σ and 1/σ are locally bounded, a standing assumption in [6], but may

not be true for general σ. Since [4, Theorem 1] refers to the above argument in [6], it needs local

boundedness of σ and 1/σ.

Remark 3.17. We focus on the state space I = (0,∞) because it is most relevant in terms of

financial applications and corresponds to the pricing equation (1.4). By the same arguments, one

can actually extend all the developments to I = (ℓ,∞) for some ℓ ∈ R, with D̂ modified as the set

of functions u : [0, T ]×(ℓ,∞) 7→ R satisfying the linear growth condition, and (1.5) in Theorem 3.13

and Corollary 3.14 replaced by (2.2).
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4 Connection to Classical Solutions

In this section, we first derive a sufficient condition for the stochastic solution U(t, x) := Et,x[g(Xt,x
T )]

to be a classical solution to (1.4). This problem has been studied in [7]; here, we provide a weaker

condition using a different approach. This, together with the uniqueness result in Section 3.1, char-

acterizes U as the unique classical solution to (1.4), under fairly general conditions. A comparison

theorem for (1.4) is also established, without imposing linear growth condition on σ, as required in

the standard literature.

4.1 Interior Smoothness of U

In [7, Theorem 3.2], the authors showed that local Hölder continuity of σ on (0,∞) with exponent

δ ≥ 1/2 guarantees that U is a classical solution to (1.4). We will prove that the same result holds

even with δ ∈ (0, 1/2).

This relaxation of Hölder continuity gives rise to technical difficulties. In [7], with δ ≥ 1/2,

(1.1) admits a unique strong solution. Taking advantage of some continuity results of a strong

solution with respect to initial data (t, x), the authors proved that U(t, x) = Et,x[g(Xt,x
T )] is contin-

uous on compact domains. Since a continuous local stochastic solution is a classical solution (see

Remark 3.7), this immediately yields interior smoothness of U . By contrast, with δ ∈ (0, 1/2), we

have to work with weak solutions to (1.1), and the argument in [7, Theorem 3.2] does not work

anymore. This makes it difficult to derive the continuity of U(t, x) = Et,x[g(Xt,x
T )] a priori.

In the following, we adopt a new strategy: we first construct a classical solution to (1.4) on

each bounded domain by resorting to [21], and show that those classical solutions converge to a

smooth function û on the entire domain by an Arzela-Ascoli-type argument. Then, we show that

û coincides with U by probabilistic methods.

Lemma 4.1. Suppose σ is locally Hölder continuous on (0,∞) with exponent δ ∈ (0, 1]. Then,

for any T > 0 and any continuous g : [0,∞) 7→ R in D̂ that is bounded from below, the stochastic

solution U , defined in (1.3), belongs to C1,2([0, T ) × (0,∞)) ∩ D̂ and satisfies (1.4).

Proof. We will use the Hölder norm | · |2+δ and its weighted version | · |∗2+δ throughout the proof.

We denote by Hk+δ (resp. H∗
k+δ) the collection of functions with finite Hölder norms (resp. finite

weighted Hölder norms). For readers’ convenience, their definitions are given in Appendix B.

We first assume that g is bounded from below by 0, and will deal with the general case in

the last paragraph of the proof. Let {gn} be a sequence of nonnegative continuous functions such

that gn ↑ g, with gn(x) = (1 − 1
n)g(x) for x ∈ [0, n − 1/n] and gn(x) = 0 for x ≥ n (here, gn

can be arbitrary on (n − 1/n, n), as long as gn is continuous and gn ↑ g). For any n ∈ N, define
Qn := [0, T )× (1/n, n) and denote by ∂∗Qn the parabolic boundary of Qn. Consider the following

equation {
∂tu+ 1

2σ
2∂xxu = 0 in Qn,

u(t, x) = gn(x) on ∂∗Qn.
(PDEn)

Since σ is Hölder continuous with exponent δ > 0 and gn is continuous, we deduce from [21,

Theorems 5.9 and 5.10] that there exists a classical solution un ∈ H∗
2+δ(Qn) ∩C(Q̄n) to (PDEn).
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1. There exists a û ∈ C1,2([0, T )×(0,∞)) such that un → û on [0, T )×(0,∞). Take an increasing

sequence {Ek} of compact subsets of [0, T )× (0,∞) such that
⋃

k∈NEk = [0, T )× (0,∞). Fix

k ∈ N. There exists some N ∈ N such that Ek ⊂ QN . Since σ is locally Hölder continuous

with exponent δ > 0, it in particular satisfies (4.20a) in [21] on the set QN . We may then

apply [21, Theorem 4.9], which states that if u ∈ H∗
2+δ(QN ) is a solution of

∂tu+
1

2
σ2∂xxu = 0 in QN , (4.1)

then there is a constant K1, determined only by the function σ and the set QN , such that

|u|∗2+δ,QN
≤ K1|u|0,QN

.

By construction, un ∈ H∗
2+δ(QN ) satisfies (4.1), for all n > N . Thus,

|un|∗2+δ,QN
≤ K1|un|0,QN

, ∀ n > N. (4.2)

Then, by the definition of the weighted norm | · |∗2+δ, there exists K2 > 0 (independent of

n > N) such that

|un|2+δ,Ek
≤ K2|un|∗2+δ,QN

, ∀ n > N. (4.3)

On the other hand, for each n ∈ N, since un is a smooth solution to (PDEn), by Itô’s rule we

have the probabilistic representation

un(t, x) = Et,x[gn(X
t,x
τn )] for (t, x) ∈ Qn, where τn := inf{s ≥ t : (s,Xx,t

s ) /∈ Qn}. (4.4)

Considering that 0 ≤ gn ≤ g, the linear growth condition of g implies that there exists K3 > 0

(independent of n ∈ N) such that

|un(t, x)| ≤ Et,x[|gn(Xt,x
τn )|] ≤ Et,x[K3(1 +Xt,x

τn )] ≤ K3(1 + x) for (t, x) ∈ Qn,

which in particular implies that |un|0,QN
≤ K3(1 + N) for all n > N . This, together with

(4.2) and (4.3), shows that

|un|2+δ,Ek
≤ K4,

for some K4 > 0 (independent of n > N). Now, applying the Arzela-Ascoli theorem,

we conclude that (up to a subsequence) un converges uniformly on Ek to some function

ûk ∈ C1,2(Ek). Since the above argument holds for each compact set Ek, we may choose a

subsequence of un (using the diagonal method) such that un → û on [0, T ) × (0,∞) with

û = ûk on Ek for all k ∈ N. This in particular implies that û ∈ C1,2([0, T ) × (0,∞)).

2. û coincides with the stochastic solution U on [0, T )× (0,∞). For any (t, x) ∈ [0, T )× (0,∞),

by (4.4) and the fact that gn(n) = 0, we have

û(t, x) = lim
n→∞

un(t, x) = lim
n→∞

Et,x[gn(X
t,x
τn )]

= lim
n→∞

Et,x
[
gn(X

t,x
T )1{Xt,x

τn
∈(1/n,n)} + gn(1/n)1{Xt,x

τn
=1/n}

]

= lim
n→∞

Et,x
[
gn(X

t,x
T )1{Xt,x

τn
∈[1/n,n)} + [gn(1/n) − gn(X

t,x
T )]1{Xt,x

τn
=1/n}

]
.

(4.5)
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Let τ0 := inf{s ≥ t : Xt,x
s = 0} ∧ T . On the set {Xt,x

τ0
> 0}, Xt,x

τn > 1/n for n large enough

Pt,x-a.s. Since |gn(1/n) − gn(X
t,x
T )| ≤ supy∈[0,1] g(y) + g(Xt,x

T ) for all n ∈ N and g(Xt,x
T ) is

integrable as g ∈ D̂, by using the definition of gn and the dominated convergence theorem,

lim
n→∞

Et,x
[
[gn(1/n)− gn(X

t,x
T )]1{Xt,x

τn
=1/n}1{Xt,x

τ0
>0}

]
= 0. (4.6)

On the other hand, on the set {Xt,x
τ0

= 0},

lim
n→∞

Et,x
[
[gn(1/n) − gn(X

t,x
T )]1{Xt,x

τn
=1/n}1{Xt,x

τ0
=0}

]

= lim
n→∞

Et,x
[
[(1− 1/n)g(1/n) − gn(0)]1{Xt,x

τn
=1/n}1{Xt,x

τ0
=0}

]
= 0,

(4.7)

where the first equality follows from the definition of gn and the fact that Xt,x is absorbed at

zero, and the second equality is due to the dominated convergence theorem and limn→∞(1−
1/n)g(1/n) − gn(0) = 0, thanks again to the definition of gn. Now, combining (4.5), (4.6),

and (4.7), we obtain

û(t, x) = lim
n→∞

Et,x
[
gn(X

t,x
T )1{Xt,x

τn
∈[1/n,n)}

]
.

By the monotone convergence theorem, û(t, x) = Et,x[g(Xt,x
T )] = U(t, x).

Finally, if g is bounded from below by some ℓ < 0, then g̃ := g − ℓ is bounded from below by 0.

The proof above immediately implies that Ũ(t, x) := Et,x[g̃(Xt,x
T )] = Et,x[g(Xt,x

T )] − ℓ belongs to

C1,2([0, T ) × (0,∞)) ∩ D̂ and satisfies (1.4) with boundary conditions given by g̃. Thus, U(t, x) =

Et,x[g(Xt,x
T )] belongs to C1,2([0, T ) × (0,∞)) ∩ D̂ and satisfies (1.4).

4.2 Continuity of U up to the Boundary

In [7, Theorem 3.2], interior smoothness of U and the continuity of U up to the boundary are

obtained through a monotone smooth approximation. In our case with weaker Hölder continuity of

σ, we treat interior smoothness of U and its continuity up to the boundary separately. As shown in

Lemma 4.1, we derive the interior smoothness via a different smooth approximation (which may not

be monotone). To establish the continuity up to the boundary, we will resort to tools from viscosity

solutions developed in [3], which do not rely on any smoothness (or smooth approximation) of U .

Let us first recall the notation and results in [3]. Analogous to Definition 3.8, we say a Borel

function u : [0, T ]× [0,∞) 7→ R is a stochastic subsolution (resp. stochastic supersolution) to (1.4)

if

(i) u
(
r ∧ T,Xt,x

r∧T

)
is a submartingale (resp. supermartingale), for any weak solution to (1.1)

with initial condition (t, x) ∈ [0, T ]× R.

(ii) for any x ∈ (0,∞), u(T, x) ≤ g(x) (resp. u(T, x) ≥ g(x)); for any t ∈ (0, T ], u(t, 0) ≤ g(0)

(resp. u(t, 0) ≥ g(0)).

For any g : [0,∞) 7→ R, we denote by U−
g (resp. U+

g ) the collection of all lower semicontinuous

stochastic subsolutions (resp. upper semicontinuous stochastic supersolutions) to (1.4). When g
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is bounded from below, the collection U−
g is nonempty. Indeed, for any c ∈ R such that g(x) ≥ c

for all x ∈ [0,∞), u(t, x) ≡ c lies in U−
g . For any u ∈ U−

g , u(t, x) ≤ Et,x[g(Xt,x
T )] by definition. It

follows that

v−g (t, x) := sup
u∈U−

g

u(t, x) ≤ Et,x[g(Xt,x
T )]. (4.8)

Note that v−g is by definition lower semicontinuous. If g is additionally lower semicontinuous, we

may apply the same argument in [3, Theorem 2.1] to show that

v−g (T, x) ≥ g(x). (4.9)

The next result shows that U is continuous up to the parabolic boundary of [0, T )× (0,∞). It

is worth noting that no regularity of σ, not even continuity, is required below.

Lemma 4.2. For any T > 0 and any continuous g : [0,∞) 7→ R in D̂ that is bounded from below,

the stochastic solution U , defined in (1.3), satisfies:

U∗(T, x) = U∗(T, x) = U(T, x) = g(x) for x ∈ (0,∞),

U∗(t, 0) = U∗(t, 0) = U(t, 0) = g(0) for t ∈ [0, T ],
(4.10)

where U∗ and U∗ are the upper and lower semicontinuous envelopes of U :

U∗(t, x) := lim
δ↓0

sup{U(s, y) : s ∈ ((t− δ) ∨ 0, t], y ∈ ((x− δ) ∨ 0, x+ δ)},

U∗(t, x) := lim
δ↓0

inf{U(s, y) : s ∈ ((t− δ) ∨ 0, t], y ∈ ((x− δ) ∨ 0, x+ δ)}.

Proof. We will prove the desired result first for g satisfying some additional properties, and then

extend it to the general case.

1. g is concave. Since g is bounded from below, U−
g is nonempty. Moreover, being bounded

from below and concave implies that g is nondecreasing. In view of (4.8) and (1.3),

v−g (t, x) ≤ U(t, x) ≤ g(Et,x[Xt,x
T ]) ≤ g(x),

where the second inequality is due to Jensen’s inequality, and the third inequality follows from

Xt,x
· being a supermartingale and g being nondecreasing. By the continuity of g, the lower

semicontinuity of v−g and (4.9), we have U∗(T, x) ≤ g(x) and U∗(T, x) ≥ v−g (T, x) ≥ g(x).

Since U(T, x) = g(x) by definition, we conclude that U∗(T, x) = U∗(T, x) = g(x) = U(T, x).

On the other hand, since g is nondecreasing, one must have

0 ≤ Et,x[g(Xt,x
T )− g(0)] = U(t, x)− g(0) ≤ g(x) − g(0).

Then the continuity of g yields U∗(t, 0) ≤ g(0) and U∗(t, 0) ≥ g(0). Since U(t, 0) = g(0) by

definition, we conclude that U∗(t, 0) = U∗(t, 0) = g(0) = U(t, 0).

2. g is a smooth function satisfying
∫∞
0 |g′′(y)|dy < ∞. As observed in [7, p.1375], g = g1 − g2

for some nonnegative concave functions g1 and g2. By Step 1, U1(t, x) := Et,x[g1(X
t,x
T )]

and U2(t, x) := Et,x[g2(X
t,x
T )] both satisfy (4.10). Also, by the definition of semicontinuous

envelopes,

U∗(t, x) = (U1 − U2)
∗(t, x) ≤ U∗

1 (t, x)− (U2)∗(t, x),
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U∗(t, x) = (U1 − U2)∗(t, x) ≥ (U1)∗(t, x)− U∗
2 (t, x).

This implies that U∗(T, x) ≤ g1(x)−g2(x) = g(x), U∗(t, 0) ≤ g1(0)−g2(0) = g(0), U∗(T, x) ≥
g1(x)− g2(x) = g(x), and U∗(t, 0) ≤ g1(0)− g2(0) = g(0). Since U(T, x) = g(x) and U(t, 0) =

g(0) by definition, we conclude that U satisfies (4.10).

3. The general case: g is continuous. We can take two sequences {gn} and {gn} of smooth

functions satisfying
∫∞
0 |g′′(y)|dy < ∞ such that gn ↑ g and gn ↓ g. By Step 2, Un(t, x) :=

Et,x[gn(X
t,x
T )] and Un(t, x) := Et,x[gn(Xt,x

T )] both satisfy (4.10), for all n ∈ N. Then U =

limn→∞Un = supn Un and U = limn→∞Un = infn U
n, thanks to the theorems of mono-

tone convergence and dominated convergence, respectively. Noting that infn(U
n)∗ is upper

semicontinuous and supn(U
n)∗ is lower semicontinuous, we have

U∗(t, x) = (inf
n
Un)∗(t, x) ≤ inf

n
(Un)∗(t, x), U∗(t, x) = (sup

n
Un)∗(t, x) ≥ sup

n
(Un)∗(t, x).

Therefore, U∗(T, x) ≤ infn(U
n)∗(T, x) = infn g

n(x) = g(x) and U∗(t, 0) ≤ infn(U
n)∗(t, 0) =

infn g
n(0) = g(0). Similarly, U∗(T, x) ≥ supn(Un)∗(T, x) = supn gn(x) = g(x) and U∗(t, 0) ≥

supn(Un)∗(t, 0) = supn gn(0) = g(0). Since U(T, x) = g(x) and U(t, 0) = g(0) by definition,

we conclude that U satisfies (4.10).

Remark 4.3. To the best of our knowledge, our method of deriving continuity up to the boundary,

which is based on the stochastic Perron’s method in [3], is new in the literature.

Lemmas 4.1 and 4.2 together lead to:

Theorem 4.4. Suppose σ is locally Hölder continuous on (0,∞) with exponent δ ∈ (0, 1]. For any

T > 0 and any continuous g : [0,∞) 7→ R in D̂ that is bounded from below, the stochastic solution

U , defined in (1.3), is a classical solution to (1.4) in D̂.

The main result of this section is the following characterization of the stochastic solution U . It

in particular generalizes [4, Theorem 2], as it requires less Hölder continuity of σ.

Theorem 4.5. Suppose σ is locally Hölder continuous on (0,∞) with exponent δ ∈ (0, 1]. Then,

(1.5) holds if and only if the stochastic solution U , defined in (1.3), is the unique classical solution

to (1.4) in D̂, for any T > 0 and any continuous g : [0,∞) 7→ R in D̂ that is bounded from below.

Proof. By Theorem 4.4, U(t, x) = Et,x[g(Xt,x
T )] is a classical solution to (1.4) in D̂, for any T > 0

and any continuous g : [0,∞) 7→ R in D̂ that is bounded from below. Then the necessity follows

immediately from Corollary 3.14. To prove the sufficiency, assume to the contrary that (1.5) is not

true. By Proposition 3.11, Xt,x must be a strict local martingale, and thus there exists T ∗ > 0

such that Et,x[Xt,x
T ∗ ] < x. Using Theorem 4.4 again, Et,x[Xt,x

T ∗ ] is a classical solution to (1.4) with

g(x) := x and T := T ∗. Then x and Et,x[Xt,x
T ∗ ] are two distinct classical solution to (1.4) with

g(x) := x and T := T ∗, a contradiction.

Remark 4.6. Concerning the stochastic representation of classical solutions, Theorem 4.5 above

and [16, Proposition 5.2] share similar spirit, yet under quite different scenarios. In [16], since the
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value function is the probability of explosion for a general diffusion, the authors focus on bounded

solutions to a Cauchy problem with a non-zero drift. Here, our main concern is pricing European

contingent claims under some risk-neutral measure. We therefore focus on unbounded solutions to

a Cauchy problem with a zero drift.

4.3 A Comparison Theorem without Linear Growth Condition on σ

A comparison theorem states that if a supersolution v is larger than a subsolution u at the

(parabolic) boundary, then v ≥ u on the entire domain. For such a theorem to hold, linear growth

condition on σ is a standard assumption, which ensures that the classical penalization method

works; see e.g. [23, p.76]. In the following, we will replace the linear growth condition on σ by the

more general condition (1.5). Our main contribution is the construction of a smooth function ψ(x)

in (4.12) below, which is tailor-made so that a penalization can still work under (1.5).

Proposition 4.7. Suppose σ is continuous and satisfies (1.5). Let u ∈ D̂ (resp. v ∈ D̂) be a

classical subsolution (resp. supersolution) to

−∂tw − 1

2
σ2(x)∂xxw = 0 on [0, T )× (0,∞).

If u(T, x) ≤ v(T, x) for all x ∈ (0,∞) and u(t, 0) ≤ v(t, 0) for all t ∈ [0, T ], then u ≤ v on

[0, T ]× [0,∞).

Proof. For λ > 0, define ũ := eλtu and ṽ := eλtv. Clearly, ũ and ṽ lie in D̂, and ũ (resp. ṽ) is a

classical subsolution (resp. supersolution) to

−∂tw + λw − 1

2
σ2(x)∂xxw = 0. (4.11)

Consider the function φ(t, x) := e−λtψ(x), where

ψ(x) :=




x if x ≤ 1,

x+
∫ x
1

(u−1)(x−u)
σ2(u) du if x > 1.

(4.12)

It can be checked by direct calculations that ψ is twice-differentiable on (0,∞), with ψ′′(x) equal

to either 0 when x ≤ 1, or x−1
σ2(x)

when x > 1. This, together with ψ(x) ≥ x by definition, implies

−∂tφ+ λφ− 1

2
σ2(x)∂xxφ = e−λt

(
2λψ(x)− 1

2
σ2(x)ψ′′(x)

)
≥ 0, for λ ≥ 1/4.

It follows that, by fixing λ ≥ 1/4, ṽǫ := ṽ + ǫφ is a supersolution to (4.11), for all ǫ > 0.

On the other hand, observe that (1.5) implies
∫∞
1

u−1
σ2(u)

du = ∞ (as a simple application of

L’Hôpital’s rule). We therefore have

lim
x→∞

ǫφ(t, x)

x
= lim

x→∞
ǫe−λt

(
1 +

∫ x

1

u− 1

σ2(u)
du

)
= ∞ for any ǫ > 0.

We then deduce from this and the linear growth condition on ũ and ṽ that

lim
x→∞

sup
[0,T ]

(ũ− ṽǫ)(t, x) = −∞. (4.13)
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Now, we assume that there exists some ǫ > 0 such that ũ > ṽǫ at some point in [0, T ]× [0,∞),

and will work toward a contradiction. In view of (4.13), and the boundary and terminal conditions

of u and v, there must exist some (t̄, x̄) ∈ [0, T ) × (0,∞) such that

0 < sup
[0,T ]×[0,∞)

(ũ− ṽǫ) = (ũ− ṽǫ)(t̄, x̄). (4.14)

It then follows from the first and second-order optimality conditions that

[∂tũ− ∂tṽǫ](t̄, x̄) ≤ 0, [∂xxũ− ∂xxṽǫ](t̄, x̄) ≤ 0.

Now, using the above inequalities and the fact that ũ (resp. ṽǫ) is a subsolution (resp. supersolution)

to (4.11), we obtain

λ(ũ− ṽǫ)(t̄, x̄) ≤ [∂tũ− ∂tṽǫ](t̄, x̄) +
1

2
σ2(x̄)[∂xxũ− ∂xxṽǫ](t̄, x̄) ≤ 0,

which contradicts (4.14).

Remark 4.8. The function ψ in (4.12) also appeared, in a slightly different form, in the proofs

of [4, Theorem 1] and [6, Theorem 1.6]. In both places, the function was used to prove certain

uniform integrability property related to the process Xt,x
· . Our contribution here is observing that

this function is also instrumental to establishing a comparison theorem.

By Theorems 2.1 and 4.5 and Proposition 4.7, we have the following:

Theorem 4.9. Suppose σ is locally Hölder continuous on (0,∞) with exponent δ ∈ (0, 1]. Then

the following are equivalent:

(i) (1.5) is satisfied.

(ii) X is a true martingale.

(iii) For any T > 0 and any continuous g : [0,∞) 7→ R in D̂ that is bounded form below, (1.4)

admits a unique classical solution in D̂.

(iv) For any T > 0 and any continuous g : [0,∞) 7→ R in D̂ that is bounded form below, a

comparison theorem for (1.4) holds among sub(super-)solutions in D̂.

Remark 4.10. While it is obvious that a comparison theorem implies the uniqueness of solutions,

the converse in general may not be true. These two concepts, however, are equivalent in our case,

as shown by “(iii) ⇔ (iv)” in Theorem 4.9.

Remark 4.11. In a stochastic volatility model, a relation similar to “(ii) ⇔ (iii)” in Theorem 4.9

has been established in [2, Theorems 2.8 and 2.9 (ii)], under additional regularity and growth

condition on the coefficients of the associated state dynamics.

5 Characterizing the Stochastic Solution without Smoothness

In this section, we will work under the assumption that σ is continuous, but may not be locally

Hölder continuous on (0,∞) with a fixed exponent δ ∈ (0, 1). Therefore we can not use Lemma 4.1

to show that the stochastic solution U(t, x) := Et,x[g(Xt,x
T )] is smooth and hence the characterization

for U provided in Theorem 4.5 is not applicable. Our goal is to find a new characterization for U

which relies on continuity of σ only.
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5.1 Discussion on Viscosity Characterization of U and Stochastic Perron’s Method

In view of the characterization of U in Theorem 4.4, it is natural to ask whether U can be charac-

terized as the unique viscosity solution to (1.4) when U may fail to be smooth.

To derive the interior viscosity solution property, some form of dynamic programming principle

is usually needed. Since (1.4) is a linear equation, the dynamic programming principle reduces to

the strong Markov property, which is inherent in Definition 3.8. Indeed, under the assumption that

σ is continuous, one may deduce from Definition 3.8 that U∗ (resp. U∗) is a viscosity subsolution

(resp. supersolution) to

−∂tu− 1

2
σ2(x)∂xxu = 0, (t, x) ∈ [0, T ) × (0,∞). (5.1)

This, together with Lemma 4.2, already shows that

U∗ is a viscosity subsolution to (5.1), with U∗(T, ·) = g(·) and U∗(·, 0) = g(0).

U∗ is a viscosity supersolution to (5.1), with U∗(T, ·) = g(·) and U∗(·, 0) = g(0).

Deriving a viscosity comparison theorem for (1.4) is then the final step for characterizing U as the

unique viscosity solution to (1.4).

Another interesting approach is stochastic Perron’s method introduced in [3]. The authors

discover that, when g is bounded, the function v−g (t, x) in (4.8) and v+g (t, x) := inf{u(t, x) : u ∈
U+
g } are well-defined, and satisfy the viscosity subsolution property and viscosity supersolution

property, respectively, for the equation (5.1); recall the notation in Subsection 4.2. By construction,

v−g ≤ Et,x[g(Xt,x
T )] ≤ v+g holds for any weak solution to (1.1). As a result, a viscosity comparison

theorem for (1.4) again characterizes U as the unique viscosity solution to (1.4). Note that this

approach does not even require a priori the uniqueness in distribution of weak solutions to (1.1).

While a viscosity comparison theorem can indeed be proved, we notice that it does not serve our

needs. To derive a viscosity comparison theorem, a local Lipschitz condition on σ is indispensable

(this is in contrast to deriving a comparison theorem for classical solutions); see e.g. [23, Section

4.4]. Under the local Lipschitz condition on σ and (1.5), one can establish a viscosity comparison

theorem by using the penalization in the proof of Proposition 4.7, a dedoubling variable technique

(see e.g. [23, p.78]), and Ishii’s lemma (see e.g. [23, Lemma 4.4.6 and Remark 4.4.9]). However, a

local Lipschitz condition on σ already implies that U is smooth (by Theorem 4.4), and we can thus

characterize U as the unique classical solution to (1.4) under (1.5), as in Theorem 4.5. Deriving a

viscosity comparison theorem is then superfluous. In view of this, we choose not to pursue viscosity

characterization any further.

5.2 Characterize U as a Limit of Smooth Stochastic Solutions

Assume that σ is a positive continuous function defined on (0,∞). We approximate σ by a sequence

{σn} of positive continuous functions such that

(i) σn is locally Hölder continuous on (0,∞) with some exponent δn ∈ (0, 1];

(ii) σn ↑ σ;

(iii) for any compact K ⊂ (0,∞), max
x∈K

{
1

σ2n(x)
− 1

σ2(x)

}
<

1

n
.

(5.2)
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Such an approximating sequence {σn} does exist. For example, by using [12, Theorem A], we

may take a sequence {fn} of piecewise polynomials defined on (0,∞) such that fn ↓ 1
σ2 and

maxx∈K

{
fn(x)− 1

σ2(x)

}
< 1

n for any compact set K ⊂ (0,∞). Then it can be checked that

σn := 1/
√
fn satisfies all the conditions in (5.2).

Let X(n),t,x denote the unique (in distribution) weak solution to (1.1), with the diffusion coef-

ficient σn. We have the following convergence result.

Lemma 5.1. Suppose σ is a positive continuous function defined on (0,∞). For any T > 0 and

(t, x) ∈ [0, T ]× [0,∞), X
(n),t,x
T → Xt,x

T in distribution.

Proof. Let Bt,x be a one-dimensional Brownian motion defined on some filtered probability space

(Ω,F , {Fs}s≥t,P), starting with Bt,x
t = x > 0. Let us extend the domain of σ (resp. σn) to R by

setting σ(x) = 0 (resp. σn(x) = 0) for all x ≤ 0. Define

Πs :=

∫ s

t

1

σ2(Bt,x
u )

du, Π(n)
s :=

∫ s

t

1

σ2n(B
t,x
u )

du, s ≥ t,

and consider

As := inf {r ≥ t : Πr ≥ s} , A(n)
s := inf{r ≥ t : Π(n)

r ≥ s}, s ≥ t;

A∞ := inf {r ≥ t : Πr = ∞} , A(n)
∞ := inf{r ≥ t : Π(n)

r = ∞}.
(5.3)

Define τ := inf{s ≥ t : Bt,x
s = 0}. Since local integrability of σ and σn holds on (0,∞), but fails

at x = 0, [17, Lemma 5.5.2] asserts that τ = A∞ = A
(n)
∞ P-a.s. Also, in view of the proof of

[17, Theorem 5.5.4], {Bt,x
As

}s≥t (resp. {Bt,x

A
(n)
s

}s≥t) is a weak solution to (1.1) (resp. (1.1) with the

diffusion coefficient σn) with I = (0,∞).

Since σn ↑ σ on (0,∞) and A
(n)
T ≤ A

(n)
∞ = τ P-a.s. for all n ∈ N, we deduce from (5.3) that

A
(n)
T ≤ A

(n+1)
T ≤ AT P-a.s. for all n ∈ N. This implies that the limit

A
(∞)
T := ↑ lim

n→∞
A

(n)
T ≤ AT P-a.s. (5.4)

We claim that A
(∞)
T = AT P-a.s. In the following, we deal with two different cases separately. For

simplicity, we will omit the ω-dependence in the random variables to be used in the sequel.

1. There exists N ∈ N such that A
(N)
T = τ . Since A

(n)
T ≤ A

(n)
∞ = τ for all n ∈ N and n 7→ A

(n)
T

is nondecreasing, we must have A
(n)
T = τ for all n ≥ N , and thus A

(∞)
T = τ . Recalling that

AT ≤ A∞ = τ and AT ≥ A
(∞)
T in (5.4), we conclude that AT = τ = A

(∞)
T .

2. A
(n)
T < τ for all n ∈ N. Then, we deduce from (5.3) that

T = Π
(n)

A
(n)
T

=

∫ A
(n)
T

t

1

σ2n(B
t,x
u )

du for all n ∈ N. (5.5)

Moreover, for each n ∈ N, the interval

Kn :=

[
min

u∈[t,A
(n)
T

]

Bt,x
u , max

u∈[t,A
(n)
T

]

Bt,x
u

]

21



is a compact subset of (0,∞). Thus, by condition (iii) in (5.2) (applying to Kn),

T =

∫ A
(n)
T

t

1

σ2n(B
t,x
u )

du ≤
∫ A

(n)
T

t

1

σ2(Bt,x
u )

du+
1

n
(A

(n)
T − t)

≤
∫ A

(∞)
T

t

1

σ2(Bt,x
u )

du+
1

n
(A

(∞)
T − t).

Since A
(∞)
T ≤ AT ≤ τ and τ is by definition finite P-a.s. (as a basic property of a Brownian

motions), letting n → ∞ in the above inequality gives T ≤
∫ A

(∞)
T

t
1

σ2(Bt,x
u )

du. Using AT ≤
A∞ = τ and (5.3) as in (5.5), we get T = ΠAT

=
∫ AT

t
1

σ2(Bt,x
u )

du. We therefore obtain

∫ AT

t

1

σ2(Bt,x
u )

du ≤ T ≤
∫ A

(∞)
T

t

1

σ2(Bt,x
u )

du,

which implies AT ≤ A
(∞)
T .

We conclude that AT = A
(∞)
T P-a.s., and thus Bt,x

A
(n)
T

→ Bt,x
AT

P-a.s. as n→ ∞. Let us now complete

the proof. Recall that {Bt,x
As

}s≥t (resp. {Bt,x

A
(n)
s

}s≥t) is a weak solution to (1.1) (resp. (1.1) with the

diffusion coefficient σn). Uniqueness in distribution of weak solutions imply that

Law(Xt,x
T ) = Law(Bt,x

AT
), Law(X

(n),t,x
T ) = Law(Bt,x

A
(n)
T

).

This, together with the almost surely convergence of Bt,x

A
(n)
T

to Bt,x
AT

, shows that X
(n),t,x
T converges

to Xt,x
T in distribution.

Theorem 5.2. Let σ be a positive continuous function defined on (0,∞), and {σn} be specified as

in (5.2). For any T > 0 and any continuous g : [0,∞) 7→ R in D̂ that is bounded from below, define

U(t, x) := Et,x[g(Xt,x
T )] and UM

n (t, x) := Et,x[g(X
(n),t,x
T ) ∧M ] for all n,M ∈ N. Then,

U(t, x) = lim
M→∞

lim
n→∞

UM
n (t, x).

Proof. The result follows immediately from Lemma 5.1 and the monotone convergence theorem.

Remark 5.3. If g is additionally bounded from above in Theorem 5.2, then we have

U(t, x) = lim
n→∞

Un(t, x).

Remark 5.4. Assume additionally that σ satisfies (1.5) in Theorem 5.2. Since σn ↑ σ, σn must

also satisfy (1.5). Then, thanks to the local Hölder continuity of σn, we see from Theorem 4.5 that

UM
n is the unique classical solution to (1.4) with σ and g replaced by σn and g ∧M respectively.

In other words, under (1.5), Theorem 5.2 characterizes the stochastic solution U to the Cauchy

problem (1.4) (which may not be smooth) as a limit of the unique classical solutions to some

approximating Cauchy problems.
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6 Summary of Results

For readers’ convenience, we summarize the main results of this paper in the following list, under

different regularity assumptions on σ.

(A) If σ satisfies (1.2), then the following are equivalent:

– X is a martingale;

– σ satisfies (1.5);

– for any T > 0 and g ∈ D̂, U(t, x) is the unique local stochastic solution to (1.4) in D̂.

(B) If σ satisfies (1.2) and is locally Hölder continuous with exponent δ ∈ (0, 1], then the following

are equivalent:

– σ satisfies (1.5);

– for any T > 0 and g ∈ D̂ bounded from below, U(t, x) is the unique classical solution to

(1.4) in D̂.

– for any T > 0 and g ∈ D̂ bounded from below, a comparison theorem for (1.4) holds in D̂.

(C) If σ satisfies (1.2) and (1.5), and is continuous , then U(t, x) can be characterized as a limit

of the unique classical solutions to some approximating Cauchy problems.
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A Consistent Extension of a Brownian Motion

In this appendix, we assume that X is a progressively measurable càdlàg stochastic process defined

on some probability space (Ω,F ,P, {Ft}t≥0) satisfying the usual condition. Given a stopping time

τ , we will use the notation

Xt∧τ− = lim
s↑(t∧τ)

Xs, t ≥ 0 and X·∧τ− = {Xt∧τ−}t≥0.

Lemma A.1. Suppose {τn}n∈N is an increasing sequence of stopping times such that X·∧τn is a.s.

continuous for all n ∈ N. Then, X·∧τ∞− is a.s. continuous, with τ∞ := limn→∞ τn.

Proof. Let An = {ω : X·∧τn is continuous} and A∞ = {ω : X·∧τ∞− is continuous}. By definition,

An ⊇ An+1 ⊇ A∞ for all n. Also, for any ω ∈ ⋂∞
n=1An, t 7→ Xt∧τn(ω) is continuous for all n. This

implies the continuity of t 7→ Xt∧τ∞−(ω), as demonstrated in the following three cases:

1. If t < τ∞, then there exists n̂ ∈ N such that t < τn̂. Consequently X·∧τ∞− = X·∧τn̂ in a

neighborhood of t. Hence, X∧τ∞− is continuous at t.

2. If τ∞ < t <∞, then X·∧τ∞− is continuous at t simply because it is a constant function around

t; specifically, Xr∧τ∞− = lims↑τ∞ Xs for all r > τ∞.
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3. If t = τ∞ < ∞, then X·∧τ∞− is left continuous at t by definition: Xt∧τ∞− = lims↑τ∞ Xs =

Xτ∞− = lims↑tXs∧τ∞−. Right continuity of X·∧τ∞− at t also holds, since X·∧τ∞− is a constant

function after t = τ∞, as explained in 2.

Thus, we conclude that
⋂∞

n=1An = A∞. Since P(An) = 1 for all n, we must have P(A∞) = 1.

Remark A.2. In Lemma A.1, if the condition “X·∧τn is a.s. continuous for all n ∈ N” is replaced

by “X·∧τn is a.s. non-explosive”, then in general one can not conclude that “X·∧τ∞− is a.s. non-

explosive”. A counter-example is X under Q∞ in the proof of Theorem 2.1.

Lemma A.3. Let W be a progressively measurable process on (Ω,F ,P, {Ft}t≥0). Suppose {τn}n∈N
is an increasing sequence of stopping times such that W·∧τn is a standard Brownian motion for all

n ∈ N. Then, W·∧τ∞− is a standard Brownian motion, with τ∞ := limn→∞ τn.

Proof. By Lemma A.1, W·∧τ∞− and W 2
·∧τ∞−− (· ∧ τ∞) are both a.s. continuous. For each n, W·∧τn

and W 2
·∧τn − (·∧ τn) are martingales, and thus W·∧τ∞− and W 2

·∧τ∞−− (·∧ τ∞) are local martingales.

Levy’s characterization theorem then ensures that W·∧τ∞− is a Brownian motion.

Lemma A.3 states that a Brownian motion consistently extended by a sequence of increasing

stopping times τn, with a limit τ∞, determines a Brownian motion on [0, τ∞); such an extension,

however, may not hold up to τ∞. In other words, in general we can not conclude that W·∧τ∞ is

a Brownian motion. To see this, let B be a standard Brownian motion and put τn := inf{t > 0 :

|Bt| ≥ n} ∧ (1 − 1
n) and B̄t := BtI{t<τ∞} for t ≥ 0. Then τn ↑ τ∞ = 1 a.s. and the process B̄

satisfies the condition in Lemma A.3. But, B̄·∧τ∞ has a discontinuity at τ∞:

lim
t↑τ∞

B̄t∧τ∞ = lim
t↑τ∞

Bt = B1 6= 0 = B̄τ∞∧τ∞ a.s.

Likewise, we can not generalize Lemmas A.1 in a similar fashion.

B Hölder Norms Used in Theorem 4.4

Given D ⊆ [0,∞) × Rn and f : D 7→ R, we set |f |0 := supD |f |. For each k ∈ N and δ ∈ (0, 1], by

writing X = (t, x) and Y = (s, y), we define the following Hölder (semi-)norms:

[f ]k+δ,D := sup
X 6=Y in D

∑

β+2j=k

|Dβ
xD

j
t f(X)−Dβ

xD
j
t f(Y )|

|X − Y |δ ,

〈f〉k+δ,D := sup
X 6=Y in D, x=y

∑

β+2j=k−1

|Dβ
xD

j
t f(X)−Dβ

xD
j
t f(Y )|

|t− s|δ+1
,

|f |k+δ,D :=
∑

β+2j≤k

|Dβ
xD

j
t f |0 + [f ]k+δ,D + 〈f〉k+δ,D.

We will denote by Hk+δ(D) the collection of functions f with |f |k+δ,D <∞.

Let ∂∗D denote the parabolic boundary of D. For each X = (t, x) ∈ D, define

d(X) := inf{|X − (t′, x′)| : x′ ∈ ∂∗D, t′ > t}.
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And we set d(X,Y ) := min{d(X), d(Y )} for all X,Y ∈ D. Then, we define the following weighted

Hölder (semi-)norms:

[f ]∗k+δ,D := sup
X 6=Y in D

∑

β+2j=k

d(X,Y )k+δ |Dβ
xD

j
t f(X)−Dβ

xD
j
t f(Y )|

|X − Y |δ ,

〈f〉∗k+δ,D := sup
X 6=Y in D, x=y

∑

β+2j=k−1

d(X,Y )k+δ |D
β
xD

j
t f(X)−Dβ

xD
j
t f(Y )|

|t− s|δ+1
,

|f |∗k+δ,D :=
∑

β+2j≤k

|Dβ
xD

j
t f |β+2j

0 + [f ]∗k+δ,D + 〈f〉∗k+δ,D.

We will denote by H∗
k+δ(D) the collection of functions f with |f |∗k+δ,D <∞.
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tingales continues. In Seminar on Probability, XIV (Paris, 1978/1979) (French). vol. 784 of

Lecture Notes in Math. Springer, Berlin, 53–61. 5

[2] Bayraktar, E., Kardaras, C. and Xing, H. (2012). Valuation equations for stochastic

volatility models. SIAM Journal on Financial Mathematics 3, 351–373. 2, 9, 12, 19
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