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Bayesian networks are widely considered as powerful tools for modeling risk assessment,

uncertainty, and decision making. They have been extensively employed to develop decision support

systems in variety of domains including medical diagnosis, risk assessment and management, human

cognition, industrial process and procurement, pavement and bridge management, and system

reliability. Bayesian networks are convenient graphical expressions for high dimensional probability

distributions which are used to represent complex relationships between a large number of random

variables. A Bayesian network is a directed acyclic graph consisting of nodes which represent

random variables and arrows which correspond to probabilistic dependencies between them.

The ability to recover Bayesian network structures from data is critical to enhance their

application in modeling real-world phenomena. Many research efforts have been done on this topic

to identify the specific network structure. However, most Bayesian network learning procedures

are based on the following two assumptions: (1) that the data are discrete or (2) that the data are

continuous and either follow a Gaussian distribution or are otherwise discretized before recovery.

Discretization of data in the continuous non-Gaussian case is often done in an ad hoc manner which

destroys the conditional relationships among variables– subsequent network recovery algorithms are

then unable to retrieve the correct network. Friedman and Goldszmidt [11] suggest an approach

based on the minimum description length principle that chooses a discretization which preserves

the information in the original data set, however it is one which is difficult, if not impossible, to

implement for even moderately sized networks. This thesis explores a structure of the minimum

description length developed and then provides an alternative efficient search strategy which allows

one to use the Friedman and Goldszmidt in practice.
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Chapter 1

INTRODUCTION

1.1 Introduction

Modeling real-world phenomena for decision making is often complex due to risk and uncer-

tainty. Artificial intelligence researchers typically use a knowledge-based approach while statisti-

cians traditionally employ a data-based approach towards obtaining this goal. Bayesian networks,

which can combine historical data and expert judgment, provide a vehicle to rigorously analyze

and quantify risk relevant to the decision. Bayesian networks modeling is widely consider as a

powerful technique for handling risk assessment, uncertainty, and decision making [10]. Bayesian

Networks have been extensively employed to develop decision support systems in variety of domains

including medical diagnosis, risk assessment and management, human cognition, industrial process

and procurement, pavement and bridge management, and system reliability.

Bayesian networks are convenient graphical expressions for high dimensional probability dis-

tributions, representing complex relationships between a large number of random variables(Pearl

[22]). A Bayesian network (BN) is a directed acyclic graph consisting of nodes which represent

random variables and arrows which correspond to probabilistic dependencies between them. As

described in Chapter 2, the “parent-child” structure encoded in the graph succinctly describes a

set of conditional independence assertions which allows one to distinguish between the idea

of correlation of random variables and the more subtle notion of direct dependence.

In the late 1980’s and early 1990’s, the popularity of Bayesian networks surged as their

usefulness in encoding uncertain expert knowledge in expert systems was realized and developed
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[15]. Specifically, they afford great flexibility for incorporating prior knowledge into data analysis.

Additionally, they are useful for handling incomplete data sets and allowing researchers to learn

about causal relationships between variables.

There has been a great deal of work done ([5], [8], [12], [13], [14], [16], [18], [19], [21]) on the

problem of recovering (learning) the structure of a generating network from data. The majority of

Bayesian network recovery methods studied in the literature to date apply to networks made up

of nodes representing discrete random variables, or, in the continuous case, the assumption is that

the random variables are Gaussian. For general continuous data, network recovery typically begins

by either first discretizing the data or proceeding as if the Gaussian assumption is correct. Often

([9], [17], [19], [26]) this discretization is performed in an ad hoc manner. Unfortunately, such a

non-rigorous approach is highly likely to destroy the precise conditional dependencies one is out

to recover. Friedman and Goldszmidt [11] suggest an approach based on minimum description

length principle that chooses a discretization which preserves the information in the original data

set. However, this approach is challenging, and in some cases impossible, to implement for even

moderately sized networks. In this thesis, we provide an extremely effective search strategy which

allows one to use the Friedman and Goldszmidt approach in practice.

1.2 Bayesian Networks

Probabilistic graphical models are graphs in which nodes represent random variables, and

arcs (lack of arcs) represent conditional dependence (independence) assumptions. A directed acyclic

graph (DAG) is a set of nodes and directed arcs which do not form a closed loop or cycle. Consider

the directed acyclic graph on five nodes shown in Figure 1.1.

Figure 1.1 indicates that node 1 is a parent of nodes 2 and 3 and nodes 2 and 3 are children

of node 1. In general, consider a DAG with n nodes. For i = 1, 2, . . . , n, let Πi denote the set of

parents of node i. For the graph in Figure 1.1, we have

Π1 = ∅, Π2 = {1}, Π3 = {1}, Π4 = {2, 3}, and Π5 = {4}.
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Figure 1.1: A Directed Acyclic Graph

1

2

3

4 5

A Bayesian network consists of a DAG and a set of conditional probability distributions

P (Xi|Πi), for i = 1, 2, . . . n along with the assumption that the joint probability density function

for all n nodes in the network is given by

p(x1, x2, . . . , xn) =
n∏

i=1

p(xi|Πi). (1.1)

where p(xi|Πi) is a specified conditional probability distribution for the random variable Xi given

the values of it parent random variables.

For example, if the DAG shown in Figure 1.1 represents a Bayesian network, then the joint

density p(x1, x2, x3, x4, x5) for the random variables X1,X2,X3,X4, and X5 is given by

p(x1, x2, x3, x4, x5) = p(x1) p(x2|x1) p(x3|x1) p(x4|x2, x3) p(x5|x4)

It should be noted that in this DAG that, once the value of X1 is fixed, the random variables

X2 and X3 are independent. That is, X2 and X3 are conditionally independent given the value of

X1. Similarly, the random variables X1 and X4 are independent once the value of X2 is given. For

a general Bayesian network, the following observations can be seen based on the assumption given

by (1.1):

• children of common parents are conditionally independent given their parents,

and more generally,

• each random variable Xi in a Bayesian network is independent of it’s non-descendants,

given it’s parents.
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To further illustrate this point, Figure 1.2 presents four DAGs containing the same edges,

ignoring directions. The four joint probability densities associated with these four DAGS are shown

below.

Figure 1.2: Four DAGs With the Same (Undirected) Edges

1

2 3

1

2 3

1

2 3

1

2 3

(a) (b) (c) (d)

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2) (a)

p(x1, x2, x3) = p(x3)p(x2|x3)p(x1|x2) (b)

p(x1, x2, x3) = p(x1)p(x3)p(x2|x1, x3) (c)

p(x1, x2, x3) = p(x2)p(x1|x2)p(x3|x2) (d)

(1.2)

From DAGs (a), (b), and (d) in (1.2) and Figure 1.2, one can observe that

• X1 and X2 are dependent,

• X2 and X3 are dependent,

• and therefore X1 and X3 are dependent,

• however X1 and X3 are independent given X2.

In contrast, DAG (c) is oriented such that

• X1 and X2 are dependent,

• X2 and X3 are dependent,

• but X1 and X3 are independent.
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A set of DAGs are said to be Markov equivalent if these DAGs share the same set of

conditional independence relationship among variables. For example, DAGs (a), (b), and (d) in

Figure 1.2 are Markov equivalent because these four graphs encode the same dependencies. It

should be noted that network recovery algorithms run on a fixed data set that can not distinguish

between Markov equivalent graphs. The distinction can be made if one has the ability to generate

or collect data where certain nodes are being held to fixed values. In this thesis, we will focus only

on graph recovery up to the Markov equivalence class.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents an overview of recovering of Bayesian

networks including multinomial networks, network scores, network recovery, and discretizing data.

In Chapter 3, we discuss the general principle of minimum description length (MDL) for Bayesian

networks and Friedman and Goldszmidt’s adaptation of MDL for the purpose of discretization

of data. In Chapter 4 we introduce an effective search strategy that can be used to optimize

the search for Friedman and Goldszmidt’s discretization score. Finally, Chapter 5 discusses the

findings, limitations and future work from this study.



Chapter 2

OVERVIEW OF RECOVERING BAYESIAN NETWORKS

2.1 Introduction

The recovery of Bayesian network structure from data is critical to enhance their applica-

tion in modeling real-world phenomena. Many research efforts have been done on this topic to

identify the specific network structure ([5],[8],[12], [13], [14],[16],[18],[19], and [21]). However, most

Bayesian network learning procedures are based on the following two assumptions: (1) that the

data are discrete or (2) that the data are continuous and either follow a Gaussian distribution or

are otherwise discretized before recovery.

For discrete data, the most common distributional assumption made about Bayesian networks

is that the nodes (random variables) have a multinomial distribution. The multinomial distribution

is an extension of the binomial distribution to the case of where there are more than two classes

into which the outcome of an experiment can fall.

For continuous data, a very popular assumption for Bayesian networks with nodes repre-

senting continuous variables is that all the random variables follow Gaussian distributions, and

the relationships between variables are linear. This form of network is usually called a Gaussian

belief network. Often, recovery tools specific to Gaussian belief networks are used in the case of

continuous data, even when their use is not warranted. Sometimes, ignoring the validity of cer-

tain assumptions in statistical models, one can still get reasonable results. However, Wang ([25])

points out that failure of testing both assumptions for multivariate normal distribution and lin-

ear dependent association between nodes can lead to an inappropriate use of the Gaussian belief
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network.

For continuous data that does not appear to be Gaussian, it is usual in the literature to

discretize data before recovery. However, in many cases the data is discretized in an ad hoc manner

which often destroys the conditional relationships among variables. As discretization of continuous

random variables involves reassigning all values in a particular interval to a single value, it is, in a

sense, a classification problem which may also be encountered in problems with originally discrete

data. This Chapter briefly summarizes formalities and previous work on (1) multinomial networks;

(2) network score; (3) network recovery; and (4) discretizing data.

2.2 Multinomial Networks

The most common distributional assumption made about Bayesian networks in the case that

the nodes represent discrete random variables is that these random variables have a multinomial

distribution. This section describes the connection between a Bayesian network and the multinomial

distribution.

2.2.1 The Multinomial Distribution

Consider an experiment with m independent trials and r possible outcomes on each trial. Let

θi, for i = 1, 2, . . . , r be the probability that any one trial results in outcome i. Define the random

variables X1,X2, . . . ,Xr where Xi is the number of trials that result in outcome i. Then the vector

(X1,X2, . . . ,Xr) has a multinomial distribution with parameters m, r, and θ = (θ1, θ2, . . . , θr).

The probability mass function for X = (X1,X2, . . . ,Xr) is given by

P (X1 = x1,X2 = x2, . . . ,Xr = xr) =
m!

x1!x2! · · · xr!
θx1
1 θx2

2 · · · θxr
r (2.1)

where
∑r

i=1 θi = 1 and x1, x2, . . . , xr are non-negative integers summing to m.
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2.2.2 The Connection between Bayesian Networks and Multinomial Distributions

Consider now a Bayesian network on n nodes. Let Xi, for i = 1, 2, . . . , n denote the random

variable associated with node i. We assume that Xi can take on ri values and, for simplicity, we will

assume that the ri values are the integers 1, 2, . . . , ri. We express the dependency of each variable

Xi on its parents as:

p(Xi = k|Πi) = θi,Πi,k

where Πi is a particular configuration of the parent variables of Xi. We will also use the reduced

subscript notation

θi,k = p(Xi = k)

if Πi = ∅.

If we enumerate the number of possible configurations of values taken on by the parent nodes

of Xi as 1, 2, . . . , qi where qi = |Πi|, then we may write

p(Xi = k|Πi = j) = θi,j,k (2.2)

for

i = 1, 2, . . . , n, j = 1, 2, . . . , qi, and k = 1, 2, . . . , ri.

Now consider data consisting of m observations of the n nodes of a network, and restrict

attention for a moment to the m values of the ith node. Consider any one configuration j of the

parent nodes to node i that exists in the data. Let mj be the number of times that the parents of

node i take on configuration j in the data set. Then within the mj values of Xi|Πi = j, we can

describe the number of observed 1’s, 2’s, and so on, up to the number of ri’s with a multinomial

distribution with parameters mj , ri, and (θi,j,1, θi,j,2, . . . , θi,j,ri).

In this way, using (2.1), we may write the likelihood for the entire m× n data set D as

LD(θ) =
∏

i,j,k

θ
nijk

ijk (2.3)
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where nijk is the total number of times in the sample that Xi is observed to have value k when it’s

parents take on configuration j. (The likelihood is any function proportional to the joint pdf for m

independent copies of (X1,X2, . . . ,Xn) considered as a function of the θ’s.)

2.2.3 Priors on Parameters

The terminology Bayesian network derives from the application of Bayes rule in order to

determine certain conditional probabilities. A study using Bayesian networks does not necessarily

imply a Bayesian modeling approach. However, in the case that one wishes to use Bayesian infer-

ential methods, it becomes necessary to assign prior distributions to the network parameters given

by θijk. Typically, for multinomial networks, one uses the conjugate prior given by the Dirichlet

distribution. That is, we will assume that the joint density for the θijk for a particular Bayesian

network BN , is given by

p(θ|BN) =
Γ(
∑

αijk)∏
αijk

∏
θ
αijk−1
ijk

for some fixed hyperparameters αijk > 0. Note that this is a high dimensional generalization of

the more familiar Beta distribution. It is a convenient way to assign values between 0 and 1 to

each θijk in a way such that
∑

k θijk = 1. It is called a conjugate prior for the multinomial

distribution because if the data given the θijk follow a multinomial distribution and our “prior”

belief about the θijk before observing the data is that they follow a Dirichlet distribution, then

the the posterior joint distribution of the θijk given the data (i.e. after we have observed the

data) is another (different parameter) Dirichlet distribution. This is a mathematical convenience

for Bayesian analysis.

With this Dirichlet prior, the probability, for any particular Bayesian network BN , of us
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seeing the data set D is

p(D|BN) =
∫ ∫

p(D|BN, θ) · p(θ|BN) dθ

=
∫ ∏n

i=1

∏q∗
i

j=1 θ
nijk

ijk

Γ(
∑ri

k=1
αijk)∏ri

k=1
Γ(αijk)

∏ri
k=1 θ

αijk−1
ijk dθ

=
∏n

i=1

∏q∗
i

j=1
Γ(
∑ri

k=1
αijk)

Γ(
∑ri

k=1
(αijk+nijk))

∏ri
k=1

Γ(αijk+nijk)
Γ(αijk)

(2.4)

where q∗i is the number of distinct configurations of parents of node i observed in the data. This is

as opposed to qi which is the total number of possible configurations of parents of node i, though

q∗i may be replaced by qi since the lack of parent configuration j in the data will be reflected by

nijk taking on the value 0.

2.3 Network Scores

There are many ways to recover networks from data. Indeed, we may not even want to think

in terms of “one best network” and instead use a model averaging approach or one that constructs

a best network by combining best “features” (for example edges) from several networks. In this

paper, we will restrict our attention to simple methods for recovering a single “best” network

as measured by various standard likelihood and information criterion indices. We will assume a

manageable number of networks to score. Of course, the number of possible networks increases

superexponentially in the number of nodes– the results of this paper might then be applied using

Monte Carlo search strategies.

2.3.1 Log-Likelihood

Givenm n-tuples of data points, u1, u2, . . . , um, the likelihood function for a Bayesian network

is given by

L(θ) =
m∏

i=1

p(ui) =
∏

i,j,k

θ
nijk

ijk ,

where nijk is the total number of times in the sample that Xi is observed to have value k when it’s

parents take on configuration j.
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Given m n-tuples of data points, we compute the log-likelihood for every possible graph. For

each DAG, we have a different set of relevant θ parameters. Given a particular DAG, we estimate

each θ with its maximum likelihood estimator

θ̂ijk =
# observations with Xi = k and Πi = j

# observations with Πi = j
,

and then we report the log-likelihood

ln(θ̂) =
∑

i,j,k

nijk ln(θ̂ijk).

In the event that there are no observations where Πi = j, we set θ̂ijk = 1. However, it is important

to note that we can always increase the likelihood by including additional θ parameters. Therefore,

we will observe the greatest likelihoods (“most likely models”) to coincide with DAGs with a

maximal number of edges. Thus, the log-likelihood alone is not useful for recovering networks.

However, it is the building block for other scoring criteria which generally include penalties for

overparameterized models. The two most common penalized likelihood statistics are given by the

following information criteria.

2.3.2 Akaike’s Information Criterion (AIC)

Akaike’s Information Criterion (AIC) is essentially a simple transformation of the above

defined likelihood with a term included that penalizes for overparameterization. In the most general

form, the AIC is defined by:

AIC = −2 lnL+ 2 · (#parameters).

Clearly, the goal is to minimize the AIC to ensure a good fitting model in the sense of maximizing

the log-likelihood while penalizing for having too many parameters.

2.3.3 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) is defined by

BIC = −2 lnLD(θ̂) + (# parameters) · ln(m),
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where m is, as before, the sample size. As with the AIC, the goal is to minimize the BIC.

Both the AIC and BIC have rigorous justifications, from both Bayesian and frequentist points

of view. AIC was derived from information theory though it can be though of as Bayesian if one

uses a clever choice of prior. On the other hand BIC, originally derived through Bayesian statistics

as a measure of the Bayes factor, can also be derived as a non-Bayesian result. For more information

on these widely used scoring criteria, we refer the interested reader to [1],[2], [3], and [4] (AIC),

and [20] and [24] (BIC). To make some broad generalizations, though we have experienced much

success with the AIC, it can often overfit the model in terms of number of parameters. BIC, on

the other hand, tends to overpenalize, or underfit the model.

2.3.4 Minimum Description Length

As an alternative to AIC and BIC, the minimum description length principle (MDL principle)

states that the best model is the one which allows for the shortest description, in the sense of

encoding, of the data and model itself. With its origins in computer science and information

theory, “description length” is the number of bits required to store such an encoding. Unlike

AIC and BIC, the concept of minimum description length does not seem to be a familiar one to

statisticians and mathematicians. Chapters 3 and 4 present the general principle of using MDL

and an efficient search strategy for aggregation and discretization of Bayesian networks in detail.

2.4 Network Recovery

In this section we illustrate recovery of a Bayesian network on a simple three node example.

In this case we are able to easily evaluate the AIC and BIC scores for all possible DAGs. Since

the number of possible DAGs increases super-exponentially as the number of nodes increases (see

Table 2.1), evaluating the scoring criteria for every DAG can quickly become overwhelming. In

these cases, it may become necessary to implement network space search methods. Examples of

search methods are the greedy hill-climbing, stochastic hill climbing, simulated annealing, and

Markov Chain Monte Carlo (MCMC).
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Table 2.1: Number of Nodes Versus Number of DAGs

3 nodes 25 dags

4 nodes 543 dags

5 nodes 29,281 dags

6 nodes 3,781,503 dags

7 nodes 1,138,779,265 dags

8 nodes 783,702,329,343 dags

Given a three node network with three random variables our goal is to recover the arrows

(edges) that describe their joint probability distribution. The list of all 25 DAGs corresponding to

3 node networks can be found in Table 2.2 and we will refer to these DAGs as they are numbered

here throughout this thesis.

We will assume that the data associated with each node is multinomial and they take on the

values 1,2,3,4,5,6. In our previously used notation, this means r1=r2=r3=6. In order to simulate

data from network 8, Table 2.2 we need to specify the following probabilities.

θ1,1 = P (X1 = 1), · · · θ1,5 = P (X1 = 5)

θ2,1,1 = P (X2 = 1|X1 = 1), · · · θ2,1,5 = P (X2 = 5|X1 = 1)

θ2,2,1 = P (X2 = 1|X1 = 2), · · · θ2,2,5 = P (X2 = 5|X1 = 2)

θ2,3,1 = P (X2 = 1|X1 = 3), · · · θ2,3,5 = P (X2 = 5|X1 = 3)

θ3,1,1 = P (X3 = 1|X1 = 1), · · · θ3,1,5 = P (X3 = 5|X1 = 1)

θ3,2,1 = P (X3 = 1|X1 = 2), · · · θ3,2,5 = P (X3 = 5|X1 = 2)

θ3,3,1 = P (X3 = 1|X1 = 3), · · · θ3,3,5 = P (X3 = 5|X1 = 3)

... · · ·
...

(Note that θ1,6 = 1−
∑5

i=1 θ1,i and θi,j,6 = 1−
∑5

k=1 θi,j,k for i ∈ {2, 3, 4, 5, 6} and j ∈ {1, 2, 3, 4, 5, 6}.)

For convenience, values for these probabilities were simulated from Dirichlet distributions

with uniform hyperparameters on the interval [0, 5].

We simulated (X1,X2,X3) by assigning values to X1 and then assigning values to X2 and
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Table 2.2: Directed Acyclic Graphs on Three Nodes

1 2 3 4 5

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

6 7 8 9 10

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

11 12 13 14 15

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

16 17 18 19 20

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

21 22 23 24 25

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

X3 given X1 according to the probabilities above. For this specific example we generated 100,000

values. Given this list of data, we used the AIC and BIC scoring mechanisms to select network 8

out of the 25 possible DAGs in Table 2.2. As mentioned in Chapter 1, AIC and BIC will not be

able to distinguish between networks that are in the same Markov equivalent class, so if a data set

scored by AIC and BIC recovers a network in the same Markov class it is considered successful.

The Markov classes for the 25 DAGs listed in Table 2.2 are: {1}, {2,3}, {4,5}, {6,7}, {8,9,10},

{11,12,13}, {14}, {15}), {16,17,18}, {19}, {20,21,22,23,24,25}. Table 2.3 shows the AIC and BIC
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scores for all 25 DAGs and a successful recovery of DAG 8.

Table 2.3: AIC and BIC Recovery

Graph AIC BIC
Number (n)

1 1040886.085 1041057.317

2 1001501.922 1001958.543

3 1001501.961 1001958.543

4 991255.256 991711.879

5 991255.259 991711.879

6 1036182.434 1036639.054

7 1036182.434 1036639.054

8 951871.096 952613.104

9 951871.096 952613.104

10 951871.096 952613.104

11 996798.271 997540.279

12 996798.271 997540.279

13 996798.271 997540.279

14 991435.745 936604.692

15 986551.608 987293.616

16 986551.608 987293.616

17 986551.608 987293.616

18 956755.233 958924.180

19 952051.582 954505.917

20 952051.582 954505.917

21 952051.582 954505.917

22 952051.582 954505.917

23 952051.582 954505.917

24 952051.582 954505.917

25 952051.582 954505.917

2.5 Discretizing Data

The objective of discretizing data in the context of Bayesian networks is to force continuous

data into the multinominal model. This process involves reassigning all values in a particular

interval to a single value. To illustrate the discretizing data process, we spend a significant portion

of this thesis discussing the aggregation of values in an already discrete data set to a smaller number

of values. We will still refer to this “discretization of discrete data.” as discretization.
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2.5.1 Discretizing Discrete Data

To illustrate the concern in discretizing already discrete data consider the DAG in Figure

2.1.

Figure 2.1: A Three Node DAG

1

2 3

Now consider the discretization defined for i = 1, 2, 3, let

Yi =





1 , if Xi ∈ {1, 2}

2 , if Xi = 3.

(2.5)

Our goal is to now show that the conditional independence of nodes 2 and 3 given node 1 is not

preserved. From above we have:

P (Y2 = 1, Y3 = 1|Y1 = 1) = P (X2 ∈ {1, 2},X3 ∈ {1, 2}|X1 ∈ {1, 2})

= P (X1∈{1,2},X2∈{1,2},X3∈{1,2})
P (X1∈{1,2})

= P (X2∈{1,2},X3∈{1,2}|X1=1)P (X1=1)+P (X2∈{1,2},X3∈{1,2}|X1=2)P (X1=2)
P (X1∈{1,2})

.

Since X2 and X3 are conditionally independent given X1, we can factor the numerator to get

P (Y2 = 1, Y3 = 1|Y1 = 1) = P (X2∈{1,2}|X1=1)P (X3∈{1,2}|X1=1)P (X1=1)
P (X1∈{1,2})

+P (X2∈{1,2}|X1=2)P (X3∈{1,2}|X1=2)P (X1=2)
P (X1∈{1,2})

Similarly one can show that:

P (Y2 = 1|Y1 = 1) =
P (X2 ∈ {1, 2}|X1 = 1)P (X1 = 1) + P (X2 ∈ {1, 2}|X1 = 2)P (X1 = 2)

P (X1 = 1) + P (X1 = 2)
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and

P (Y3 = 1|Y1 = 1) =
P (X3 ∈ {1, 2}|X1 = 1)P (X1 = 1) + P (X3 ∈ {1, 2}|X1 = 2)P (X1 = 2)

P (X1 = 1) + P (X1 = 2)

Combining the equalities above we see that:

P (Y2 = 1, Y3 = 1|Y1 = 1) 6= P (Y2 = 1|Y1 = 1) · P (Y3 = 1|Y1 = 1) (2.6)

Thus, nodes 2 and 3 are not conditionally independent given node 1.

2.5.2 Discretizing Continuous Data

An example of ad hoc discretization of continuous data can be found in [19]. In this thesis,

the authors had simulated time series data for several nodes similar to that depicted in Figure 2.2.

There was a fairly obvious relationship between the random variables X1 and X2 in a “high/low

sense”, but once high or low, each random variable was then, independently, augmented by Gaussian

noise.

Figure 2.2: An Example of Loss of Conditional Independence
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The discretizations used divided up the data (the y-axis) into the dominant regimes of low,

middle, and high range values (assigned as 1’s, 2’s, and 3’s ) as depicted by the breaks determined
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by the horizontal lines in Figure 2.2. However, the independence of the noise components were

completely lost and the resulting data appeared to have completely deterministic relationships.

For example, every instance of X1 as 1 was matched by an instance of X2 as −1. This sort of

overly coarse discretization, resulting in a loss of information about dependence or conditional

independence, appears typical among practitioners in the literature.



Chapter 3

MINIMUM DESCRIPTION LENGTH FOR BAYESIAN NETWORK

3.1 Introduction

Arguably, the point of statistical modeling is to find regularities in an observed data set.

Discovered regularities allow the modeler to be able to describe the data more succinctly. The

minimum description length (MDL) principle, introduced in 1978 by Jorma Rissanen [23], is a model

selection technique that chooses, as the best model, the one that permits the shortest encoding of

both the model and the observed data.

In this section, we describe how Friedman and Goldszmidt [11] define a description length that

can be used for network recovery from discrete data. It is the approximate length of storage space,

measured in bits, for the binary representation of the DAG (network structure), the parameters

(the θijk) that, together with the DAG, define a Bayesian network, and the data itself. We will see,

in the end, that it is simply another penalized likelihood approach.

In what follows, we repeatedly use the fact that an integer k can be encoded in approximately

⌈log2 k⌉ bits. For example, the decimal value 9 becomes, in binary, the ⌈log2 9⌉ = 4 bit number

1001. Throughout this thesis, we will use log to denote the base 2 logarithm, though, in the end

the base is unimportant for the comparisons we will make.

3.2 Description Length for Bayesian Networks

Friedman and Goldszmidt [11] suggest an approach based on the minimum description

length principle that chooses a discretization which preserves the information in the original data
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set. Description length, or the “minimum description length (MDL) score”, for a Bayesian network

is the number of bits required to encode the network, including (1) the DAG, (2) the variables,

and (3) the parameters, and to encode the data. In this Section, we follow the construction of

Friedman and Goldszmidt [11] to derive the MDL score.

3.2.1 Encoding the Network

Encoding Variables

We need to store the number of variables and the number of possible values taken on by each

variable. We assume that Xi, can take on ||Xi|| possible values, and that they are integers ranging

from 1 to ||Xi||. (For example, if X1 can take on values in {2, 5, 11}, we would relabel the values

as 1, 2, and 3.)

The approximate number of bits needed to encode the number of nodes/variables n, and the

number of possible values taken on by each of those variables is

log n+
n∑

i=1

log ||Xi||. (3.1)

Encoding DAG

In order to completely describe the network structure, we must also include the number of

parents for each node and the actual list of parents for each node. As a simplification, since the

number of parents of node i, which is denote by |Πi|, is always less than n, we can, conservatively,

reserve log n bits to encode |Πi|. Doing this for each node, we add

n∑

i=1

log n = n log n (3.2)

to our network description length.

For the actual list of parents, since the maximum value in the list of indices is n, we will use

the conservative value of log n bits to encode each index. For node i, we must encode |Πi| different

indices, each using a length of log n bits of space. So, in total, to encode all parent lists, we will use

n∑

i=1

|Πi| · log n (3.3)
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bits.

In total, we use

log n+
n∑

i=1

log ||Xi||+
n∑

i=1

(1 + |Πi|) · log n (3.4)

bits to encode the DAG structure.

Encoding Parameters

The Bayesian network consists of a DAG together with a collection of parameters θijk =

P (Xi = k|Πi = j). Since
∑

k θijk = 1, we only need to encode ||Πi|| · (||Xi|| − 1) parameters for

node i. However, the parameters are not integer valued. In our case, for network recovery, we will

actually be storing/encoding parameters that have been estimated from our m n-dimensional data

points. Friedman and Goldszmidt [11] indicate that the “usual choice in the literature” is to use

1
2 logm bits per parameter. Thus, we will use

1

2
logm ·

n∑

i=1

||Πi|| · (||Xi|| − 1) (3.5)

bits to encode the estimated network parameters.

In summary, the total description length (and contribution to the MDL score) for the net-

work is

D̃Lnet = log n+
∑n

i=1 log ||Xi||+
∑n

i=1(1 + |Πi|) log n+ 1
2 logm

∑n
i=1 ||Πi||(||Xi|| − 1)

= log n+
∑n

i=1 (log ||Xi||+ (1 + |Πi|) log n) +
1
2 logm

∑n
i=1 ||Πi||(||Xi|| − 1).

Since we are trying to infer the best connecting arrows for a graph on n node, we presumably

already know the number of nodes and would not be encoding it. Thus, we drop the ⌈log n⌉ term

and define the network description length as

DLnet =
n∑

i=1

log ||Xi||+
n∑

i=1

(1 + |Πi|) · log n+
1

2
logm ·

n∑

i=1

||Πi|| · (||Xi|| − 1). (3.6)

Note that this is not explicitly dependent on the θ parameters.
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3.2.2 Encoding Data

Consider the string of digits 2213 stored, in binary as 1010111. (The binary representations

of 1, 2, and 3 are 1, 10, and 11, respectively.) Without separators, the binary string 1010111 can

not be decoded near the end. The 111 maybe be, in decimal, three 1’s, a 1 followed by a 3, or a

3 followed by a 1. “Prefix codes” avoid this problem by encoding the digits with zeros and ones

in a way so that no encoded digit is a prefix of any other encoded digit. Further consideration

can be made to ensure the code is not only a prefix code, but one that results in the maximum

compression of the data by assigning, to the original decimal digits, binary codes of lengths inversely

proportional to the frequencies with which they appear in the original data.

In the context of Bayesian networks, we wish to encode the values in the (m×n)-dimensional

data set with code lengths that are inversely proportional to the frequencies (equivalently, estimated

probabilities) with which they appear in the data. Friedman and Goldszmidt [11] use Shannon

coding [6] which is not optimal in terms of compression, but which encodes each n-dimensional

data point ~x = (x1, x2, . . . , xn) using approximately − log p(~x) bits. Thus, the entire data set,

consisting of m such vectors is encoded in approximately

DLdata = −
m∑

i=1

log p(~xi) (3.7)

bits. This is desirable from a modeling standpoint since it corresponds to the familiar log-likelihood

commonly used in statistical inference.

Summing (3.6) and (3.7), we define the description length for a Bayesian network as

MDL = DLnet +DLdata.

Or,

DL =
n∑

i=1

log ||Xi||+
n∑

i=1

(1 + |Πi|) · log n+
1

2
logm ·

n∑

i=1

||Πi|| · (||Xi|| − 1)−
m∑

i=1

log p(~xi). (3.8)

This score is similar to the AIC and BIC scores in that it is also a negative log-likelihood

plus a term (DLnet) that penalizes for the number of parameters.
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Given discrete data and a collection of possible Bayesian networks, the network chosen by the

MDL principle is the one that minimizes (3.8). In light of the form of DLdata, we see that this is

simply a penalized log-likelihood scoring metric, similar to the AIC and BIC discussed in Chapter

2. We now illustrate the performance of all three for a three node network. The list of all 25 DAGs

corresponding to 3 node networks can be found in Table 2.2 and we will refer to these DAGs as

they are numbered here. We fixed parameters θijk for DAG 8 in Table 2.2 shown in Chapter 2 and

simulated 100, 000 values of (X1,X2,X3). (Each Xi was assumed to take on values in {1, 2, . . . , 6}.)

Results are shown in Table 3.1 along with the previously computed values of AIC and BIC.

The AIC, BIC, and MDL scores all recovered the correct network “up to Markov equivalence”.

Recovering the specific graph within a Markov equivalence class requires experimental as opposed

to simply observed data and is not the subject of this paper.

3.3 Minimum Description Length for Discretization

A discretization of data for the random variable Xi, represented by node i, is a mapping from

the range of values in the data set to the set {1, 2, . . . , ki} for some ki ≥ 1. It can be described by

ordering the distinct values observed for Xi and inserting up to ki − 1 “thresholds”. For example

0.38 0.42 0.53 0.71︸ ︷︷ ︸
map to 1

| 1.37 1.94 2.10︸ ︷︷ ︸
map to 2

| 5.38 7.11︸ ︷︷ ︸
map to 3

. (3.9)

For simplicity, we will refer to node i and the random variable Xi interchangeably. Also, for

simplicity, we will assume at this point that node i is the only continuous one in the network and

that the others are discrete or have already gone through a discretization process. Furthermore, we

assume that Xi takes on mi distinct values in the data set with m n-dimensional points. (Clearly

mi ≤ m with equality in the case of truly continuous data.) The discretized version of Xi will be

denoted by X∗
i and we will use ki to denote the number of values taken on by X∗

i .

Friedman and Goldszmidt augment the MDL score with description lengths for

• the discretization rule which consists of thresholds for mapping data to {1, 2, . . . , k},
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Table 3.1: AIC, BIC and MDL Recovery

Graph AIC BIC MDL
Number (n)

1 1040886.085 1041057.317 520443.714

2 1001501.922 1001958.543 500885.425

3 1001501.961 1001958.543 500885.425

4 991255.256 991711.879 495762.093

5 991255.259 991711.879 495762.093

6 1036182.434 1036639.054 518225.681

7 1036182.434 1036639.054 518225.681

8 951871.096 952613.104 476213.804

9 951871.096 952613.104 476213.804

10 951871.096 952613.104 476213.804

11 996798.271 997540.279 498677.392

12 996798.271 997540.279 498677.392

13 996798.271 997540.279 498677.392

14 991435.745 936604.692 496536.904

15 986551.608 987293.616 493554.060

16 986551.608 987293.616 493554.060

17 986551.608 987293.616 493554.060

18 956755.233 958924.180 479196.648

19 952051.582 954505.917 476988.615

20 952051.582 954505.917 476988.615

21 952051.582 954505.917 476988.615

22 952051.582 954505.917 476988.615

23 952051.582 954505.917 476988.615

24 952051.582 954505.917 476988.615

25 952051.582 954505.917 476988.615

• the description of the discretized data, and

• the description of the original data set based on the discretized data set.

For a fixed DAG and a fixed threshold assignment, we proceed as follows.

As before, we assume that we have m observations of the n-dimensional (X1,X2, . . . ,Xn). Let mi

be the number of distinct values taken on by Xi in the data set. Note that mi ≤ m, with equality

possible only for truly continuous data. Define X∗
i as the discretized version of Xi. To discretize to

ki ≤ mi values, we need to choose ki−1 thresholds to put in mi−1 spaces between ordered values.
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There are




mi − 1

ki − 1


 threshold configurations to consider. Since we will not know in advance

how many values we should have in the discretized data set, we need to consider everything from

ki = 1, which corresponds to mapping all values for Xi in the data set to the single value of 1, to

ki = mi, which corresponds to no discretization at all. In total, there are




mi − 1

0


+




mi − 1

1


+ . . .




mi − 1

mi − 1


 = 2mi−1

discretizations to consider.

Friedman and Goldszmidt [11] define a description length score for a network with Xi dis-

cretized into a particular configuration of ki thresholds using essentially four terms. These terms in-

cludeDLnet andDLdata, previously described in (3.6) and (3.7), computed now after discretization–

we will call these terms DL∗
net and DL∗

data. Also included are terms that encode the index denot-

ing a particular discretization policy and description length for information needed to recover the

original data from the discretized data.

3.3.1 Encoding the Discretization Policy

For fixed mi and ki, there are




mi − 1

ki − 1


 different possible configurations for thresholds.

Assume we have labeled them from 1 to




mi − 1

ki − 1


. Storing the index for a particular policy will

take at most



log




mi − 1

ki − 1






bits. Friedman and Goldszmidt use a conservative upper bound

based on the inequality 


n

k


 ≤ 2nH(k/n),

where

H(p) := −p log p− (1− p) log(1− p),



26

and conservatively reserve

DLDP = (mi − 1)H

(
ki − 1

mi − 1

)
(3.10)

to encode the discretization policy. (In practice, we define H(0) = H(1) = 0.)

3.3.2 Encoding Recovery of Original Data

Consider again the example of 9 (mi = 9) distinct values for Xi given by (3.9) from a

data set with m ≥ mi values. Every time we assign a discretized value to an original value, we

should store the original value for recovery. Instead, however, we will store the Shannon binary

code for the original value using estimated conditional probabilities based on the entire data set.

For example, the value 2.10 might appear in the entire data set one-fourth of the time. That is,

P̂ (Xi = 2.10) = 1/4. Among the instances of 1.37, 1.94, and 2.10, it might appear half of the time.

That is, P̂ (Xi = 2.10|X∗
i = 2). Given a discretized value of 2, we will encode the original value

using approximately − log P̂ (Xi|X
∗
i = 2) bits. In total, for recovering original data from discretized

data, we add

DLrec = −
m∑

i=1

log P̂ (Xi|X
∗
i ) (3.11)

to the description length.

In summary, Friedman and Goldszmidt [11] define the description length discretization

score as

DL∗ = (mi − 1)H

(
ki − 1

mi − 1

)
+DL∗

net +DL∗
data +DLrec. (3.12)

Given a data set and a particular network structure, one scores various discretization map-

pings for Xi and chooses the discretization that minimizes (3.12). For a given network, the score

in (3.12) will change over discretizations only in terms directly linked to the ith node. Thus, as

Friedman and Goldszmidt point out, we only need to consider the “local description length score”
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defined, by picking out relevant terms, as

DLlocal = (mi − 1)H
(

ki−1
mi−1

)
+ log ki

+1
2 logm

[
||Πi||(ki − 1) +

∑
j:Xi∈Πj

||Π∗
j ||(||Xj || − 1)

]

−m
[
Î(X∗

i ,Πi) +
∑

j:Xi∈Πj
Î(Xj ,Π

∗
j )
]
.

(3.13)

Here, Π∗
j is a the set of parents for node j, denoted with an asterisk since it includes the discretized

X∗
i , and,

Î( ~X, ~Y ) =
∑

~x,~y

P̂ ( ~X = ~x, ~Y = ~y) · log

(
P̂ ( ~X = ~x, ~Y = ~y)

P̂ ( ~X = ~x)P̂ (~Y = ~y)

)
(3.14)

is the estimated mutual information between random vectors ~X and ~Y .



Chapter 4

A DISCRETIZATION SEARCH STRATEGY FOR BAYESIAN NETWORKS

4.1 Introduction

Friedman and Goldszmidt [11] have developed a method for discretization of continuous data

for Bayesian networks which is based on the minimum description length principle. However, Com-

putation of a single value of (3.13), which is based on network structure through the information

terms, can be quite time consuming. For even moderately sized mi, computation of (3.13) repeat-

edly to check all 2mi−1 discretization policies can be prohibitive, and when multiple/all nodes need

to be discretized, computation of (3.13) becomes almost impossible. Friedman and Goldszmidt [11]

give some further computational simplifications and suggest a greedy search routine.

In this Chapter, we explore a structure of the minimum description length developed by

Friedman and Goldszmidt [11] and then provide an alternative efficient search strategy for the

smallest DLlocal score. We assert that, for a single node discretization, one need only check mi

values of DLlocal as opposed to 2mi−1. Multiple nodes can then be cycled for discretization just as

Friedman and Goldszmidt have suggested.

4.2 Searching for Discretizations

A discretization of Xi involves putting thresholds between values in the data set. In the case

of mi ≤ m distinct values, there are



mi − 1

0


+




mi − 1

1


+ . . .




mi − 1

mi − 1


 = 2mi−1
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different discretizations to consider. Clearly, this number can get quite large for large data sets

with truly continuous (mi = m) data points. We now illustrate the enumeration of discretizations

in a toy case of categorization (“discretizing discrete data”) where they can be explicitly listed. We

choose a node with 6 distinct values (mi = 6). Based on Section 3.3 in Chapter 3, we know that

there are 


mi − 1

ki − 1




discretization policies that result in ki categories. The total number of possible discretizations is

25 = 32.

For notational simplicity, we assume, for the remainder of this paper, that the node to be dis-

cretized is labeled as node 1. Also, as we are comparing values of DLlocal for various discretizations

of X1, we will drop all asterisk superscript notation, as it is understood that we are considering

discretized values.

4.2.1 Single Threshold Top-Down Search Strategy

Let DLlocal(0) be (3.13) with all m1 − 1 thresholds in place. For j = 1, 2, . . . ,m1 − 1, let

DLlocal(−j) be (3.13) with all thresholds except for the jth threshold.

In order to minimize DLlocal over all 2
m1−1 discretization policies for X1, make compar-

isons of DLlocal(0) with DLlocal(−j) for j = 1, 2, . . . ,m1−1. IfDLlocal(−j) ≤ DLlocal(0),

remove the jth threshold.

We first consider the effectiveness of this search strategy in the very ideal situation where

we augment given discrete data by introducing superfluous values for node 1 in a larger discrete

set. For example, we might replace values of 5 in the original data set with values in {5, 6, 7} with

some arbitrary probabilities, whereupon we hope that our search strategy will minimize DLlocal

and that the configuration of thresholds that does such will correctly map values in {5, 6, 7} back

to the original value of 5. We will prove, in this case, that the “single threshold top-down” search
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strategy will find the discretization policy that minimizes DLlocal among all 2m1−1 discretizations

for a large enough sample size m.

Indeed, m, m1, ||Π1||, and ||Xj || are constant, and 0 ≤ H(p) ≤ 1. Note that

(m1 − 1)H

(
k1 − 1

m1 − 1

)
+ log k1 +

1

2
logm


||Π1||(k1 − 1) +

∑

j:X1∈Πj

||Πj ||(||Xj || − 1)


 (4.1)

will be constant over any discretization policy for X1 with a fixed number of thresholds. In par-

ticular, when comparing all possible single threshold removals, starting with any fixed number of

thresholds, we can restrict our attention to maximizing

Î(X1,Π1) +
∑

j:X1∈Πj

Î(Xj ,Πj). (4.2)

In the next Section, we consider what our search strategy does to (4.2) in the absence of (4.1) in

an ideal situation where there is a “correct” discretization. We will see that it maximizes (4.2) and

that it does so while leaving a minimal number of thresholds. In Section 4.2.4, we will consider

(4.1) and conclude that we are indeed minimizing DLlocal. We will also see that it finds the correct

discretization.

4.2.2 A Closer look at Information Terms in an Ideal Situation

As the notation to follow gets a bit cumbersome, we illustrate most claims in this Section

and the next with a concrete example. Consider a two-node network where node 1 is a parent to

node 2, and assume that that both nodes take on values in {1, 2, 3}. From m data points, we can

produce estimates

p̂(i, j) := P̂ (X1 = i,X2 = j)

p̂1(i) := P̂ (X1 = i), and

p̂2(j) := P̂ (X2 = j),

for i, j,∈ {1, 2, 3}.

In general, for this two node network, we would assume that node 1 takes on values in

{1, 2, . . . ,m1} and node 2 takes on values in {1, 2, . . . ,m2}, and would work with the estimates

p̂(i, j), p̂1(i), and p̂2(j) for i ∈ {1, 2, . . . ,m1} and j ∈ {1, 2, . . . ,m2}.
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We now “explode” the data for our specific example at node 1 into values in {1, 2, 3, 4, 5, 6} by

replacing instances of 1 with values in {1, 2} with probabilities 1/3 and 2/3, respectively, replacing

original instances of 2 with values in {3, 4, 5} with probabilities 2/7, 4/7, and 1/7, respectively,

and replacing original instances of 3 with the value 6. Thus, in our “exploded data set”, node 1 is

taking on values in {1, 2, 3, 4, 5, 6} with probabilities denoted as p̃1(i) for i = 1, 2, 3, 4, 5, 6, where,

for example, p̃1(1) =
1
3 p̂1(1) and p̃1(4) =

4
7 p̂1(2). Joint probabilities for X1 and X2 are denoted by

p̃(i, j) where we have, for example,

p̃(1, j) =
1

3
p̂(1, j) and p̃(4, j) =

4

7
p̂(2, j).

In the more general case, we could “explode” the data at node 1 more generally by replacing

instances of 1 with values in {1, 2, . . . , ℓ1} some probabilities q(1, 1), q(1, 2), . . . , q(1, ℓ1), summing

to 1, replacing original instances of 2 with values in {ℓ1 + 1, ℓ1 + 2, . . . , ℓ1 + ℓ2} with respective

probabilities q(2, 1), q(2, 2), . . . , q(2, ℓ2), summing to 1, and so forth.

By “exploding” the data at node one, we have introduced superfluous values for X1 in terms

of probabilities for X2. For example, P̃ (X2 = j|X1 = 1) = P̃ (X2 = j|X1 = 2) for all j ∈ {1, 2, 3}.

Any proper discretization process should aggregate the values 1 and 2 for X1 back into one value.

Here, P̃ (X1 = i,X2 = j) is used to denote the probability p̃(i, j). Similarly, p̃1(i) may be denoted

as P̃ (X1 = i).

For this two-node network, (4.2) is simply Î(X1,X2), which we will denote by Î. Define this

estimated information as

Î :=
∑

i,j

Îi,j (4.3)

where

Îij := p̂(i, j) · log

(
p̂(i, j)

p̂1(i) · p̂2(j)

)
(4.4)

and the sums run over i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.

Define the corresponding information Ĩ and information terms Ĩi,j using p̃(i, j) in place of

p̂(i, j) with sums running over i ∈ {1, 2, . . . , 6} and j ∈ {1, 2, 3}.
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It is easy to verify information term relationships such as

Ĩ1,j =
1

3
Î1,j and Ĩ4,j =

4

7
· Î2,j ,

and consequently that

Ĩ =
∑

i ∈ {1, 2, . . . 6}

j ∈ {1, 2, 3}

Ĩij =
∑

i ∈ {1, 2, 3}

j ∈ {1, 2, 3}

Îij = Î .

That is, we did not change the information between X1 and X2 by exploding the data.

We now show that our single threshold top-down search strategy will correctly recover the

original values for X1. We call this the “correct discretization”, denoted as 12|345|6, which means

that we will remove three thresholds from the “full discretization”, denoted as 1|2|3|4|5|6, and that

the values 1 and 2 will map back to 1, the values in {3, 4, 5} will map back to 2, and the value 6,

will map back to 3. We will assume that the original values in {1, 2, 3} are all distinct in the sense

that P̂ (X2 = j|X1 = 1) 6= P̂ (X2 = j|X1 = 2) for some j, P̂ (X2 = j|X1 = 1) 6= P̂ (X2 = j|X1 = 3)

for some j, and P̂ (X2 = j|X1 = 2) 6= P̂ (X2 = j|X1 = 3) for some j, so that they should not be

aggregated further.

4.2.3 Removing a Threshold: The Impact on Information

Starting with the exploded data, with values for X1 represented as 1|2|3|4|5|6, we consider

the (X1,X2) information term after removing the threshold between the values r and r+1 for some

r ∈ {1, 2, . . . , 5}. Note that removal of this rth threshold will leave all values below the threshold

unchanged, while all values above will be decreased by 1. For example, if we remove the third

threshold, we denote the new configuration as 1|2|34|5|6, but it represents a mapping

1︸︷︷︸
map to 1

| 2︸︷︷︸
map to 2

| 3 4︸︷︷︸
map to 3

| 5︸︷︷︸
map to 4

| 6︸︷︷︸
map to 5

.

Define, for i ∈ {1, 2, . . . , 5} and j ∈ {1, 2, 3}, the joint and marginal probabilities for X1 and

X2 after the rth threshold is removed as p(r)(i, j), p
(r)
1 (i), and p

(r)
2 (j). We have, for j ∈ {1, 2, 3},
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the relationships

p(r)(i, j) = p̃(i, j), i ∈ {1, 2, . . . , r − 1} (r > 1)

p(r)(r, j) = p̃(r, j) + p̃(r + 1, j)

p(r)(i, j) = p̃(i+ 1, j), i ∈ {r + 1, r + 2, . . . , 6}, (r < 5)

p
(r)
1 (i) = p̃1(i), i ∈ {1, 2, . . . , r − 1}

p
(r)
1 (r) = p̃1(r) + p̃1(r + 1)

p
(r)
1 (i) = p̃1(i+ 1), i ∈ {r + 1, r + 3, . . . , 6}, (r < 5),

and

p
(r)
2 (j) = p̃2(j) = p̂2(j).

Defining I(r) and I
(r)
ij analogous to (4.3) and (4.4), using p(r)(i, j), we have, for j ∈ {1, 2, 3},

I
(r)
rj = p(r)(r, j) · log

(
p(r)(r,j)

p
(r)
1 (r)p

(r)
2 (j)

)

= [p̃(r, j) + p̃(r + 1, j)] · log
(

p̃(r,j)+p̃(r+1,j)

[p̃1(r)+p̃1(r+1)]·p̃2(j)

)

≤ p̃(r, j) · log
(

p̃(r,j)

p̃1(r)·p̃2(j)

)
+ p̃(r + 1, j)] · log

(
p̃(r+1,j)

p̃1(r+1)·p̃2(j)

)

= Ĩrj + Ĩrj.

The inequality is is due to the log-sum inequality,

n∑

i=1

ai log

(
ai
bi

)
≤

[
∑

i

ai

]
log

(∑
i ai∑
i bi

)
,

which holds for any nonnegative a1, a2, . . . , an and b1, b2, . . . , bn. The log-sum inequality can be

shown to be an equality if and only if the ai/bi are equal for all i = 1, 2, . . . , n. Thus, we have that

I
(r)
rj ≤ Ĩrj + Ĩr+1,j (4.5)

for j ∈ {1, 2, 3}, with equality if and only if

p̃(r, j)

p̃1(r) · p̃2(j)
=

p̃(r + 1, j)

p̃1(r + 1) · p̃2(j)
.
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This happens if and only if

P̃ (X2 = j|X1 = r) = P̃ (X2 = j|X1 = r + 1). (4.6)

for j ∈ {1, 2, 3}, which is precisely when the values r and r+1 in the exploded version of X1 should

be aggregated or discretized into one value. If we do not have (4.6), aggregating the values will

result in a loss of information.

Note that I(r) denotes the value of the information between X1 and X2 with the rth threshold

in the explosion for X1 removed. In our example,

P̃ (X2 = j|X1 = 1) =
p̃(1, j)

p̃1(1)
=

(1/3)p̂(1, j)

(1/3)p̂1(1)
= P̂ (X2 = j|X1 = 1)

and

P̃ (X2 = j|X1 = 2) =
p̃(2, j)

p̃2(1)
=

(2/3)p̂(1, j)

(2/3)p̂1(1)
= P̂ (X2 = j|X1 = 1).

Thus, we have (4.6) and consequently

I(1) =
∑5

i=1

∑3
j=1 I

(1)
ij

=
∑3

j=1 I
(1)
1j +

∑5
i=2

∑3
j=1 I

(1)
ij

=
∑3

j=1 I
(1)
1j +

∑6
i=3

∑3
j=1 Ĩij

=
∑3

j=1(Î1j + Ĩ2j) +
∑6

i=3

∑3
j=1 Ĩij

=
∑6

i=1 Ĩij = Ĩ .

On the other hand, considering the second threshold removal from the full discretization 1|2|3|4|5|6,

similar calculations show that

P̃ (X2 = j|X1 = 2) = P̂ (X2 = j|X1 = 1)

which is not, in general equal to

P̃ (X2 = j|X1 = 3) = P̂ (X2 = j|X1 = 2),
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so we have the strict inequality I
(2)
2,j < Ĩ2,j + Ĩ3j and therefore

I(2) =
∑5

i=1

∑3
j=1 I

(2)
ij

=
∑3

j=1 I
(2)
1j +

∑3
j=1 I

(2)
2j +

∑5
i=3

∑3
j=1 I

(2)
ij

=
∑3

j=1 Ĩ1j +
∑3

j=1 I
(2)
2j +

∑6
i=4

∑3
j=1 Ĩij

<
∑3

j=1 Ĩ1j +
∑3

j=1(Ĩ2j + Ĩ3j) +
∑6

i=4

∑3
j=1 Ĩij

=
∑6

i=1 Ĩij = Ĩ .

In all, we can show in this way that

I(1) = Ĩ , I(2) < Ĩ, I(3) = Ĩ , I(4) = Ĩ , and I(5) < Ĩ. (4.7)

So, our search strategy will produce the correct discretization 12|345|6. The question remains

though as to whether this is actually the discretization that minimizes DLlocal. Due to (4.5),

we will always have I(r) ≤ Ĩ. In fact, due to the log-sum inequality, any removal of a threshold

from any configuration with any number of thresholds can never increase information. Thus,

the full discretization 1|2|3|4|5|6 will always have maximal information. From (4.7), we see that

the discretizations 12|3|4|5|6, 1|2|34|5|6, and 1|2|3|45|6 have the same, and thus also maximal,

information. Note that each of these three configurations corresponds to a different explosion of

the original data. This is illustrated for 12|3|4|5|6 in Figure 4.1.

Thus, by the same information arguments above, “correct removal” (removal of one of the

superfluous thresholds) of a threshold from 12|3|4|5|6 will result in another configuration with the

same maximal information. Since this is true starting with any one of the three correct single

threshold removal configurations, we see that we can remove two of the superfluous thresholds

from the full explosion and still maintain the maximal information. Continuing this argument, we

can remove all surperfluous thresholds from the full discretization and the resulting configurations
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Figure 4.1: Correct Removal of a Threshold Corresponds to an Alternate Explosion
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of thresholds, which in this example is 12|345|6, will have the maximal information.

4.2.4 A Closer look at the Leading Terms in DLlocal

For a general DAG, the leading terms in DLlocal, given in (4.1) can be rewritten as

(m1 − 1)H

(
k1 − 1

m1 − 1

)
+ log k1 +

1

2
(logm)(ck1 − ||Π1||) =: D(k1)

for some c ≥ 0 where c = 0 if and only if node 1 is not connected to any other nodes.

The second and third terms here are clearly increasing in k1. The first term, as a function of

k1, is symmetric about k1 = (m1 + 1)/2, increasing to the left of this value and decreasing to the

right. However, since

d

dx
D(x)

∣∣∣∣
x=k1

= log

(
m1 − k1
k1 − 1

)
+

1

k1
+

1

2
c · logm,

we can, when c > 0 choose m (the sample size) large enough to ensure that D(k1) is increasing

in k1. In this case, this first part of DLlocal acts as a penalty term and DLlocal is minimized by

choosing the discretization that maximizes the information terms with the minimum number of

thresholds. By design, the single threshold top-down search strategy will do exactly this.

4.2.5 More Complicated Networks

The observations in Section 4.2.4 were not dependent on the specific network, however, our

analysis of the information terms was for a two-node network where X1 was a parent to X2. Since

Î(X1,X2) = Î(X2,X1), our search strategy will also find the “optimal discretization” for X1, i.e.

the one that that maximizes (4.2) with a minimum number of thresholds, for the two-node network

where X1 is a child of X2.

We will now check that the strategy will find the optimal discretization for X1 for general

networks. To this end, we begin by independently considering the two types of terms in (4.2).

• Î(X1,Π1)
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Since replacing X2 with a vector of random variables has no effect on any of the compu-

tations in Section 4.2.2, we see that our search strategy will find the discretization for X1

that maximizes Î(X1,Π1) with a minimum number of thresholds.

• Î(Xj ,Πj) where X1 ∈ Πj

Suppose, for ease of exposition, that j = 2 and, that all nodes originally take values in

{1, 2, 3}, and that X1 has been exploded to take values in {1, 2, 3, 4, 5, 6} just as in, and

using the same probabilities as, Section 4.2.2. If Π2 consists only of X1, we have already

seen that our search strategy will maximize the information term with a minimum number

of thresholds. Assuming now that Π2 consists of X1 and some vector ~Y whose components

are the other parents of X2, we have

Î := Î(X2,Π2) = Î(X2, (X1, ~Y )) =
∑

ij~k

Î
ij~k

where

Îij~k = p̂(i, j,~k) · log

(
p̂(i, j,~k)

p̂2(j) p̂1Y (i,~k)

)
.

Here, p̂(i, j,~k) = P̂ (X1 = i,X2 = j, ~Y = ~k), p̂2(j) = P̂ (X2 = j), and p̂1Y (i,~k) = P̂ (X1 =

i, ~Y = ~k). Using p̃ to denote probabilities after the explosion ofX1, it is easy to see expected

relationships such as

p̃(4, j,~k) =
4

7
p̂(2, j,~k), p̃2(j) = p̂2(j), and p̃1Y (2, ~k) =

2

3
p̂1Y (1, ~k).

Therefore, we can verify, for example, that Ĩ
2j~k

= (2/3)Î
1j~k

, and that the overall information

terms Ĩ and Î are equal. We can also verify, using the log-sum inequality, that after removal

of the rth threshold we have

I
(r)

r,j,~k
≤ Ĩ

r,j,~k
+ Ĩ

r+1,j,~k
,

with equality if and only if

P̃ (X2 = j|X1 = r, ~Y = ~k) = P̃ (X2 = j|X1 = r + 1, ~Y = ~k). (4.8)
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Summing over all appropriate values for indices, we get that I(r), the information term

between X2 and its parents after removal of the rth threshold for X1, is less than or equal

to Ĩ , with equality if and only if (4.8) holds for all j and ~k. When r = 1, for example, both

sides of (4.8) are equal to P̂ (X2 = j|X1 = 1, ~Y = ~k), indicating that the first threshold

should be removed. When r = 2, the left side is equal to P̂ (X2 = j|X1 = 2, ~Y = ~k) and

the right side is equal to P̂ (X2 = j|X1 = 3, ~Y = ~k), so we do not have (4.8) and hence a

decrease in information. Thus, we would not remove the second threshold.

Ĩ, the information with all thresholds in place, is the maximal information among all

possible discretizations. If we remove each threshold that leaves the information unchanged,

we will still have the maximal information with a minimum number of thresholds. Thus,

the top-down search strategy will give the optimal discretization.

Considering all terms in (4.2) independently may result in different discretizations. For

example, consider graph 8 from Table 2.2. In this case, (4.2) becomes Î(X1,X2) + Î(X1,X3). If

P̂ (X2 = j|X1 = 1) = P̂ (X2 = j|X1 = 2) for all j but P̂ (X3 = j|X1 = 1) 6= P̂ (X3 = j|X1 = 2)

for some j, removing the threshold between 1 and 2 for the discretization of X1 would leave the

information between X1 and X2 unchanged but would decrease he information between X1 and X3.

However, as both information terms, and hence their sum, are maximized with the full discretization

for X1, the top down-search strategy will not allow us to remove the threshold between 1 and 2.

That is, it will only remove thresholds between values of X1 that are indistinguishable in terms of

the conditional distributions involving all nodes to connected to X1.
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CONCLUSIONS

5.1 Conclusion

Over the past decades, Bayesian networks have become a popular representation for encoding

uncertainty and extensively employed in areas such as bioinformatics, artificial intelligence, medical

diagnostic, and risk management. In these applications, the recovery of the structure of a network is

often based on the assumption of discrete or continuous but Gaussian data. For general continuous

data, discretization is usually employed but often destroys the very structure one is out to recover.

Friedman and Goldszmidt [11] suggest an approach based on the minimum description length

principle that chooses a discretization which preserves the information in the original data set,

however it is one which is difficult, if not impossible, to implement for even moderately sized

networks. This study provides a extremely efficient search strategy which allows one to use the

Friedman and Goldszmidt in practice.

In Chapter 4, we show, in the case of ideal “exploded” data where there is a “correct”

discretization, that the minimum description length scoring mechanism of Friedman and Goldszmidt

will in fact recover the discretization. Just as importantly, we have seen that we can find it from

among 2m1−1 possibilities by making only m1 − 1 comparisons.

In the case of discrete data where superfluous values were not manufactured, for example

the two-node network where X1 is a parent to X2 that originally takes values in {1, 2, 3, 4, 5, 6}

and {1, 2, 3}, respectively, we should aggregate 1 and 2 for node 1 into a single value if P (X2 =

j|X1 = 1) = P (X2 = j|X1 = 2) for all j ∈ {1, 2, 3}. From the data, we will only get to see
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that P̂ (X2 = j|X1 = 1) ≈ P̂ (X2 = j|X1 = 2). Even with a large sample size, because of

the approximation, we would still see some decrease in overall information when removing the

threshold, so it remains to determine when such a decrease is significant. We have much empirical

evidence that we will still be able to recover the correct discretization by comparing DLlocal for

only single threshold removals to DLlocal for the full discretization. For example, we simulated

100, 000 values for X1 and X2 in the two-node network by simulating X1 in {1, 2, 3, 4, 5, 6} directly

(as opposed to first simulating them in {1, 2, 3} and then exploding the data). We chose parameters

such that P (X2 = j|X1 = 1) = P (X2 = j|X1 = 2) and P (X2 = j|X1 = 5) = P (X2 = j|X1 = 6)

for all j ∈ {1, 2, 3}. In Table 5.1, we show the full discretization score, all single threshold removal

scores, and the true discretization score. The two incorrect threshold removals (between 1 and 2

and between 5 and 6) stand out as having different DLlocal values than the rest.

Table 5.1: Local Description Length Score

Discretization DL local

1|2|3|4|5|6 -29841.52

12|3|4|5|6 -29870.53

1|23|4|5|6 -24456.07

1|2|34|5|6 -29866.02

1|2|3|45|6 -29896.74

1|2|3|4|56 -24585.90

12|345|6 -29929.17

5.2 Limitations and Future Work

While this study provides a significant contribution to the body of knowledge by introducing

a efficient search strategy which allows one to use the Friedman and Goldszmidt’s discretization

method in practice, there are several limitations that warrant future work discussed below.

• For truly continuous data, in principle the minimum description length discretization of

Friedman and Goldszmidt and our single threshold search strategy will still work if there
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is a “true discretization”. For the two node example, this would mean that fX2|X1
(x|r) =

fX2|X1
(x|s) for all r and s in a given interval. (Here, fX2|X1

is the conditional density of X2

given X1.) However, even in this ideal case, it will be difficult to find the true discretization

without accurate estimation of mutual information which would now be an integral. We

refer the reader to [7] for a numerical estimation technique that outperforms standard

binning methods. However, for continuous data where there is no true discretization in

terms of the underlying probability density functions, there still may be a discretization

that will recover the correct network when using a scores such as AIC, BIC, or MDL.

Removal of thresholds in this case will always result in a decrease of information, so we are

again faced with having to characterize how significant these changes are in terms of their

effect on the recovered network structure. More work is needed to address this issue.

• This study illustrated the single threshold search strategy using a two-node network. While

the two-node network single threshold removal principle could use for more complicated

networks, future work is required for generalized problem with n-node. When the data

contains a large number of values for a continuous variable this procedure may become

challenging and expensive. We can use Monte Carlo methods (i.e, Metropolis-Hastings Al-

gorithm, Markov chain Monte Carlo, or stochastic hill-climbing) to overcome this challenge.

• Finally, the future work could use the findings from this study to model real-world phe-

nomena decision making such as medicine and industrial control areas in which variables

often have continuous values. For example, the future work could apply the single thresh-

old search strategy presented in this thesis to model the recovery of a genetic regulatory

pathway. The nodes of a Bayesian network represent gene expression levels associated with

particular genes and the arrows between nodes represent interactions between genes. Gene

expression levels are given by continuous data and discretization allows us to think of the

random variables for each node as multinomial random variables . The quantification of

this discretization is an interesting research problem.
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