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Abstract 

Seismic anisotropy yields important constraints on the character of past and present deformation 

of the Earth’s interior. It is therefore of great interest to seismologists. In this thesis, I develop 

and apply a new method to estimate the tilted elastic tensor for a hexagonally symmetric medium 

based on seismic surface wave (i.e. Rayleigh and Love waves) data. I apply the method to infer 

crustal anisotropy in the western US and eastern Tibet. The goal is to obtain more accurate and 

reliable information about the anisotropic properties of the Earth’s crust to help improve the 

understanding of crustal composition and past deformation. 

In terms of method development, my inversion technique simultaneously reconciles observations 

of surface wave azimuthal and radial anisotropy to provide novel information about the inherent 

anisotropy and the orientation of the foliated anisotropic material that composes Earth's crust. 

My inferences occur within the framework of a Bayesian Monte Carlo inversion, which yields 

posterior distributions for the components of the elastic tensor and its orientation and naturally 

propagates data uncertainties into model uncertainties. 

In terms of application of the methodology, I process seismic data from several arrays in the US 

and China (USArray, PASSCAL, CEArray, ChinaArray) recorded between the years 2000 and 

2012 to obtain high resolution measurements of Rayleigh and Love wave phase speeds and the 

azimuthal variation of Rayleigh wave phase speeds. Data in both regions can be fit well 

simultaneously by a tilted hexagonally symmetric medium. The resulting models of the tilted 
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elastic tensor are geologically correlated. An example result is that in the interior of eastern Tibet, 

where the crust is thicker than elsewhere in the world, I infer a shallowly dipping middle-to-

lower crust that I believe is caused by ductile deformation underlying a steeply dipping upper 

crust that I believe reflects brittle deformation. In contrast, near the periphery of the Tibetan 

Plateau the foliation is moderately-to-steeply dipping throughout the entire crust, which may 

reflect the redirection and shearing of crustal flows imposed by less deformable media 

surrounding Tibet. The spatial and vertical variations of the estimated elastic tensor and its 

orientation may provide new insights into the composition and deformation history of Tibetan 

Plateau in the future. 
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CHAPTER I 

 
INTRODUCTION 

 
Seismic anisotropy refer to the phenomena that the seismic wave speeds depend on 

propagation and polarization directions. The concept of seismic anisotropy was first introduced to 

geophysics in the last years of the 19th century, and was initially thought of as an unwanted 

complication [Helbig and Thomsen, 2005]. Professor Maurice Rudzki is probably among the first 

persons that bring anisotropy to seismology [Aki, 1964; Kanamori and Anderson, 1977; Anderson 

and Dziewonski, 1982; Leary et al., 1990; Babuška, 1991; Barruol and Mainprice, 1993; Karato, 

1993; Levshin et al., 1994, 2005, 2010; Christensen and Mooney, 1995; Kennett et al., 1995; Chen 

and Wilson, 1996; Christensen, 1996; Levin and Park, 1997b; Babuška et al., 1998; Ekstrom and 

Dziewonski, 1998; Cotte et al., 1999; James and Ritzwoller, 1999; Frederiksen and Bostock, 2000; 

Godfrey et al., 2000; Barmin et al., 2001; Levshin and Ritzwoller, 2001; Crampin and Chastin, 

2003; Gung et al., 2003; Brocher, 2005; Cholach et al., 2005; Maceira et al., 2005; Cholach and 

Schmitt, 2006, 2006; Jiang et al., 2006, 2011; Kitamura, 2006; Mahan, 2006; Barberini et al., 2007; 

Bensen et al., 2007, 2009; Harmon et al., 2007, 2007; Becker et al., 2008; Hall et al., 2008; Lin et 

al., 2008, 2009, 2011; Caldwell et al., 2009; Guo et al., 2009; Kawakatsu et al., 2009; Li et al., 

2009; Lloyd et al., 2009; Acton et al., 2010; Bai et al., 2010; Chen et al., 2010, 2010; Duret et al., 

2010; Huang et al., 2010; Erdman et al., 2013; Figueiredo et al., 2013]. Decades after his death in 

1916, the importance of anisotropy for seismology have increased significantly, because the 

increasing quality and quantity of data forced the recognition that anisotropy is important for 

accurate inversion for the Earth’s structure.  

Because deformation induced fabric in the Earth’s interior likely causes seismic anisotropy, 

the characterization of seismic anisotropy has been used to infer global plate motions [Park and 
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Levin, 2002; Fouch and Rondenay, 2006], and is therefore of great interest to seismologists. 

Anisotropy is widely observed in the Earth’s upper mantle [e.g., Anderson, 1961; Hess, 1964; Raitt 

et al., 1969; Forsyth, 1975; Crampin and King, 1977]. However, the crustal anisotropy was harder to 

measure on a large scale using passive source seismic data, mainly because of the limited data and 

observational methods we had. The deployment of large arrays (e.g., USArray, CEArrya) has 

produced enormous high quality seismic data, and has stimulated many innovations in the 

seismology discipline.  With the new data and innovative observational methods, tracing information 

related to crustal anisotropy becomes easier.  

In this thesis, I will concentrate on measuring crustal anisotropy using surface waves (i.e., 

Rayleigh and Love waves) that travel along the Earth’s surface. Because surface wave provide a 

homogeneous sampling of the Earth’s crust and uppermost mantle over large areas, robust inference 

about anisotropy from surface waves are typically not restricted to small regions, allowing 

conclusions to be drawn broadly over a variety of geologic and tectonic settings. As our ability to 

make seismic observations improves, different components of surface wave anisotropy can be 

obtained at the same time with high quality. Instead of explaining different components of the data 

separately, we would want to have one single model that is simple enough to be easily understood, 

and also complicated enough to explain/reconcile different components of the data simultaneously.  

I will present you the crustal anisotropy observations I made in eastern Tibet and western US 

using surface waves, and will describe an inversion method I developed, which explains/reconcile 

different surface wave anisotropy components (i.e., azimuthal anisotropy and radial anisotropy) 

simultaneously in terms of a tilted hexagonally symmetric medium. 

In this Chapter, I start by introducing the elastic tensor in section 1.1, which is the essence of 

seismic velocity models. In section 1.2, I describe the traditional anisotropy observations made with 
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surface waves, and the limitations of those approaches. In section 1.3, I propose a method to explain 

the observed surface waves in a more comprehensive way. And finally in section 1.4, I present the 

arrangement of this thesis. 

1.1 Background of the study (elastic tensor and anisotropy) 

Seismic imaging uses travel time, phase or amplitude of the observed seismic waves to infer 

the elastic properties of the deep earth, that directly constrains complex structures in the subsurface, 

providing information about density, composition and temperature of the earth’s interior. The 

process of inferring elastic properties from observed seismic waves is called “inversion”.  The 

mathematical description of the elastic properties is called a “model”, which is the elastic tensor that 

constitutes the earth medium. In a linearly elastic material, the stress and strain are related by a 

constitutive equation called Hookes' law, 𝜎 = 𝑪𝑒 where the C is the elastic tensor that describes the 

elastic property of the material, and thus determines the properties (such as travel time, phase, or 

amplitude) of seismic waves propagating through it.  

The elastic tensor is a forth-order tensor with 81 components, and it can be reduced to 21 

independent components when the symmetry of stress and strain, and the idea of strain energy are 

considered. 

The simplest form of elastic tensor is the isotropic elastic tensor: 

     (1.1) Cisotropic =

λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&



4 

 

 

 

which is described by two parameters 𝜆 and 𝜇 that are related to the velocities of 

compressional and shear waves (Vp, Vs).  In such a medium, the properties are identical in all 

directions; therefore seismic speeds are not directional dependent, which means that this medium is 

isotropic. In many cases, isotropy is a reasonable first-order approximation for much of the Earth’s 

interior. However, isotropy is probably an oversimplified assumption for the real earth, because 

individual crystals and most rocks are observed to be anisotropic  (i.e., elastic properties vary with 

directions). In fact, seismic observations directly prove the existence of anisotropy in the Earth’s 

interior.  

The cause of anisotropy is primarily related to shape preferred orientation (SPO) and lattice-

preferred orientation (LPO) of the Earth’s materials. In the crust, SPO can be caused by fluid-filled 

cracks and layering of materials with different compositions [e.g., Crampin, 1984]. In the mantle, 

SPO can result from melt-filled layers or compositional lamellae [e.g., Kawakatsu et al., 2009]. 

Other than SPO, another possible key cause of seismic anisotropy is LPO of crystallographic axes of 

elastically anisotropic minerals. Mica and amphibole are primary candidates for crustal anisotropy 

[e.g., Mainprice and Nicolas, 1989], and olivine is assumed to be important for upper mantle 

anisotropy [e.g., Mainprice and Silver, 1993].   

Observations of anisotropy can be made using various methods, including shear wave 

splitting [e.g., Kind et al., 1985; Silver and Chan, 1988; Vinnik et al., 1989, 1992; Levin et al., 

1999; Savage, 1999; Fouch et al., 2000; Park and Levin, 2002], receiver function [e.g., Levin 

and Park, 1997; Frederiksen et al., 2003; Schulte-Pelkum et al., 2005], relative delay time [e.g., 

Babuška, 1991, and references therein; Bokelmann, 2002], Pn anisotropy [e.g., Hess, 1964; Smith 

and Ekström, 1999], and surface waves [e.g., Anderson, 1961; Forsyth, 1975; Dziewonski and 

Anderson, 1981; Kawasaki and Kon’no, 1984; Tanimoto and Anderson, 1985; Montagner and 
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Nataf, 1986; Gee and Jordan, 1992; Gaherty and Jordan, 1995; Laske and Masters, 1998; 

Trampert and Woodhouse, 2001; Shapiro and Ritzwoller, 2002; Gung et al., 2003; Beghein and 

Trampert, 2004; Smith et al., 2004; Forsyth and Li, 2005]. In this thesis, I will only concentrate 

on anisotropy inferred from surface waves (i.e., Rayleigh and Love waves), and the focus is in 

the crust instead of the mantle.  

Before introducing the surface wave observations, I will briefly describe the anisotropic 

elastic tensor. There are various forms of anisotropic elastic tensors, here I introduce the study by 

Montagner and Nataf [1986], which relates a general weakly anisotropic elastic tensor to the 

surface wave observations that will be described in the next session. Based on the study of 

Montagner and Nataf [1986], the elastic tensor C of a weakly anisotropic medium can be 

decomposed into two parts: 

(1.2) 

 

Cweakly  ani. =

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

!

"

#
#
#
#
#
#
#
#

$
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The first part is hexagonally symmetric with a vertical symmetry axis (Figure 1.1a), and it is 

referred to as a vertical hexagonally symmetric medium or VHS medium. Such a medium is defined 

by five depth-dependent elastic moduli, 𝐴,𝐶,𝐹, 𝐿,𝑁 where 𝐴  and 𝐶 are the compressional moduli 

and 𝑁  and 𝐿  are the shear moduli.  

With this VHS tensor, one can directly solve the Christoffel equation to get the velocities of 

P and S waves with given propagation and polarization directions. In this VHS medium, horizontally 

propagating SV wave has the same speed in all azimuths, indicating it is azimuthally isotropic. In 

other words, this part represents the azimuthally averaged component of the original weakly 

anisotropic elastic tensor. However, horizontally propagating SV and SH waves could have different 

speeds (Figure 1.1a), and the strength of the difference is characterized by the difference between  
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Figure 1.1 Depiction of (a) a vertical hexagonally symmetric medium (VHS), and (b) a tilted 
hexagonally symmetric medium (THS). (c) Illustrative computation of the variation of apparent S-
wave radial anisotropy and apparent SV-wave azimuthal anisotropy as a function of dip angle 𝜃. All 
amplitudes are normalized by the amplitude of maximum inherent S-wave anisotropy.  
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elastic moduli 𝐿 and 𝑁. The speed difference between the horizontally and vertically propagating P 

waves (PH, PV) is characterized by the difference between elastic moduli 𝐴 and 𝐶. Typically, the 

difference between moduli 𝐿 and 𝑁, or between horizontally propagating SV and SH waves is 

referred to as radial anisotropy. 

The second part describes an azimuthally anisotropic component; it represents the 

azimuthally dependent perturbation relative to the VHS medium described above. This part does not 

affect the azimuthally averaged part of the surface wave speeds, but only the azimuthally dependent 

variations. It makes the speed of horizontally propagating SV wave different between north and east 

directions. The 21 elastic moduli in this tensor can be reformatted into 8 parameters (Bc, Bs, Ec, Es, 

Gc, Gs, Hc, and Hs; Montagner and Nataf, 1986; Xie et al., 2015) that are more directly related to the 

azimuthally dependent part of surface waves.  Among those 8 parameters, , 

are most commonly used due to their strong sensitivity in Rayleigh waves. And 

𝐺 = 𝐺!! + 𝐺!! describes the strength of azimuthal anisotropy. 

 

1.2 Traditional surface wave approaches and their limitations 

In this section, I discuss the early anisotropy studies using surface waves (i.e. Rayleigh and 

Love waves), and how their results relate to the elastic tensors described above.  

In a weakly anisotropic medium, Rayleigh and Love waves would have the following form 

[Smith and Dahlen, 1973]: 

    (1.3) 

Gc = (δC55 −δC44 ) / 2

Gs = δC54

c(T,ψ) = c0 (T )[1+ a2 cos(2(ψ −ϕFA2 ))+ a4 cos(4(ψ −ϕFA4 ))]
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where T is period, ψ is the azimuth of propagation of the wave measured clockwise from 

north, c0 is isotropic phase speed,  is what we call the 2ψ fast axis direction,  is an 

analogous phase angle for 4ψ variations in phase speed, and a2 and a4 are the relative amplitudes of 

the 2ψ and 4ψ anisotropy.   

As will be described in the next few paragraphs, different components of the surface waves 

are generally used separately to infer different aspects of the elastic property of the earth, e.g., the 

isotropic part, the radially anisotropic part, and the azimuthally anisotropic part. 

(isotropic model) 

In practice, the last two components of Equation 1.3 (azimuthally varying components) are 

not easy to measure, because good azimuthal coverage is required to measure them precisely. In 

addition, the anisotropy of the target region is so weak that anisotropy is buried in the data noise. 

Therefore, azimuthally averaged term 𝐶! 𝑇  is most commonly used. (However, in the case of 

strong anisotropy and biased azimuthal coverage, the measurement of 𝐶! 𝑇  could be strongly 

biased.) In many studies [e.g., Yang et al., 2012; Shen et al., 2013], when performing inversions, 

researchers use azimuthally averaged Rayleigh wave alone, which provides no information on the 

directional dependence of the wave speeds. Therefore, the inverted elastic tensor (or the “model”) is 

assumed to be isotropic with the form shown in Equation 1.1.  

(radially anisotropic model) 

When azimuthally averaged Rayleigh and Love waves (𝐶! 𝑇  for Rayleigh and Love waves) 

are both obtained, we can move beyond isotropic model, and radial anisotropy (if exists) of the 

medium can be inferred. Because Rayleigh and Love waves have different motions, they provide 

ϕFA2 ϕFA4
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information on the direction/polarization dependence of waves traveling through the medium, i.e., 

the anisotropic property of the medium.  

In many places, Rayleigh and Love waves cannot be explained simultaneously using an 

isotropic model. And this phenomenon is referred to as Rayleigh-Love discrepancy [e.g., Forsyth, 

1975; Dziewonski and Anderson, 1981; Shapiro et al., 2004; Moschetti et al., 2010; Xie et al., 2013]. 

In this case, an anisotropic VHS model as shown in Equation 1.2 is introduced to solve the 

discrepancy. As described in Section 1.1, in a VHS medium, horizontally propagating SV and SH 

waves could have different speeds, and this difference quantifies (S-wave) radial anisotropy. VHS 

medium is hexagonally symmetric which is described by 5 independent elastic moduli, and this is 

the simplest plausible model that explains anisotropy. This VHS model is azimuthally isotropic, 

which is expected because only the azimuthally averaged measurements (𝐶! 𝑇 ) are used in 

generating this model.   

Despite its simplicity, the VHS medium is sometimes misused. For example, some studies 

only invert for the two most data sensitive parameter (𝐿,𝑁 or Vsv, Vsh) while scaling other three 

parameters (𝐴,𝐶,𝐹  or Vph, Vpv, eta) without specifically showing or noticing them. Please note that 

in no physically realizable material can anisotropy be approximated with only two parameters, such 

as Vsv and Vsh. Besides, sometimes P-wave anisotropy is ignored while observed S-wave 

anisotropy implies that it must be important.  

(azimuthally anisotropic model) 

When information on the directional dependence of surface wave is introduced, azimuthal 

anisotropy can be inferred. As number of seismic stations increases and new techniques are 

innovated, azimuthally varying surface waves can be more easily/accurately measured. The 2ψ 
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component of azimuthally varying Rayleigh wave is most commonly used (𝐶! and a2 of Rayleigh 

wave, Equation 1.3 ). The strength of Rayleigh wave azimuthal anisotropy is correlated with 8 

azimuthal parameters (Bc, Bs, Ec, Es, Gc, Gs, Hc, and Hs) derived from the azimuthally dependent part 

of the weakly anisotropic tensor described in Section 1.1, with the strongest sensitivity to Gc, Gs. 

Therefore, with the azimuthally varying Rayleigh wave, one can invert for the azimuthal parameters 

(typically Gc, Gs) that are related to the azimuthally dependent part of the weakly anisotropic tensor 

shown in Equation 1.2 [e.g., Yao et al., 2010; Lin et al., 2011].   

At this point, we understand how different aspects of surface wave observations are used to 

invert for different parts of the elastic tensors. Azimuthally averaged Rayleigh alone is used to invert 

for an isotropic model. Azimuthally averaged Rayleigh and Love waves combined are used to invert 

for the VHS part of the anisotropic elastic tensor, and azimuthally varying Rayleigh wave is used to 

invert for the azimuthally dependent parameters. Moreover, with a few exceptions [e.g., Montagner 

and Jobert, 1988; Montagner and Nataf, 1988; Yuan et al., 2011], different aspects of the 

observation are commonly used separately to infer different aspects of the elastic tensor, and are 

interpreted separately.   

However, this kind of ‘separate’ inversion approach has potential problems. Because 

different inversions typically have different model parameterization and assumptions, it is 

challenging to integrate those different inversion results (i.e., the models) together, and the results 

may not be compatible with each other. Moreover, the form of the original (before decomposition; 

Equation 1.2) elastic tensor is unclear. All the inferences above are obtained without knowing the 

property or orientation of the original elastic tensor. It’s like measuring the length of a tree’s shadow, 

without knowing the real height of the tree or its orientation relative to the sunlight. The former is 

the apparent property, while the latters are the inherent properties.  In the following sessions, I will 
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refer the radial and azimuthal anisotropies related to the decomposed elastic tensors (Equation 1.2) 

as apparent radial and apparent azimuthal anisotropies, and refer the anisotropy associated with the 

original elastic tensor as inherent anisotropy. 

The goal of this thesis is to show you the crustal anisotropies measured by surface waves in 

eastern Tibet and western US, and present an inversion approach that explains different aspects of 

surface wave measurements (azimuthally averaged and azimuthally varying part of the Rayleigh and 

Love waves) simultaneously, which infers the form of the original elastic tensor and its orientation. 

The original elastic tensor is assumed to be hexagonally symmetric with a tilted symmetry axis 

(Figure 1.1b) as will be described in the next few sessions. And I name this inversion approach the 

oriented elastic tensor inversion.  

 

1.3 Challenges and our approaches 

There are a few challenges related to this oriented elastic tensor inversion: 

(1) Azimuthally dependent surface wave measurements are hard to make. In order to observe 

the azimuthally varying surface waves, I need data with good azimuthal coverage. Besides, surface 

waves propagate over long paths will tend to average out the azimuthal anisotropy that may present 

locally, therefore, dense seismic stations are preferred to help resolve anisotropy at much finer scales. 

Both of the problems are solved with the deployment of large and dense arrays (~70km spacing; e.g. 

USArray, CEArray), and array-based innovations, such as the ambient noise technique [Shapiro et 

al., 2005] and eikonal tomography [Lin et al., 2009]. More specifically, in ambient noise technique, 

each seismic station is both a source and receiver; therefore, we are not constrained by the location 

of the earthquakes (the traditional sources), and could make good observation as long as we have 
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good station coverage, which is achieved by the deployment of large arrays. The typical station 

spacing of the large array is about 70km, which helps obtain surface wave anisotropy at relatively 

fine scale.  Because ambient noise signal is mainly constrained to periods below about 60 sec, our 

focus is in the upper ~100km of the earth.  

(2) The elastic tensor is too complex. The most general form of elastic tensor has 21 free 

parameters (elastic moduli), which is too complicated to study, considering the limited observations 

I have. The number of independent elastic moduli can be reduced if additional symmetries are 

presented in the elastic tensor. A useful starting point on which to base estimate of the elastic tensor 

is the simplifying assumption that the medium possess hexagonal symmetry. Such a medium has one 

symmetry axis, and the elastic property is described by 5 elastic moduli, A, C, F, L, N (please note 

that these are inherent elastic moduli which are independent of medium’s orientation, they are 

different from the apparent moduli 𝐴,𝐶,𝐹, 𝐿,𝑁  shown in in Equation 1.2). The orientation of its 

symmetry axis is described by 2 angles, strike and dip, as shown in Figure 1.1b. In total, 7 depth-

dependent parameters describe this tilted hexagonally symmetric (THS) elastic medium, which is 

also called tilted transversely isotropic medium (TTI). Figure 1.1c illustrates the variation of 

apparent radial and apparent azimuthal anisotropy as the dip of (simplified) THS varies. For this 

simplified THS model, the amplitude of apparent azimuthal anisotropy increases with increasing dip, 

and the apparent radial anisotropy decreases with increasing dip angle. When the dip is 0°, there is 

strong positive apparent S-wave apparent radial anisotropy but no apparent azimuthal anisotropy. 

When the dip is 90°, the apparent radial anisotropy becomes negative, and apparent azimuthal 

anisotropy attains its maximum value. Therefore, values of apparent radial anisotropy and apparent 

azimuthal anisotropy provide information on the inherent property and orientation of the original 

(un-tilted) elastic tensor.  
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(3) How to perform the inversion? Rayleigh and Love waves are strongly sensitive to part of 

the seven unknowns that define a rotated hexagonally symmetric elastic medium. Therefore, a 

straightforward inversion of the elastic tensor is impractical using surface waves alone. For this 

reason, I cast the inverse problem in terms of a Bayesian Monte Carlo approach in which I estimate a 

range of elastic tensors that agree with the data. Therefore, for each model parameter, I obtain a 

distribution instead of one single value. From the distribution I can compute the most likely value 

and its standard deviation. In addition, this method works well even in the situation of multiple 

solutions.   

 

1.4 Organization of the thesis 

The major parts of the thesis are divided into 3 parts. First, Chapter II presents the apparent 

radial anisotropy I observed in eastern Tibet. This is the observation on the VHS component of the 

elastic tensor (Equation 1.2), which is azimuthally isotropic. The results there show some interesting 

features. For example, on average the upper crust has negative or zero apparent radial anisotropy 

while the middle crust has strong positive apparent radial anisotropy. Besides, in the middle crust, 

positive radial anisotropy is observed over most E. Tibet, but it turns negative or zero near the 

boundary of Tibet, where the high plateau meets the rigid lithosphere underlying the Sichuan Basin. 

One potential explanation on this variation (changes between positive and negative apparent radial 

anisotropy) is the change of the orientation of the foliation planes of anisotropic material (Figures 

1.1b, c).  But in order to test this hypothesis, I need to combine the azimuthally independent and 

azimuthally varying components of surface wave measurements, and develop a new inversion 

method that uses both components simultaneously. And this motivates the second study presented in 

the next chapter.  
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Chapter III describes an inversion method I developed, it interprets observations of surface 

wave apparent radial and apparent azimuthal anisotropies simultaneously under the assumption of a 

hexagonally symmetric elastic tensor with a tilted symmetry axis (i.e., THS medium). The inversion 

is performed in terms of a Bayesian Monte Carlo approach, and this method is referred to as oriented 

elastic tensor method. I apply this method to W. US where over 800 USArray stations are deployed.  

I find that measurements of Rayleigh and Love wave phase speeds and the azimuthal variation of 

Rayleigh wave phase speeds in W. US can be fit well by this tilted hexagonally symmetric medium. 

Besides, two groups of models with distinct strike fit the data equally well. 

With the successful application in W. US, in Chapter IV, I then focus back to Tibet, and 

apply the oriented elastic tensor method to E. Tibet and its surroundings where ~800 stations from 

PASSCAL, CEArray, and China Array were deployed. The crust of Tibet is almost twice as thick as 

that of W. US, and many studies have observed significant complications in crustal structure, such as 

double Moho and the crustal low velocity zones. What effect would these complications have on the 

inverted oriented elastic tensor is the main question I try to answer in Chapter IV.  
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CHAPTER II 
 

CRUSTAL RADIAL ANISOTROPY ACROSS EASTERN TIBET AND THE 
WESTERN YANGTZE CRATON 

 

Jiayi Xie1, Michael H. Ritzwoller1, Weisen Shen1, Yingjie Yang2, Yong Zheng3, and Longquan 

Zhou4  

1 – Center for Imaging the Earth’s Interior, Department of Physics, University of Colorado at 

Boulder, Boulder, CO, 80309, USA   (jiayi.xie@colorado.edu)  
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3 – State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and 

Geophysics, CAS, Wuhan, 430077, China 

4 - China Earthquake Network Center, Beijing, 100045, China 

Abstract 

Phase velocities across eastern Tibet and surrounding regions are mapped using Rayleigh 

(8-65 sec) and Love (8-44 sec) wave ambient noise tomography based on data from more than 

400 PASSCAL and CEArray stations. A Bayesian Monte-Carlo inversion method is applied to 

generate 3-D distributions of Vsh and Vsv in the crust and uppermost mantle from which radial 

anisotropy and isotropic Vs are estimated. Each distribution is summarized with a mean and 

standard deviation, but is also used to identify “highly probable” structural attributes, which 

include (1) positive mid-crustal radial anisotropy (Vsh > Vsv) across eastern Tibet (spatial 

average = 4.8% 1.4%) that terminates abruptly near the border of the high plateau, (2) weaker 

(-1.0% 1.4%) negative radial anisotropy (Vsh < Vsv) in the shallow crust mostly in the 

Songpan-Ganzi terrane, (3) negative mid-crustal anisotropy (-2.8% 0.9%) in the Longmenshan 

±

±

±
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region, (4) positive mid-crustal radial anisotropy (5.4% 1.4%) beneath the Sichuan Basin, and 

(5) low Vs in the middle crust (3.427 0.050 km/s) of eastern Tibet. Mid-crustal Vs < 3.4 km/s 

(perhaps consistent with partial melt) is highly probable only for three distinct regions: the 

northern Songpan-Ganzi, the northern Chuandian, and part of the Qiangtang terranes.  Mid-

crustal anisotropy provides evidence for sheet silicates (micas) aligned by deformation with a 

shallowly dipping foliation plane beneath Tibet and the Sichuan Basin and a steeply dipping or 

subvertical foliation plane in the Longmenshan region. Near vertical cracks or faults are believed 

to cause the negative anisotropy in the shallow crust underlying Tibet. 

  

±

±
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2.1 Introduction 
 
The amplitude and distribution of elastic anisotropy in earth’s crust and mantle provide 

valuable information about the deformation history of the solid earth. Mantle anisotropy has been 

particularly well studied in the laboratory and in the field and is believed principally to reflect the 

lattice preferred orientation of olivine produced by mantle kinematics [e.g., Schlue and Knopoff, 

1977; Montagner and Anderson, 1989; Montager and Tanimoto, 1991; Ekström and Dziewonski, 

1998; Mainprice, 2007; Becker et al., 2008]. Crustal anisotropy has probably been explored less 

fully although seismological studies that relate observed anisotropy to crustal deformation and 

metamorphism have been developing rapidly [e.g., Okaya et al., 1995; Levin and Park, 1997; 

Godfrey et al., 2000; Vergne et al., 2003; Ozacar and Zandt, 2004; Shapiro et al., 2004; 

Sherrington et al., 2004; Champion et al., 2006; Xu et al., 2007; Readman et al., 2009]. In 

parallel, petrophysical understanding of the causes of crustal anisotropy has also been growing 

quickly [e.g., Barruol and Mainprice, 1993; Nishizawa and Yoshino, 2001; Okaya and McEvilly, 

2003;  Cholach et al., 2005; Cholach and Schmitt, 2006; Kitamura, 2006; Mahan, 2006; 

Barberini et al., 2007; Tatham et al., 2008; Lloyd et al., 2009; Ward et al., 2012; Erdman et al., 

2013]. With the development of ambient noise tomography, surface waves now can be observed 

at periods short enough to allow shear wave speed models to be constructed at crustal depths 

including models both of azimuthal [e.g., Lin et al., 2011; Xie et al., 2012] and polarization or 

radial [e.g., Bensen et al., 2009; Huang et al., 2010; Moschetti et al., 2010a, 2010b; Takeo et al., 

2013] anisotropy. The current paper reports on the application of ambient noise tomography to 

infer radial anisotropy in eastern Tibet and surrounding regions. 

Radial anisotropy is a property of a medium in which the speed of the wave depends on 

its polarization and direction of propagation. For a transversely isotropic medium, such as a 
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medium with hexagonal symmetry with a vertical symmetry axis, there are two shear wave 

speeds: Vsv and Vsh. In such a medium, a shear wave that is propagating horizontally and 

polarized vertically or a shear wave that is propagating vertically and polarized horizontally will 

propagate with speed Vsv. In contrast, a wave that is propagating in a horizontal direction and 

polarized horizontally will propagate with speed Vsh. We refer to this difference in wave speed 

as Vs radial anisotropy or in some places merely as radial anisotropy, which is represented here 

as the percentage difference between Vsh and Vsv in the medium: γ = (Vsh-Vsv)/Vs. In this 

case, Vs is the isotropic or effective shear wave speed, and is computed from Vsh and Vsv via a 

Voigt-average, 𝑉𝑠 = (2𝑉𝑠𝑣! + 𝑉𝑠ℎ!) 3 [Babuška and Cara, 1991]. 

The direct observation of radial anisotropy with regionally propagating shear waves, 

which are confined to the crust and uppermost mantle, is extremely difficult. Thus, the existence 

of radial anisotropy is typically inferred from observations of a period-dependent discrepancy 

between the phase or group speeds of Rayleigh and Love waves. As discussed later in the paper 

and in many other papers [e.g., Anderson and Dziewonski, 1982; Montagner and Nataf, 1986], 

Rayleigh waves are strongly sensitive to Vsv and Love waves to Vsh. The Rayleigh-Love 

discrepancy is identified by the inability of a simply parameterized isotropic shear velocity 

model to fit the dispersion characteristics of both types of waves simultaneously. Observations of 

this discrepancy attributed to radial anisotropy in the mantle in which Vsh > Vsv date back about 

half a century [Aki, 1964; Aki and Kaminuma, 1963; McEvilly, 1964; Takeuchi et al., 1968]. 

Much more recently, radial anisotropy in the uppermost mantle has been mapped worldwide 

[Montagner and Tanimoto, 1991; Trampert and Woodhouse, 1995; Babuška et al., 1998; 

Ekström and Dziewonski, 1998; Shapiro and Ritzwoller, 2002; Nettles and Dziewoński, 2008], 

and there have also been inroads made into mapping radial anisotropy in the crust beneath the 
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US [Bensen et al., 2009; Moschetti and Yang, 2010; Moschetti et al., 2010] and Tibet [Shapiro et 

al., 2004; Chen et al., 2010; Duret et al., 2010; Huang et al., 2010]. The observations in Tibet 

are part of a steady improvement in the reliability and the lateral and radial resolutions of surface 

wave dispersion studies that cover all [Ritzwoller et al., 1998; Villaseñor et al., 2001; Levshin et 

al., 2005; Maceira et al., 2005; Zheng et al., 2010; Caldwell et al., 2009; Acton et al., 2010; 

Yang et al., 2010, 2012] or parts of the high plateau [Levshin et al., 1994; Cotte et al., 1999; 

Rapine et al., 2003; Yao et al., 2008, 2010; Guo et al., 2009; Li et al., 2009; Jiang et al., 2011; 

Zhou et al., 2012]. 

The observation of crustal radial anisotropy has been taken as evidence for the existence 

of strong elastically anisotropic crustal minerals aligned by strains associated with processes of 

deformation [Shapiro et al., 2004; Moschetti et al., 2010]. Many continental crustal minerals are 

strongly anisotropic as single crystals [Barruol and Mainprice, 1993; Mahan, 2006], but some of 

the most common minerals (e.g., feldspars, quartz) have geometrically complicated anisotropic 

patterns that destructively interfere with polycrystalline aggregates [Lloyd et al., 2009; Ward et 

al., 2012]. Micas and amphiboles are exceptions that exhibit more robust alignment in both 

crystallographic direction and shape that produce simple patterns of seismic anisotropy [Tatham 

et al., 2008; Lloyd et al., 2009]. For this reason, recent observations of strong anisotropy in the 

middle crust have been attributed to the crystallographic preferred orientation (CPO) of mica 

[Nishizawa and Yoshino, 2001; Shapiro et al., 2004; Moschetti et al., 2010]. In the lower crust, 

amphibole may also be an important contributor to seismic anisotropy [Kitamura, 2006; 

Barberini et al., 2007; Tatham et al., 2008]. 

Shapiro et al. [2004] showed that crustal radial anisotropy is strong in western Tibet and 

may extend into eastern Tibet where the resolution of their study was weaker. Subsequently, 
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Duret et al. [2010] presented evidence from individual seismograms using aftershocks of the 

Wenchuan earthquake of 12 May 2008 that the Rayleigh-Love discrepancy is so significant for 

paths crossing Tibet that crustal radial anisotropy probably also extends into eastern Tibet. 

Huang et al. [2010] confirmed this expectation by mapping crustal radial anisotropy in far 

southeastern Tibet. Example cross-correlations of ambient noise for a path in the Qiangtang 

terrane (Figure 2.1) contain Rayleigh and Love waves as shown in Figure 2.2a. Figure 2.2b 

illustrates that a Rayleigh-Love discrepancy exists for this path, revealing that crustal radial 

anisotropy, indeed, is present between stations located within eastern Tibet. 

The objective of this paper is to map crustal radial anisotropy across all of eastern Tibet 

(Figure 2.1), extending the results into adjacent areas north and east of the high plateau for 

comparison. Rayleigh and Love wave phase velocity curves are measured from ambient noise 

cross-correlations between each pair of simultaneously operating stations between 8 and 44 sec 

period for Love waves and 8 and 65 sec for Rayleigh waves.  As shown later, the inability to 

observe Love waves at longer periods implies that radial anisotropy cannot be reliably mapped 

deeper than about 50 km, which means that we cannot place tight constraints on the strength of 

radial anisotropy in the lowermost crust beneath Tibet. For this reason, we focus discussion on 

mid-crustal radial anisotropy.  

The inversion of surface wave data for a 3-D radially anisotropic shear wave speed model 

consists of two stages: first, a tomographic inversion is performed using measured Rayleigh and 

Love wave dispersion curves for period-dependent phase speed maps on a 0.5°×0.5° grid using 

the tomographic method of Barmin et al. [2001] with uncertainties estimated using eikonal 

tomography [Lin et al., 2009] (Section 2.2), and second, a Bayesian Monte Carlo inversion [Shen 

et al., 2013b] is carried out for a 3-D radially anisotropic shear velocity (Vsv, Vsh) model of the 
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Figure 2.1. (a) Reference map of the study region in which red lines indicate the boundaries of 
major geological units and basins [Zhang et al., 1984, 2003]. The white contour outlines what we 
refer to as the Longmenshan region. The blue line is the path between stations X4.F17 and 
X4.D26 referenced in Fig. 2. Points A, B, C, and D indicate sample points referenced in Figs. 6, 
7, 13, 16, 17, and 19. (b) Locations of seismic stations used in this study. Red and black triangles 
are stations used to measure Love wave dispersion, while blue and black triangles indicate 
stations used for Rayleigh wave measurements. 
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Figure 2.2. (a) Example of Rayleigh wave (blue, vertical-vertical, Z-Z) and Love wave (red, 
transverse-transverse, T-T) cross-correlations for a pair of stations (X4.F17, X4.D26) located in 
the Qiangtang terrane (Fig. 1a), band pass filtered between 5 and 100 sec period. (b) Observed 
Rayleigh and Love wave phase speed curves measured from the cross-correlations are presented 
as 1 standard deviation (1σ) error bars (red-Love, blue-Rayleigh). Inverting these data for an 
isotropic model (Vs = Vsh = Vsv) produces the best fitting green curves, which demonstrates a 
systematic misfit to the data (predominantly the Love waves) and a Rayleigh-Love discrepancy. 
Allowing crustal anisotropy (Vsh ≠  Vsv), produces the blue and red dispersion curves that fit the 
data.  
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 crust (Section 2.3). The inversion estimates the posterior distribution of accepted models 

at each location, which is used in two ways. First, at each grid node we summarize the 

distribution at each depth with its mean and standard deviation. Using the mean of the 

distribution, we show that strong mid-crustal positive (Vsh > Vsv) radial anisotropy is observed 

across all of eastern Tibet and terminates abruptly as the border of the high plateau is reached. It 

is also observed in the middle crust beneath the Sichuan Basin. Negative radial anisotropy (Vsv > 

Vsh) is observed in the shallow crust beneath eastern Tibet and in the middle crust of the 

Longmenshan region. Second, we also query the entire posterior distribution of models in order 

to determine which structural attributes are highly probable, which are only likely, and which are 

prohibited. Throughout, we attempt to address how uncertainties in prior knowledge (e.g., Vp/Vs 

in the crust) affect the key inferences. In particular, we investigate if prior constraints and 

assumptions are likely to bias the posterior distribution significantly. Finally, we ask how the 

observations reflect on the presence or absence of pervasive partial melt in the middle crust 

across Tibet and speculate on the physical causes of several observed radial anisotropy features.  

 

2.2 Data processing and tomography 

2.2.1 Love wave and Rayleigh wave tomography 

For Love wave data processing, we apply the procedure described by Bensen et al. [2007] 

and Lin et al. [2008] to recordings at 362 stations (Figure 2.1), consisting of 180 PASSCAL and 

GSN stations and 182 Chinese Earthquake Array (CEArray) stations [Zheng et al., 2010]. We 

downloaded all available horizontal component data for PASSCAL and GSN stations between 

years 2000 and 2011 from the IRIS DMC.  Horizontal component data for the CEArray stations 

were acquired for the years 2007 through 2009. We cut horizontal component ambient noise 
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records into 1-day long time series and then cross-correlate the transverse components (T-T) 

between all possible station pairs, after the performance of the time domain and frequency 

domain normalization procedures described by Bensen et al. [2007]. As Lin et al. [2008] 

demonstrated, Love wave energy dominates transverse-transverse (T-T) cross-correlations.  Yang 

et al. [2008] showed that Rayleigh wave cross-correlations between stations in Tibet are 

typically not symmetric, but there is significant energy from most directions with the primary 

directions of propagation of the waves being dependent on both period and season.  This is also 

true for Love waves, but the strongest waves (highest SNR) typically come from the southeast. 

After the cross-correlations, we applied automated frequency-time analysis (FTAN) [e.g., 

Levshin and Ritzwoller, 2001; Bensen et al., 2007]) to produce Love wave phase speed curves 

for periods between 8 and 30 to 50 sec (depending on the signal-to-noise ratio) for each station 

pair.  

Rayleigh wave phase speed measurements are obtained from cross-correlations of 

vertical-component ambient noise, the vertical-vertical (Z-Z) cross-correlations, which are rich in 

Rayleigh waves. Yang et al. [2010] generated Rayleigh wave phase velocity maps from ambient 

noise across the Tibetan Plateau. Instead of using their dispersion maps directly, we re-selected 

the measurements for stations within our study region and re-performed the tomography as 

described below.  Example T-T and Z-Z cross-correlations and measured phase speeds between 

the station-pair X4.D26 and X4.F17 are shown in Figure 2.2.  

For dispersion measurements at different periods, we exploited three criteria to identify 

reliable measurements: (1) the distance between two stations must be greater than two 

wavelengths to ensure sufficient separation of the surface wave packet from precursory arrivals 

and noise and to satisfy the far-field approximation (the use of a three-wavelength criterion 
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changes results negligibly); (2) measurements must have a signal-to-noise ratio (SNR) > 10 for 

Love wave and SNR > 15 for Rayleigh wave to ensure the reliability of the signal; and (3) the 

observed travel times and those predicted from the associated phase velocity map between each 

accepted station-pair must agree within a specified tolerance [Zhou et al., 2012]. We found that 

horizontal components are problematic (mainly relative to criterion (3) above) for 61 stations.  

Their removal left us with the 362 stations shown in Figure 2.1. The vertical components of 26 

stations are similarly identified as problematic and are rejected from further analysis leaving 406 

stations from which we obtain Rayleigh wave measurements. This procedure produces about 

30,000 Love wave phase velocity curves and 40,000 Rayleigh wave curves.  

Because eikonal tomography [Lin et al., 2009] models off-great circle propagation, it 

would be preferable to straight ray tomography [Barmin et al., 2001]. Eikonal tomography works 

best, however, where there are no spatial gaps in the array of stations. There are gaps in our 

station coverage near 33°N, 100°E in eastern Tibet (Figure 2.1b). Thus, we apply straight-ray 

tomography [Barmin et al., 2001] to generate phase velocity maps, but use eikonal tomography 

to estimate uncertainties in these maps, as described in Section 2.2.2. To reduce the effect of 

non-ideal azimuthal coverage at some locations, we simultaneously estimate azimuthal 

anisotropy, but these estimates are not used here. What results are Love wave phase velocity 

maps ranging from 8 to 44 sec and Rayleigh wave phase velocity maps from 8 to 65 sec period. 

Above 44 sec period, the SNR of Love waves decreases dramatically, which degrades the ability 

to produce reliable high-resolution maps. Examples of Rayleigh and Love wave phase speed 

maps at periods of 10 and 40 sec are shown in Figure 2.3. At 10 sec period, the maps are quite 

sensitive to shallow crustal structures to about 20 km depth including the existence of sediments, 

and at 40  
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Figure 2.3. Example estimated Rayleigh (a,b) and Love (c,d) wave phase speed maps at 10 (a,c) 
and 40 sec (b,d)  period determined from ambient noise cross-correlations. 
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sec period the maps are predominantly sensitive to structures near the Moho such as crustal 

thickness. 

2.2.2 Uncertainties and local dispersion curves 

Local uncertainty estimates for each of the phase speed maps provide the uncertainties 

used in the inversion for 3-D structure. Estimates of uncertainties in the Rayleigh and Love wave 

phase speed maps are determined by eikonal tomography [Lin et al., 2009], which, as discussed 

above, does not produce uniformly unbiased phase speed estimates where there are gaps in 

station coverage. We find, however, that it does produce reliable uncertainty estimates, even in 

the presence of spatial gaps. Averaging the one-standard deviation uncertainty maps across the 

study region, average uncertainties are found to range between 0.012 to 0.057 km/s for Rayleigh 

waves and 0.016 to 0.060 km/s for Love waves (Figure 2.4), minimize between about 12 and 25 

sec period, and increase at both shorter and longer periods. Because of the lower SNR and the 

smaller number of Love wave measurements, uncertainties for Love waves tend to be larger than 

for Rayleigh waves. In addition, the SNR decreases faster at long periods for Love waves than 

Rayleigh waves, so the uncertainty for Love waves at long periods is higher still than for 

Rayleigh waves. Uncertainties for both wave types increase toward the borders of the maps at all 

periods.   

Having estimated maps of period-dependent dispersion and uncertainty, local Rayleigh 

and Love wave dispersion curves with associated uncertainties are generated on a 0.5°×0.5° grid 

across the study region. These data are the input for the 3-D model inversion that follows. 

2.3 Bayesian Monte Carlo inversion of local dispersion curves  
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Figure 2.4. Uncertainties (1σ) in the Rayleigh and Love wave phase speed maps averaged across 
the study region estimated using the eikonal tomography method of Lin et al.[ 2009]. 
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2.3.1 Model parameterization and prior constraints   

The 3-D model comprises a set of 1-D models situated on a 0.5°×0.5° grid. Following 

Shen et al. [2013a, 2013b], each of the 1-D models is parameterized with three principal layers: a 

sedimentary layer, a crystalline crustal layer, and a mantle layer to a depth of 200 km. The 

sedimentary layer is isotropic and is described by two parameters: layer thickness and constant 

shear wave speed Vs. Anisotropy in the sedimentary layer is physically possible, but with the 

data used here cannot be resolved from anisotropy in the crystalline crust. In addition, it has little 

affect in the period range of the observed Rayleigh-Love discrepancy as discussed further in 

Section 2.4. For these reasons, we include anisotropy only below the sediments.  

We represent anisotropy through the elastic moduli of a transversely anisotropic medium 

(also referred to as radial anisotropy). In such a medium the elastic tensor is specified by five 

moduli: A, C, L, N, and F. The moduli A and C are related to the P-wave speeds (Vph, Vpv) and 

L and N are related to the S-wave speeds (Vsv, Vsh) as follows: A = ρ	
  V2
ph, C = ρ	
  V2

pv, L = ρ	
  

V2
sv, and N = ρ	
  V2

sh, where ρ is density. Some authors summarize radial anisotropy with three 

derived parameters: ξ = N/L = (Vsh/Vsv)2, ϕ = C/A = (Vpv/Vph)2, and η = F/(A-2L). We prefer 

to summarize Vs and Vp anisotropy with two different parameters in addition to η, defined as 

follows: γ = (Vsh – Vsv)/Vs and ε = (Vph – Vpv)/Vp, where Vs is the Voigt average of Vsh and 

Vsv and Vp similarly is the Voigt average of Vph and Vpv. We refer to γ as Vs radial anisotropy 

and ε as Vp radial anisotropy. These parameters are simply related to those used by some other 

authors: γ + 1 ≈ ξ1/2	
  and	
  ε + 1 ≈ ϕ	
  -­‐1/2.	
  In an isotropic medium, Vsh = Vsv, Vph = Vpv, and F = 

A – 2L, thus ξ = ϕ	
  =	
  η	
  = 1	
  and γ = ε = 0. 
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We make the simplifying (but nonphysical) assumption that only Vs anisotropy is present 

in the elastic tensor in the crust and mantle. Thus, we allow Vsh to differ from Vsv, but restrict 

Vph = Vpv (ε = 0) and η = 1. Strictly speaking this is physically unrealistic because in real 

mineral assemblages Vs anisotropy would be accompanied by Vp anisotropy with η	
  differing 

from unity [e.g., Babuška and Cara, 1991; Erdman et al., 2013]. In Section 2.5.4.4 we show, 

however, that the effect of this assumption on our estimate of crustal Vs anisotropy is negligible. 

Therefore, although we represent radial anisotropy in terms of Vs anisotropy alone, our results 

are consistent with the inclusion of Vp anisotropy in the elastic tensor along with η that differs 

from unity. 

The crystalline crustal layer is described by nine parameters: layer thickness, five B-

splines (1-5) for Vsv (Figure 2.5), and three more independent B-splines for Vsh (2-4). We set 

Vsh = Vsv for B-splines 1 and 5. Because B-splines 2 and 4 extend into the uppermost and 

lowermost crust, respectively, radial anisotropy can extend into these regions but its amplitude 

will be reduced relative to models in which Vsh and Vsv for B-splines 1 and 5 are free. The 

effect of this constraint is discussed in Section 2.5.4.1. 

Mantle structure is modeled from the Moho to 200 km depth with five B-splines for Vsv. 

Vsh in the mantle differs from Vsv by the depth-dependent strength of radial anisotropy taken 

from the 3-D model of Shapiro and Ritzwoller [2002]. Thus, in the mantle we estimate Vsv, but 

set Vsh = Vsv +𝛿𝑉 where   𝛿𝑉 is the difference between Vsh and Vsv in the model of Shapiro 

and Ritzwoller [2002].  Below 200 km the model reverts to the 1D model ak135 [Kennett et al., 

1995]. The effect on estimates of crustal anisotropy caused by fixing the amplitude of mantle 

anisotropy is considered in Section 2.5.4.2. Overall, there are 16 free parameters at each point 

and the model parameterization is uniform across the study region. 
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Figure 2.5. Representation of the parameterization used across the study region. In the crust, five 
B-splines (1-5) are used to represent Vsv, but three B-splines (2-4) are used to represent Vsh. In 
the mantle, five B-splines are estimated for Vsv but Vsh is derived from the strength of radial 
anisotropy in the model of Shapiro and Ritzwoller [2002]. A total of 16 parameters represent the 
model at each spatial location. 
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Because Rayleigh and Love wave velocities are mainly sensitive to shear wave speeds, 

other variables in the model such as compressional wave speed, Vp, and density, ρ, are scaled to 

the isotropic shear wave speed model, Vs. Vp is converted from Vs using a Vp to Vs ratio such 

that Vp/Vs is 2.0 in the sediments and 1.75 in the crystalline crust and mantle, consistent with a 

Poisson solid. For density, we use a scaling relation that has been influenced by the studies of 

Christensen and Mooney [1995] and Brocher [2005] in the crust, and by Karato [1993] in the 

mantle where sensitivity to density structure is much weaker than in the crust. The Q model 

comes from ak135 [Kennett et al., 1995] with some modifications: shear Q is 600 in the upper 20 

km and 400 between 20 and 80 km depth outside the Tibetan Plateau, while we set it to 250 

within the Tibetan Plateau [Levshin et al., 2010]. Vs, Vsv, and Vsh are converted to a reference 

period of 1 sec. To test the effect of uncertainties in the physical dispersion correction [Kanamori 

and Anderson, 1977] on estimates of Vsv and Vsv caused by ignorance of the Q of the crust, we 

lowered values of Q from 250 to 100 between 20 and 80 km depth. We found that the amplitude 

of the resulting depth averaged crustal radial anisotropy decreased only slightly for the smaller Q 

beneath point B shown in Figure 2.1a.  As a constant Q of 100 between these depths is almost 

certainly too low and we are concerned with anisotropy amplitudes greater than 1%, 

uncertainties in the Q model can be ignored here.  

To avoid consideration of physically unreasonable models, we imposed prior constraints 

on the parameter space explored in the inversion. (1) Although velocity is not constrained to 

increase monotonically with depth, it cannot decrease with depth at a rate (−∆𝑣/∆ℎ) larger than 

1/70 s-1. This constraint reduces (but does not entirely eliminate) the tendency of the shear-wave 

speeds to oscillate with depth. (2) Shear-wave speeds increase with depth across the sediment-
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basement interface and across Moho. (3) Both Vsv and Vsh are constrained to be less than 4.9 

km/s at all depths. (4) The amplitude of radial anisotropy in the uppermost and lowermost crust 

is constrained by setting Vsh=Vsv for splines 1 and 5 (Figure 2.5). The last constraint is imposed 

to mitigate against radial anisotropy oscillating with depth, and its effect is discussed further in 

Section 2.5.4.1. 

The model space is then explored starting with perturbations (Table 2.1) to a reference 

model consisting of sedimentary structure from Laske and Masters [1997] and crystalline crustal 

and uppermost mantle structure from Shapiro and Ritzwoller [2002]. Imposing the prior 

constraints in model space defines the prior distribution of models, which aims to quantify the 

state of knowledge before data are introduced. In particular, a new model mi is generated by 

perturbing the initial model m0 following the procedure described by Shen et al. [2013b]. The set 

of all models that can be produced in this way is called the prior distribution and example plots 

for various model variables are shown in Figure 2.6.   

2.3.2 Inversion procedure 

With the parameterization and constraints described above, we perform a Bayesian 

Monte Carlo inversion based on the method described by Shen et al. [2013b]. This method is 

modified to produce a radially anisotropic model using both Love and Rayleigh wave data 

without receiver functions. The main modifications lie in the forward calculation of surface wave 

dispersion for a transversely isotropic (radially anisotropic) medium, which we base on the code 

MINEOS [Masters et al., 2007]. Unlike most seismic dispersion codes, the MINEOS code 

consistently models a transversely isotropic medium. In order to accelerate the forward 

calculation, we compute numerical first-order partial derivatives relative to each model 

parameter. Given the range of model space explored, the use of first-derivatives is sufficiently  
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Table 2.1.  Model parameter constraints  
 
 Model parameter Perturbation Reference model 
Sedimentary layer Sediment thickness 

Vsv in sediment 
Vsh in sediment 

+/- 100% 
+/- 1.0 km/s 
equals to Vsv 

Laske & Masters 
[1997] 

Crystalline crustal 
layer 

Crustal thickness 
5 Vsv B-splines* 
5 Vsh B-splines* 

+/- 10% 
+/- 20% 
+/- 20% 

Shapiro & 
Ritzwoller [2002] 

Mantle layer to 
150 km 

5 Vsv B-splines 
Anisotropy 

+/- 20% 
0  

Shapiro & 
Ritzwoller [2002] 
 

*  ∆𝑣/∆ℎ ≥ 0 or -1/70 s-1≤ ∆𝑣/∆ℎ < 0  
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Figure 2.6. Prior (white histograms) and posterior distributions for Vsv (blue), Vsh (red) and Vs 
radial anisotropy (green, γ in percent) at 20, 35, and 50 km depth for point B in the Qiangtang 
terrane (Fig. 1a). The mean and standard deviation for each posterior distribution are shown in 
each panel. 
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accurate [James and Ritzwoller, 1999; Shapiro and Ritzwoller, 2002]. For every spatial location, 

we start from the reference model described above, pref, and the corresponding Rayleigh or Love 

wave dispersion curves, Dref, and the partial derivatives (∂D/(∂p!) are computed numerically for 

all 16 free parameters using the MINEOS code. With these partial derivatives, dispersion curves 

D for any model p may be approximated as:  

𝑫 = 𝑫!"# + (!𝑫𝒓𝒆𝒇
!!!𝒊   )𝛿𝑝!        (2.1) 

where  𝛿𝑝! = 𝑝! − 𝑝!"#  !, is the perturbation to model parameter i. 

The model space sampling process is guided by the Metropolis law, and goes as follows. 

Within the model space defined by the prior information, an initial model m0 is chosen randomly 

from the prior distribution, and its likelihood function L(m0) is computed: 

𝐿 𝑚 = 𝑒𝑥𝑝  (− !
!
𝑆(𝑚))        (2.2) 

where 

𝑆 𝑚 = 𝑆!"#$%&'! + 𝑆!"#$ =
(!(!)!

!"#$!!!
!"#)!

!!
!! + (!!(!)!

!"#$!!!!
!"#)!

!!!
!!    (2.3) 

where 𝐷(𝑚)!
!"#$   is the predicted phase velocity for model m at period i (computed from  

(1)), and 𝐷!!"#is the observed phase velocity. Here, 𝐷 represents Rayleigh wave phase velocities 

and 𝐷! indicates Love wave phase velocities. Standard deviations of the Rayleigh and Love wave 

phase velocity measurements are given by 𝜎 and 𝜎!, respectively. 

A new model mi is generated by perturbing the initial model m0 following the procedure 

described by Shen et al. [2013b]. The likelihood function L(mi) is obtained through a similar 

computation as described above. The model mi is accepted or rejected according to a probability 

function P defined as follows: 



38 

 

 

 

𝑃!""#$% = 𝑚𝑖𝑛  (1, 𝐿(𝑚!)/𝐿(𝑚!))      (2.4) 

If mi is not accepted, a new mi is generated by perturbing the initial model m0; this 

perturbation continues until a mi is accepted. If mi is accepted, the next model sampled in model 

space will be based on it rather than m0. This sampling process repeats until the likelihood 

function levels off, after which a new initial model is chosen randomly from the prior 

distribution. The process is continued until at least 5000 models have been accepted from at least 

5 initial starting points. We then calculate average values of each parameter in the >5000 

accepted models and take that average as a new reference model, and then recalculate dispersion 

curves and partial derivatives. With this new reference model and a similar sampling procedure, 

we repeat the process until we find an additional 5000 models accepted from at least 10 initial 

starting points. The use of various initial models minimizes the dependence on the initial 

parameters, but we find that initial model dependence is weak. That is, convergence tends to be 

to similar models irrespective of the initial model starting point.  

The use of partial derivatives aims to accelerate computations during the process of 

identifying acceptable models in the Monte-Carlo search. In order to eliminate possible bias 

caused by the use of the partial derivatives, the Rayleigh and Love wave phase velocity curves 

are recomputed for each accepted model using MINEOS when the algorithm terminates at each 

location. This recomputation of the dispersion curves actually takes longer than the entire Monte-

Carlo search, but there is little difference between the dispersion curves computed with MINEOS 

and the partial derivatives. This justifies reliance on the partial derivatives to save computation 

time without sacrificing accuracy. 
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The Monte Carlo sampling will generate an ensemble of anisotropic models that fit the 

data better than the reference model. The ensemble is reduced further in size by an additional 

acceptance criterion defined as follows:  

𝜒 ≤ 𝜒!"# + 0.5          𝑖𝑓  𝜒!"# < 0.5  
2  𝜒!"#                𝑖𝑓  𝜒!"# ≥ 0.5     

where misfit 𝜒 = 𝑆/𝑁  𝑖𝑠  𝑡ℎ𝑒 square root of reduced chi-squared value, S is misfit defined by 

equation (2.3), and N is the number of observed data (number of discrete points along the 

Rayleigh and Love wave phase velocity curves). Thus, on average, this posterior distribution 

includes models whose misfit is less than about twice that of the best-fitting model, which has a 

square root of reduced chi-squared value of 𝜒!"#. 

Finally, the mean and standard deviation of Vsv and Vsh are used to summarize the 

posterior distribution for each depth and location. As an example, consider point B (Figure 2.1a), 

where mid-crustal anisotropy is needed to fit the data (Figure 2.6). The widths of the posterior 

distributions reflect how well Vsv, Vsh, and their differences are constrained at each depth. 

Uncertainties in shear wave speeds at depths of 20 and 35 km are less than about 50 m/s, but are 

about twice as large at 50 km. Moreover, radial anisotropy is inescapable at 20 and 35 km depth, 

but not required, if still likely, at 50 km. The poorer resolution at 50 km results from the lack of 

long-period Love wave data, increasing data uncertainties with period, and the tradeoff between 

lower crustal and uppermost mantle structures. Therefore, as mentioned earlier, we mainly focus 

discussion on structures no deeper than about 50 km.  

We performed the Bayesian Monte Carlo inversion at every grid point in the study region 

to produce posterior distributions. In Section 2.4, we present the spatial variations in the means 
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and standard deviations of the distribution.  Then in Section 2.5, we query the entire distribution 

to address particular scientific questions. 

2.4 Inversion Results 

2.4.1 Example results at various locations  

As examples of local dispersion curves and the results of their inversion to produce a 

radially anisotropic model, we consider results at four locations in different parts of eastern Tibet 

and its surroundings (Figure 2.1a, points A-D). For point A, which is north of the Kunlun fault 

near the eastern edge of the Qaidam Basin, the gray-shaded areas of the inverted model 

representing the 1𝜎 uncertainty of the posterior distribution of accepted models in Vsh and Vsv 

(Figure 2.7b) give no indication of crustal radial anistropy. Vsh and Vsv are approximately equal 

in the crust, and no Rayleigh-Love discrepancy is observed (Figure 2.7a). In contrast, for point B 

in in the middle of eastern Tibet, a strong Rayleigh-Love discrepancy is seen for all isotropic 

models (Figure 2.7c), and large differences are required in Vsh and Vsv between ~20 and 50 km 

depth, as large as about 7.8%±1.6% (Figure 2.7d). The model uncertainty increases near the base 

of the sedimentary layer (not shown) and near the Moho, which reflects the velocity-depth 

tradeoff near interfaces characteristic of surface wave inversions. This prevents precise imaging 

of the discontinuities using surface waves alone. Although the inversion is performed to a depth 

of 200 km, we concentrate discussion on the crust where radial anisotropy is well resolved.  

For point C in the Sichuan Basin, the Rayleigh and Love wave dispersion curves (Figure 

2.7e) call for anisotropy only in the upper 20 km of crust (Figure 2.7f). As discussed in Section 

2.4.3, the anisotropy could be confined to the sediments but would need to be about four times  
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Figure 2.7. Examples of dispersion curves and estimated radially anisotropy for four spatial 
locations (A, B, C, D) identified in Fig. 2.1a. (a) Point A (98.5, 36.0) near the eastern edge of the 
Qaidam Basin. Local Rayleigh and Love wave phase speed curves presented as one standard 
deviation (1σ) error bars. Predictions from the average of the anisotropic model distribution in 
(b) are shown as solid lines and green lines are predictions from the Voigt-averaged isotropic Vs 
model. Misfits (defined as 𝜒 = 𝑆/𝑁 where S is defined in eq. (3)) correlated with anisotropic 
and isotropic models are shown at the upper left corner. (b) Point A (cont.). Inversion result in 
which the one standard deviation (1σ) model distributions are shown with the grey corridors for 
Vsh and Vsv, with the average of each ensemble plotted with bold blue (Vsv) and red (Vsh) 
lines. The model ensembles are nearly coincident in the crust, consistent with an isotropic crust. 
(c) & (d) Point B (96.5, 32.5) in the Qiangtang terrane where the central crust has strong positive 
radial anisotropy between 20 and 50 km depth and weak negative anisotropy above about 15 km 
depth. (e) & (f) Point C (105.0, 30.0) in the Sichuan Basin where the central crust has strong 
positive radial anisotropy between depths of 10 and 25 km. (g) & (h) Point D (102.5, 30.0) 
between Tibet and the Sichuan Basin where the central crust has strong negative radial 
anisotropy between 20 and 50 km depth. 
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stronger. For point D in the Longmenshan region between Tibet and the Sichuan Basin, mid-

crustal radial anisotropy is required, but in this case Vsv > Vsh and radial anisotropy is negative.  

In Figure 2.7, green lines on the dispersion curves represent the predicted curves for the 

best-fitting isotropic Vs model in the crust, although the mantle contains radial anisotropy. They 

show the observed Rayleigh-Love discrepancy, how the best-fitting isotropic model misfits the 

data at points B, C, and D where radial anisotropy is required in the middle crust. 

2.4.2 Maps of Vsv, Vsh, and Voigt-averaged Vs  

Maps of the mean of the resulting posterior distributions for Vsv, Vsh, and the Voigt 

averaged isotropic Vs in the middle crust of Tibet (~35 km) are shown in Figure 2.8, in addition 

to the mean of crustal thickness. The most prominent feature is the low mid-crustal shear wave 

speed across all of eastern Tibet compared with much higher speeds outside of Tibet. In the mid-

crustal Vsv map (Figure 2.8a), anomalies are similar to those presented in an earlier study using 

a similar data set [Yang et al., 2012]. The Vsh model is faster than Vsv across the high plateau, 

indicating strong positive radial anisotropy. Combining Vsv and Vsh, an isotropic Vs estimate is 

computed from the Voigt averaging method mentioned in Section 2.1. In these maps, white 

contours outline regions with shear wave speeds lower than 3.4 km/s, below which partial 

melting may be expected to exist [e.g., Yang et al., 2012]. Although Vsv < 3.4 km/s exists across 

much of eastern Tibet, Vsh > 3.4 km/s is present across the majority of the region. The difference 

between Vsv and Vsh causes the white contour in the Vsv map to contract toward the interior of 

eastern Tibet in the Vs map, predominantly within the Songpan-Ganzi and the northern 

Chuandian terrane. This feature of the Vs model is discussed further in Section 2.5.  



43 

 

 

 

 
 

Figure 2.8. The average of the posterior distributions of (a) Vsv, (b) Vsh, and (c) Vs at 35 km 
depth in km/s, which is in the middle crust beneath the Tibetan Plateau. Regions with very low 
velocities (<3.4 km/s) are encircled by white contours. (d) The average of the posterior 
distribution of crustal thickness in km. 
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2.4.3 Radial anisotropy  

From the posterior distributions of Vsv and Vsh at each location we obtain the radial 

anisotropy model. Radial anisotropy at different depths and along different vertical profiles is 

shown in Figures 2.9 and 2.10. In this section we first discuss the distribution of radial 

anisotropy qualitatively, and then the estimated uncertainties are presented and discussed in 

Section 2.4.4. 

In the upper crust (Figure 2.9a), radial anisotropy beneath the Tibetan Plateau is negative, 

on average. Beneath the Sichuan Basin, in contrast, it is positive with amplitudes in excess of 

6%. Actually, the depth extent of the strong upper crustal radial anisotropy beneath the Sichuan 

Basin is not well constrained by the data. For example, it could also have been confined to the 

sediments, but in this case radial anisotropy of about 25% would be needed to fit the data. 

Because of this exceptionally large amplitude, we prefer a model with radial anisotropy confined 

to the upper crystalline crust.   

In the middle crust (Figure 2.9b), relatively strong positive radial anisotropy with 

amplitudes ranging from 4% to 8% is observed across most of eastern Tibet, where the strongest 

anisotropy is concentrated near the northern margin of the Qiangtang terrane. Near the northern 

and eastern margins of the Tibetan Plateau, radial anisotropy decreases in amplitude. To the 

north, radial anisotropy decreases abruptly across the Kunlun fault, and to the east radial 

anisotropy decreases and becomes negative near the Longmenshan west of the Sichuan Basin. 

The northern margin of radial anisotropy closely follows the Kunlun fault. In contrast, the 

termination of radial anisotropy near the southeastern margin of Tibet does not follow the 

topography or geological boundaries. Strong radial anisotropy covers only the northern half of  
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Figure 2.9. Maps of the mean of the posterior distribution for estimates of radial anisotropy at (a) 
10 km depth, (b) 35 km depth, and (c) 90% of the depth to Moho in the lowermost crust. Radial 
anisotropy is the percent difference between Vsh and Vsv at each location and depth (γ) and Vs 
is the Voigt-averaged shear wave speed. Blue lines in (a) identify the locations of the vertical 
cross-sections in Fig. 2.10.  

90˚ 95˚ 100˚ 105˚ 110˚

25˚

30˚

35˚

40˚

90˚ 95˚ 100˚ 105˚ 110˚

25˚

30˚

35˚

40˚

90˚ 95˚ 100˚ 105˚ 110˚

25˚

30˚

35˚

40˚

−8

−6

−4

−2

0

2

4

6

8

A
ni

so
tro

py

%

(a)     10 km                 (b)       35 km

(c)      lowermost crust      (d)      85 km

Figure 9

90˚ 95˚ 100˚ 105˚ 110˚

25˚

30˚

35˚

40˚

A

A

B

D

C



46 

 

 

 

 
 

Figure 2.10. Vertical cross-sections of (upper left) Vsv, (middle left) Vsh, and (lower left) Vs 
radial anisotropy γ along profile A (Fig. 9a), taken from the mean of the posterior distribution at 
each location and depth. Topography is shown at the top of each panel as are locations of 
geological-block boundaries (SG: Songpan-Ganzi terrane, CD: Chuandian terrane, LS: Lhasa 
terrane, QL: Qilian terrane, SCB: Sichuan Basin, SYN: South Yunnan region, YZ: Yangtze 
craton). Crustal shear velocities are presented in absolute units (km/s), Vs radial anisotropy is 
presented as the percent difference between Vsh and Vsv (γ), and mantle velocities are 
percentage perturbations relative to 4.4 km/s. (Right) Vs radial anisotropy is presented beneath 
profiles B, C, and D (Fig. 9a). 
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the Chuandian terrane and it ends before the plateau drops off and topography decreases. To the 

east of the Tibetan Plateau, negative radial anisotropy shows up near the Longmenshan, in a 

narrow strip between the Chuandian terrane and the Sichuan Basin. Outside the Tibetan Plateau, 

mid-crustal radial anisotropy is weak except within and south of the Sichuan Basin and in the 

Qilian terrane.  

In the lower crust (Figure 2.9c), radial anisotropy is weak across most of the region of 

study, with notable isolated anomalies in the northern Songpan-Ganzi and Qiangtang terranes. In 

fact, radial anisotropy at this depth is not determined reliably because anisotropy trades off with 

both Moho depth and radial anisotropy in the uppermost mantle. This phenomenon is reflected in 

the large uncertainties shown in Figure 2.11c.  

In Figure 2.9d, uppermost mantle anisotropy at 85 km depth is shown, which is taken 

from the model of Shapiro and Ritzwoller [2002], as mentioned in Section 2.3.1. Shapiro’s 

model of anisotropy is fairly uniform across the study region with an average positive anisotropy 

of ~6%, but much weaker mantle anisotropy exists within and south of the Sichuan Basin. In 

fact, weak negative anisotropy exists beneath parts of the Sichuan Basin in their model. 

The locations of the four vertical transects are shown in Figure 2.9a and the vertical 

transects themselves are presented in Figure 2.10. For profile A, Vsv, Vsh, and radial anisotropy 

are presented. For profiles B, C, and D, only radial anisotropy is presented. 

For profile A, Vsv is similar to the result presented by Yang et al. [2012] using a similar 

data set. Within the high plateau, a Vsv minimum in the middle crust is seen clearly from about 

20 to 40 km depth. In the Sichuan Basin, a very slow sedimentary layer is present along with 

faster lower crust. Compared to Vsv, Vsh is faster from the surface to the base of the crust except 

in the uppermost crust of the high plateau and the mid-crustal velocity minimum seen for Vsv is  
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Figure 2.11. Maps of the one standard deviation (i.e., error) of the posterior distribution for 
estimates of Vs radial anisotropy at (a) 10 km depth, (b) 35 km depth, and (c) 90% of the depth 
to Moho. Results are in the same units as radial anisotropy, not in the percentage of radial 
anisotropy at each point. 
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much more subtle. There are differences in upper crustal Vsv and Vsh in the Sichuan Basin as 

well. Radial anisotropy beneath the high plateau along profile A increases from an average of 

about -1% in the uppermost crust to values of 4% to 6% between 20 and 50 km depth. Radial 

anisotropy then decreases with depth in the lower crust. Near the eastern edge of the plateau, 

radial anisotropy vanishes as surface elevation falls off, perhaps changing sign before elevation 

plummets at the Longmenshan.  

The three other vertical profiles shown in Figure 2.10 are similar to profile A in the 

vertical distribution of radial anisotropy in the crust across the Tibetan Plateau: radial anisotropy 

is negative, on average, in the uppermost crust, positive and peaks in amplitude in the middle 

crust, decreases in the lower crust, and terminates near the border of the high plateau except 

within and south of the Sichuan Basin. The nature of the termination of radial anisotropy near the 

border of the plateau varies from place to place. For example, in profile C, which runs across the 

northeastern part of the plateau, radial anisotropy decreases gradually as topography decreases. 

In contrast, in profile D, which goes through the southeastern part of the plateau, radial 

anisotropy ends abruptly before topography decreases. 

In summary, within the Tibetan Plateau, strong positive radial anisotropy begins at about 

20 km depth and peaks between 30 and 50 km depth. It is almost continuous between different 

terranes, but there is some diminishment in amplitude near terrane boundaries as profile B 

illustrates. Radial anisotropy has a somewhat broader depth range in the Qiangtang terrane 

compared with other terranes. Outside of the Tibetan plateau, strong upper-to-middle crustal 

radial anisotropy shows up in and south of the Sichuan Basin. Negative anisotropy is mostly 

confined to the uppermost crust beneath Tibet and in the middle crust in the Longmenshan 

region, near the border between Tibet and the Sichuan Basin.   
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2.4.4 Uncertainty in radial anisotropy 

Figure 2.11 presents uncertainties in the estimated radial anisotropy in the region of study 

at depths of 10 and 35 km, as well in the lower crust at a depth of 90% of crustal thickness. The 

uncertainty is defined as one standard deviation of the posterior distribution at each depth. 

Except beneath the Sichuan Basin, uncertainties grow with depth in the crust because a smaller 

percentage of the observed dispersion curves are sensitive to the greater depths. Beneath the 

Sichuan Basin, the higher shallow uncertainties result from the trade-off of shear velocities in the 

crystalline crust and sediments. At 10 km depth, the average uncertainty in eastern Tibet is about 

1%, whereas in the mid-crust it is about 2%, and in the lower crust it is about 3.5%. As discussed 

in Section 2.5.4.1, if we had not constrained Vsh=Vsv for crustal B-splines 1 and 5 (Figure 2.5) 

in the uppermost and lowermost crust, uncertainties in radial anisotropy in the uppermost and 

lowermost crust would have been larger. The higher uncertainties in the lower crust result from 

the fact that Love waves do not constrain Vsh well at these depths and there are trade-offs with 

crustal thickness and uppermost mantle structure and is why we concentrate discussion on 

shallower depths. 

2.4.5 Computation of regional averages  

Several of the attributes of the model observed here appear to be fairly homogeneous 

over extended areas. These attributes include positive mid-crustal radial anisotropy beneath 

eastern Tibet and the Sichuan Basin, negative mid-crustal radial anisotropy near the 

Longmenshan adjacent to the eastern border of Tibet, negative radial anisotropy in the shallow 

crust beneath parts of eastern Tibet (notably the Songpan-Ganzi terrane), and Vs in the mid-crust 

beneath eastern Tibet. We present here averages of the means and the standard deviations of the 

mean of these variables defined over the four regions. These standard deviations, in contrast with 
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those presented in Figure 2.11 and discussed in Section 2.4.4, principally reflect spatial 

variations rather than uncertainties.  

There are four regions over which we compute the averages. First, we consider “eastern 

Tibet” to be defined by the interior of the 84.2% probability contour (orange, red colors) of 

positive mid-crustal radial anisotropy near Tibet, which is presented later in the paper (Figure 

2.13a). This contour approximately follows the outline of the high plateau.  Second, we consider 

the Longmenshan region near the border between Tibet and the Sichuan Basin to be contained 

within the 15.8% probability contour (blue colors) of positive mid-crustal radial anisotropy 

(Figure 2.13a). Finally, we use the geological outlines of the Sichuan Basin and the Songpan-

Ganzi terrane as the third and fourth regions.  

In the Songpan-Ganzi terrane, the distribution of the means of shallow crustal (~10 km) 

radial anisotropy is presented in Figure 2.12a. The average of the means in this region is -1.03% 

± 1.38%. This is the structural attribute with the relatively largest variability. The distribution of 

the means of mid-crustal radial anisotropy across eastern Tibet (~35 km) and the Sichuan Basin 

(~15 km) are presented in Figures 2.12b,c. Mid-crustal radial anisotropy averages 4.81% ± 1.41% 

in eastern Tibet. Across the Sichuan Basin the average is somewhat larger, 5.35% ± 1.43%. Also 

in the middle crust, but averaged over the Longmenshan region (~30 km), the distribution of the 

means of mid-crustal radial anisotropy is presented in Figure 2.12d. The average is -2.80% ± 

0.94%. Finally, mid-crustal Vs averaged over eastern Tibet is 3.427 km/s ± 0.050 km/s, as seen 

in Figure 2.12e.  

2.5 Identifying highly probable model attributes 

The means of the posterior distributions of the models that result from the Bayesian 

Monte Carlo inversion of Rayleigh and Love wave dispersion curves have been used to infer that  
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Figure 2.12. Plots of the spatial distribution of the mean of the posterior distributions of Vs 
radial anisotropy across (a) the Songpan-Ganzi terrane between depths of 5 and 15 km, (b) 
eastern Tibet at depths between 30 and 40 km, (c) the Sichuan Basin at depths between 5 and 20 
km, and (d) the Longmenshan region between eastern Tibet and the Sichuan Basin between 25 
and 35 km. (e) The distribution of the mean of the posterior distribution for Voigt-averaged shear 
wave speed Vs across eastern Tibet between depths of 30 and 40 km. 
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(1) positive (Vsh>Vsv) mid-crustal radial anisotropy exists across the entirety of eastern Tibet 

with an average amplitude (γ) of about 4.8% (~35 km) and at much shallower depths (~15 km) 

beneath the Sichuan Basin with an average amplitude of about 5.4%, (2) weaker negative radial 

anisotropy (Vsh<Vsv) appears in the middle crust (~30 km) along the Longmenshan region (-

2.8%) and in the shallow crust (~10 km) across the Songpan-Ganzi terrane (-1.03%) , and (3) the 

Voigt averaged shear wave speed in the middle crust (~35 km) averages about 3.427 km/s across 

eastern Tibet. From the geographical spread of the local means of the posterior distributions of 

these attributes we have inferred that these observations are characteristic of each region. Radial 

anisotropy in the lowermost crust is more poorly constrained than at shallower depths because of 

a trade-off with crustal thickness and radial anisotropy in the mantle. 

Although the mean of the posterior distribution is interpreted as its maximum likelihood, 

the Bayesian Monte Carlo inversion delivers a distribution of models at each depth. For this 

reason, within a Bayesian framework, the probability that the model achieves a particular 

attribute can be computed. Here we address the following questions across the region of study: 

(1) What is the probability that positive (Vsh>Vsv) radial anisotropy exists in the shallow crust 

or in the middle crust? (2) Similarly, what is the probability for negative radial anisotropy? (3) 

What is the probability that the Voigt averaged shear wave speed lies below or above 3.4 km/s in 

the middle crust?  

In computing these probabilities, we acknowledge that the posterior distribution 

represents a conditional probability in which the likelihood is conditioned on prior information 

that appears in the range of the model variables allowed, the constraints imposed, the 

parameterization chosen, the details of the search algorithm, and the assumptions made  (e.g., 

ρ/Vs, Vp/Vs, Q). From a Bayesian perspective, the distribution represents the authors’ degree of 
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belief in the results, but if the prior information is wrong then the resulting distribution of models 

may be biased. In Section 2.5.4, we identify several potential sources for bias and discuss how 

these choices may affect the mean of the estimated posterior distribution of the selected model 

attributes. 

2.5.1 Computing the probability of a model attribute from the posterior distribution 

Figure 2.13a,b illustrates the computation of the probability for the existence of positive 

radial anisotropy in the middle crust. The probability that Vsh > Vsv (positive radial anisotropy) 

at 35 km depth is mapped in Figure 2.13a. It is computed at each point from the local posterior 

distribution, examples of which are shown for locations A, B, and D from Figure 2.1a in Figure 

2.13b.  For point A, a location that we interpret as isotropic in the crust, approximately half (54%) 

of the posterior distribution shows positive anisotropy and half negative. For point B, which we 

interpret as possessing strong positive mid-crustal anisotropy, 100% of the posterior distribution 

has Vsh>Vsv at 35 km depth. For point D, where we observe negative anisotropy on average, 

only ~0.12% of the models in the posterior distribution have Vsh>Vsv. Thus, at this point, more 

than 99.8% of the models in the posterior distribution display negative anisotropy in the middle 

crust. 

The values mapped in Figure 2.13a are simply the percentage of models in the posterior 

distribution at each point with positive mid-crustal radial anisotropy.  Examples of the 

probability of positive radial anisotropy at depths of 10 and 15 km are also shown in Figure 

2.13c,d. Similarly, from the local posterior distributions of the isotropic Vs, the probabilities that 

Vs is greater than 3.4 km/s or less than 3.4 km/s are mapped in Figure 2.14. 

In general, we consider a model attribute (e.g., Vsh > Vsv, Vs < 3.4 km/s) to be “highly 

probable” if it appears in more than 97.8% of the models in the posterior distribution. In this case,  
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Figure 2.13. (a) Percent of accepted models at each location with positive Vs radial anisotropy γ 
(Vsh > Vsv) at 35 km depth. Values of 2.2%, 15.8%, 84.2%, and 97.8% are contoured by black 
lines, which are correlated with the position of ±1  𝜎 and ±2  𝜎  for a Gaussian distribution. (b) 
Prior (white histogram in the background) and posterior (colored histogram) distributions of Vs 
radial anisotropy in percent at 35 km depth for locations A, B, and D of Fig. 1a. The red line 
indicates the position of zero radial anisotropy. The percent of models with positive radial 
anisotropy is indicated to the right of each panel. (c) Same as (a), but for positive Vs radial 
anisotropy at 10 km depth. (d) Same as (a), but for positive Vs radial anisotropy at 15 km depth. 
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Figure 2.14. (a) Similar to Fig. 13a, but this figure is the percentage of accepted models at each 
location with Voigt-averaged Vs > 3.4 km/s at 35 km depth. (b) Same as (a), but for Vs < 3.4 
km/s at 35 km depth. 
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all or nearly all of the models in the posterior distribution possess the specified attribute. If the 

attribute appears in less than 2.2% of the accepted models, then the converse of the attribute (e.g., 

Vsh < Vsv, Vs > 3.4 km/s) would be deemed “highly probable”. One could introduce other 

grades of probability (e.g., probable, improbable, the converse is probable, etc.), but we do not 

do so here. 

2.5.2 Regions with high probability of positive or negative radial anisotropy 

High probability regions for positive radial anisotropy in the middle crust appear as red 

colors in Figure 2.13a and for negative mid-crustal anisotropy as dark blue regions. Red colors 

cover most of eastern Tibet, including the Qiangtang terrane, most of the Songpan-Ganzi terrane, 

and the northern Chuandian terrane.  Another region strongly favoring positive mid-crustal radial 

anisotropy lies south of the Sichuan Basin, largely in Yunnan province.  Mid-crustal radial 

anisotropy has a lower average probability there (orange colors, Figure 2.13a) than beneath Tibet, 

because the crust is thinner (~40 km) and at 35 km depth crustal radial anisotropy trades-off with 

crustal thickness and uppermost mantle radial anisotropy. Blue colors appear in the 

Longmenshan region near the border of Tibet and the Sichuan Basin, indicating the high 

probability of negative mid-crustal radial anisotropy there. 

At shallower depths, the high probability zones of positive or negative radial anisotropy 

are smaller and more variable than in the middle crust. At 10 km depth (Figure 2.13c), highly 

probable negative radial anisotropy is mainly confined to the Songpan-Ganzi terrane but also 

extends into parts of the Qiangtang and Chuandian terranes. By 15 km (Figure 2.13d), neither 

positive nor negative radial anisotropy attains high probabilities pervasively across Tibet, but 

positive radial anisotropy is highly probable across most of the Sichuan Basin. 

2.5.3 Probability of low shear wave speeds in the middle crust 
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Middle-to-lower crustal low velocity zones (LVZ) have been reported in several studies 

[e.g., Yao et al., 2008; Yang et al., 2012], but most of these considered Vsv alone. The existence 

of crustal radial anisotropy with Vsh>Vsv across most of eastern Tibet increases the Voigt-

averaged shear wave speed relative to Vsv, and reduces the strength of a crustal LVZ. Yang et al. 

[2012] argued that 3.4 km/s is a reasonable speed below which partial melt may plausibly begin 

to occur at a depth of about 35 km depth, although this threshold is poorly known and is 

probably spatially variable. Other values could also be used. At this depth, the mean value of the 

Voigt average shear wave speed in the posterior distribution is shown in Figure 2.8c and the 

distribution of the mean values across eastern Tibet is presented in Figure 2.12e. Although shear 

wave speeds across eastern Tibet average 3.427 km/s, there is substantial spatial variability and 

the likelihood that Vs dips below 3.4 km/s in some locations is high. 

In the attempt to quantify the likelihood of shear wave speeds less than 3.4 km/s in the 

middle crust, Figure 2.14 presents the percentage of models in the posterior distribution at each 

point with Vs > 3.4 km/s and Vs < 3.4 km/s at 35 km depth. As Figure 2.14a shows, Vs > 3.4 

km/s is highly probable across most of the study region, but does not rise to the level of high 

probability across much of Tibet. Conversely, Figure 2.14b shows that Vs < 3.4 km/s at this 

depth is also not highly probable across most of the high plateau. Unfortunately, this means that 

we cannot infer with high confidence either that mid-crustal Vs is greater than or less than 3.4 

km/s across much of Tibet. However, there are two disconnected regions where more than 97.8% 

of the accepted model have Vs < 3.4 km/s, such that we would infer the high probability of Vs < 

3.4 km/s. These regions are in the northern Songpan-Ganzi terrane near the Kunlun fault and in 

the northern Chuandian terrane. A third region of low Vs that nearly rises to the level of high 

probability lies in the northern Qiangtang terrane.  
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2.5.4 Caveats: Quantifying the potential for bias in the posterior distribution 

Measurements of mid-crustal radial anisotropy, particularly its amplitude, and of shear 

wave speed Vs, particularly the minimum value it attains in the middle crust, are affected by a 

variety of information introduced in the inversion, including the parameterization of crustal 

radial anisotropy, crustal thickness in the reference model, the fixed amplitude of radial 

anisotropy in the mantle, the fixed value of the Vp/Vs ratio in the crust, and the fixed zero 

amplitude of Vp radial anisotropy and 𝜂 = 1 in the crust. Errors in these assumptions could bias 

the posterior distribution and introduce a systematic error that may bias the probability estimates 

presented in Sections 2.5.1 to 2.5.3. We discuss here the effects of these assumptions and also 

discuss and then dismiss the possibility of overtones, particularly from Love waves, interfering 

with the estimation of radial anisotropy using fundamental modes. 

2.5.4.1 Relaxing constraints on radial anisotropy in the uppermost and lowermost crust 

All results presented above include the constraint that Vsh=Vsv for the crustal B-splines 

1 and 5 (Figure 2.5). Figure 2.15 shows the range of the means of the posterior distributions for 

radial anisotropy averaged across the high plateau with this constraint applied (blue bars). This is 

compared with a similar spatial average computed without the constraint (red bars), so that the 

number of unknowns increases from 16 to 18. The less constrained inversion approximately 

encompasses the more tightly constrained result. The relaxation of the constraint on radial 

anisotropy increases the variability of the model, particularly in the uppermost and lowermost 

crust and shifts the mean of the distribution in the lowermost crust to larger values. Between 

depths of 25 and 45 km, however, the means of the distributions are nearly indistinguishable, 

implying that this constraint does not bias estimates of mid-crustal radial anisotropy. 
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Figure 2.15. The spatially averaged effect of crustal parameterization of radial anisotropy on the 
mean and standard deviation of Vs radial anisotropy averaged across the Tibetan crust. Crustal 
radial anisotropy and uncertainty are presented as error bars as a function of (a) absolute depth 
and (b) depth measured as a ratio of crustal thickness, averaged over the study region where 
surface elevation is more than 3 km (black contour in Fig. 2.1a). The middle of each error bar is 
the average amplitude of Vs radial anisotropy in percent and the half-width of the error bar is the 
average one-standard deviation uncertainty. Blue bars result from the more tightly constrained 
inversion (uppermost and lowermost crust are approximately isotropic, Vsh=Vsv for crustal B-
splines 1 and 5 in Fig. 2.5, but Vsh and Vsv can differ for splines 2 to 4). Red bars are results 
from the less constrained inversion (radial anisotropy is allowed across the entire crust, Vsv may 
differ from Vsh for all five crustal B-splines).  
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2.5.4.2 Crustal thickness and mantle radial anisotropy 

The crustal thickness in the reference model (around which the Monte Carlo search 

occurs) and the fixed amplitude of radial anisotropy in the mantle do affect aspects of the 

posterior distribution in the middle crust, including the amplitude of radial anisotropy and the 

isotropic shear wave speed. The effects of these properties of the deeper parts of the model will 

be stronger, however, where the crust is thinner.  This is reflected in the uncertainties in mid-

crustal radial anisotropy shown in Figure 2.11b. Uncertainties are smaller across eastern Tibet 

(~1.75%) where the crust is thicker than in adjacent regions outside Tibet (2.0-3.0%). Indeed, we 

find that changes in crustal thickness in the reference model and in the fixed amplitude of radial 

anisotropy in the mantle do not strongly and systematically affect either the amplitude of radial 

anisotropy or isotropic Vs in the middle crust beneath eastern Tibet. However, these changes do 

have a systematic impact on these model attributes where the crust is thinner, for example in the 

Longmenshan region near the border of Tibet and the Sichuan Basin. For this reason, we present 

results here of the impact of changing crustal thickness in the reference model and the amplitude 

of mantle radial anisotropy at location D (Figure 2.1a) in the Longmenshan region.  

Figure 2.16a,b present the estimates of depth averaged (±5 km around the middle crust) 

mid-crustal radial anisotropy as well as depth averaged mid-crustal Vs, which result by changing 

the fixed amplitude of mantle radial anisotropy averaged from Moho to 150 km depth. Error bars 

reflect the one standard deviation variation in the posterior distribution in each of the inversions, 

which are performed identically to the inversions used to produce the model described earlier in 

the paper  (which is the middle error bar with a triangle in the center in Figure 2.16a,b). The 

effect of mantle radial anisotropy on Vs is very weak but increasing mantle radial anisotropy 
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Figure 2.16. Trade-off between the depth-averaged (from Moho to 150 km) mantle Vs radial 
anisotropy used in the inversion and (a) the depth-averaged (±5 km around the middle crust) 
mid-crustal Vs radial anisotropy and (b) the depth-averaged (±5 km around the middle crust) 
mid-crustal Voigt-averaged Vs. Each dot is the depth-averaged value and half-widths of the error 
bars are the depth-averaged one-standard deviation uncertainty. Both come from the inversion 
with the given mantle radial anisotropy at location D identified in Fig. 2.1a. The triangles are the 
values in our final model. (c)&(d) Similar to (a)&(b), but showing the trade-off between the 
crustal thickness and (c) the depth-averaged mid-crustal Vs radial anisotropy and (d) the depth-
averaged mid-crustal Voigt-averaged Vs.  
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 does systematically reduce crustal radial anisotropy. Changing the depth-averaged mantle radial 

anisotropy from about 4% to 0% or 10% changes the estimated depth-averaged crustal radial 

anisotropy by less than ±1%, however. Because we believe that mantle radial anisotropy is 

probably known better than this range, this possible systematic shift in crustal radial anisotropy 

is probably an overestimate. Still, it lies within the stated errors of crustal radial anisotropy in the 

Longmenshan region. If potential systematic errors lie within stated uncertainties, we consider 

them not to be the cause for concern. 

Similarly, Figure 2.16c,d present estimates of depth averaged (±5 km around the middle 

crust) mid-crustal radial anisotropy and depth averaged mid-crustal Vs caused by changing 

crustal thickness in the reference model. Again, the middle error bar is the result of the inversion 

for the model presented earlier in this paper, so that in the Longmenshan region the crustal 

thickness of the reference model was about 50 km. Changing the crustal thickness in the 

reference model (around which the Monte Carlo inversion searches) from 40 to 60 km has a 

systematic affect both on crustal radial anisotropy and mid-crustal isotropic Vs. But, again, the 

effect is relatively small (±0.5% in mid-crustal radial anisotropy, ±25 m/s in mid-crustal Vs). 

Although the range of crustal thickness considered is considerably larger than what we consider 

physically plausible for this location, the effect on model characteristics is below the stated 

model uncertainty. 

Therefore, both mid-crustal Vs and the mid-crustal radial anisotropy are affected by the 

fixed amplitude of mantle radial anisotropy and the crustal thickness in the reference model, but 

the effects are below estimated model uncertainties and could only become significant if the 

effects were correlated and would add constructively. Although this is possible, in principle, it is 

unlikely to occur systematically across the region. Tighter constraints on crustal thickness and 
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mantle radial anisotropy would result from the joint interpretation of receiver functions and 

longer period dispersion measurements from earthquakes. Uncertainties in these quantities, 

therefore, are expected to reduce over time, but we believe that these improvements will not 

change the results presented here appreciably. 

2.5.4.3 Vp/Vs in the crust 

The strongest and also the most troubling parameter that may produce a systematic error 

in estimates of radial anisotropy is crustal Vp/Vs, which has been fixed in the crust at Vp/Vs = 

1.75, the value for a Poisson solid which is generally considered to be typical of continental crust 

[Zandt and Ammon, 1995; Christensen, 1996]. Although normal Vp/Vs (~1.75) has been widely 

observed across much of eastern Tibet [Vergne et al., 2002; Xu et al., 2007; Wang et al., 2010; 

Mechie et al., 2011, 2012; Yue et al., 2012], very low crustal Vp/Vs values also have been 

observed in the northern Songpan-Ganzi terrane [Jiang et al., 2006], and very high crustal Vp/Vs 

has been observed near the Kunlun fault [Vergne et al., 2002], the eastern margin of the plateau 

[Xu et al., 2007; Wang et al., 2010], as well as parts of the Qiangtang terrane [Yue et al., 2012]. 

Thus, the assumption of a uniform Vp/Vs across all of Tibet may be inappropriate. 

To test the effect of the assumption that crustal Vp/Vs=1.75 on the amplitude of mid-

crustal radial anisotropy, we have inverted with different crustal Vp/Vs ratios and have plotted 

the resulting depth-averaged mid-crustal radial anisotropies for point B (Figure 2.1a) in Figure 

2.17a. We apply these tests at a point in eastern Tibet, in contrast with the tests presented in 

Section 2.5.4.2, which were for the Longmenshan region. Positive correlation is observed 

between the applied crustal Vp/Vs and depth-averaged radial anisotropy, and mid-crustal radial 

anisotropy may become zero when Vp/Vs drops below 1.60.  This extremely low Vp/Vs could 

exist at depths where the Alpha-Beta quartz transition (ABQT) occurs, namely in a thin layer that 
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Figure 2.17. Similar to Fig. 2.16, but shows the trade-off between the fixed value of the crustal 
Vp/Vs used in the inversion and (a) the depth-averaged (from 30 to 40 km) crustal Vs radial 
anisotropy and (b) the depth-averaged (from 30 to 40 km) mid-crustal Voigt-averaged Vs. 
Values are from inversion with the given crustal Vp/Vs at location B identified in Fig. 2.1a.   
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 occurs somewhere between 20 to 30 km depth [Mechie et al., 2011]. Also, a relatively low 

crustal Vp/Vs may be caused by crust with a felsic composition [Mechie et al., 2011]. However, 

both alternatives are for a thin low Vp/Vs layer, not the whole crust, and it is physically unlikely 

to have an average crustal Vp/Vs of 1.60. With values of Vp/Vs ranging from 1.70 to 1.80, the 

effect is to change the amplitude of radial anisotropy only by about ±1%. Although radial 

anisotropy is required across eastern Tibet, the reliability of estimates of its amplitude would be 

improved with better information about Vp/Vs across Tibet. 

The value of crustal Vp/Vs not only affects the amplitude of crustal radial anisotropy, but 

also the shear wave speed (Vs). Figure 17b shows that crustal Vp/Vs and depth averaged mid-

crustal Vs are anti-correlated, with Vs decreasing as crustal Vp/Vs increases. This result may 

seem counterintuitive. With a fixed Vp/Vs, increasing radial anisotropy will increase Vs. In 

addition, increasing Vp/Vs tends to increase radial anisotropy. Nevertheless, increasing Vp/Vs in 

the inversion reduces the inferred Vs because increasing Vp at a constant Vs increases the 

Rayleigh wave speed but not the Love wave speed. In this case, Vsv must be lowered to reduce 

the Rayleigh wave speed in order to fit the Rayleigh-Love discrepancy. The lowering of Vsv 

(caused by increasing Vp/Vs) thus lowers Vs. For Vp/Vs running between the physically more 

plausible range of 1.7 to 1.8, the effect on mid-crustal Vs is well within stated uncertainties, 

about ±9 m/s. 

2.5.4.4 Vp radial anisotropy and 𝜼 in the crust 

As discussed in Section 2.3.1, our inversions are performed with the simplifying but 

nonphysical assumption that the elastic tensor possesses only Vs anisotropy with γ = (Vsh – 

Vsv)/Vs ≠ 0, but Vph = Vpv so that Vp radial anisotropy ε = (Vph – Vpv)/Vp = 0 and η = 1. 

More realistically, however, Vp anisotropy is expected to accompany Vs anisotropy so that ε ≠ 0 
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and η ≠ 1. We discuss the effect of the imposition of this simplification on the posterior 

distribution of Vs anisotropy. 

Figure 2.18 presents the sensitivity of Rayleigh and Love wave phase speeds at 30 sec 

period to perturbations in Vsv, Vsh, Vpv, Vph, and 𝜂 at different depths. Love waves are 

sensitive almost exclusively to Vsh, being only weakly sensitive to Vsv and completely 

insensitive to Vph, Vpv, or 𝜂. In contrast, Rayleigh waves are sensitive to all of the parameters 

except Vsh. In order to determine the effect of Vp anisotropy (ε) and 𝜂 on our estimate of Vs 

anisotropy (γ) we concentrate on the Rayleigh wave.  

Vph and Vpv have opposite effects on Rayleigh wave phase speeds. Thus, increasing 

Vph or decreasing Vpv (i.e., increasing ε) will have a similar effect to decreasing Vsv (Figure 

2.18a). For an isotropic medium, the opposite signs of the Vph and Vpv kernels cause them to 

cancel approximately in the deeper parts of the kernel and restrict isotropic Vp sensitivity to a 

zone much shallower than primary Vs sensitivity. But for an anisotropic medium this is not true. 

Anisotropic Vp sensitivity extends as deeply as anisotropic Vs sensitivity. An increase in Vp 

radial anisotropy will decrease the Rayleigh wave phase speed just like an increase in Vs radial 

anisotropy. Therefore, as Anderson and Dziewonski [1982] point out, the existence of Vp radial 

anisotropy will tend to decrease the Vs radial anisotropy needed to resolve the Rayleigh-Love 

discrepancy. However, the fifth modulus η must also be taken into account. As shown in Figure 

2.18a, the sensitivity of Rayleigh wave phase speeds to 𝜂 is similar to that of Vph so that a 

decrease in 𝜂 will increase the Rayleigh wave phase speed, increasing the Vs radial anisotropy 

needed to resolve the Rayleigh-Love discrepancy. Thus, an increase (decrease) in Vp radial 

anisotropy and a decrease (increase) in 𝜂 may compensate each other. Whether an increase in Vp  
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Figure 2.18. Example sensitivity kernels for Rayleigh and Love wave phase speeds at 30 sec 

period to perturbations in Vsv, Vsh, Vpv, Vph, and 𝜂 at different depths. 
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radial anisotropy is expected to correlate with a reduction in 𝜂 needs to be explored by 

investigating the elastic tensor of real crustal rock samples. 

For many different crustal and mantle rocks, Vp radial anisotropy and 𝜂 can be scaled 

approximately to Vs radial anisotropy [Gung et al., 2003; Becker et al., 2008; Takeo et al., 

2013]. To obtain approximate scaling relationships, we use the elastic tensors of three crustal 

rock samples measured by Erdman et al. [2013] and provided to us by B. Hacker. Following the 

procedure described by Montagner and Anderson [1989], we rotate the elastic tensors to all 

possible orientations and compute the five corresponding Love coefficients (A, C, F, L, and N) 

for every elastic tensor at each orientation. We then analyze the variation of Vp radial anisotropy 

(ε) and 𝜂 as a function of Vs radial anisotropy (γ) over all orientations. This analysis shows that 

the relationship between Vp and Vs radial anisotropy is nonlinear, particularly for negative Vs 

radial anisotropy (γ < 0), and ε may be non-zero when γ goes to zero. However, ignoring the 

possible offset between ε and γ, for weak anisotropy a linear relationship between γ and ε fits the 

data adequately and we find: ε ≈ 0.5 γ. The relationship between 𝜂 and Vs radial anisotropy is 

much more linear with an average slope of about -4.2, and the offset between 𝜂 and γ is 

negligible. As a result, based on the elastic tensor data of Erdman et al. [2013] we obtain the 

following approximate linear scaling relationships between Vs anisotropy (γ) with Vp anisotropy 

(ε) and η: 

ε ≈ 0.5 γ   𝜂 ≈ 1.0 - 4.2 γ    (5) 

Thus, an increase in Vs radial anisotropy is correlated with a smaller increase in Vp radial 

anisotropy but a larger decrease in 𝜂.  
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With the scaling relationships summarized by equation (2.5), we re-perform the 

inversions at four geographical points (A-D of Figure 2.1a) and present the results in Figure 2.19. 

On the vertical axis of Figure 2.19a are the estimates of Vs radial anisotropy (γ) with the realistic 

elastic tensor in which Vp anisotropy and η are scaled to Vs anisotropy via equation (2.5). The 

horizontal axis presents the estimates of Vs radial anisotropy with the simplified elastic tensor in 

which all anisotropy is in Vs so that ε=0 and η=1. In each case the results represent a depth 

average of Vs anisotropy, which is performed over the upper crust for location C and over the 

middle crust at the other locations. As expected, the scaling of Vp anisotropy and η to Vs 

anisotropy has almost no effect at location A where the crust is nearly isotropic, but does have an 

effect at the locations where there is significant crustal Vs anisotropy.  Both the positive 

(location B) and negative (location D) mid-crustal Vs anisotropy tend to increase in amplitude in 

the inversion based on the more realistic elastic tensor, which means that the amplitude of mid-

crustal Vs anisotropy presented in Section 2.4 may be slightly underestimated. However, for all 

four locations, differences between estimates of Vs anisotropy with the simplified or realistic 

models of radial anisotropy are small, generally lying within the 1σ uncertainty because the 

effects of Vp radial anisotropy and 𝜂 compensate on another. 

2.5.4.5 Possibility of overtone interference? 

Levshin et al. [2005] discussed how higher modes observed across Central Asia can be 

used to improve crustal models in this region. The potential existence of higher modes, however, 

could complicate observations of fundamental mode Rayleigh and Love waves. In the Sichuan 

Basin, based on our 3D model the fundamental and first overtone modes for Love wave should 

be well separated with a difference between them of at least 350 m/s for periods above 8 sec, 

which is much larger than the observed Rayleigh-Love discrepancy (Figure 2.7c). Therefore,  
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Figure 2.19. Comparison of the inversion results between the simple model of Vs radial 
anisotropy (γ-simple, red error-bars; ε =0, 𝜂  =1) and the realistic model (γ-realistic, blue error-
bars; ε = 0.5γ, 𝜂 = 1-4.2γ) for (a) crustal Vs radial anisotropy and (b) crustal Voigt-averaged Vs. 
Both plots are for the four locations (A-D) identified in Fig. 1a. The results at locations A, B, and 
D are depth-averaged over the middle crust, while results at location C is depth-averaged over 
the upper crust. The half-widths of the error bars are the depth-averaged uncertainty (1σ). Green 
lines are the locus of points for identical results from the simple and realistic models of Vs radial 
anisotropy and all error bars overlap this line. 
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overtones cannot interfere with fundamental mode Love wave measurements in the Sichuan 

Basin. However, in Tibet where the crust is much thicker, the fundamental mode and overtone 

Love waves are closer. Figure 2.20a presents Love wave group and phase speeds for the 

fundamental and first overtone modes computed based on our 3D model at a point in eastern 

Tibet (point B of Figure 2.1a). The group speed of the first Love overtone closely approaches 

(and can overlap at some locations) the fundamental group speed at about 15 sec period. Higher 

overtones will approach the fundamental mode group speed curves at successive shorter periods. 

It is, therefore, important to consider if Love wave overtones could be mistaken for the 

fundamental mode and potentially bias the Love wave phase speed measurements in the period 

band of our study (≥ 8 sec). The relevance of this consideration is amplified by recent 

observation of Poli et al. [2013] of Love wave overtones at periods below about 8 sec using 

ambient noise in the Baltic shield.  

In contrast with the observations obtained by Levshin et al. [2005] based on intermediate 

and deep earthquakes in Central Asia, we do not see obvious overtones on FTAN diagrams of 

ambient noise cross-correlations in the region at periods above 6 sec. This does not mean that the 

overtones do not exist because they could be obscured by the fundamental modes. But, the 

determination of the likelihood of overtone interference reduces to a consideration of the relative 

excitation of the fundamental and overtone modes. Figure 2.20b presents theoretical source 

spectra computed from a horizontal force for the fundamental and first Love overtone modes for 

source depths of 0 and 20 km (computed at the same location as in Figure 2.20a). For the surface 

source, the fundamental mode has much higher amplitude than the first overtone at all periods. 

However, for a mid-crustal source depth, the fundamental and overtone mode have similar 

amplitudes only below about 8 sec period. Figure 2.20c-d illustrate these amplitudes by  
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Figure 2.20. Synthetic results for the fundamental and higher mode Love waves. (a) Dispersion 
curves computed from an isotropic model based on the structure at location B in Fig. 2.1a. Red 
lines represent phase- and group- velocity dispersion curves of the fundamental model Love 
wave (L0) and dashed blue lines represent that of the first higher mode Love wave (L1). (b) 
Spectral amplitudes computed for a horizontal force at the surface (bold lines) or at 20 km depth 
(thin lines) for the fundamental Love wave (red lines) and first overtone Love wave (blue lines). 
(c) Green’s function computed from the same model in (a) with a single horizontal force located 
at the surface (0-km depth). Red line indicates the fundamental Love wave; the dashed blue line 
is the first overtone Love wave. (d) Similar to (c), but computed with a single horizontal force 
located at 20-km depth. (e)-(f) Frequency-time analysis (FTAN) diagram for the superposition of 
the Green’s functions shown in (c) and (d), respectively. Red and blue lines are the dispersion 
curves shown in (a) and black lines are the phase and group velocity dispersion curves measured 
using FTAN.  
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separately plotting the fundamental and first overtone Green’s functions for a horizontal force. 

Figure 2.20e-f shows the FTAN diagrams for these two Green’s functions. For the surface source, 

the overtone does not interfere with measurements of the fundamental mode group or phase 

speeds across the entire period band of the synthetic seismogram (2 – 45 sec). For the mid-

crustal source, FTAN picks up the first overtone only at periods below ~6 sec and measures an 

unbiased fundamental mode at all longer periods. Similar results are found for force couples and 

double couples.  

Although the physical cause of Love waves in ambient noise remains enigmatic, it is 

likely that they arise from processes near earth’s surface. In this case the fundamental mode 

would probably be much stronger than the overtones and overtone interference in measuring 

fundamental mode Love wave group and phase speeds would probably be minimal at all periods. 

Even in the unlikely event that ambient noise Love waves were somehow generated at mid-

crustal depths or there were some other means to de-amplify the fundamental relative to the 

overtone modes so that the relative amplitude of overtones and fundamental Love waves would 

be more commensurate, these synthetic results presented here show that the fundamental mode 

group and phase speeds can be measured accurately at periods above about 6 sec. 

Rayleigh wave overtones have been observed quite robustly in ambient noise cross-

correlations in ocean seismograph data [Harmon et al., 2007; Yao et al., 2011] and in basin 

resonances for waves coming on the continents [Savage et al., 2013] but only at periods below 

about 5 sec and for the basin resonances predominantly on the radial (non-vertical) component. 

They are also commonly observed at frequencies above 1 Hz in exploration settings [e.g., 

Ritzwoller and Levshin, 2002]. The period band of these observations does not intersect the 
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current study and Rayleigh wave overtones are also an unlikely cause of interference with our 

observations of fundamental mode radial anisotropy.  

In conclusion, although the arguments presented here are not definitive, it is highly 

unlikely that overtones have interfered significantly with the measurement of fundamental mode 

Love or Rayleigh wave dispersion in the period band of our observations. 

2.5.4.6 Conclusions about potential bias in the posterior distributions 

We have tested how systematic changes to prior information and constraints imposed in 

the inversion affect the key model attributes that are interpreted in the paper; namely, the 

amplitude of mid-crustal Vs radial anisotropy and mid-crustal Voigt-averaged isotropic Vs. In 

particular, we tested the effect of changing the fixed amplitude of radial anisotropy in the upper 

mantle, the crustal thickness in the reference model, the Vp:Vs ratio in the crust, and the Vp 

radial anisotropy and 𝜂 in the crust.  In general, we find that the mid-crustal radial anisotropy 

will become more positive (i.e., Vsh will increase relative to Vsv) by reducing mantle radial 

anisotropy, increasing crustal thickness, increasing crustal Vp/Vs, and introducing a more 

realistic elastic tensor in the crust. Because crustal Vp radial anisotropy is expected to be 

anticorrelated with η [Erdman et al., 2013], we show that the introduction of Vp radial 

anisotropy with η allowed to differ from unity has the effect of slightly increasing the estimate of 

mid-crustal Vs radial anisotropy. Similarly, isotropic shear wave speed Vs also depends to a 

certain extent on these choices, being inclined to increase with increasing crustal thickness and 

with decreasing Vp/Vs. The tests demonstrate, however, that the inference of both positive and 

negative mid-crustal radial anisotropy is robust and potential bias caused by physically realistic 

variations in prior information imposed in the inversion should lie within the stated uncertainties 
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of the key model attributes. In addition, we have argued that interference from Love wave (and 

Rayleigh wave) overtones is expected to affect estimates of crustal Vs anisotropy negligibly. 

Improved constraints on crustal thickness and radial anisotropy in the mantle can be 

achieved by introducing receiver functions and longer period surface wave dispersion 

information from earthquake tomography, which are planned for the future. Vp radial anisotropy 

and 𝜂 can be constrained better with improved knowledge of the petrologic composition of the 

Tibetan crust as more accurate scaling relationships between Vs anisotropy, Vp anisotropy and η 

are obtained. The observation of higher mode surface waves after earthquakes is another possible 

direction for improvements in the model. Providing improved constraints on crustal Vp/Vs may 

prove to be more challenging, however. 

2.6 Discussion 

Taking into account the estimated probabilities and the likelihood of bias discussed in 

Section 2.5 we now address two final questions: What is the most likely cause (or causes) of the 

radial anisotropy observed beneath and bordering eastern Tibet? Is there evidence for pervasive 

partial melt in the middle crust beneath eastern Tibet? 

2.6.1 On the cause of positive and negative radial anisotropy  

Four robust radially anisotropic features are observed. In the middle crust, positive radial 

anisotropy is observed beneath essentially all of (1) eastern Tibet and (2) the Sichuan Basin and 

(3) negative anisotropy is found beneath the Longmenshan region bordering eastern Tibet and 

the Sichuan Basin. (4) In the upper crust, negative radial anisotropy is observed beneath the 

Songpan-Ganzi terrane and parts of the Qiangtang and Chuandian terranes. We consider the 

cause of the mid-crustal observations first. 
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Earlier studies [Shapiro et al., 2004; Huang et al., 2010] have interpreted the observation 

of mid-crustal positive radial anisotropy beneath Tibet as evidence for the existence of 

anisotropic crustal minerals in the middle crust. Recent experimental results, however, have 

shown that continental crustal minerals such as quartz and feldspars act to dilute the anisotropic 

response of mica rich rocks [Ward et al., 2012].  This dilution effect may raise doubt into 

whether crystallographic preferred orientation (CPO) of continental crustal minerals alone can 

cause strong mid-crustal anisotropy. Open or filled fractures [Leary et al., 1990; Crampin and 

Chastin, 2003; Figueiredo et al., 2013], grain-scale effects [Hall et al., 2008], sedimentary 

layering [Valcke et al., 2006], other microstructural parameters [Wendt et al., 2003], and sills or 

lenses of partial melt [Takeuchi et al., 1968; Kawakatsu et al., 2009] have all been discussed as 

mechanisms to produce seismic anisotropy under certain conditions. Amongst these mechanisms, 

partial melt may provide the most viable alternative to CPO to produce mid-crustal radial 

anisotropy, The anisotropic effect of partial melt is less well understood and its ability to produce 

substantial radial anisotropy is more speculative than CPO. Thus, the observation of crustal 

radial anisotropy is still best seen as a mapping of the distribution of aligned crustal minerals – 

albeit with the caveat that the relative fractions of mica, feldspars, quartz, and amphibole remain 

poorly understood. In the middle crust we believe that the chief contributor to strong anisotropy 

is a sheet silicate such as mica (biotite, muscovite). 	
  

Even though individual mica crystals exhibit monoclinic symmetry, their tendency to 

form sheets causes them in aggregate to approximate the much simpler hexagonal symmetry 

[Godfrey et al., 2000; Cholach et al., 2005; Cholach and Schmitt, 2006; Erdman et al., 2013]. 

There is a unique symmetry axis in a hexagonal system and we call the plane that is 

perpendicular to this axis the foliation plane. The amplitude and sign of radial anisotropy reflect 
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the orientation of the symmetry axis (or foliation plane) along with the intrinsic strength of 

anisotropy, which is determined by mineral content and extent of alignment. The amplitude of 

azimuthal anisotropy is also affected by the orientation of the symmetry axis [Levin and Park, 

1997; Frederiksen and Bostock, 2000]. Dipping or tilted symmetry axes are believed to be 

common in many geological settings [Okaya and McEvilly, 2003] and should produce a 

combination of radial and azimuthal anisotropy. 

Figure 2.21 clarifies these expectations by rotating the elastic tensors measured from 

three crustal rock samples obtained at the Funeral Mountains, the East Humboldt Range, and the 

Ruby Mountains by Erdman et al. [2013] (and supplied by B. Hacker) through a set of 

orientations where the symmetry axis ranges from vertical (𝜃 = 0°, transverse isotropy) to 

horizontal (𝜃 = 90°). Similarly, the foliation plane ranges from horizontal to vertical. The result 

of this calculation is presented in Figure 2.21b and yields four general conclusions. Radial 

anisotropy (1) is positive (Vsh>Vsv) and its magnitude maximizes for a vertical symmetry axis 

(𝜃 = 0°), (2) falls to zero at an intermediate angle ~50o, (3) becomes negative as the symmetry 

axis exceeds ~50o, and (4) has its maximum negative magnitude between 60°-90° which is less 

than the maximum positive magnitude. Therefore, the observed amplitude of radial anisotropy is 

controlled by a combination of the intrinsic strength of anisotropy, which results from the density 

of anisotropic minerals and the constructive interference of their effects, and the angle that the 

symmetry axis makes relative to the local vertical direction. The observation of weaker radial 

anisotropy alone cannot be interpreted as evidence for a lower density of anisotropic minerals. 

However, the observation of strong radial anisotropy is evidence for the existence of anisotropic 

minerals aligned consistently to produce a substantial anisotropic effect. In addition, positive 

radial anisotropy indicates that the foliation plane is subhorizontal (𝜃 < 10°) to shallowly dipping  
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Figure 2.21. (a) Pictorial definition of the rotation angle 𝜃 for a hexagonally symmetric system. 
(b) Vs radial anisotropies, γ  = (Vsh-Vsv)/Vs, plotted as a function of rotation angle 𝜃, computed 
by re-orientating the elastic tensors of the crustal rock samples of Erdman et al. [2013]. Samples 
locations are identified by line color as indicated. 
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(10°-30°) and negative radial anisotropy implies that it is steeply dipping (60°-80°) to subvertical 

(80°-90°). Because the maximum negative amplitude of radial anisotropy is smaller than the 

maximum positive amplitude, negative anisotropy is a more difficult observation.  

Based on these considerations, we conclude that the observations of positive mid-crustal 

radial anisotropy beneath eastern Tibet and beneath the Sichuan Basin imply the existence of 

planar mica sheets in the middle crust oriented systematically such that the foliation planes are 

shallowly dipping. We believe that the symmetry axes are not vertical because crustal azimuthal 

anisotropy is observed across Tibet [e.g., Yao et al., 2010; Xie et al., 2012]. Similarly, the 

observation of negative mid-crustal radial anisotropy along the Longmenshan region is taken as 

evidence for planar mica sheets oriented systematically such that the foliation plane is steeply 

dipping or subvertical. The orientation of the foliation plane (or symmetry axis) cannot be 

constrained accurately in the absence of information about azimuthal anisotropy, however. 

The orientations of the mica sheets in the middle crust probably have dynamical causes. 

Other than to note that the micas probably orient in response to ductile deformation in the middle 

crust, we do not speculate on the nature of the deformation that produces this orientation. We do 

note that the dip angle of faults in the Longmenshan region between Tibet and the Sichuan Basin 

is high [Chen and Wilson, 1996] and that the 2008 Wenchuan earthquake ruptured a steep fault 

[Zhang et al., 2010]. The change in orientation of the mid-crustal foliation plane from shallowly 

dipping in eastern Tibet to steeply dipping or subvertical in the Longmenshan region may result 

from the resistance force applied by the rigid lithosphere underlying the Sichuan Basin. 

The negative anisotropy observed in the shallow crust (~10 km) across the Songpan-

Ganzi terrane and some other parts of eastern Tibet may also result from the CPO of shallower 

micaceous rocks. However, earthquakes occur to a depth of about 15-20 km within Tibet [Zhang 
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et al., 2010; Sloan et al., 2011], so the crust near 10 km depth where negative anisotropy is 

observed probably undergoes brittle deformation. Faults and cracks in the upper crust are 

associated with azimuthal anisotropy [Sherrington et al., 2004] and may also cause radial 

anisotropy. Negative anisotropy would result from the plane of cracks or faults having a 

substantial vertical component. We believe this is the most likely source of the observations of 

negative radial anisotropy in the shallow crust beneath parts of eastern Tibet, particularly the 

Songpan-Ganzi terrane.  

2.6.2 Existence of pervasive partial melt in the middle crust beneath Tibet? 

Even under ideal observational circumstances in which Vs would be exceptionally well 

constrained, it is difficult to interpret Vs in terms of the likelihood of partial melt. Consistent 

with the analysis of Caldwell et al. [2009], Yang et al. [2012] present a plausibility argument for 

partial melt setting on below about 3.4 km/s, but this threshold is exceptionally poorly 

determined and would be expected to vary as a function of crustal composition, wet or dry 

conditions, and anelastic Q. The average of the means of the posterior distributions of mid-

crustal shear wave speed taken across eastern Tibet is about 3.427  0.050 km/s. Thus, using the 

3.4 km/s threshold value, the mean value of shear wave speed challenges the existence of 

pervasive mid-crustal partial melts across the entirety of eastern Tibet. There are, however, 

several discrete regions that prefer particularly low mid-crustal Vs. Figure 2.14b identifies the 

regions in which the inference that Vs < 3.4 km/s is highly probable (or nearly so): the northern 

Songpan-Ganzi terrane, the northern Chuandian terrane, and part of the central-to-northern 

Qiangtang terrane. Most of these regions are coincident with high conductance areas from MT 

studies [Wei et al., 2001; Bai et al., 2010]. The INDEPTH MT profile [Wei et al., 2001; 

Unsworth et al., 2004] displays a conductive zone starting at about 25 km depth in the central 

±
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Qiangtang terrane, and the conductor deepens both northward and southward. In the north 

Chuandian terrane, Bai et al. [2010] also observe a high conductive zone that begins at about 25 

km depth.   

Therefore, determining with certainty whether Vs lies either above or below 3.4 km/s is 

difficult using surface wave data alone. But, in summary, there is not compelling evidence that 

Vs is less than 3.4 km/s pervasively across all of eastern Tibet, although such low shear wave 

speeds are highly probable in three disjoint regions across the high plateau. Thus, assuming that 

Vs = 3.4 km/s is an appropriate proxy for the onset of partial melting, we would not expect 

partial melt to be a pervasive feature of eastern Tibet except in three disjoint regions (the 

northern Songpan-Ganzi terrane, the northern Chuandian terrane, and part of the central-to-

northern Qiangtang terrane) where it should considered more probable. But this inference is 

highly uncertain due to the uncertainty of the threshold speed at which partial melt is likely to set 

on. 

2.7 Conclusions 

Based on Rayleigh (8 to 65 sec period) and Love (8 to 44 sec period) wave tomography 

using seismic ambient noise, we mapped phase velocities across eastern Tibet and surrounding 

regions using data recorded at PASSCAL and CEArray stations. A Bayesian Monte Carlo 

inversion method was applied to generate posterior distributions of the 3-D variation of Vsv and 

Vsh in the crust and uppermost mantle. Summarizing these distributions with their means and 

standard deviations at each depth and location, we showed that significant mid-crustal positive 

radial anisotropy (Vsh > Vsv) is observed across all of eastern Tibet with a spatially averaged 

amplitude of 4.8% 1.4% and terminates abruptly near the border of the high plateau. Weaker (-

1.0% 1.4%) negative radial anisotropy (Vsh < Vsv) is observed in the shallow crust beneath 

±

±
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the Songpan-Ganzi terrane and in the middle crust (-2.8% 0.9%) near the border of the Tibetan 

plateau and the Sichuan Basin. Positive mid-crustal radial anisotropy (5.4% 1.4%) is observed 

beneath the Sichuan Basin. Shear wave speed in the middle crust is 3.427 0.050 km/s averaged 

across eastern Tibet. 

We also queried the posterior distributions to determine which structural attributes are 

highly probable and showed the following. (1) Positive mid-crustal radial anisotropy is highly 

probable beneath the eastern high plateau. Lower crustal radial anisotropy is determined more 

poorly than anisotropy in the middle crust. (2) Isotropic shear wave speeds below 3.4 km/s are 

possible across most of the high plateau, but are highly probable only beneath the northern 

Songpan-Ganzi, the northern Chuandian, and part of the Qiangtang terranes. (3) The crustal 

Vp/Vs ratio is a parameter that is fixed in the inversion, and we set it in the crystalline crust to 

that of a Poisson solid: Vp/Vs = 1.75. If a lower (higher) value were chosen, then the amplitude 

of radial anisotropy would have decreased (increased) and mid-crustal Vs would have gone up 

(down). Vertically averaged crustal Vp/Vs below 1.7 or above 1.8, however, would be hard to 

justify over large areas of Tibet and if crustal Vp/Vs ranges between these values the resulting 

change to radial anisotropy falls within estimated uncertainties.  

A piece of evidence for partial melt in the middle crust would be shear wave speeds at 35 

km depth less than about 3.4 km/s [Yang et al., 2012]. Although the maximum likelihood shear 

wave speed across Tibet at this depth is 3.43 km/s, Vs below 3.4 km/s cannot be formally ruled 

out particularly if the crystalline crustal Vp/Vs value is above 1.8. Such high values of Vp/Vs are 

characteristic of mafic mineralogy or partial melt, which are unlikely to extend vertically across 

the entire Tibetan crust, at least systematically over large areas. Therefore, in light of the 

uncertainty in the inference of partial melt from shear waves speeds, we do not find 

±

±
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incontrovertible evidence for mid-crustal partial melt existing pervasively across all of eastern 

Tibet. However, we do conclude that partial melt is most likely to exist in several discrete 

regions, notably the northern Songpan-Ganzi, the northern Chuandian, and part of the Qiangtang 

terranes, where Vs < 3.4 km/s at 35 km depth is highly probable.  

We interpret observations of positive mid-crustal radial anisotropy beneath eastern Tibet 

and beneath the Sichuan Basin as evidence for planar mica sheets in the middle crust oriented 

systematically such that their foliation planes are shallowly dipping (10°-30° from horizontal) on 

average. Similarly, the observation of negative mid-crustal radial anisotropy in the Longmenshan 

region along the border separating Tibet from the Sichuan Basin is taken as evidence for planar 

mica sheets oriented systematically such that their foliation planes are steeply dipping (60°-80°) 

or subvertical (80°-90°). We do not speculate on the nature of the deformation that produces this 

orientation of the mica sheets, but do argue that the change in orientation of the mid-crustal 

foliation plane near the eastern boundary of Tibet from shallowly dipping to steeply dipping or 

subvertical may result from the resistance force applied by the rigid lithosphere underlying the 

Sichuan Basin. Finally, the negative anisotropy observed in the shallow crust beneath the 

Songpan-Ganzi terrane and some other parts of eastern Tibet may be caused by faults and cracks 

in the upper crust that have a substantial vertical component.  

Some of the uncertainty in the estimates of radial anisotropy and in Voigt-averaged shear 

wave speed Vs results from poor knowledge of the Vp/Vs ratio in the crystalline crust, of the 

crustal Vp radial anisotropy and 𝜂, of crustal thickness, and of radial anisotropy in the uppermost 

mantle. Future improvements in estimates of crustal radial anisotropy and Vs will depend on 

developing improved constraints on these structures. Earthquake surface wave tomography 

would improve knowledge of radial anisotropy in the mantle and in the lowermost crust. 
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Receiver functions can be used to improve constraints on crustal thickness and perhaps also to 

provide information about the average Vp/Vs across the crust. Continued improvement in 

petrologic information about the the anisotropy of crustal rocks will provide tighter constraints 

on the scaling between Vp radial anisotropy, 𝜂, and Vs radial anisotropy. 
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CHAPTER III 
 

INFERRING THE ORIENTED ELASTIC TENSOR FROM SURFACE WAVE 
OBSERVATIONS: PRELIMINARY APPLICATION ACROSS THE WESTERN US  

 

Jiayi Xie1, Michael H. Ritzwoller1, S.J. Brownlee2, and B.R. Hacker3 

1 – Center for Imaging the Earth’s Interior, Department of Physics, University of Colorado at 

Boulder, Boulder, CO 80309-0390, USA   (jiayi.xie@colorado.edu)  

2 – Department of Geology, Wayne State University, Detroit, MI 48202 

3 – Department of Earth Science, UC Santa Barbara, CA USA 93106-9630 

Abstract 

Radial and azimuthal anisotropy in seismic wave speeds have long been observed using 

surface waves and are believed to be controlled by deformation within the Earth’s crust and 

uppermost mantle. Although radial and azimuthal anisotropy reflect important aspects of 

anisotropic media, few studies have tried to interpret them jointly. We describe a method of 

inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the 

assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip 

and strike angles. We show that observations of radial anisotropy and the 2ψ component of 

azimuthal anisotropy for Rayleigh waves obtained using USArray data in the western US can be 

fit well under this assumption. Our inferences occur within the framework of a Bayesian Monte 

Carlo inversion, which yields a posterior distribution that reflects both variances of and 

covariances between all model variables, and divide into theoretical and observational results. 

Principal theoretical results include the following: (1) There are two distinct groups of models 

(Group 1, Group 2) in the posterior distribution in which the strike angle of anisotropy in the 
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crust (defined by the intersection of the foliation plane with earth’s surface) is approximately 

orthogonal between the two sets. (2) The Rayleigh wave fast axis directions are orthogonal to the 

strike angle in the geologically preferred group of models in which anisotropy is strongly non-

elliptical. (3) The estimated dip angle may be interpreted in two ways: as a measure of the actual 

dip of the foliation of anisotropic material within the crust, or as a proxy for another non-

geometric variable, most likely a measure of the deviation from hexagonal symmetry of the 

medium. The principal observational results include the following: (1) Inherent S-wave 

anisotropy (γ) is fairly homogeneous vertically across the crust, on average, and spatially across 

the western US. (2) Averaging over the region of study and in depth, γ in the crust is 

approximately 4.1%±2%. γ in the crust is approximately the same in the two groups of models. 

(3) Dip angles in the two groups of models show similar spatial variability and display 

geological coherence. (4) Tilting the symmetry axis of an anisotropic medium produces apparent 

radial and apparent azimuthal anisotropies that are both smaller in amplitude than the inherent 

anisotropy of the medium, which means that most previous studies have probably 

underestimated the strength of anisotropy. 
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3.1 Introduction 

The study of anisotropy using surface waves is primarily of interest to seismologists 

because surface waves provide a homogenous sampling of the Earth’s crust and uppermost 

mantle over large areas. Robust inferences about anisotropy from surface waves are typically not 

restricted to small regions, allowing conclusions to be drawn broadly over a variety of geologic 

and tectonic settings (e.g., Anderson and Regan, 1983; Ekström and Dziewoński, 1998; Gung et 

al., 2003; Smith et al., 2004; Kustowski et al., 2008; Nettles and Dziewoński, 2008). Cross-

correlations of ambient noise principally present relatively short and intermediate period surface 

waves for interpretation. Therefore, the introduction of ambient noise surface wave tomography 

has allowed for increasingly detailed information to be gained about the crust over broad regions 

(e.g., Shapiro et al., 2005; Yao et al., 2006; Bensen et al., 2009; Moschetti et al., 2010a; 

Ritzwoller et al., 2011; Yang et al., 2012; Ekström, 2013), and information about anisotropy from 

ambient noise mainly concerns the crust (e.g., Huang et al., 2010; Moschetti et al., 2010b; Yao et 

al., 2010; Lin et al., 2011; Xie et al., 2013). In this paper, surface wave observations obtained 

from both ambient noise and earthquakes will be used, and the principal focus will be on the 

means to infer crustal anisotropy. 

Studies of seismic anisotropy using surface waves primarily take two forms. In the first, 

azimuthally averaged (transversely isotropic) Rayleigh and Love wave travel time (or dispersion) 

curves are studied to determine if they are consistent with an isotropic medium of propagation. If 

not, radial anisotropy (or polarization anisotropy) is introduced to the medium to resolve what is 

often called the “Rayleigh-Love discrepancy” (e.g., Forsyth, 1975; Dziewonski and Anderson, 

1981; Moschetti et al., 2010b; Xie et al., 2013). In the second form, the directional dependence of 

surface wave travel times is used to determine azimuthal anisotropy (e.g., Simons	
  et	
  al.,	
  2002;	
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Marone	
  and	
  Romanowicz,	
  2007;	
  Yao	
  et	
  al.,	
  2010;	
  Lin	
  et	
  al.,	
  2011). In both cases, the 

anisotropy is typically interpreted to result from the mechanism of formation of the medium, 

either through (1) the crystallographic or lattice preferred orientation of anisotropic minerals 

(Christensen, 1984; Ribe, 1992) or (2) the anisotropic shape distribution of isotropic materials, 

such as laminated structure (Backus, 1962; Kawakatsu et al., 2009) or fluid filled cracks 

(Anderson et al., 1974; Crampin, 1984; Babuška, 1991). Indeed, one of the principal motivations 

to study seismic anisotropy is to understand the deformation that a medium was subject to during 

its formation and evolution. 

The anisotropic properties of an elastic medium and the anisotropy of seismic wave 

speeds both depend on the detailed constitution of the elastic tensor and on its orientation. With 

several notable exceptions (e.g., Montagner and Jobert, 1988; Dziewonski and Anderson, 1981) 

most studies of seismic anisotropy with surface waves model only the polarization or azimuthal 

dependence of shear wave speeds and do not explicitly attempt to estimate the elastic tensor. 

Because, as we discuss below, the directional dependence of surface waves may be ambiguously 

related to the deformation of the transport medium, in order to understand the anisotropy that 

seismic waves exhibit and its relationship to the deformation that causes it, it is important to seek 

information about the (depth-dependent) elastic tensor within the crust and mantle together with 

its orientation. We refer to the anisotropic properties of a medium as “inherent anisotropy” when 

they are based on a measured (or inferred) elastic tensor with a known orientation. We use the 

term “inherent” as opposed to “intrinsic” anisotropy because the latter term often refers to 

anisotropy that results from a specific cause, namely, from crystal orientation (Wang et al., 2013; 

Thomsen and Anderson, 2015). Therefore, we use the term inherent as more general than 

intrinsic or extrinsic anisotropy, but not directly in conflict with these terms (e.g., Wang et al., 
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2013). The term inherent may also be contrasted with “apparent” anisotropy, which would be 

inferred from observational studies that have not explicitly estimated the elastic tensor and its 

orientation.  

A useful starting point on which to base estimates of the elastic tensor is the simplifying 

assumption that the medium possesses hexagonal symmetry. Such a medium has one symmetry 

axis, and if the symmetry axis is either vertical or horizontal the elastic tensor can be represented 

with five independent elastic moduli. A hexagonally symmetric medium with a vertical 

symmetry axis (z-axis in Fig. 3.1) is referred to as a vertical transversely isotropic medium or 

VTI medium.  Such a medium is defined by five depth-dependent elastic parameters (A, C, N, L, 

F or η), where A and C are compressional moduli and N and L are shear moduli. In this case, the 

6x6 elastic modulus matrix, Cαβ, the Voigt simplification of the elastic tensor, can be written as 

the following symmetric matrix: 

VCαβ =

A A − 2N F 0 0 0
A − 2N A F 0 0 0
F F C 0 0 0
0 0 0 L 0 0
0 0 0 0 L 0
0 0 0 0 0 N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
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  (3.1)	
  	
  

where η = F/(A-2L) and the superscript V stands for vertical. With a vertical symmetry 

axis, a hexagonally symmetric medium will produce no azimuthal variation in surface wave 

speeds mainly because the C44 and C55 matrix elements are identical. A hexagonally symmetric 

elastic tensor may display either slow or fast symmetry. In the slow symmetry case, C < A and L 

< N, which is referred to as positive S-wave radial anisotropy and implies that Love waves are 

faster than predicted from an isotropic medium that fits Rayleigh wave speeds. Crustal rocks 

generally display slow symmetry and a finely layered medium also requires it (Thomsen and  
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Figure 3.1. (a) Depiction of a tilted hexagonally symmetric medium with definitions of the 
foliation plane, symmetry axis, strike angle, and dip angle. (b) Illustrative computation of the 
variation of apparent S-wave radial ( γ̂ , red curve) and SV-wave azimuthal (blue curve) 
anisotropy as a function of dip angle 𝜃. All amplitudes are normalized by the amplitude of 
maximum inherent S-wave anisotropy, γ .  These quantities are defined by Equations (3.9) and 
(11), and they are obtained by rotating a hexagonally symmetric elastic tensor based on the 
effective anisotropic medium theory (Montagner and Nataf, 1986). This figure aims to 
summarize qualitatively the variation of anisotropy with dip angle. Details (e.g., the absolute 
amplitude, the zero-crossing angle, and the number of crossing angles) depend on the elastic 
tensor. 
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Anderson, 2015; Tatham et al., 2008; Brownlee et al., 2011; Erdman et al., 2013). For the 

mantle, however, rocks abundant in olivine are sometimes considered hexagonally symmetric 

with a fast symmetry axis, because seismologists have assumed that the two slower olivine 

crystal axes scatter randomly perpendicular to the average fast axis (Park and Levin, 2002). 

However, melt-rich layers embedded in a meltless mantle (Kawakatsu et al., 2009; Jaxybulatov 

et al., 2014) probably have a slow symmetry axis.  

In contrast, if a hexagonally symmetric medium has a horizontal symmetry axis (x-axis in 

Fig. 3.1), it is referred to as a HTI medium (horizontal transversely isotropic) and the elastic 

modulus matrix has the following form: 

HCαβ =

C F F 0 0 0
F A A − 2N 0 0 0
F A − 2N A 0 0 0
0 0 0 N 0 0
0 0 0 0 L 0
0 0 0 0 0 L

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
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⎥
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In this case, if N is larger than L (C44> C66) then there would be negative S-wave radial 

anisotropy, which is observed in the mantle beneath the mid-ocean ridges (e.g., Ekström and 

Dziewoński, 1998; Zhou et al., 2006; Nettles and Dziewoński, 2008) but is observed only rarely 

in the crust (e.g., Xie et al., 2013). Also, mainly because C44 ≠ C55, this elastic tensor would 

generate azimuthal variations in wave speeds.  

Assumptions of either vertical or horizontal hexagonal symmetry are inconsistent with 

one another and cannot explain the widely observed co-existence of positive S-wave radial 

anisotropy along with azimuthal anisotropy (e.g., Huang et al., 2010; Yao et al., 2010; Yuan and 
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Romanowicz, 2010; Yuan et al., 2011; Xie et al., 2013; Hacker et al., 2014; Burgos et al., 2014), 

at least for the case of a slow symmetry axis. The purpose of this paper is to describe a method to 

interpret observations of radial and azimuthal anisotropy simultaneously under the assumption of 

a hexagonally symmetric elastic tensor with a tilted symmetry axis (Fig. 3.1a), as was first 

suggested by Montagner and Nataf (1988) and applied at a global scale across the Indian Ocean 

by Montagner and Jobert(1988). Such an assumption has been applied before to body wave 

observations (e.g., Okaya and McEvilly, 2003) as well as studies of the effect of mode-coupling 

on surface waves (e.g., Yu and Park, 1993).  

The assumption of hexagonal symmetry is a starting point designed to reduce the number 

of free parameters that govern the anisotropic medium, which simplifies and accelerates the 

inverse problem. To describe the medium under this assumption at a given depth requires seven 

unknowns, the five moduli that govern the inherent characteristics of a hexagonally symmetric 

medium and two angles through which the elastic tensor is rotated: the dip and strike angles. 

There are, however, reasons to believe that crustal anisotropy, which is the primary focus of this 

paper, may display dominantly hexagonal symmetry. For example, strongly laminated or foliated 

rocks are nearly hexagonal in symmetry (Okaya and McEvilly, 2003) and lamination in the lower 

crust has been observed worldwide (Meissner et al., 2006). Also, the primary anisotropic mineral 

in the middle crust is probably mica (Weiss et al., 1999; Meissner et al., 2006), which displays 

approximate hexagonal symmetry. Therefore, if anisotropy derives from the CPO of anisotropic 

minerals, then mid-crustal anisotropy may be well approximated by an inherently hexagonally 

symmetric elastic tensor. However, as discussed later in the paper, amphiboles are also strongly 

anisotropic and may be the dominant anisotropic mineral in the lower crust, but are more 

orthorhombic than hexagonal in symmetry (Meissner et al., 2006; Tatham et al., 2008). If 
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amphiboles are a significant source of anisotropy, then what we estimate by assuming hexagonal 

symmetry may not have direct geologic relevance, but may yet contain information about the 

lower-order symmetry of the real elastic tensor, and inferences that are derived should be 

cognizant of this. 

Two further comments will conclude this discussion. First, Rayleigh and Love waves are 

strongly sensitive only to four (N, L, θ, ϕ,	
  as	
  described	
  later) of the seven unknowns that define 

a rotated hexagonally symmetric elastic medium. Therefore, a straightforward inversion for the 

elastic tensor is impractical using surface wave data alone. For this reason we cast the inverse 

problem in terms of a Bayesian Monte Carlo approach in which we estimate a range of elastic 

tensors that agree with the data. This allows us to estimate uncertainties in all variables as well as 

the covariances or correlations between them as represented by the “posterior distribution” at 

each location and depth. As discussed later, we find that certain elements of the elastic tensor are 

well determined, others are not, and the posterior distribution is bimodal in three important 

variables. Second, the assumption of hexagonal symmetry is actually not required for the method 

we present, but simplifies it significantly. We could have, for example, cast the inverse problem 

in terms of an un-tilted orthorhombic elastic tensor, but at the expense of introducing two 

additional free parameters. 

Applications here are made using Rayleigh and Love wave dispersion maps from the 

western US obtained using the Transportable Array (TA) stations from EarthScope USArray. We 

obtain isotropic Rayleigh wave phase speed maps from 8 to 40 sec period from ambient noise 

data and from 24 to 90 sec period from earthquake data. Isotropic Love wave maps are taken 

from ambient noise data from 10 to 25 sec period and from earthquake data from 24 to 50 sec 

period. These observations produce azimuthally isotropic Rayleigh and Love wave phase speed 
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curves at each point on a 0.2°x0.2° grid across the study region. The 2ψ Rayleigh wave 

azimuthal anisotropy data are obtained from 10 to 40 sec from ambient noise data and 24 to 60 

sec period from earthquake data, where ψ is the azimuth of propagation of the wave. No 

azimuthal anisotropy data from Love waves are used in this study. Love wave azimuthal 

variations are expected (and observed) to display dominantly 4ψ azimuthal variation, which is a 

much more difficult observation to make than the 2ψ azimuthal variation of Rayleigh waves.  

In Section 3.2 we briefly describe the data we use and the observations from surface 

waves that serve as the input data for the inversion. In Section 3.3, we explain the theoretical 

background of the inversion, concentrating on the connections between surface wave 

observations and elastic constants. In Sections 3.4 and 3.5, the model parameterization and 

inversion are discussed. Finally, in Section 3.6, we present the inversion results and discuss 

possible physical implications of the estimated models. 

	
  

3.2 Surface wave data  

This paper is motivated by the need for a new inversion method, which is described in a 

later section, that self-consistently interprets observations of radial and azimuthal anisotropy of 

surface waves. The method is applied here to surface wave data obtained in a region that 

encompasses the western US and part of the central US, where USArray stations operated 

between the years 2005 and 2010. We use continuous ambient noise data to measure Rayleigh 

and Love wave phase speeds between station-pairs and data from earthquakes with Mw>5.0 to 

generate dispersion curves between event-station pairs. We follow the tomographic methods 

described by Lin et al. (2009) and Lin and Ritzwoller (2011) known as eikonal and Helmholtz 
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tomography to estimate phase velocity maps with uncertainties. Our region of study extends 

somewhat further eastward than these earlier studies, however, and we obtain Love wave 

dispersion maps in addition to Rayleigh wave maps. 

At short periods, we use only ambient noise data and at very long periods only 

earthquake data, but there is an intermediate period range where ambient noise data and 

earthquake data are combined. The short period interval extends from 8 to 22 sec period where 

we apply eikonal tomography to produce the Rayleigh wave dispersion maps (Lin et al., 2009) 

from ambient noise. The period band of overlap of ambient noise and earthquake measurements 

for Rayleigh waves is broad, ranging from 24 - 40 sec period. Love wave measurements, 

however, only extend up to 25 sec period for ambient noise so overlap between ambient noise 

and earthquake measurements occurs only at 25 sec period. At longer periods (>40 sec for 

Rayleigh waves, > 25 sec for Love waves) earthquake data alone are used, with Rayleigh wave 

measurements extending to 90 sec period and Love wave measurements to 50 sec period. The 

signal-to-noise ratio is smaller at long periods for Love waves than for Rayleigh waves, which 

reduces the longest period that Love wave phase speed maps can be constructed. Following the 

recommendation of Lin and Ritzwoller (2011), we apply eikonal tomography up to 50 sec period 

but apply Helmholtz tomography, which accounts for finite frequency effects, at periods greater 

than 50 sec. Also following Lin et al. (2009), the uncertainties in the isotropic maps are scaled up 

to encompass the differences between the ambient noise and earthquake-derived maps. 

An example of the output of eikonal (ambient noise data) and Helmholtz (earthquakes 

data) tomography for a point in the Basin and Range province (Point A, Fig. 3.3a) is shown in 

Figure 3.2 in which the local azimuthal variation of Rayleigh wave phase velocity is presented at  
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Figure 3.2. Examples of 10, 32, and 50 sec period Rayleigh wave phase velocity observations as 
a function of azimuth for location A identified in Fig. 3.3a, observed using ambient noise datra, 
ambient noise and earthquake data, and earthquake data, respectively. Blue dashed lines give the 
best fitting 2ψ curves, where ψ is the azimuth of wave propagation defined positive clockwise 
from North. 
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three periods, where results at 10 sec are from ambient noise, at 50 sec from earthquake data, and 

at 32 sec period from a combination of ambient noise and earthquake data. At each period for 

each location a truncated Fourier series is fit to the data to estimate the azimuthal dependence of 

phase velocity for both Rayleigh and Love waves: 

c(T ,ψ ) = c0 (T )[1+ a2 cos(2(ψ −ϕFA ))+ a4 cos(4(ψ −α ))]         (3.3) 

where T is period, ψ is the azimuth of propagation of the wave measured clockwise from 

north, c0 is isotropic phase speed, ϕFA is what we call the 2ψ fast axis direction, α is an analogous 

phase angle for 4ψ variations in phase speed, and a2 and a4 are the relative amplitudes of the 2ψ 

and 4ψ anisotropy. Uncertainties in each of these quantities are determined at each location and 

period.	
  

Examples of isotropic phase speed maps for Rayleigh and Love waves are presented 

Figure 3.3, where the short period maps (10 sec period) are determined from ambient noise, the 

long period maps (Rayleigh: 70 sec, Love: 45 sec) are from earthquake data, and the 

intermediate period maps are a combination of both data sets. Although azimuthally anisotropic 

phase speed maps are estimated for both Rayleigh and Love waves, we use only the 2ψ maps for 

Rayleigh waves here. Rayleigh wave azimuthal anisotropy is observed to be dominated by 180° 

periodicity (or 2ψ anisotropy) as expected for weakly anisotropic media (Simth & Dahlen, 

1973). For Love waves, we use only the azimuthally isotropic phase speed maps because Love 

wave anisotropy is dominated by 90° periodicity (or 4ψ anisotropy), which is a more difficult 

observable that we choose not to invoke (comparing with Rayleigh wave, the observation of 

azimuthally dependent Love wave requires better azimuthal data coverage, while the horizontal 

component of the data is typically noisier than the vertical component). Examples of 

observations of Rayleigh wave azimuthal anisotropy are presented in Figure 3.4 at three periods,  
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Figure 3.3. Examples of Rayleigh and Love wave isotropic phase speed maps. (a)-(c) Rayleigh 
wave phase speed maps at 10, 32, and 70 sec period derived from ambient noise data, the a 
combination of ambient noise and earthquake data, and earthquake data, respectively. (d)-(f) 
Love wave phase speed maps at 10, 25, and 45 sec period, similarly defined from ambient noise 
data, the a combination of ambient noise and earthquake data, and earthquake data, respectively. 
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Figure 3.4. The observed Rayleigh wave 2ψ azimuthal anisotropy maps, where ψ is the azimuth 
of wave propagation defined positive clockwise from North. (a)-(c) Rayleigh wave azimuthal 
anisotropy maps at 10, 32, and 50 sec period derived from ambient noise data, the a combination 
of ambient noise and earthquake data, and earthquake data, respectively. The bars are Rayleigh 
wave fast directions with lengths representing the peak-to-peak amplitude (in percent).  
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where the length of each bar is the peak-to-peak amplitude of 2ψ anisotropy, 2a2, and the 

orientation of each bar is the fast axis direction ϕFA .  

Examples of characteristic maps (Rayleigh: 32 sec period, Love: 25 sec period) of the 

estimated uncertainties in these quantities are presented in Figure 3.5. The spatially averaged 

uncertainties for the isotropic Rayleigh and Love wave speeds (Fig. 3.5a,b) are 8 m/s and 18 

m/s, respectively, illustrating that Love wave uncertainties are typically more than twice as large 

as Rayleigh wave uncertainties. Uncertainties in the fast axis directions depend on the amplitude 

of azimuthal anisotropy and the regions of large uncertainty in Figure 3.5c occur where the 

amplitude of azimuthal anisotropy is small. The average peak-to-peak amplitude of 2ψ 

anisotropy for the 32 sec Rayleigh wave is approximately 0.8%, and for this amplitude the 

uncertainty of the fast axis direction averages about 8°. The uncertainty grows sharply as the 

amplitude of anisotropy reduces below about 0.5% and diminishes slowly as the amplitude 

grows above 1%. The average uncertainty in the amplitude of 2ψ anisotropy for the 32 sec 

Rayleigh wave is about 0.24%, which is less than 1/3 of the average amplitude of anisotropy. 

Thus, the amplitude of the 2ψ Rayleigh wave anisotropy is determined typically to better than 

3σ. 

From the maps of isotropic phase speed for Rayleigh and Love waves and the amplitude 

and fast axis direction of 2ψ anisotropy for Rayleigh waves (and their uncertainties), we generate 

at location on a 0.2°x0.2° grid in the study area isotropic phase speed curves (dispersion curves) 

for both Rayleigh and Love waves and 2ψ anisotropic period-dependent curves for Rayleigh 

waves. This raw material forms the basis for the later inversion for a 3D model. Figure 3.6 

presents examples for two locations (A: Basin and Range, B: Colorado Plateau identified in Fig. 

3.3a) that illustrate how these curves can vary. For Point A, the fast azimuth of the Rayleigh  
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Figure 3.5. Uncertainty maps for (a) the isotropic Rayleigh wave phase speeds at 32 sec period, 
(b) the isotropic Love wave phase speed at 25 sec period, (c) the fast azimuth direction of 
Rayleigh wave azimuthal anisotropy at 32 sec period, and (d) the amplitude of Rayleigh wave 
azimuthal anisotropy at 32 sec period. 
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Figure 3.6. (a-c) The local dispersion curves for Point A in the Basin and Range province 
(identified in Fig. 3.3a). The local (a) phase speed, (b) fast azimuth direction, and (c) azimuthal 
anisotropy amplitude curves are presented as one-standard deviation error bars. Red error bars 
are the Love wave data and blue error bars are the Rayleigh wave data. The solid and dashed 
lines are the dispersion curves computed from the average of the posterior distribution for Point 
A: solid lines are from Group 1 models while dashed lines are from Group 2 models. (d-f) 
Similar to (a-c) but for Point B in the Colorado Plateau (Fig. 3.3a). 
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wave does not change strongly with period, but the amplitude of azimuthal anisotropy increases 

with period. In contrast, for Point B, the fast azimuth changes with period, but the amplitude of 

azimuthal anisotropy tends to decrease with period.  

Similar data sets have been used previously to study the anisotropic structure of the 

western US. For example, Moschetti et al. (2010a, 2010b) used isotropic Rayleigh and Love 

wave phase speed dispersion curves such as those presented in Figure 3.6a,d to image apparent 

crustal radial anisotropy. Lin et al. (2011) used azimuthally anisotropic dispersion curves similar 

to those in Figure 3.6b,c,e,f to image the apparent crustal and uppermost mantle azimuthal 

anisotropy. These two data sets were interpreted separately, but here we attempt to explain both 

radial and azimuthal anisotropy simultaneously using tilted hexagonally symmetric media (Fig. 

3.1). 

3.3 The elastic tensor and surface wave anisotropy 

In a linearly elastic medium, stress and strain are related by a linear constitutive equation, 

σ ij = Cijklε kl , whereCijkl is the elastic tensor that describes the behavior of the medium under 

strain and, therefore, determines the speed of seismic waves. Without loss of generality, the 

elastic tensor can be compacted into the 6x6 elastic modulus matrix, Cαβ , following the Voigt 

recipe (e.g., Thomsen, 1986). Although a general elastic tensor is described by 21 elastic moduli, 

hexagonal symmetry is often used to characterize earth materials due to its simplicity (e.g., 

Dziewoński and Anderson, 1981; Montagner and Nataf, 1988), and can approximate many media 

within the Earth (e.g., laminated structures, LPO of mica or micaceous rocks, alignment of 

olivine crystals along the a axis with randomly oriented b and c axes). The hexagonally 

symmetric elastic modulus matrices with vertical (
VCαβ ) and horizontal (

HCαβ ) symmetry axes 
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are presented in the Introduction. A general reorientation of the symmetry axis, which we call a 

tilt, is achieved by rotating 
VCαβ  through the dip and strike angles defined in Figure 3.1a, as 

described in the Appendix. The elastic constants for a tilted hexagonally symmetric medium can 

be characterized by seven independent parameters, five unique elastic constants ( A,C,N ,L,F ) 

that describe the un-tilted hexagonally symmetric (transversely isotropic) elastic tensor, and two 

for the orientation of the symmetry axis (Montagner and Nataf, 1988).  

For a model of the elastic tensor as a function of depth at a given location, the forward 

problem in which period and azimuth dependent Rayleigh and Love wave phase speed curves are 

computed is described in Appendix A. For weakly anisotropic media, surface wave velocities are 

only sensitive to 13 elements of the elastic tensor and the remaining 8 elements are in the null 

space of surface wave velocities (Montagner and Nataf, 1986). There is an additional symmetry 

in surface wave observations: phase speeds with dip angles of θ  and π −θ  (with constant φ ) are 

indistinguishable, as are observations at strike angles of φ  and π +φ  (with constant θ ). This 

means that surface wave observations cannot distinguish between the left-dipping foliation plane 

in Figure 3.1a from a right-dipping foliation plane that has been rotated about the z-axis by 

180°.  

Some terminology is needed to help distinguish between the properties of the anisotropic 

medium from observations of anisotropy with surface waves. By “inherent anisotropy” we mean 

the anisotropy of the untilted hexagonally symmetric elastic tensor given by the moduli 

A,C,N ,L,F . We often summarize the inherent anisotropy of a hexagonally symmetric medium 

using the Thomsen parameters (Thomsen, 1986; Helbig and Thomsen, 2005; Thomsen and 

Anderson, 2015): 
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ε ≡ A −C
2C

≈ VPH −VPV
VP

                                                                                              (3.4) 

γ ≡ N − L
2L

≈ VSH −VSV
VS

                                                                                               (3.5) 

δ ≡ (F + L)2 − (C − L)2

2C(C − L)
≈ F + 2L −C

C                                                                        (3.6)             

where ε is referred to as inherent “P-wave anisotropy” and γ is called inherent “S-wave 

anisotropy”. A so-called “elliptical” anisotropic medium is one in which δ	
  =	
  ε, in which case P-

wave and SH-wave fronts are elliptical and SV-wave fronts are spherical (Thomsen, 1986). As 

shown in the Appendix, upon tilting and reorienting in strike angle, a hexagonally symmetric 

elastic tensor can be decomposed into the sum of an azimuthally invariant (or effective 

transversely isotropic) tensor and an azimuthally anisotropic tensor. We refer to the moduli that 

compose the azimuthally invariant tensor ( Â,Ĉ, N̂ , L̂, F̂ ) as the “apparent” transversely isotropic 

moduli because these moduli govern the azimuthally averaged phase speeds of Rayleigh and 

Love waves. The Thomsen parameters can be recomputed using these moduli and they define 

apparent quasi-P wave and quasi-S wave radial anisotropy:  ε
! ≡ (Â − Ĉ) 2Ĉ ,  γ

! ≡ (N̂ − L̂) 2L̂ . 

As discussed later, previous observational studies of radial anisotropy have estimated apparent 

radial anisotropy rather than the inherent anisotropy of the medium if earth media are, in fact, not 

oriented with a vertical symmetry axis. 

A tilted hexagonally symmetric elastic tensor will generate both radial and azimuthal 

anisotropy in surface waves. Figure 3.1b demonstrates how apparent SV-wave azimuthal and 

apparent S-wave radial anisotropy (Rayleigh-Love discrepancy) vary as a function of dip angle. 

Note that only the dip angle is changing so that the inherent anisotropy is constant as apparent 
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anisotropy changes. These curves are computed from a simple elastic tensor with a slow 

symmetry axis. For this model, the amplitude of azimuthal anisotropy increases with increasing 

dip angle (θ), and the apparent radial anisotropy decreases with increasing dip angle. When the 

dip angle is 0, there is strong positive apparent S-wave radial anisotropy but no azimuthal 

anisotropy. At some dip angle, the apparent radial anisotropy vanishes but the azimuthal 

anisotropy is non-zero. As the dip angle increases further, the apparent radial anisotropy 

becomes negative (meaning L̂ > N̂ ) and azimuthal anisotropy attains its maximum value. This 

example is intended to qualitatively illustrate the trend with dip angle; the details (e.g., the 

absolute amplitude, the crossing point in dip angle, and the number of crossing points) depend on 

the elastic tensor itself (especially F or η ). 

The computation of Rayleigh and Love wave phase velocities from a given tilted 

hexagonally symmetric medium is discussed in the Appendix.  

3.4 Model parameterization and constraints in the inversion 

Our model parameterization, as well as the allowed variations in the model, are similar to 

those described by Shen et al., (2013a, 2013b) in the inversion of isotropic Rayleigh wave phase 

speeds and receiver functions for an isotropic apparent VSV  model of the crust and uppermost 

mantle in the western and central US. In fact, our model covers a subset of the region of Shen’s 

model, which is the starting model for the inversion performed in this paper. Shen’s model is 

isotropic withVS
0 =VSH =VSV , η0 = 1 , and VP

0 =VPV =VPH = 2.0VS  in the sediments, 

VP
0 =VPV =VPH = 1.75VS  in the crystalline crust and mantle, density is computed through depth-

dependent empirical relationships relative to VS  (Christensen and Mooney, 1995; Brocher, 
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2005), and the Q model is taken from the AK135 model (Kennett et al., 1995). Here, we fix the 

density and Q models to those values found by Shen.  

In the crust and mantle we assume that the elastic tensor possesses hexagonal symmetry 

with orientation given by the dip and strike angles (Fig. 1a). The depth dependence of the elastic 

moduli A, C, N, L, and F (or VPV ,VPH , VSH ,VSV , and η ) is represented by four B-splines in the 

crystalline crust from the base of the sediments to Moho, and five B-splines in the mantle from 

Moho to 200 km depth. Beneath 200 km the model is identical to AK135. The B-spline basis set 

imposes a vertical smoothing constraint on the model in both the crust and the mantle. If 

sedimentary thickness in Shen’s model is less than 5 km, then the sediments are isotropic and are 

fixed to the 3D starting model (Shen et al. 2013b) in which the depth dependence of VS  is 

represented by a linear function. Otherwise, as described below, S-wave anisotropy is introduced 

in the sediments by varying VSH . 

In addition to the parameterization, there are model constraints that govern the allowed 

variations around the starting model (VS
0 , VP

0 , η0 ) in the inversion (described in the next 

section). Because we perform a Monte Carlo inversion, which involves only forward modeling, 

the imposition of the constraints is straightforward as they affect only the choice of models that 

we compare with data; i.e., which models are used to compute the likelihood function. In the 

following, when referring to the seismic velocities (

VPV = C ρ ,  VPH = A ρ ,  VSV = L ρ ,  VSH = N ρ ) and η = F/(A-2L) we mean the inherent 

elements of a hexagonally symmetric elastic tensor; that is, the inherent characteristics of the 

elastic tensor prior to tilting.  
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The constraints that are imposed during inversion are the following. (1) Constancy of tilt 

angles in the crust and mantle: At each location, the dip and strike angles (tilt angles θ, ϕ) that 

define the orientation of the symmetry axis of anisotropy are constant through the crystalline 

crust and constant through the mantle, although the crustal and mantle angles are allowed to 

differ from each other. (2) Range of model variables: The allowed variations of the elastic 

parameters in the crystalline crust and mantle relative to the starting model are as follows:

VSV ± 0.05VS
0 , VSH ± 0.15VS

0 , VPV ± 0.15VP
0 ,VPH ± 0.15VP

0 . In addition, in the crust ηcrust∈[0.6,1.1] 

and in the mantle it lies in the smaller range ηmantle∈[0.85,1.1]. Also, the tilt angles range through 

the following intervals: θ ∈[0°,90°] , φ ∈[0°,180°] .	
  The reasons for the choice of the ranges of 

model variables are explained in subsequent paragraphs. (3) Sedimentary model: If sedimentary 

thickness is less than 5 km in Shen’s model, the sedimentary part of the model remains 

unchanged (i.e., it is isotropic and identical to Shen’s model). If the thickness is greater than 5 

km, then only the VSH  part of the model is perturbed to introduce S-wave radial anisotropy with

γ ∈[0,0.2] ; i.e., this is a maximum S-wave anisotropy of 20%. No tilt is introduced to the elastic 

tensor in the sediments. (4) VP VS ratio:VP VS ≈ (VPV +VPH ) (VSV +V SH ) ∈[1.65,1.85]. (5) 

Monotonicity constraint: VSV , VSH , VPV , and VPH  each increase monotonically with depth in the 

crystalline crust. A monotonicity constraint is not imposed on η or on any of the variables in the 

mantle. (6) Positive inherent anisotropy:VSH >VSV , VPH >VPV . This indicates that our inverted 

hexagonally symmetric tensor has a slow symmetry axis (N>L, A>C, VP  and VS  are slower in 

the direction of symmetry axis and faster in the foliation plane). (7) Fixed points of the model: 

Density, sedimentary thickness, and crustal thickness are not changed relative to the starting 

model.  
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The constraints can be considered to fall into two groups, one group is based on prior 

knowledge and the other is introduced to simplify the model. The VP VS  ratio, positive 

anisotropy, and the fixed points of the model constraints are based on prior knowledge. For 

example, the inherent anisotropies are set to be positive (slow symmetry axis) because most 

crustal rock samples display slow velocities perpendicular to the foliation plane and fast 

velocities within the foliation plane, and anisotropy caused by layering requires positive inherent 

anisotropy (Thomsen and Anderson, 2015; Tatham et al., 2008; Brownlee et al., 2011; Erdman et 

al., 2013). In addition, we have tested negative inherent anisotropy (fast symmetry axis), which 

is probably consistent with crustal rocks abundant in quartz and amphibole, but this kind of 

medium cannot explain our observations across the region of study. We set the sedimentary 

thickness and crystalline crustal thickness constant based on the receiver function observations 

by Shen et al. (2013b). The VP VS  ratio is constrained to be within 1.65 to 1.85 because most 

observations of VP VS fall in this range (e.g., Lowry and Perez-Gussinye, 2011; Christensen, 

1996; Buehler and Shearer, 2014). 

In contrast, constraints such as the vertically constant tilt angle in the crust and mantle 

and the monotonic increase of seismic wave speeds in the crust are used to simplify the resulting 

models. Everything else being equal, we prefer simpler models because they are more testable 

and falsifiable. For example, we could have parameterized the tilt angles as depth-varying and 

still fit our data. (In fact, there are always an infinite number of possible and more complex 

alternatives that include more ad hoc assumptions.) Without prior knowledge, more complex 

models can hardly be proven wrong because they can always fit the data. Besides, little can be 

learned from such complexities because they are not derived from the data. On the other hand, a 

simple model cannot always fit the data (e.g., a constant velocity profile cannot fit the dispersion 
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curves), so it is easier to prove wrong (if it is). When a model is too simple to fit the data, we 

then add complexity to the model or loosen constraints. Because this kind of added complexity is 

motivated by the data, it is more likely to provide information about the earth. Therefore, we 

view the vertically constant tilt angle and monotonicity constraints as hypotheses that we test 

empirically. If we are unable to fit aspects of the data acceptably, we will return and loosen these 

constraints to help fit the data. Otherwise, these constraints are kept to generate a simple model. 

In summary, we seek an anisotropic model that is relatively close to the isotropic model 

of Shen, possesses hexagonally symmetric anisotropy with a slow symmetry axis of locally 

constant but geographically variable orientation in the crystalline crust and upper mantle, has 

only positive P-wave and S-wave anisotropy, a VP VS ratio that varies around that of a Poisson 

solid, and possesses seismic velocities that increase with depth in the crust. Given the allowed 

variations in the elastic moduli, the maximum S-wave anisotropy (γ) considered in both the crust 

and mantle is 20%. Because Shen’s model was constructed with Rayleigh wave data alone (and 

receiver functions) it only weakly constrains VP  andVSH , but has rather strong constraints on the 

sedimentary and crustal thicknesses and VSV  in the crust. For this reason, we allow in our 

inversion wider variation in VP  andVSH than inVSV . η is allowed to vary through a wider range in 

the crust than in the mantle based on measurements of elastic tensors for crustal rocks (Tatham et 

al., 2008; Brownlee et al., 2011; Erdman et al., 2013) and olivine (Babuška, 1991), which is 

believed to be the major contributor to mantle anisotropy, and also to be consistent with mantle 

elastic moduli in other studies (e.g., Montagner and Anderson, 1989). We do not allow 

sedimentary thickness or crustal thickness to vary at all because receiver functions are not used 

in our inversion. However, we find that in areas where the sediments are thicker than 5 km, 

radial anisotropy is needed in order to fit the data at short periods. In this case, we introduce only 
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S-wave anisotropy in the sediments (no P-wave anisotropy, no deviation of η from unity), which 

is probably physically unrealistic, so we do not interpret the resulting model of anisotropy in the 

sediments. However, regions where sediments are thicker than 5 km in Shen’s model are 

relatively rare in the western US, being confined to a few regions, most notably southwestern 

Wyoming.  

3.5 Bayesian Monte Carlo inversion 

The data that are inverted are similar to those shown in Figure 3.6 for two locations in 

the western US. We apply a Bayesian Monte Carlo method to invert the data at every location on 

a 1°x1° grid. The implementation of the inversion is very similar to the method described in 

detail by Shen et al. (2013a), but we do not apply receiver functions. We construct observations 

such as those in Figure 3.6 on a 0.2°x0.2° grid. The isotropic model constructed by Shen et al. 

(2013b), which is our starting model, is constructed on the irregular grid given by the station 

locations where the receiver functions are defined. In contrast, we construct our model on a 

regular 1°x1° grid across the central and western US. At each grid point, the starting model in 

our inversion is Shen’s model at the nearest station, which in some cases may be as much as 40 

km away.  

At each location the prior probability distribution is defined relative to Shen’s model 

based on the constraints described in the previous section. The prior distribution guides the 

sampling of model space. A model is determined to be acceptable or not based on its likelihood 

function L(m), which is related to the chi-squared misfit S(m) (Shen et al., 2013a; Xie et al., 

2013). L(m) and S(m) are defined as follows: 

L(m) = exp(− 1
2
S(m))

                                              
(3.7) 
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where 

S(m) = (D(m)i
predicted − Di

observed )2

σ i
2

i
∑                           (3.8) 

The chi-squared misfit S(m) measures the weighted difference between the observed and 

predicted dispersion curves, where the forward model is computed as described in the Appendix. 

The chi-squared misfit is composed of four terms, corresponding to the four curves at each 

location shown in Figure 3.6. The first two are for isotropic Rayleigh and Love waves. The other 

two are for the amplitude and fast-axis direction of Rayleigh wave azimuthal anisotropy. The 

only weights in the misfit function are the standard deviations of the measurements.  

The model sampling process and acceptance criteria follow the procedure described Xie 

et al. (2013) where the partial derivatives are updated when each additional 200 models are 

accepted. Because the model sampling will not complete until at least 5000 models are initially 

accepted, the partial derivatives are updated at least 25 times during the sampling. After the 

sampling is complete, the entire set of initially accepted models is put through the selection 

process again to remove models with larger misfit (Xie et al., 2013). On average, models are 

accepted up to about twice the rms misfit of the best-fitting model. This reselected model set 

composes the (truncated) posterior probability distribution, which is the principal output of the 

inversion. The posterior distribution satisfies the constraints and observations within tolerances 

that depend on data uncertainties.  

Figure 3.7 presents map views of the misfit for the best-fitting models (from Group1, 

defined below) across the study region. Here the misfit is defined as S N where S is the chi-

squared misfit defined in equation(3.8), and N is the number of observations. In general, our data  
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Figure 3.7. Map view of the misfit for the best-fitting models (from Group 1 models) across the 
study region. The misfit is defined as S N where S is the chi-squared misfit defined in 
equation (3.8), and N is the number of observations. Average value across the map is inset. 
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can be well fit with an average misfit around 1.2. The misfit is larger along the coast and near the 

Green River Basin and other basins in southwestern Wyoming, where thick sediments exist. This 

indicates that our parameterization is not optimal in regions with thick sediments. In the future, 

we plan to improve the inversion in the sediments by incorporating the Rayleigh wave H/V ratio 

from ambient nosie (Lin et al., 2012) that provide additional sensitivity to shallow structures. 

Misfit from Group 2 models is similar. 

Examples of prior and posterior probability distributions for the inherent moduli at 20 km 

depth are shown in Figures 3.8 and 3.9 for the same two locations for which we present the data 

in Figure 3.6. The prior distributions are strongly shaped by the model constraints and are 

displayed as white histograms in each panel. For example, VSV  displays a narrower prior 

distribution because only 5% perturbations relative to the starting model are sampled compared 

to 15% perturbations inVSH , VPV , and VPH . The non-uniform shape of many of the distributions 

arises from constraints that tie model variables between different depths or of different types, 

such as the monotonicity constraint. The prior distributions for the dip and strike angles are 

uniform, however, because they are constant across the crust and, therefore, are not explicitly 

tied to choices of variables at different depths or of different types. The posterior distribution is 

wider for variables that are poorly constrained by the data (e.g.,VPH , 𝜂) than for those that are 

well constrained (e.g., 𝜃, 𝜙, VSV , VSH ). Note that the crustal dip and strike angles, 𝜃 and 𝜙, are 

well constrained by the data in that their posterior distributions are relatively narrow. However, 

the posterior distribution of the crustal strike angle is bimodal, defining two model groups in 

which strike angles differ by 90°, on average. These two groups of models are presented as blue 

and red histograms in Figures 3.8 and 3.9. The physical cause of this bifurcation is discussed in 

Section 3.6.2 below. 
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Figure 3.8. Prior and posterior distributions for several model parameters at 20 km depth for 
Point A (in the Basin and Range, Fig. 3.3a). White histograms shown with black lines indicate 
the prior distributions; both red and blue histograms are the posterior distributions but result from 
model groups 1 and 2, respectively.  
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Figure 3.9. Similar to Fig. 3.8 but for Point B in the Colorado Plateau (Fig. 3.3a). 
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We define “Group 1” (red histograms) to be the set of models with a crustal strike angle 

that approximately parallels the Rayleigh wave fast direction averaged between 10 sec and 22 

sec period. “Group 2” is the set of models with a strike angle that is approximately orthogonal to 

the Rayleigh wave fast axis direction in this period range. There are subtle differences between 

the crustal moduli A, C, N, and L between the two groups, but much stronger differences in η, 

dip angle θ, and the non-ellipticality parameter (ε-δ). Typically, Group 1 has larger values of η 

and more nearly elliptical anisotropy (ε ≈ δ) in the crust, whereas Group 2 has smaller η and a 

more non-elliptical anisotropy. Also, Group 1 models tend to have a slightly larger crustal dip 

angle, on average. We believe that the bifurcation in model space is controlled fundamentally by 

η, which is poorly constrained in the prior distribution or by the data. The effect of the 

bifurcation on our conclusions also will be discussed further in the next section of the paper. 

Ultimately, we summarize each posterior distribution by its mean and standard deviation, 

which define the final model and uncertainty at each depth, and for each model variable. Table 

3.1 presents these statistics for the posterior distributions shown in Figures 3.8 and 3.9. Figure 

3.10 presents vertical profiles of inherent VSV  and VSH  (related to the moduli L and N), showing 

the mean and standard deviation for Group 1 and Group 2 models separately at locations A and 

B in the Basin and Range and Colorado Plateau (Fig. 3.3a), respectively. Differences between 

the moduli of the two groups are discussed further below. These profiles are derived to fit the 

data presented in Figure 3.6, where we also show how well the data are fit by the mean model 

from each group (Group 1: solid lines, Group 2: dashed lines). The two groups fit the isotropic 

phase speed data nearly identically but do display small differences in the details of the fit to 

Rayleigh wave azimuthal anisotropy, although both fit within data uncertainties. The differences 
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Table	
  3.1.	
  The	
  mean	
  and	
  standard	
  deviations	
  for	
  the	
  posterior	
  distributions	
  in	
  Figures	
  
3.8,	
  3.9 

 

 

	
   L ρ

= VSV

	
  

(km/s)	
  

N ρ

= VSH

	
  

(km/s)	
  

C ρ

=VPV
	
  	
  

(km/s)	
  

A ρ

=VPH
	
  

(km/s)	
  

Dip	
  
angle	
  
θ 	
  (º)	
  

Strike	
  
angle	
  
φ 	
  (º)	
  

F/(A-­‐
2L)=η 	
  

Non-­‐
elliptical
ity	
  
ε −δ 	
  

Point	
  A	
  	
  
𝜌 =
2.79𝑔/𝑐𝑚!	
  	
  

Group	
  1	
   3.57	
  (0.04)	
   3.74	
  (0.06)	
   6.14	
  (0.15)	
   6.52	
  (0.15)	
   21	
  (6)	
   37	
  	
  
(12)	
  

0.87	
  
(0.07)	
  

-­‐0.01	
  
(0.04)	
  

Group	
  2	
   3.54	
  (0.03)	
   3.72	
  (0.07)	
   6.15	
  (0.13)	
   6.47	
  (0.18)	
   22	
  (7)	
   126	
  
(13)	
  

0.74	
  
(0.05)	
  

0.06	
  
(0.02)	
  

Point	
  B	
  
𝜌 =
2.73𝑔/𝑐𝑚!	
  	
  

Group	
  1	
   3.48	
  (0.04)	
   3.63	
  (0.04)	
   5.94	
  (0.17)	
   6.28	
  (0.18)	
   34	
  (7)	
   19	
  
(6)	
  

0.82	
  
(0.06)	
  

0.02	
  
(0.03)	
  

Group	
  2	
  	
   3.45	
  (0.04)	
   3.61	
  (0.04)	
   6.06	
  (0.12)	
   6.24	
  (0.19)	
   27	
  (6)	
   110	
  
	
  (5)	
  

0.72	
  
(0.03)	
  

0.08	
  
(0.01)	
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Figure 3.10. (a) Group 1 posterior distribution at Point A showing the inherent Vsv (blue) and 
Vsh (red), where the one-standard deviation extent of the posterior distribution is shown with the 
gray corridors and the average of each distribution is plotted with bold solid lines. (b) Same as 
(a), but for Group 2, Point A. (c) Same as (a), but for Group 1, Point B. (d) Same as (a), but for 
Group 2, Point B. Points A and B are identified in Fig. 3.3a. 
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 in fit are largest for the amplitude of azimuthal anisotropy above 30 sec period where 

uncertainties in this variable grow. Note that both groups fit the fast azimuth direction of 

Rayleigh wave azimuthal anisotropy equally well, even though the strikes angles of the crustal 

anisotropy differ by 90°. 

In addition, posterior covariances between model variables at a particular depth or 

different depths are also determined from the posterior distributions. In practice, we compute 

posterior correlation matrices in which the elements of the covariance matrix are normalized by 

the appropriate standard deviation, which normalizes the diagonal elements of the matrix to 

unity. We use the terms correlation and covariance interchangeably, however.  

As an example, the posterior covariance matrix for five variables (γ ,ε ,δ ,θ ,φ ) at 20 km 

depth is presented in Figure 3.11a for a point in the Basin and Range province (point A in Fig. 

3.3a). Most correlations are relatively weak, γ is negatively correlated with ε and δ , ε and δ

are strongly positively correlated with each other in order to keep a relatively constant ε −δ . 

Importantly, the dip angle θ has no correlation with other variables except δ . A correlation 

between these two variables is probably not surprising because δ affects the speed of waves 

propagating at an angle through the medium (oblique to the symmetry axis) and θ  orients the 

medium.  

Similarly, Figure 3.11b-f shows the posterior covariance matrix for each model variable 

with itself at different depths. This is again for point A in the Basin and Range province, where 

crustal thickness is about 31 km; depths greater than 31 km are in the mantle and shallower 

depths are in the crust. Most of the correlations in this case are positive. The correlation length (a 

measure of the rate of decay of the covariance with distance) in the crust is smaller than in the 
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mantle because the vertical resolution is better. The B-splines in the crust only span from the 

bottom of the sediments to the Moho (less than 30 km here), whereas in the mantle they span 

 
Figure 3.11. Aspects of the correlation (or normalized covariance) matrix observed at Point A. 
(a) The correlations between several model parameters at 20 km depth. (b) The correlations 
between γ at different depths. (c-f) Similar to (b), but for four other model parameters: ε, δ, θ, 
and ϕ. θ is the dip angle, ϕ is the strike angle, and γ, ε, δ are Thomsen parameters that 
summarize the elastic tensor. 
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about 170 km. The correlation length for γ  is smaller than for ε and δ , indicating a better 

vertical resolution of γ . 

Covariance matrices such as the examples presented here illuminate the implications of 

the parameterization and constraints imposed in the inversion, but we only interpret this 

information qualitatively; it is not used formally. 

3.6 Results 

Love wave phase speed dispersion curves extend only up to 50 sec period and the 

Rayleigh wave anisotropic dispersion curves also do not extend to very long periods. Thus, 

constraints on crustal structure are stronger than on the mantle. We have tested variations in 

mantle parameterizations and constraints, and found that changes affect estimated crustal 

structure within uncertainties. In the following, therefore, we will concentrate detailed discussion 

on the crustal part of our model, and will discuss mantle structure principally in a spatially 

averaged sense. Later work will specifically aim to improve and interpret the mantle model in a 

spatially resolved sense. 

3.6.1 Crustal anisotropy across the western US 

The results presented to this point are only for two locations, in the Basin and Range 

province and the Colorado Plateau (points A and B, Fig. 3.3a). We have applied the Bayesian 

Monte Carlo inversion described above to the US west of 100°W longitude and produced a 3D 

model of the tilted crustal elastic tensor (with uncertainties) on a 1°x1° grid across the region. 

The mean and standard deviation of aspects of the posterior distribution averaged across the 

crystalline crust (from the base of the sediments to Moho) are shown in Figures 3.12 and 3.13.  
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Figure 3.12. Map view of the crustal averaged non-ellipticality of anisotropy ( ), the crustal 
averaged inherent S-wave anisotropy (γ), the crustal dip (θ) and strike (ϕ) angles for Group 1 (a-
c) and Group 2 (d-f) models. In (c) and (f), dip angles are represented by the background color 
and strike angle directions are given by the black bars. Average values across each map are inset. 

ε −δ
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Figure 3.13. Local uncertainties for the model variables shown in Fig. 3.12. Average 
uncertainties across each map are inset. 
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As discussed above, the posterior distribution bifurcates at each location into two disjoint 

groups of models based on the strike angle, and we present results in the crust for both groups of 

models. For Group 1, crustal anisotropy is nearly elliptical meaning that the Thomsen parameters 

ε and δ, defined in equations (3.4) and (3.6), are nearly identical. Figure 3.12a shows that ε – δ 

is small across the entire western US for Group 1 models. We refer to ε – δ as the “non-

ellipticality” parameter because values much larger than zero indicate the deviation from 

elliptical anisotropy. Group 2 models have more non-elliptical anisotropy as Figure 3.12d 

illustrates, and ε is generally greater than δ so that the non-ellipticality parameter is generally 

positive. The non-ellipticality parameter is about an order of magnitude larger for Group 2 than 

Group 1 models. 

Although the elastic tensors in the two groups of models differ in the extent to which the 

anisotropy is non-elliptical, the geographical distribution and the amplitude of inherent S-wave 

anisotropy, given by the Thomsen parameter γ (eqn. (5)), are similar. This amplitude averages 

about 3.9% for Group 1 and 4.2% for Group 2 (Fig. 3.12b,e). The differences in γ between 

Groups 1 and 2 are within estimated uncertainties (Fig. 3.13a,d), which average about 2% across 

the region. On average, γ does not vary strongly with depth in the crust, as Figure 3.14 

illustrates. The error bars represent the inherent S-wave anisotropy at crustal depths normalized 

by local crustal thickness averaged across the study region. γ tends to be somewhat stronger in 

the shallow (~4%±2%) and deep (~6%±3%) crust than in the middle crust (~3%±2%), but the 

trend is weak and does not occur everywhere. The amplitude of inherent S-wave anisotropy is 

everywhere positive (as it is constrained to be), and is fairly homogeneous laterally across the 

western US. It is, however, largest in the Basin and Range province and smallest in the Colorado  
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Figure 3.14. The spatially averaged inherent S-wave anisotropy (γ) as a function of depth in the 
crust, where depth is normalized by local crustal thickness. The middle of the error bar is the 
average value of γ, in percent, and the half width of the error bar is the spatial average of the 
one-standard deviation uncertainty. The blue dashed line indicates 4% anisotropy, which is the 
amplitude of anisotropy averaged over the whole crystalline crust and over the study region.  
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Plateau and the western Great Plains. The positivity constraint on γ, motivated by elastic tensors 

measured on crustal rocks, does not have to be relaxed anywhere to fit the data. γ is larger than 

its uncertainty across nearly the entire western US with the possible exception of some of the 

peripheral regions where uncertainties grow due to less than ideal data coverage. For this reason, 

we suggest that γ not be interpreted near the Pacific coast.  

Compared with earlier estimates of (apparent) S-wave radial anisotropy across the 

western US (e.g., Moschetti et al., 2010a, 2010b), the amplitude of γ (inherent S-wave 

anisotropy) does not change as strongly across the region. This discrepancy is correlated with the 

difference between ‘inherent’ and ‘apparent’ anisotropy, and is discussed below in Section 3.6.5.  

In contrast with γ, the dip angle θ does change appreciably across the study region and 

the dip and strike angles differ appreciably between the two model groups. Differences between 

dip angles, shown by varying the background coloration in Figure 3.12c,f, are somewhat subtle. 

The spatially averaged uncertainty in the dip angle across the western US is 9° to 10° for both 

model groups. The geographical distribution of the variation in dip angle is similar between the 

two groups of models, but models in Group 2 have dip angles that average about 25° whereas 

Group 1 models average about 30°. Recall that the dip angle in the elastic tensor is introduced to 

produce azimuthal anisotropy. Thus, elastic tensors with nearly elliptical anisotropy must be 

tilted more to fit the azimuthal anisotropy data than tensors with substantially non-elliptical 

anisotropy. The dip angle in the crust everywhere across the western US is less than about 70° 

and greater than about 10°, with the majority of the angles falling within the range of 10º and 

45º. The Basin and Range province has a shallower dip whereas the Colorado Plateau has a 

steeper dip, on average.  



129 

 

 

 

There is a more prominent difference in strike angle than dip angle between the two 

groups of models. The strike angle directions for Group 1 and Group 2 models differ by 90°. 

This is a significant enough observation to warrant its own subsection, and is discussed further in 

Sections 3.6.2 and 3.6.3. Uncertainty in strike angle averages 12°-13° across the study region. 

There are also significant differences between the two groups of models in η and the 

other Thomsen parameters, ε (inherent P-wave anisotropy) and δ. η averages about 0.83 (±0.08) 

for Group 1 models and 0.077 (±0.07) for Group 2. In addition, there are larger values of 

inherent P-wave anisotropy (ε) in Group 1 (8.1%±4.8%) than in Group 2 (6.6%±4.2%). Group 1 

models have nearly elliptical anisotropy, so δ ≈ ε. Thus, for Group 1 models, δ is on average 

larger (8.5% ± 6.7%) than for Group 2 models (2.8% ± 5.3%). For Group 2 models δ ≪ ε, on 

average. 

3.6.2 On the cause of the bifurcation in strike angle of crustal anisotropy 

The fact that two groups of solutions with orthogonal strike angles both fit the crustal 

sensitive Rayleigh wave data may be explained in terms of the phase speed surface produced by 

different elastic tensors. The phase speed surface can be computed by solving the Christoffel 

equation. For waves traveling in any direction, there are always three mutually orthogonal wave 

solutions, one (quasi-) P wave and two (quasi-) S waves. Normally, the S wave with faster speed 

is called S1, and the slower one is called S2. Note that S1 and S2 should not be associated with SV 

or SH waves, because S1 and S2 are defined based on the wave speed instead of the polarization 

direction. The discussion below only aims to provide a qualitative understanding of the 

bifurcation. For more insight, more sophisticated forward computations would be required, 

which is beyond the scope of this paper. 
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Figure 3.15 shows the phase speed surface of P, S1, and S2 waves, together with the 

polarization direction of the S wave for two tilted elastic tensors with hexagonal symmetry, one 

is elliptical with a dip angle of 20° and strike angle of 210°, the other is non-elliptical with dip 

angle 20° and a strike angle 300°. Each surface plots a particular speed (Vs1, Vs2, P) for waves 

propagating in different directions. Each panel is a lower hemisphere plot so that horizontally 

propagating waves (surface waves) are sensitive to wave speeds at the edge of the diagram. 

These two tensors represent our Group 1 and Group 2 models that have different ellipticality of 

anisotropy and orthogonal strike angles. The most prominent feature of the non-elliptical tensor 

is that the polarization direction of the S1 wave suddenly changes from radial to tangential at 

some degree oblique to the symmetry axis. A Rayleigh wave that is propagating horizontally in a 

hexagonally symmetric medium with a shallow to moderate dip is mainly sensitive to the phase 

speed of the S2 wave (Vs2). In the following paragraphs, therefore, we will concentrate 

discussion on the speed Vs2. We will demonstrate that the two groups of elastic tensors produce 

the same azimuthal pattern in wave speed Vs2 even though their strikes angles differ by 90°. 

In an elliptical hexagonally symmetric anisotropic medium (Group 1), the Vs2 surface has 

its minimum value oblique to the symmetry axis. In a non-elliptical hexagonal material, the 

pattern of the Vs2 surface is reversed: Vs2 has its maximum value oblique to the symmetry axis. 

Because horizontally propagating Rayleigh waves only sample the outer margin of the wave 

speed surface, we plot the value of Vs2 at the edge of the surface as a function of azimuth (Fig. 

3.16a). We find that despite the orthogonal strike directions, the two groups of models produce 

similar azimuthal patterns of Vs2, with the same fast axis directions. Group 1 models have their 

Vs2 fast axis direction parallel to the strike angle of the elastic tensor, whereas Group 2 models 

have their fast axis directions orthogonal to the strike. This phenomenon results in the same fast  
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Figure 3.15. Phase velocity surfaces of Vs1, Vs2, and Vp for two elastic tensors with hexagonal 
symmetry: one is elliptical (a-c, represents a Group 1 model) and the other one is non-elliptical 
(d-f, represents a Group 2 model). Vs1 polarizations are indicated in (a) and (c) where the black 
bars are the projection of the Vs1 vector onto the plane of stereonet. The orientations of the two 
elastic tensor groups are shown at the right hand side of the figure.  
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Figure 3.16. Azimuthal velocity variations of the horizontally propagating (a) S2 wave and (b) P 
wave where all the velocities are normalized. The red and blue dots represent the velocities 
computed from the elastic tensor of Group 1 and Group 2, respectively (the velocities at the edge 
of Fig. 3.15b, d). The vertical lines in (b) indicate the strike direction, red for Group 1 and blue 
for Group 2. 
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direction for the Rayleigh waves, even when the orientation of the inherent elastic tensor is 

different. These results highlight the fact that the fast direction of Rayleigh wave is not 

necessarily parallel to the strike of anisotropy, but depends on a property of the medium, whether 

the anisotropy is elliptical or not. This phenomenon is similar to what Song and Kawakatsu 

(2012) found for shear-wave splitting. 

In contrast with the propagation of S2 waves, however, a horizontally propagating P wave 

is always fastest parallel to the strike of a dipping hexagonally symmetric elastic tensor (Fig. 

3.16b). Therefore, a P wave’s fast direction always indicates the strike direction.  

In conclusion, for both groups of models the Rayleigh wave fast axis direction is the 

same even though the strike of the anisotropy differs by 90°. However, the P wave fast directions 

in the two groups will be orthogonal to each other, consistent with a 90˚ rotation of the strike. 

Therefore, observations of P wave anisotropy provide unambiguous information about the 

orientation of the strike angle of anisotropy, but Rayleigh wave travel times do not. In addition, 

observations from waves with near-vertical incidence angles, such as receiver functions (e.g., 

Levin and Park, 1997; Savage, 1998; Bianchi et al., 2008, 2010; Liu and Niu, 2012; Schulte-

Pelkum and Mahan, 2014a, 2014b), may also provide unambiguous information about the 

orientation of the strike angle of anisotropy. 

3.6.3 The strike angle of crustal anisotropy and the Rayleigh wave fast axis direction  

As discussed in Section 3.5 and earlier in this section, the posterior distribution divides 

into two disjoint groups of crustal models according to the estimated strike angle (ϕ) of 

anisotropy, which is defined in Figure 3.1a. The physical cause of this bifurcation is discussed in 

Section 3.6.2. Thus, at each spatial grid point there are two distinct distributions of elastic 
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tensors and orientations (or tilts) that fit the Rayleigh wave azimuthal anisotropy observations 

approximately equally well. For Group 1, the set of models with approximately elliptical 

anisotropy (ε ≈ δ) and typically larger value of η, the distribution of strike angles is shown in 

Figure 3.12c. These strike angles are very similar to the Rayleigh wave fast axis directions for 

waves that sample the crust (e.g., 10-20 sec period, Fig 3.4a). Figure 3.17 illustrates this fact by 

plotting as blue dots the 16 sec period Rayleigh wave fast axis directions against the Group 1 

strike angles (ϕ1) at each location . The mean and standard deviation of the difference are 0.2° 

and 21.0°, respectively. The geographical distribution of the strike angles (and fast axis 

directions for crustal sensitive Rayleigh waves) are similar to those found by Lin et al. (2011), 

who discuss the geological coherence of the observations, so we forgo this discussion here. 

The second group of models, Group 2, possesses strike angles that are distinct from 

Group 1, ε is typically significantly larger than δ, so the anisotropy is decidedly non-elliptical, 

and η is usually smaller than 0.8. As Figure 3.17 also shows with red symbols, the strike angles 

of Group 2 (ϕ2) are, on average, perpendicular to the strike angles of Group 1 (ϕ1) such that the 

average angular difference and standard deviation are 90.2° and 8.8°, respectively. This 

distribution is tighter than the comparison with Rayleigh wave fast axis directions because 

Rayleigh wave fast axes at a particular period are measurements and are, therefore, noisy. 

In summary, Rayleigh wave fast axis directions are ambiguously related to the strike of 

inherent crustal anisotropy. In fact, the fast axis direction will only parallel the strike direction if 

the crustal anisotropy is largely elliptical in nature. As petrological information has grown 

concerning the seismic anisotropy in the crust, evidence has mounted that crustal anisotropy is 

probably not strongly elliptical (e.g., Tatham et al., 2008; Brownlee et al., 2011; Erdman et al., 

2013). Thus, the geologically favored models are probably from Group 2. Therefore, crustal  
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Figure 3.17. (Red dots) Comparison between the Group 2 strike angle ( ) and the Group 1 
strike angle ( ) across the study region, where the red line represents y=x+90°. The strike 
angles in the two groups are approximately orthogonal. (Blue dots) Comparison between the fast 
azimuth of the Rayleigh wave at 16 sec period to the Group 1 strike angle, where the blue line 
represents y=x. Crustal sensitive Rayleigh wave fast axis directions are approximately parallel to 
Group 1 strike directions and perpendicular to Group 2 strike directions. 
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sensitive Rayleigh waves must only be used with caution to reveal the orientation of the 

geological features that are causing the anisotropy. It is probably more likely for the fast axis 

direction of crustal sensitive Rayleigh waves to point perpendicular to the strike direction than 

parallel to it. Similarly, assuming nearly-vertical shear waves, crustal shear wave splitting will 

have its fast axis in the direction of the Rayleigh-wave fast axis. Therefore, the fast splitting 

direction of crustal SKS is also more likely to point perpendicular to the strike direction than 

parallel to it. 

To recover unambiguous information about the strike angle, other types of data need to 

be introduced. As discussed in Section 3.6.2, observations of crustal P wave anisotropy can 

resolve the ambiguity because the P wave fast direction is always parallel to the strike direction 

as can observations of anisotropy using receiver functions. Admittedly, however, these are 

difficult observation to make. 

3.6.4 On the interpretation of the inferred dip angle 

There are two alternative interpretations of the inferred dip angle, θ: that it is a 

measurement of the actual geometry of the foliation plane of material composing the crust or that 

it is a proxy for another potentially unknown non-geometric variable. We will first discuss the 

latter alternative. 

First, it is possible that the observed dip angle is proxy for other variables. Even though 

our models are expressed in terms of a tilted hexagonally symmetric medium, crustal anisotropy 

may not actually be hexagonally symmetric, or the approximation to hexagonal symmetry may 

not be accurate everywhere. Crustal anisotropy may indeed possess lower order symmetry than 

hexagonal. Tilting a material can have the effect of decreasing the apparent symmetry of the 

material if viewed in the same coordinate system (Okaya and McEvilly, 2003). In principle, 
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therefore, a lower order of symmetry could be approximated by a higher order of symmetry (e.g., 

hexagonally symmetric) through tilting. It is possible that the efficacy of this approximation is 

enhanced by the fact that surface wave travel time data are insensitive to 8 of the 21 moduli that 

constitute a general elastic tensor (Appendix). It is conceivable, therefore, that the effect on our 

data that we interpret as a tilt (non-zero dip angle) could have resulted from the non-hexagonal 

component of the actual elastic tensor of the medium. What we would estimate in this case is an 

“apparent dip angle” that is proxy for the extent to which the medium deviates from hexagonal 

symmetry. 

We have experimented with numerically fitting tilted hexagonally symmetric elastic 

tensors to nearly orthorhombic tensors from crustal rock samples (Tatham et al., 2008; Brownlee 

et al., 2011; Erdman et al., 2013) using only the 11 combinations to which observations of the 

2𝜓 component of Rayleigh wave and the azimuthally isotropic Rayleigh and Love wave data are 

sensitive (Appendix). We estimate an apparent dip angle that measures the medium’s deviation 

from hexagonal symmetry. Apparent dip angles resulting from this fit typically range between 

15˚ to 25˚. The dip angles that we infer, therefore, may be a result of approximating 

orthorhombic or other lower-symmetry material with hexagonally symmetric tensors, in which 

case steeper dip angles would reflect a greater deviation from hexagonal symmetry.  

Second, there is also likely to be at least some component of the inferred crustal elastic 

tensors related to the actual dip of the foliation of the material. In fact, variations in observed dip 

angles make geologic sense in some regions. For example, observed dips are shallow beneath the 

Basin and Range province, which is consistent with large-scale crustal extension along low-angle 

normal faults and horizontal detachment faults (e.g. Xiao et al. 1991; Johnson and Loy, 1992; 

John and Foster, 1993; Malavieille 1993). The steeper dip angles observed in California are also 
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consistent with a lower crust consisting of foliated Pelona-Orocopia-Rand schist (e.g. Jacobson 

1983; Jacobson et al. 2007; Chapman et al. 2010), which was under-plated during Laramide flat-

slab subduction (e.g. Jacobson et al., 2007). In other regions, such as beneath the Colorado 

Plateau, the potential geologic meaning of the steeper observed dip angles is less clear; perhaps 

the steeper dips are an indication of a change in crustal composition resulting in an elastic tensor 

with low symmetry. 

3.6.5 Comparison with previous studies: Inherent versus apparent anisotropy 

A tilted hexagonally symmetric elastic tensor will generate both apparent radial and 

azimuthal anisotropy in surface waves as demonstrated by Figure 3.1b. At a given depth, 

referencing the notation in the Appendix, we define apparent S-wave radial anisotropy as:  

  γ
! = (N̂ − L̂) 2L̂                                                                                        (3.9) 

where 

 N
! = (C11 +C22 ) / 8 −C12 / 4 +C66 / 2        L! = (C44 +C55 ) / 2                  (3.10) 

We also define the amplitude of apparent SV-wave azimuthal anisotropy as: 

G  L = Gc
2 +Gs

2 L                                                                           (3.11) 

where 

Gc = (δC55 −δC44 ) 2 = (C55 −C44 ) 2
                                                 

(3.12) 

Gs = δC45 = C45                                                                                   (3.13) 
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The components of the modulus matrix, Cαβ , are functions of the inherent elastic moduli 

( A,C,N ,L,F ) and tilt (θ ,φ ). The strength of inherent S-wave anisotropy is defined by equation 

(3.5).  

As shown in Figure 3.1b, when the inherent elastic moduli ( A,C,N ,L,F ) are fixed, 

variations in dip angle θ  produce the variations in the apparent anisotropies. The amplitudes of 

apparent anisotropies are always smaller than the inherent anisotropy except for two extreme 

cases, θ = 0° and θ = 90° . Thus, if earth structure has θ ∈(0°,90°) , then neither apparent radial 

nor apparent azimuthal anisotropy will reflect the real strength of anisotropy (inherent 

anisotropy) in the earth. 

In studies of anisotropy based either on isotropic dispersion curves or azimuthally 

anisotropic dispersion curves alone, it is the apparent anisotropy instead of the inherent 

anisotropy that is estimated. For example, in studies of radial anisotropy using surface waves 

(e.g., Moschetti et al., 2010a, 2010b; Xie et al., 2013), only the azimuthally isotropic Rayleigh 

and Love wave dispersion curves are used to produce a transversely isotropic model, which 

produces no azimuthal anisotropy. Because the azimuthally isotropic dispersion curves are only 

sensitive to the effective transversely isotropic part of the elastic tensor ( Â,Ĉ, N̂ , L̂, F̂ , 

Appendix), this transversely isotropic model is the effective transversely isotropic (ETI) part of 

our model. To prove this, we compute the ETI part of our model, from which the apparent S-

wave radial anisotropy can be generated (Fig. 3.18). The apparent S-wave radial anisotropy for 

both Group 1 and Group 2 models are very similar to each other, they both change appreciably 

across the study region, with large amplitudes in the Basin and Range province and small 

amplitudes in the Colorado Plateau. This pattern is very similar to that observed by Moschetti et  
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Figure 3.18. The mean of the posterior distribution of apparent S-wave radial anisotropy, , 
averaged vertically across the crust for (a) Group 1 models and (b) Group 2 models. Average 
values across the crust and region of study are inset.  
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al. (2010b), and thus demonstrates that inversion with isotropic dispersion curves alone results in 

observations of apparent S-wave radial anisotropy, γ̂ . Similarly, inversion with azimuthally 

anisotropic dispersion curves alone results in apparent quasi-SV-wave azimuthal anisotropy 

(e.g., Lin et al., 2010). 

The apparent radial and apparent azimuthal anisotropy reflect different aspects of the 

inherent elastic tensor and both mix information from the inherent elastic moduli and the 

orientation. As described in Section 3.6.1, the amplitude of γ̂ , the inherent S-wave anisotropy, 

does not change strongly across the region, and averages about 4%. In contrast, the amplitude of 

γ̂ , the apparent radial anisotropy, changes strongly across the region in a pattern similar to the 

variation of the dip angle θ , and averages to about 2%. Thus, the lateral variation of γ̂  results 

mainly from the variation of θ , and does not reflect the strength of γ.  

In most surface wave studies, only the apparent anisotropies are estimated. Therefore, the 

results depend on the unknown orientation of the medium (or the non-hexagonality of medium 

for which the dip angle may be a proxy), which limits their usefulness to constrain the elastic 

properties of the medium (e.g., the inherent S-wave anisotropy, γ ).  

3.6.6 Mantle anisotropy across the western US 

Although the focus of this paper is on crustal anisotropy we present here a brief 

discussion of the mantle anisotropy that emerges from the inversion. Figure 3.19 shows the prior 

and posterior distributions at 60 km depth at point A in the Basin and Range province. At this 

point, the mean of the posterior distribution is between 4-5% for both inherent S-wave (γ) and P-

wave (ε) anisotropy, both the dip and strike angles are fairly well resolved with a mean dip angle 

of 27° (±7°) and strike angle of 66° (±8°), the mean of the posterior distribution for η is 0.96  
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Figure 3.19. Prior and posterior distributions for several model parameters in the mantle at 60 
km depth for Point A (in Basin and Range, identified in Fig. 3.3a). Similar to Fig. 3.8, white 
histograms indicate the prior distributions and red histograms represent the posterior 
distributions. Posterior distributions in the mantle are not bimodal as they are in the crust. 
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(±0.04) which is much higher than in the crust, and the anisotropy is indistinguishable from 

elliptical (ε-δ = -0.04 ± 0.06). The nearly elliptical nature of mantle anisotropy is also quite 

different from what we observe in the crust. This location is fairly typical of mantle anisotropy 

across the western US, as γ averages 4.4% (±2.6%) across the western US with an average dip 

angle of 21° (±8°). We note in passing that such a steep dip angle may result from a strong 

orthorhombic component to the mantle elastic tensors and may not result from the actual tilt of 

the medium. Because, unlike the crust, the posterior distribution in the mantle does not bifurcate 

according to strike angle, Rayleigh wave fast axis directions are unambiguously related to the 

strike angle in the mantle. Because mantle anisotropy is nearly elliptical (with η close to one), 

Rayleigh wave fast axes actually align with the strike angle rather than orthogonal to it. 

However, mantle strike angle is not everywhere well determined across the region as the average 

uncertainty is nearly 30°. The inability to resolve mantle strike angle unambiguously across the 

region with the current data set and method is one of the reasons we focus interpretation on 

crustal anisotropy here and we plan to return to mantle anisotropy in a later contribution. 

3.7 Summary and Conclusions 

The motivation for this paper is to present a method of inversion that explains surface 

wave observations of both radial and azimuthal anisotropy, which are seldom explained 

simultaneously. The method we present here inverts for the inherent properties of the medium 

represented by a hexagonally symmetric elastic tensor, with an arbitrarily oriented symmetry 

axis, which we refer to as “tilted”. The elastic tensor itself at each depth is given by five elastic 

moduli (A, C, N, L, and F or η) and the tilt is defined by two rotation angles: the dip and strike, 

which are illustrated in Figure 3.1a. We refer to these moduli as “inherent”, as they reflect the 

characteristics of the elastic tensor irrespective of its orientation. 
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We show that observations of radial anisotropy and the 2ψ component of azimuthal 

anisotropy for Rayleigh waves obtained using USArray in the western US can be fit well by 

tilted hexagonally symmetric elastic tensors in the crust and mantle, subject to the constraints 

listed in the text. The inversion that we apply is a Bayesian Monte Carlo method, which yields a 

posterior distribution that reflects both the data and prior constraints. The most noteworthy 

constraint is that the tilt angles (dip, strike) are constant in the crust and mantle, but may differ 

between the crust and mantle. The results are summarized as posterior distributions of smoothly 

depth-varying inherent (unrotated) moduli (A orVPH , C or VPV ,  N or VSH ,  L or VSV ,  and F or η) 

as well as dip and strike angles. The standard deviation of the posterior distribution defines the 

uncertainties in these quantities. Anisotropy can be summarized with the Thomsen parameters, 

inherent S-wave anisotropy (γ) and inherent P-wave anisotropy (ε), and either η or δ (which is 

the third Thomsen parameter). 

Because the crust is constrained by the data better than the mantle and γ (inherent S-wave 

anisotropy) is determined more tightly than ε (inherent P-wave anisotropy), we focus 

interpretation on γ in the crust as well as the tilt angles. Major results include the following. (1) γ 

is fairly homogeneous vertically across the crust, on average, and spatially across the western 

US. (2) Averaging over the region of study and in depth, γ in the crust is approximately 4%±2%. 

(3) Crustal strike angles (ϕ) in the posterior distributions bifurcate into two sets of models that 

we refer to as Groups 1 and 2. Models in Group 1 have strike angles that approximately parallel 

crust-sensitive Rayleigh wave fast axis directions, and typically have larger values of η and 

nearly elliptical anisotropy (ε ≈ δ). Group 2 models have strike angles that are approximately 

orthogonal to crust-sensitive Rayleigh wave fast directions, smaller values of η, and more 

strongly non-elliptical anisotropy where typically ε > δ. Mantle strike angles do not bifurcate as 
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they do in the crust because of tighter constraints imposed on η in the inversion. (4) γ in the crust 

is approximately the same in the two groups of models. (5) Dip angles in the two groups of 

models vary spatially in similar ways and display geological coherence; for example, they are 

smaller in the Basin and Range province than in the Colorado Plateau or the Great Plains. 

However, in Group 1 they are slightly larger than in Group 2, averaging 30°±10° in Group 1 and 

25°±9° in Group 2. (6) Rayleigh wave fast axis directions are ambiguously related to the strike of 

anisotropy, but recent studies of the anisotropy of crustal rocks (e.g., Tatham et al., 2008; 

Brownlee et al., 2011; Erdman et al., 2013) imply that the crustal anisotropy is probably not 

nearly elliptical, which favors Group 2 models. Therefore, under the assumption that crustal 

anisotropy is approximately hexagonally symmetric with an arbitrary tilt, Rayleigh wave fast 

axis directions for crustal sensitive Rayleigh waves will be oriented orthogonal rather than 

parallel to the strike of anisotropy. Interpretation of Rayleigh wave fast axis directions in terms 

of crustal structure must be performed with caution. (7) The estimated dip angle may be 

interpreted in two alternative ways. It is either an actual measure of the dip of the foliation plane 

of anisotropic material within the crust, or it is proxy for another non-geometric variable, most 

likely a measure of the deviation from hexagonal symmetry of the medium. (8) By attempting to 

estimate the inherent moduli that compose the elastic tensor of the crust (and mantle), our 

approach differs from earlier studies that produce measurements of “apparent” moduli. Because 

tilting a medium produces apparent radial and apparent azimuthal anisotropies that are both 

smaller than the inherent anisotropy in amplitude, previous studies have tended to underestimate 

the strength of anisotropy.  

In the future, we intend to improve long period data in order to produce improved results 

for the mantle and apply the method more generally to observations of surface wave anisotropy 
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in the US and elsewhere. It will also be desirable to apply increasingly strong constraints on 

allowed anisotropy and continue to revise the interpretation of results as more information 

accrues about crustal anisotropy from laboratory measurements on crustal rocks. In particular, it 

may make sense to experiment with more general theoretical models of anisotropy in the 

inversion, perhaps by considering a mixture of elastic tensors with hexagonal and orthorhombic 

symmetry. Ultimately, we aim to interpret the results in terms of petrological models that agree 

with the inferred elastic tensor. 
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Appendix for Chapter III. The Forward Problem: Computation of period and azimuthally 

variable phase speeds for an arbitrarily oriented hexagonally symmetric elastic tensor 

Given an elastic tensor that varies with depth at a given location, we seek to compute 

how Rayleigh and Love wave phase velocities change with period T and azimuth ψ. The code 

MINEOS (Masters et al., 2007) computes period dependent Rayleigh and Love wave phase 

speeds at high accuracy for a transversely isotropic medium; i.e., a medium with hexagonal 

symmetry and a vertical symmetry axis. Instead, we are interested in a medium whose elastic 

properties are given by an elastic tensor for a hexagonally symmetric medium with an arbitrarily 

oriented symmetry axis.  

First, let the moduli A, C, N, L, and F represent the elastic tensor at a particular depth for 

a hexagonally symmetric medium with a vertical symmetry axis, given by Equation (3.1) in the 

Introduction. Four of the five moduli are directly related to P and S wave speeds for waves 

propagating perpendicular or parallel to the symmetry axis using the following relationships: 

A = ρVPH
2 ,  C = ρVPV

2 ,  L = ρVSV
2 ,  N = ρVSH

2  . Here, ρ is density, VPH  and VPV  are the speeds of P 

waves propagating horizontally and vertically respectively, VSV  is the speed of the S wave 

propagating horizontally and polarized vertically or propagating vertically and polarized 

horizontally, and VSH  is the speed of the S wave that is propagating in a horizontal direction and 

polarized horizontally. The modulus F =η(A − 2L)  affects the speed of waves propagating 

oblique to the symmetry axis and controls the shape of the shear wave phase speed surface 

(Okaya and Christensen, 2002). For an isotropic medium, A = C,  L = N ,  F = A − 2L,  η = 1 .   

Next, rotate the tensor in Equation (3.1) through the two angles, θ (the dip angle) and ϕ 

(the strike angle), defined in Figure 3.1a, to produce the modulus matrixCαβ (θ ,φ) . We refer to a 
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general reorientation of the symmetry axis as a tilt, which is achieved by pre- and post-

multiplying the elastic modulus matrix by the appropriate Bond rotation matrix and its transpose, 

respectively (e.g, Auld, 1973; Carcione, 2007), which act to rotate the 4th-order elasticity tensor 

appropriately. The order of the rotations matters because the rotation matrices do not commute: 

first a counter-clockwise rotation through angle θ around the x-axis is applied followed by a 

second counter-clockwise rotation through angle ϕ around the z-axis. The rotation can fill all 

components of the modulus matrix but will preserve its symmetry: 

           (A1) 

Montagner and Nataf (1986) showed that this modulus matrix may be decomposed into 

an effective transversely isotropic (azimuthally independent) part, , and an azimuthally 

anisotropic part, Cαβ
AA , as follows:

 

Cαβ (θ ,φ) =

A! A! − 2N! F! 0 0 0
A! − 2N! A! F! 0 0 0
F! F! C! 0 0 0
0 0 0 L! 0 0
0 0 0 0 L! 0
0 0 0 0 0 N!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

δC11 δC12 δC13 δC14 δC15 δC16
δC12 δC22 δC23 δC24 δC25 δC26

δC13 δC23 δC33 δC34 δC35 δC36
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⎥

  (A2) 

where  A
! = 3(C11 +C22 ) / 8 +C12 / 4 +C66 / 2 ,  C

! = C33 ,  N
! = (C11 +C22 ) / 8 −C12 / 4 +C66 / 2 , 

 L
! = (C44 +C55 ) / 2 , and  F

! = (C13 +C23) / 2  

Cαβ (θ ,φ) =

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Cαβ
ETI
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Equations (3.1) and (A2) present a clear definition of what we call the “inherent” and 

“apparent” elastic moduli, respectively. The inherent moduli areA,C,N ,L,F from the elastic 

tensor with a vertical symmetry axis and the apparent moduli are Â,Ĉ, N̂ , L̂, F̂ from the effective 

transversely isotropic part of the rotated elastic tensor. 

We seek expressions for the period dependence of the phase speed for both Rayleigh and 

Love waves as well as the 2ψ azimuthal dependence for Rayleigh waves because these are the 

observations we make. This computation is based on the introduction of a transversely isotropic 

reference elasticity tensor composed of the depth dependent reference moduli . 

The code MINEOS will compute Rayleigh and Love wave phase speed curves for the reference 

model ( c0
R(T ),c0

L (T ) ). Then we define the effective transversely isotropic moduli relative to this 

reference:  

 Â = A0 +δ Â,  Ĉ = C0 +δ Ĉ,  N̂ = N0 +δ N̂ ,  L̂ = L0 +δ L̂,  and F̂ = F0 +δ F̂ .  

In this case, Montagner and Nataf present the required expressions for Rayleigh and Love 

wave phase speeds, which break into contributions from the reference moduli, the perturbation 

by the effective transversely isotropic (ETI) moduli relative to the reference moduli, and the 

azimuthally anisotopic (AA) moduli: 

cR(T ,ψ ) = c0
R(T )+δcR

ETI (T )+δcR
AA(T ,ψ )

                                         
(A3)

 

           
cL (T ,ψ ) = c0

L (T )+δcL
ETI (T )

                                                              
(A4) 

where 

δcR
ETI (T ) = δ Â ∂cR

∂A 0

+δ Ĉ ∂cR
∂C 0

+δ L̂ ∂cR
∂L 0

+δ F̂ ∂cR
∂F 0

⎧
⎨
⎩

⎫
⎬
⎭0

∞

∫ dz

              

(A5)

 
δcL

ETI (T ) = δ N̂ ∂cL
∂N 0

+δ L̂ ∂cL
∂L 0

⎧
⎨
⎩

⎫
⎬
⎭0

∞

∫ dz

                                                 

(A6) 

A0,C0,N0,L0,F0
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δcR
AA(T ,ψ ) = Bc cos2ψ + Bs sin2ψ ) ∂cR

∂A 0

⎧
⎨
⎩0

∞

∫

                     + (Gc cos2ψ +Gs sin2ψ ) ∂cR
∂L 0

+ (Hc cos2ψ + Hs sin2ψ ) ∂cR
∂F 0

⎫
⎬
⎭
dz

       

(A7) 

The depth-dependent moduli Bc, Bs, Gc, Gs, Hc, and Hs are linear combination of the 

components of the azimuthally variable part of the elastic modulus matrix in Equation (A2), 

δCαβ
AA , as follows: Bc = (δC11 −δC22 ) / 2 , Bs = δC16 +δC26 , Gc = (δC55 −δC44 ) / 2 , Gs = δC54 , 

Hc = (δC13 −δC23) / 2 , and Hs = δC36 . Note that the azimuthally independent and 2ψ variations 

in surface wave phase speeds are sensitive only to 13 of the elements of the elastic tensor, and 

notably only the (1,6), (2,6), (3,6), (4,5) elements of the elastic tensor outside of the nine 

elements occupied under transverse isotropy. The other 8 elements of the elastic tensor ((1,4), 

(1,5), (2,4), (2,5), (3,4), (3,5), (4,6), (5,6)) are in the null space of surface wave phase speed 

measurements.  

Montagner and Nataf present explicit formulas for the partial derivatives in Equations 

(A5) – (A7) in terms of normal mode eigenfunctions. Instead of using these expressions we 

recast the problem by computing the partial derivatives numerically which are computed relative 

to the reference model. The partial derivatives in the expression for the azimuthal term, 

δcR
AA(T ,ψ )  are equal to the partial derivatives of the azimuthally-independent terms (

c0
R(T ),c0

L (T ) ) with respect to the corresponding transversely isotropic parameters (A, C, F, L, 

N). This feature facilitates the forward computation because the azimuthal dependence of surface 

wave speeds can be computed using only the partial derivatives with respect to the five elastic 

parameters of a transversely isotropic medium, which can be achieved using the MINEOS code 

(Masters et al., 2007). Figure A3.1 presents the sensitivity of Rayleigh and Love wave phase  



151 

 

 

 

 
Figure A3.1. Example sensitivity kernels for Rayleigh and Love wave phase speeds at 20 sec 
period to perturbations in L, N, C, A, and F as a function of depth. 
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speeds at 20 sec period to perturbations in L, N, C, A, and F as a function of depth. Love waves 

are sensitive almost exclusively to N, being only weakly sensitivity to L, and completely 

insensitive to C, A, or F. In contrast, Rayleigh waves are sensitive to all of the parameters except 

N.  

We represent the depth variation of the moduli by defining each on a discrete set of nodes 

distributed with depth and linearly interpolating the moduli between each node (Fig. A3.2). With 

this approach, we compute the partial derivatives using MINEOS by linear finite differences and 

convert the integrals to sums in Equations (A5) – (A7). The method is more accurate for 

Rayleigh than for Love waves and at longer rather than at shorter periods. For example, a 

constant 10% relative perturbation in the modulus N ( (N̂ − N0 ) N0 = 0.1 , which is 5% in VSH ) 

across the entire crust produces an error in the computed Love wave phase speed of less than 

0.1% except at periods less than 10 sec where it is only slightly larger. For Rayleigh waves, a 

similar constant 10% perturbation in L ( (L̂ − L0 ) L0 = 0.1 , 5% in VSV ) results in an error less 

than 0.05% at all periods in this study. These errors are more than an order of magnitude smaller 

than final uncertainties in estimated model variables and, therefore, can be considered negligible.  
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Figure A3.2. Illustration of the model discretization. At each grid point, the model profile is 
represented by a vertical set of nodes. Each model parameter is perturbed at each node as shown 
to compute the depth sensitivity of surface wave data. 
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CHAPTER IV 
CRUSTAL ANISOTROPY ACROSS EASTERN TIBET AND SURROUNDINGS 

MODELED AS A DEPTH-DEPENDENT TILTED HEXAGONALLY SYMMETRIC 
MEDIUM  

 
Jiayi Xie1, Michael H. Ritzwoller1, W. Shen1,2, Weitao Wang3 

1- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309, USA  

2 – now at Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130 

3 - Institute of Geophysics, Chinese Earthquake Administration, Beijing 100045 China 

Abstract 

Two types of surface wave anisotropy are observed regularly by seismologists but are 

only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation 

speed between horizontally and vertically polarized waves inferred from Love and Rayleigh 

waves,  and apparent azimuthal anisotropy, which is the directional dependence of surface wave 

speeds (usually Rayleigh waves). We show that a new data set of Love and Rayleigh wave 

isotropic phase speeds and Rayleigh wave azimuthal anisotropy observed within and surrounding 

eastern Tibet can be explained simultaneously by modeling the crust as a depth-dependent tilted 

hexagonally symmetric (THS) medium. We specify the THS medium with depth-dependent 

hexagonally symmetric elastic tensors tilted and rotated through dip and strike angles and 

estimate these quantities using a Bayesian Monte Carlo inversion to produce a 3-D model of the 

crust and uppermost mantle on a 0.5°x0.5° spatial grid. In the interior of eastern Tibet and in the 

Yunnan-Guizhou plateau, we infer a steeply dipping THS upper crustal medium overlying a 

shallowly dipping THS medium in the middle-to-lower crust. Such vertical stratification of 

anisotropy may reflect a brittle to ductile transition in which shallow fractures and faults control 
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upper crustal anisotropy and the crystal preferred orientation of anisotropic (perhaps micaceous) 

minerals governs the anisotropy of the deeper crust. In contrast, near the periphery of the Tibetan 

Plateau the anisotropic medium is steeply dipping throughout the entire crust, which may be 

caused by the reorientation of the symmetry axes of deeper crustal anisotropic minerals as crustal 

flows are rotated near the borders of Tibet.  
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4.1. Introduction 

The high Tibetan Plateau has resulted from the collision of India with Eurasia over the 

past 45 million years  [Molnar and Tapponnier, 1975; Jolivet et al., 1990; Le Fort, 1975]. How 

the plateau has deformed in response to the collision and how it has deformed surrounding 

regions remains subject to debate, and has inspired a wide range of tectonic models. Hypotheses 

have included deformation via rigid blocks [e.g., Tapponnier et al., 2001], the continuous 

deformation of the entire lithosphere [e.g., Molnar and Tapponnier, 1975; Houseman and 

England, 1993], and flow in the lower crust [e.g., Royden et al., 1997].  

As suggested by heat flow measurements [Francheteau et al., 1984] and thermo-

kinematic models [Bollinger et al., 2006], the thickened Tibetan crust is believed to be hot, 

which implies a significant weakness of the middle and lower crust [Francheteau et al., 1984; 

Nelson et al., 1996; Clark and Royden, 2000; Beaumont et al., 2001]. In addition, earthquakes 

are mainly confined to the upper crust of Tibet where brittle deformation occurs [e.g., Chu et al., 

2009; Zhang et al., 2010; Sloan et al., 2011], seismic tomography has identified low velocity 

zones in the middle to lower crust [e.g., Yao et al., 2008; Yang et al., 2012; Xie et al., 2013], and 

receiver function studies observe velocity jumps in the middle crust [e.g., Kind et al., 2002; 

Nabelek et al., 2009; Li et al., 2011; Deng et al., 2015].  Some researchers take these results as 

evidence for a viscously deforming deeper crust [e.g., Clark and Royden, 2000; Beaumont et al., 

2001], which may imply a decoupling between the upper crust and the underlying mantle. Partial 

melt in the middle crust may also be a common feature of central Tibet [e.g., Hacker et al., 

2014]. On the other hand, some authors argue that the Tibetan lithosphere is deforming as a 

coherent unit [e.g., England and Molnar, 1997], at least in southern Tibet [Copley et al., 2011].  

In this paper, we investigate the state of the upper and middle-to-lower crust of Tibet 
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based on inferences about seismic anisotropy. There have been a number of previous studies of 

crustal anisotropy across Tibet based on surface waves from ambient noise or earthquake data. 

Radial anisotropy is the difference in propagation speed between horizontally and vertically 

polarized waves, inferred from Love and Rayleigh waves, respectively. Crustal radial anisotropy 

has been mapped across parts of Tibet by, for example, Shapiro et al. [2004], Chen et al. [2009], 

Huang et al. [2010], Duret et al. [2010],  Guo et al. [2012], Xie et al. [2013], Agius and Lebedev 

[2014], and Tan et al. [2015]. Azimuthal anisotropy characterizes how propagation speed varies 

with azimuth. The Rayleigh wave azimuthal anisotropy of the crust also has been mapped by Wei 

et al. [2008], Yao et al. [2010], and Pandey et al. [2015]. 

The novelty of the current study lies in its simultaneous interpretation of observations of 

radial and azimuthal anisotropy from surface waves by estimating the depth-dependent oriented 

elastic tensor in the crust. Xie et al. [2015], influenced by much earlier studies of Montagner and 

Nataf [1986, 1988] and Montagner and Jobert [1988], presents a method to infer the oriented 

elastic tensor from such observations by imposing the constraint that the elastic tensor possesses 

hexagonal symmetry with an orientation (described by dip and strike angles, Fig. 4.1) that is 

constant throughout the crust. They conclude that only one dip angle (and strike angle) is needed 

at each location across the relatively thin crust that composes the western US. However, the 

Tibetan crust is much thicker and many studies have observed significant vertical complications 

in crustal structure, such as a significant mid-crustal discontinuities [e.g., Kind et al., 2002; Nábě

lek et al., 2009; Li et al., 2011; Deng et al., 2015] and crustal low velocity zones [e.g., Kind et 

al., 1996; Cotte et al., 1999; Rapine et al., 2003; Shapiro et al., 2004; Xu et al., 2007; Yao et al., 

2008; Caldwell et al., 2009; Guo et al., 2009; Li et al., 2009; Acton et al., 2010; Jiang et al., 

2011; Xie et al., 2013; Deng et al., 2015]. Here, we consider the effects that such complications  
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Figure 4.1. Depiction of a tilted hexagonally symmetric medium (THS), showing the foliation 
plane, the strike and dip angles, and the symmetry axis. The medium coordinates ( ) and 
the observing coordinates ( ) are also shown.  
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might have on the inference of the oriented elastic tensor across eastern Tibet and adjacent 

regions.  

Estimating the oriented elastic tensor interests us because it may provide insight into the 

geometry of foliation of material that composes the Tibetan crust, which may provide new 

constraints on deformation. In particular, estimates of the elastic tensor for the crust of Tibet may 

provide new information about the difference or similarity between the Tibetan upper and 

middle-to-lower crust.  

In discussing anisotropy it is important to keep in mind two different coordinate frames 

(Fig. 4.1): the frame in which the observations are made and the frame defined by the symmetry 

axis of the medium. We define the elastic tensor in the coordinate frame of the medium (

), in which the 3-axis aligns with the symmetry axis and the coordinate pair ( ) 

spans the foliation plane. We refer to anisotropy defined in this frame as “inherent”. In this 

frame, a hexagonally symmetric medium possesses no azimuthal anisotropy, where azimuth is 

defined in terms of rotation about the symmetry axis. In contrast, the coordinate system of 

observation is represented by the three-components of seismometers at the Earth’s surface (

) in which the 3-axis lies normal to the Earth’s surface. In this frame, observations of 

anisotropy depend on how the components of the elastic tensor, composed of the inherent elastic 

moduli, are affected by the tilt of the medium (or the rotation of the symmetry axis). We refer to 

measurements of anisotropy and inferences drawn from them in the observational frame as 

“apparent”. Most studies of anisotropy based on surface waves have reported measurements and 

models of particular aspects of apparent anisotropy, such as radial and azimuthal anisotropy. In 

particular, azimuthal anisotropy is a commonly observed property.  

The purpose of this paper is to address the following questions with a focus on eastern 

x1, x2, x3 x1, x2

x̂1, x̂2, x̂3
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Tibet and surrounding areas: (1) First, can information about anisotropy contained in surface 

wave travel times observed across Tibet be fit with the oriented elastic tensor model, in the same 

way as similar data were fit in the western US by Xie et al. [2015]? (2) Second, is there a 

difference in anisotropy between the upper crust and middle-to-lower crust across Tibet? 

Specifically, is a single orientation for the elastic tensor at all depths in the crust sufficient to fit 

the observations? (3) Finally, does the nature and vertical distribution of anisotropy across Tibet 

differ from that across surrounding regions? 

In order to address these questions, we combine data from three networks across parts of 

China and Tibet: the China Earthquake Array (CEArray), the China Array deployed in and 

around Yunnan Province, and the PASSCAL installations in Tibet (Fig. 4.2b).  Based on 

recordings from these stations we obtain Rayleigh and Love wave phase velocity measurements 

from ambient noise by assimilating phase velocity measurements from previous studies and also 

updating Love wave phase velocity maps by introducing new observations. Rayleigh wave phase 

velocity maps for Tibet were previously presented by Yang et al. [2012], Xie et al. [2013] and 

later by Shen et al. [2016] who produced an isotropic and azimuthally anisotropic data set of 

observed surface wave phase speeds from ambient noise that covers most of China. These 

studies ultimately yield an integrated data set of Rayleigh wave phase speed measurements and 

maps, which we incorporate here. The new measurements we incorporate include both the 

isotropic and azimuthally anisotropic components of Rayleigh wave phase speeds (Fig. 4.3). Xie 

et al [2013] present isotropic Love wave phase speed maps for Tibet. Here, we add new 

measurements of Love wave phase speeds based on ambient noise recorded at 438 China Array 

stations in and around Yunnan Province, and produce updated Love wave phase speed maps. 
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Figure 4.2. (a) Reference map of the study region in which 3 km topography isolines are 
presented (black lines) along with the boundaries of major geological units (red lines). Points A - 
D indicate sample locations referenced in Figs. 4.5, 4.8-4.11, 4.17, and 4.21. (b) Locations of 
seismic stations used in this study: CEArray stations (red triangles), China Array stations around 
Yunnan province (blue triangles), and PASSCAL stations (black triangle). The two profiles (A, 
B) are used in Figs. 4.14 and 4.19. 
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The remainder of this paper is separated into five principal sections. In section 4.2, we 

briefly describe the data used in our inversion, which is period-dependent surface wave phase 

speeds extracted from Rayleigh and Love wave tomography, including data sensitivity and 

uncertainties. In section 4.3, we clarify the terminology and concepts that underlie our work, 

particularly as related to the notions of inherent and apparent anisotropy. In section 4.4 we 

describe the model parameterization and constraints applied in the Bayesian Monte Carlo 

inversion. In section 4.5, we describe the model of the depth-dependent tilted elastic tensor in the 

crust that explains this data set and present views with horizontal maps and vertical profiles of 

the estimated dip and inherent strength of anisotropy and their uncertainties. In section 4.6, we 

provide views of apparent anisotropy to aid comparison with previous studies and discuss the 

physical and geological significance of the results. 
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4.2 Data  

4.2.1 Measurements 

In this study, we combine new ambient noise based Love wave phase velocity 

measurements with previously observed Rayleigh and Love wave phase speed measurements 

obtained from cross-correlations of continuous ambient noise data. First, for Rayleigh waves, we 

incorporate the subset of the maps of isotropic and azimuthally anisotropy phase velocities from 

Shen et al. [2016] that covers our study area. Shen et al. [2016] produce isotropic Rayleigh wave 

phase speed maps (8 to 50 sec period) using ray theoretic tomography [Barmin et al., 2001], and 

simultaneously estimate maps of azimuthal anisotropy. Second, we also incorporate the isotropic 

Love wave phase speed measurements obtained by Xie et al. [2013] using ambient noise cross-

correlations based on CEArray and PASSCAL data. Finally, we introduce new Love wave phase 

speed measurements obtained from cross-correlations of ambient noise recorded at the 438 China 

Array stations centered on Yunnan Province. The Love wave phase velocity measurements for 

each cross-correlation station pair are measured using automated frequency-time analysis 

(FTAN) [Levshin and Ritzwoller, 2001; Bensen et al., 2007] as in the study of Xie et al. [2013]. 

We apply ray theoretic tomography [Barmin et al., 2001] to generate azimuthally variable and 

isotropic Love wave phase velocity maps from 8 to 40 sec period. As described below, we only 

interpret the isotropic component of the resulting Love wave maps here. 

In a weakly anisotropic medium, the azimuthal dependence of phase velocity for a 

Rayleigh wave has the following form [Smith and Dahlen, 1973]: 

              𝑐 𝑇,𝜓 = 𝑐! 𝑇 [1+ 𝑎! 𝑐𝑜𝑠 2 𝜓 − 𝜑!" + 𝑎!𝑐𝑜𝑠  (4(𝜓 − 𝛼))]   (4.1) 

where T is period, 𝜓 is the azimuth of propagation of the wave measured clockwise from north, 



164 

 

 

 

𝑐! 𝑇  is the isotropic phase speed, 𝜑!" is the 2𝜓 fast axis orientation, 𝛼 is an analogous angle 

for the 4𝜓 variation in phase velocity, and 𝑎! and 𝑎! are the relative amplitudes of the 2𝜓 and 

4𝜓 anisotropy.  Based on theoretical arguments [Smith and Dahlen, 1973; Montagner and Nataf, 

1986] and observations [e.g., Lin and Ritzwoller, 2011; Lin et al., 2011; Xie et al., 2015], the 2𝜓 

term (180° periodicity) is understood to dominate the Rayleigh wave azimuthal variation, so we 

will only present the 2𝜓 signal here for Rayleigh waves. However, Love wave azimuthal 

anisotropy is dominated by the 4𝜓 term (90° periodicity), which means that exceptionally good 

azimuthal coverage is required for Love wave anisotropy to be measured reliably.  Because the 

azimuthal coverage is not ideal across much of Tibet and because Love wave observations are 

typically noisier than Rayleigh wave observations, we do not use the azimuthal anisotropy 

observed for Love waves in the inversion presented here. The observations of Love wave 

azimuthal anisotropy help to insure that the isotropic Love wave phase speeds are not biased by 

azimuthal anisotropy. 

We produce isotropic phase speed maps for Love waves (8 to 40 sec period) and 

Rayleigh waves (8 to 50 sec period), and 2  𝜓 azimuthal anisotropy maps for Rayleigh waves (8 

to 50 sec period). The difference between the isotropic parts of Love and Rayleigh wave phase 

speeds is shown in Figure 4.3a,b at periods of 10 sec and 30 sec. Love wave phase speeds are 

everywhere faster than Rayleigh wave speeds in the period band of measurement, but the 

difference between Love and Rayleigh wave speeds (referred to as CLove – CRayleigh in Fig. 4.3) 

depends on period and location. Examples of Rayleigh wave azimuthally anisotropic phase 

velocity maps are presented in Figure 4.3c,d at 10 sec and 30 sec period, where the length of 

each bar is the amplitude of 2𝜓 anisotropy (𝑎! in equation 4.1, in percent), and the orientation of 

each bar is the fast-axis orientation (𝜑!" in equation 4.1). The azimuthal anisotropy has large  
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Figure 4.3. (a, b) Examples of the Love-Rayleigh phase speed difference (CLove – CRayleigh) across 
the study region at periods of 10 and 30 sec. (c, d) The observed Rayleigh wave 2𝜓 (180° 
periodicity) azimuthal anisotropy maps at 10 and 30 sec periods. The red bars identify Rayleigh 
wave fast orientations with lengths proportional to the amplitude in percent (𝑎! in eqn. (4.1)). 
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amplitudes within Tibet and in the Yunnan-Guizhou plateau south of the Sichuan basin. At short 

periods, fast axis directions generally follow the orientations of surface faults.  

4.2.2 Data sensitivity 

The differences between Love and Rayleigh wave phase speeds shown in Figure 4.3a,b 

reflect the amplitude of the Rayleigh-Love discrepancy in our observations and provide 

information about the depth distribution of S-wave anisotropy. The Rayleigh-Love discrepancy 

is a measure of the inability of a simply parameterized isotropic model to fit Rayleigh and Love 

wave dispersion curves simultaneously. The introduction of radial anisotropy, or the speed 

difference between horizontally polarized (VSH) and vertically polarized (VSV) waves in a 

transversely isotropic medium (TI) (hexagonally symmetric medium with a vertical symmetry 

axis), is one way to resolve the Rayleigh-Love discrepancy. In general, the phase speed 

difference between Love and Rayleigh waves increases within the eastern Tibetan Plateau up to 

about a period of 30 s, and decreases or remains nearly constant with period outside of the 

Plateau. Procedurally, we specify anisotropy with the elastic tensor and its orientation, and use 

the notation VPV, VPH, VSH, and VSV only when speaking of a TI medium. In a medium with a 

tilted symmetry axis, we will specify anisotropy exclusively in terms of the Love moduli A, C, 

N, L, and F.  

Synthetic examples of the difference between Love and Rayleigh wave phase speeds are 

shown in Figure 4.4a,b. Four models of the depth distribution of the difference between Vsh and 

Vsv in a TI medium are shown in Figure 4.4a and the resulting differences between Love and 

Rayleigh wave phase speeds (CLove – CRayleigh) are shown in Figure 4.4b, which depend strongly 

on the amplitude and depth distribution of the difference VSH - VSV. For example, comparing the  
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Figure 4.4. (a, b) Simulations that illustrate the effect of changes in a hexagonally symmetric 
medium with a vertical symmetry axis (VHS medium) on the Love-Rayleigh phase speed 
difference. (a) Four types of structures with different amplitudes of radial anisotropy (VSH – VSV 
in %) in the crust. (b) The Love-Rayleigh phase speed differences (CLove – CRayleigh) computed 
from the structures shown in (a).  (c, d) Example unnormalized sensitivity kernels for Rayleigh 
and Love wave phase velocities for a VHS medium: 50 s period for Rayleigh waves with 
perturbations in Vsv, Vsh, Vpv, Vph, and 𝜂, as a function of depth, and 40 s period for Love 
waves with perturbations in Vsh and Vsv.  

0

30

60

90

de
pt
h 
(k
m)

0.0 2.5 5.0 7.5 10.0
200

300

400

500

600

C_
Lo
ve
−C

_R
ay
le
ig
h 
(m
/s
)

0 10 20 30 40 50 60
period (sec)

Rayleigh wave (50 sec) Love wave (40 sec)

(a) (b)

(c) (d)

Vsh
Vsv

Vph
Vpv

(Vsh−Vsv)/Vs (%)

0

20

40

60

80

100

120

140

de
pt

h(
km

)

0.00 0.01 0.02 0.03 0.04 0.05

0

20

40

60

80

100

120

140

de
pt

h(
km

)

−0.02 −0.01 0.00 0.01 0.02

Vsh
Vsv

Vph
Vpv



168 

 

 

 

two models in which one is isotropic (green line, Fig. 4.4a) and the other has a depth constant 

radial anisotropy (VSH – VSV = 5%, black line, Fig. 4.4b) in the crust, there is a difference in CLove 

- CRayleigh of more than 200 m/s, which is a very large effect.  The concentration of radial 

anisotropy in progressively narrower and deeper depth ranges in the crust has a progressively 

decreasing effect on the Love – Rayleigh phase speed difference. The shapes of the curves in 

Figure 4.4b depend on several factors. The period of the peak difference between Love and 

Rayleigh wave phase speeds depends largely on crustal thickness. The negative slope of the 

curves at periods longer than the peak period occurs because the Rayleigh wave becomes 

sensitive to the mantle at shorter periods than the Love wave. The upward curve at long periods 

occurs because of increasing sensitivity of Love waves to mantle anisotropy. 

As discussed further in section 4.3, a TI medium can be characterized with five elastic 

moduli. Rayleigh and Love waves are differentially sensitive to these five moduli, which can be 

represented with the Love parameters A, C, N, L, and F or Vsv, Vsh, Vpv, Vph, and η. As 

Figure 4.4c,d illustrates, Rayleigh waves are predominantly sensitive to Vsv and Love waves are 

almost entirely sensitive to Vsh. Rayleigh waves also possess substantial sensitivity to η and to 

both Vpv and Vph, although the Vpv and Vph sensitivities tend to cancel one another which 

results in a sensitivity to Vpv that is much weaker and more shallow than to VSV. Love waves are 

sensitive to shallower structures than Rayleigh waves at a given period, the effect of which is 

amplified in this study because our Love wave measurements only extend up to 40 s period 

whereas the Rayleigh waves extend to 50 s. The sensitivity kernels in Figure 4.4c,d are at the 

longest periods of this study. Love wave phase speed sensitivity at 40 s period extends only to 

about 50 km depth (at 25% of the maximum amplitude of the sensitivity curve) whereas 

Rayleigh wave sensitivity at 50 s period extends to greater than 100 km (based on the same 
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relative amplitude criterion). This difference in depth sensitivity of Love and Rayleigh waves has 

implications for the reliability of estimates of anisotropy, as discussed in section 4.6.3.1.  

In the inversion for the elastic tensor the differential sensitivity of Rayleigh and Love 

waves to the elastic moduli allows only some of the moduli to be estimated well. This is 

complicated further by the need to estimate the dip and rotation angles for the elastic tensor. 

Much of the point of the Bayesian Monte Carlo inversion procedure described later is to estimate 

the relative precision with which the different moduli and rotation angles can be estimated.  

4.2.3 Uncertainty estimates 

Because eikonal tomography [Lin et al., 2009] models off great circle propagation and 

provides an estimate of uncertainty, everything else being equal we would prefer to use it rather 

than the traditional ray theoretic tomography that we apply here [Barmin et al., 2001]. However, 

eikonal tomography does not perform well in the presence of spatial gaps in the station coverage 

such as those found in eastern Tibet. Such spatial gaps prevent us from constructing accurate 

phase velocity maps and uncertainty estimates using eikonal tomography across much of the 

study region. Thus, our uncertainty estimates for the isotropic phase velocity maps (Love and 

Rayleigh waves) and azimuthal anisotropy maps (Rayleigh wave) are based on the spatially 

averaged 1σ uncertainty estimates obtained by applying eikonal tomography where the method 

does work in the region of study. Where eikonal tomography does not work well we scale up the 

spatially averaged uncertainty. To do this we are motivated by the procedure described at greater 

length by Shen et al. [2016].  We scale the measurement uncertainties based on some 

combination of three factors: resolution, ray-path azimuthal coverage, and the amplitude of 

azimuthal anisotropy. The uncertainties for Rayleigh and Love wave isotropic phase speed maps 

are scaled using resolution alone as a guide, as described by Shen et al [2016]. The uncertainty 
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for Rayleigh wave azimuthal anisotropy amplitude is scaled using both resolution and azimuthal 

coverage. Uncertainty for the Rayleigh wave azimuthal anisotropy fast axis is scaled using all 

three factors.  Examples of uncertainties in measured quantities are presented as one standard 

deviation error bars in Figure 4.5.  

4.2.4 Dispersion curves 

From the Love wave (8 – 40 s period) and Rayleigh wave (8 – 50 s period) isotropic 

phase speed maps, the Rayleigh wave azimuthal anisotropy maps, and their uncertainties, we 

generate at all locations on a 0.5°×0.5° grid across the study region isotropic phase speed curves 

for both Rayleigh and Love waves and period-dependent curves of the amplitude and fast axis 

orientation of Rayleigh wave azimuthal anisotropy. These four local curves form the basis for the 

3-D model inversion described later in the paper.  

Figure 4.5 presents examples of these local dispersion curves at the four locations 

identified in the Figure 4.2a  (A: eastern Tibet, B: Qilian terrane, C: Chuandian terrane just off 

the Tibetan plateau, E: Yunnan-Guizhou plateau).  Instead of showing the Love and Rayleigh 

wave isotropic phase speed curves separately, we present the difference between them as in the 

simulation results presented in Figure 4.4b, although in the inversion they are used as two 

independent observations. Phase speed differences are presented as error bars, defined as the 

quadratic sum of the estimated uncertainties of the Rayleigh and Love wave phase speeds at each 

location. As shown in Figure 4.5a, within Tibet the difference between Love and Rayleigh wave 

phase speeds increases rapidly to peak at about 30 s and decreases slowly at longer periods. 

Outside of Tibet (Fig. 4.5d,g,j) the difference increases at short periods less rapidly than in 

Tibet, peaks at a shorter period, and then decreases either quicker or remains flat with period. A 

comparison of the synthetic curves in Figure 4.4b with the observations in Figures 5a,d,g,j  
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Figure 4.5. Surface wave measurements presented as 1σ error bars illustrating model fits at four 
locations: eastern Tibet (Point A), Qilian terrane (Point B), Chuandian terrane (Point C), and 
Yunan-Guizhou plateau (Point D) identified in Fig. 4.2a. (a,d,g,j) Love minus Rayleigh wave 
phase speed. (b,e,h,k) Amplitude of Rayleigh wave azimuthal anisotropy (coefficient a2 in eqn. 
(4.1)). (c,f,i,l) Rayleigh wave fast axis orientation. The solid lines are curves computed from the 
best fitting model at the location using three model parameterizations: isotropic model (green 
lines), tilted hexagonally symmetric (THS) model with a constant dip angle in the crust (black 
lines), and THS model with two dip angles in the crust (red lines). Aspects of the THS models 
with two crustal dip angles are shown in Fig. 4.11. 
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provides hints to the depth distribution of radial anisotropy in Tibet and regions surrounding it. 

In addition, the middle and bottom rows of Figure 4.5 show the period dependent curves 

for the amplitude and fast axis orientation of Rayleigh wave 2ψ azimuthal anisotropy, 

respectively. The features of these curves vary dramatically from place to place. For example, at 

Point A (eastern Tibet), the amplitude of Rayleigh wave azimuthal anisotropy decreases with 

period and the Rayleigh wave fast azimuth does not change strongly with period. In contrast, at 

Point B (Qilian terrane), the amplitude of Rayleigh wave azimuthal anisotropy remains flat with 

period but the Rayleigh wave fast azimuth decreases moderately with period. At Points C and D, 

azimuthal anisotropy changes in still different ways with period. At Point C the amplitude of 

anisotropy increases with period and at Point D the fast axis orientation differs appreciably 

between short and long periods, which indicates a change in the orientation of anisotropy with 

depth. 

4.3 Background: Terminology for a Hexagonally Symmetric Medium 

The spatially dependent isotropic and azimuthally anisotropic phase velocity 

measurements described above provide information about the isotropic and anisotropic 

properties of the crust and uppermost mantle. The properties of an elastic medium and seismic 

wave velocities depend on the depth-dependent constitution and orientation of the elastic tensor, 

which consists of 21 independent components for a general anisotropic medium. Simplifications 

are needed in order to constrain aspects of the elastic tensor. A useful starting point is the 

assumption that the medium possesses hexagonal symmetry, which at each depth is described by 

five unique elastic moduli known as the Love moduli: A, C, N, L, F [Montagner and Nataf, 

1988; Xie et al., 2015]. A and C are compressional moduli and N and L are shear moduli. The 
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Voigt simplification of the elastic tensor is the 6x6 elastic modulus matrix, Cαβ, which for a 

hexagonally symmetric medium with a vertical symmetry axis is given by: 

     

  

                                                (4.2) 

 

 

where the V superscript denotes “vertical” for the orientation of the symmetry axis. With 

a vertical symmetry axis, a hexagonally symmetric medium will produce no azimuthal variation 

is surface wave speeds. A hexagonally symmetric medium may possess either a slow or fast 

symmetry axis; the slow symmetry case occurs when C < A and L < N, which crustal rocks 

generally display and finely layered media require [e.g. Brownlee et al., 2011; Erdman et al., 

2013; Thomsen and Anderson, 2015]. Fast symmetry implies that C > A and L > N.  

A hexagonally symmetric medium with a vertical symmetry axis (transversely isotropic, 

TI) is unique in that the 3-axis of the medium coordinates (symmetry axis) coincides with the 3-

axis of the observing coordinates (vertical direction), as defined in Figure 4.1. For a TI medium, 

four of the five Love moduli are directly related to P and S wave speeds for waves propagating 

vertically or horizontally in the Earth: A = ρV2
PH, C = ρV2

PV, L = ρV2
SV, N = ρV2

SH.. Here ρ is 

density, VPH and VPV are the speeds of P waves propagating horizontally and vertically in the 

Earth, VSV is the speed of the S wave propagating horizontally and polarized vertically or 

propagating vertically and polarized horizontally, and VSH is the speed of the S wave that is 

propagating in a horizontal direction and polarized horizontally. The modulus 

affects the speed of waves propagating oblique to the symmetry axis and controls the shape of 

F =η(A − 2L)
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the shear wave phase speed surface [Okaya and Christensen, 2002]. For an isotropic medium, 

  

Hexagonally symmetric earth media may have a non-vertical, tilted and rotated symmetry 

axis as illustrated in Figure 4.1, where the tilt is denoted by the dip angle θ and the rotation by 

the strike angle ϕ. We use the notation VPH, VPV, VSV, and VSH only when discussing a medium 

with a vertical symmetry axis or an isotropic medium. With a tilted symmetry axis, we will use 

the notation A, C, N, L, and F (or η = F/(A-2L)) to represent the elements of the elastic tensor. 

We also introduce the following terminology: VHS for a hexagonally symmetric medium with a 

vertical symmetry axis, HHS for a hexagonally symmetric medium with a horizontal symmetry 

axis and THS for a hexagonally symmetric medium with a tilted symmetry axis.  

A rotation of the medium will rotate the elastic tensor in equation (4.2) to produce the 

modulus matrix . We refer to a general reorientation of the symmetry axis as a tilt, 

which is achieved by pre- and post-multiplying the elastic modulus matrix by the appropriate 

rotation matrix and its transpose, respectively [e.g, Auld, 1973; Carcione, 2007], which act to 

rotate the 4th-order elasticity tensor appropriately. The rotation can fill all components of the 

modulus matrix but will preserve its symmetry: 

       (4.3) 

Montagner and Nataf [1986] showed that this modulus matrix may be decomposed into 

A = C,L = N ,F = A − 2L,η = 1.

Cαβ (θ ,φ)

Cαβ (θ ,φ) =

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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azimuthally independent and azimuthally dependent parts as follows:

  (4.4) 

where ,    

 and  The carat over the symbols indicates that the moduli 

are azimuthal averages, and can be thought of as the apparent radially anisotropic moduli that 

would be observed in the observational coordinates. Apparent azimuthally averaged seismic 

velocities can be defined similarly ( ).  

As discussed in the Introduction, it is important to distinguish between the coordinates 

used to describe the medium’s properties and the coordinates in which the observations are 

made. We define anisotropy in the coordinate system of the medium in which the 3-axis is 

parallel to the medium’s symmetry axis and the 1- and 2-axes lie in the foliation plane as shown 

in Figure 4.1. In these coordinates, the five Love moduli completely describe the anisotropy, and 

because the medium is hexagonally symmetric there is no (inherent) azimuthal anisotropy. 

Following Xie et al. [2015], we refer to anisotropy in the coordinate frame of the medium as 

“inherent”. To describe the anisotropy fully, we include the medium’s orientation by specifying 

the dip and strike angles. Thomsen (1986) defined useful summaries of inherent anisotropy:  

          (4.5)  

where, in particular, we refer to γ as “inherent S-wave anisotropy”.  In contrast, in the 

C
αβ
(θ ,φ ) =

Â Â − 2 N̂ F̂ 0 0 0

Â − 2 N̂ Â F̂ 0 0 0
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0 0 0 L̂ 0 0

0 0 0 0 L̂ 0

0 0 0 0 0 N̂
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Â = 3(C11 +C22 ) / 8 +C12 / 4 +C66 / 2 Ĉ = C33, N̂ = (C11 +C22 ) / 8 −C12 / 4 +C66 / 2,

L̂ = (C44 +C55 ) / 2, F̂ = (C13 +C23) / 2.

V̂sh = (N̂ / ρ)
1/2 ,V̂sv = (L̂ / ρ)

1/2

,V̂ph = (Â / ρ)
1/2

,V̂sv = (Ĉ / ρ)
1/2

γ ≡ N − L
2L

          ε ≡ A −C
2C

          δ ≈ F + 2L −C
C
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observational coordinates the description of anisotropy is “apparent”. The azimuthally averaged 

elastic tensor, given by the first matrix on the right-hand-side of (4.4), summarizes the apparent 

radial anisotropy of the medium, which depends both on the inherent moduli and the dip angle. 

As defined by Xie et al. [2015], a useful summary is the apparent S-wave radial anisotropy: 

    ,       (4.6) 

where, as in equation (4.4), the carat over a symbol indicates that the quantity is apparent. 

Apparent S-wave radial anisotropy is what most studies refer to simply as “radial anisotropy” 

[e.g., Shapiro et al., 2004; Xie et al., 2015]. Although there is no inherent azimuthal anisotropy 

in our model, apparent Rayleigh (or SV) wave azimuthal anisotropy emerges in the observational 

frame by tilting the medium, which we represent with dimensionless amplitude: 

           (4.7) 

and direction   is equivalent to  used in other 

studies [e.g., Yao et al., 2010; Lin et al., 2011; Yuan et al., 2011; Xie et al., 2015]. 

Thus, the anisotropy of a THS medium can be described completely in terms of the 

inherent Love moduli and the dip angle. Alternately, it can be described partially by the apparent 

radial and azimuthal anisotropy, which depend on the inherent anisotropy and tilt. In particular, 

for the same inherent elastic tensor, the nature of the apparent anisotropy will depend on the 

orientation of the medium. Figure 4.6 demonstrates qualitatively how apparent SV-wave (or 

Rayleigh wave) azimuthal anisotropy, , and apparent S-wave radial anisotropy, , will vary 

as a function of the dip angle of the symmetry axis. These curves are computed from a simple  

γ̂ ≡
N̂ − L̂( )
2L̂

Γ̂ ≡
(C55 −C44 )

2 + (C45 )
2( )1/2

2L̂

ϕ̂FA =
1
2
tan−1(C45 / (C55 −C44 )). Γ̂ G / 2L

Γ̂ γ̂
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Figure 4.6. Variation of apparent S-wave radial anisotropy  (red curve) and apparent SV-wave 
azimuthal anisotropy  (blue curve) as a function of dip angle θ. The inherent S-wave 
anisotropy  is constant and normalized to unity. This computation results from a simplified 
hexagonally symmetric elastic tensor, details of these functions will depend on the form of the 
elastic tensor.  
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elastic tensor with a slow vertical symmetry axis with inherent S-wave anisotropy normalized 

to unity. For this model, the amplitude of apparent azimuthal anisotropy  increases 

monotonically with increasing dip angle , and the apparent radial anisotropy  decreases with 

increasing dip. When the foliation plane is flat or equivalently the symmetry axis is vertical (dip 

θ=0°), there is strong positive apparent S-wave radial anisotropy but no azimuthal anisotropy. As 

the dip angle increases, the apparent radial anisotropy becomes negative and azimuthal 

anisotropy attains its maximum value.  

Observations of strong positive apparent radial anisotropy but low amplitude apparent 

azimuthal anisotropy are consistent with a subhorizontal foliation plane and a slow nearly 

vertical symmetry axis (i.e., a VHS medium). In contrast, observations of a strongly negative 

apparent radial anisotropy and strong azimuthal anisotropy are consistent with a subhorizontal 

symmetry axis (i.e., a HHS medium). Simultaneous observations of intermediate values of radial 

and azimuthal anisotropy are consistent with a tilted symmetry axis (i.e., a THS medium). 

Therefore, technically, with surface wave observations, we can invert for a description of the 

THS medium. However, because surface waves are strongly sensitive only to some of the seven 

depth-depdendent variables that describe the THS medium, a straightforward inversion is 

impractical with surface wave data alone. Following Xie et al. [2015], we employ a Bayesian 

Monte Carlo inversion method to estimate distributions of THS media that agree with the data. 

Such posterior distributions reflect both variances within and covariances between all model 

variables. Here, we present models in terms of inherent anisotropy and the dip and strike angles, 

but because most studies present apparent radial anisotropy and apparent azimuthal anisotropy 

we also convert our results into these quantities to aid comparison with other studies (section 

4.6.1). 

γ

Γ̂

θ γ̂
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4.4 Model Specification: Parameterization and Constraints 

Figure 4.7 schematically represents the model parameterization, which is similar in many 

respects to the parameterization applied by Xie et al. [2015]. Like Xie et al. [2015] we 

parameterize the crust in terms of a depth-varying THS medium that is described by seven 

inherent parameters (A, C, N, L, F, strike ϕ and dip θ) (Fig. 4.1). The depth dependences of the 

elastic moduli A, C, N, L, and F are represented by five B-splines in the crystalline crust from 

the base of the sediments to Moho. For Xie et al. [2015], at each location, the dip and strike 

angles (tilt angles θ, ϕ) that define the orientation of the symmetry axis of anisotropy are 

constant through the crystalline crust. Here, however, we introduce a discontinuity in the crust 

that allows the dip angle to jump smoothly from values above and below a mid-crustal dip 

boundary set at one third of the crystalline crustal thickness at each location. The strike angle, 

however, remains constant throughout the crust. Like Xie et al. [2015] we assume the sediments 

to be isotropic. We constrain crustal anisotropy to have a slow symmetry axis consistent with 

studies of crustal petrology as discussed in section 4.6.2.2. In addition, the introduction of a fast 

symmetry axis tends to be incompatible with the frequency dependence of our observations.  

We introduce the mid-crustal discontinuity in dip angle because we find that we are 

unable to fit our observations over large areas, particularly in Tibet, without it. Figure 4.5 

illustrates this point. The difference between Love and Rayleigh wave phase speeds at Point A in 

Tibet (Fig. 4.5a) cannot be fit with a model in which the dip angle is constant in the crust (black 

line), but can be fit when we allow dip angle to change once discontinuously in the crust (red 

line). We choose the value of one third of the crustal thickness as the location of the 

discontinuity in accordance with the study of Deng et al. [2015], who observed a discontinuity at 

about this depth in northern Tibet based on joint inversion of surface wave dispersion and  
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Figure 4.7. Model parameterization. Sedimentary structure is isotropic with shear and 
compressional velocities increasing linearly with depth. The crystalline crust is an anisotropic 
THS medium described by seven depth-dependent parameters: five inherent elastic moduli, dip 
angle, and strike angle. The elastic moduli change smoothly with depth and are represented with 
five B-splines. Strike is constant within the crystalline crust and dip is allowed to change once 
within the crystalline crust at a depth of one-third of the crustal thickness. The uppermost mantle 
is modeled as a VHS anisotropic medium plus apparent azimuthal anisotropy and is described by 
seven parameters: five apparent elastic moduli (V̂SV ,V̂SH ,V̂PV ,V̂PH ,η̂ ) and two parameters to 
represent apparent azimuthal anisotropy ( ). Mantle apparent radial anisotropy is 
constrained to be 4.5% and the amplitude of mantle apparent azimuthal anisotropy is constant 
with depth.  
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receiver function data. In contrast, in some areas the data can be fit by the model with a constant 

crustal dip, such as Points B and C in the Qilian and Chuandian terranes (Fig. 4.5b,g). At Point 

D in the Yunnan-Guizhou plateau (Fig. 4.5j), two crustal dip angles are needed to fit the data but 

the misfit produced by the single dip model is not as large as within Tibet. 

We use the China reference model produced by Shen et al. [2016] as the crustal reference 

around which perturbations are applied in the inversion. This is an isotropic model based on 

Rayleigh wave data, which most strongly constrain the elastic modulus L (related to VSV in a TI 

medium). We use the model to define a reference for the four elastic moduli and density: A0(r), 

C0(r), N0(r), L0(r), and ρ0(r), where r is the radius within the Earth.  Also, we use it to define 

sedimentary structure (seismic velocities and density increase linearly with depth and thickness), 

Moho depth, and Q(r), which we do not change in the inversion.  

Based on data sensitivity (e.g., Fig. 4.4c,d), we apply several prior constraints to the 

seven depth-dependent parameters that describe the oriented elastic tensor. We apply weaker 

constraints on parameters that are highly data sensitive, and stronger constraints on parameters to 

which the data have little sensitivity. Therefore, the shear moduli L and N are relatively weakly 

constrained, and are perturbed within the range of L0(1±0.3). In contrast, the compressional 

moduli are strongly constrained, and we set C = (1.77)2 L  ≈ 3.13N where 1.77 is the Vp/Vs ratio, 

and similarly we set A=(1.77)2 N.  Thus, the inherent P-wave anisotropy ε = (A-C)/2C equals 

inherent S-wave anisotropy γ = (N-L)/2L. The modulus η = F/(A-2L) is freely perturbed within 

[0.8,1.1]. This is a narrower range for η than used by Xie et al. [2015] (in that work η  ∈ [0.6,1.1]) 

in order to eliminate the in strike angle. Xie et al. [2015] found that two groups of models with 

orthogonal strike directions fit the data equally well, and these two groups of models have 

similar inherent S-wave anisotropy and dip but different values of η. Therefore, reducing the 
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range of η eliminates this bifurcation and simplifies the resulting models. We discuss the impact 

of this constraint on the strike angle in section 4.5.2. The dip angle θ and strike angle ϕ range 

between 0° and 90°. 

Because Love wave sensitivity is shallower than Rayleigh wave sensitivity (Fig. 4.4c,d) 

at a given period, the amplitude of inherent S-wave anisotropy γ is poorly determined in the 

Tibetan lowermost crust. This is illustrated in Figure 4.8, which shows the results of three 

inversions of the same data in Tibet (Point A) but with different constraints on γ: (a) γ ≥ 0 

throughout the crust, (b) γ > 0 throughout the crust but γ = 0 at the base of the crust, and (c) 0 ≤ γ 

≤ 10% throughout the crust. These constraints produce very different estimates of γ below 50 km 

depth in the crust. In particular, without a constraint beyond the positivity constraint (γ ≥ 0), the 

estimate of γ in the lowermost crust of Tibet becomes unstable. For this reason, we seek a small 

amplitude model here and apply the constraint that 0 ≤ γ ≤ 10% throughout the crust across the 

entire study region.  The result of this constraint is that γ will tend to be approximately constant 

with depth in the lowermost crust of Tibet.  

It is with some trepidation that we have modeled the sediments as isotropic because Tibet 

is surrounded by large basins where there is strong evidence of anisotropy. However, because the 

model of Shen et al. [2016] is based exclusively on Rayleigh wave data it does not provide a 

particularly accurate reference for sedimentary structure, in particular sedimentary thickness. 

Thus, inferences we might draw here about sedimentary anisotropy would be suspect. In order to 

constrain the structure of the sediments better, additional data such as receiver functions or the 

H/V ratio, which are more sensitive to the shallower depths, should be added. We discuss 

sedimentary anisotropy in section 4.6.2.3 where we provide evidence that the sediments are 

strongly anisotropic, so much so that we are forced to eliminate the amplitude constraint on γ in  
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Figure 4.8. Mean (solid colored lines) and standard deviation (grey corridor) of posterior 
distributions of inherent S-wave anisotropy (γ) at Point A in Tibet showing the vertical variation 
of this quantity with different constraints applied in the inversion: (a) γ ≥ 0 across the crust, (b) γ 
≥ 0 across the crust but γ is set to 0 at the base of the crust, similar to Xie et al. (2013); and (c) 

across the entire crust as done in this paper. γis not well constrained by our 
observations below 50 km depth. 
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the sediments.  However, modeling them as isotropic does not affect our primary conclusions, 

although it does mean that we are not able to fit our data well within the basins.  

In terms of the mantle parameterization, it is not clear if hexagonal symmetry with a slow 

symmetry axis is physically appropriate to represent mantle anisotropy. If mantle anisotropy is 

produced by the lattice-preferred orientation (LPO) of olivine, then the mantle could be modeled 

either as hexagonally symmetric with a fast symmetry axis or as orthorhombic, depending on 

whether the two slower olivine crystal axes scatter randomly or not [Christensen, 1984]. In 

contrast, if the mantle anisotropy is caused by partial melt, then mantle anisotropy could be 

modeled either as hexagonally symmetric with a slow symmetry axis or orthorhombic, 

depending on the shape of the melt pockets [e.g., Thomsen and Anderson, 2015]. In any case, 

because our surface wave observations extend only up to 50 sec period they poorly constrain 

mantle anisotropy beneath Tibet. Tests of several different mantle parameterizations and 

constraints show, however, that changes in the parameterization affect estimated crustal 

structures within the estimated uncertainties. 

For these reasons, we parameterize mantle anisotropy (Fig. 4.7) simply in terms of 

apparent quantities rather than inherent properties, and beneath 200 km the model is set to be 

AK135 [Kennett et al., 1995], which is isotropic. In particular, we describe the mantle as a VHS 

medium plus additional apparent azimuthal anisotropy. In this case, mantle radial anisotropy 

decouples from azimuthal anisotropy and both are the apparent quantities. We estimate  as a 

free parameter in the uppermost mantle, represent it with five B-splines, and allow it to vary 

within the range (1 ± 0.15), where the reference value V̂sv0 is from Shen et al. [2016]. We 

compute from by assuming a constant value of = 4.5%, a value that is consistent with 

V̂sv

V̂sv0

V̂sh V̂sv γ̂
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the average of mantle apparent radial anisotropy across the study region determined by Shapiro 

et al. [2004]. This is presented in Figure 4.7 as V̂SH = f (V̂SV ) , which should be read “V̂SH is a 

function of V̂SV ”. We also estimate the apparent amplitude of azimuthal anisotropy (eqn. (4.7)) 

and the local fast direction , both of which are set to be constant with depth in the mantle. We 

further set  and , which sets apparent P-wave anisotropy equal to 

apparent S-wave anisotropy.  is freely varying within the range [0.8,1.1]. Because we do not 

infer any inherent properties of the mantle anisotropy we do not show mantle anisotropy in plots 

of inherent anisotropy. However, plots of apparent anisotropy do include mantle anisotropy. In 

any event, we will focus our discussion on the crustal part of the model.  

Γ̂

ϕ̂

V̂PV =1.77V̂SV V̂PH =1.77V̂SH

⌢
η
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4.5. Results 

The Bayesian Monte Carlo inversion is based on the observed data (described in section 

4.2), a forward computation algorithm (described by Xie et al. [2015] in detail), a starting model, 

and prior information consisting of constraints on the model. As discussed in section 4.4, the 

starting model comes from Shen et. al. [2016], which is an isotropic Vsv model derived 

exclusively from Rayleigh waves, and the constraints guide the formation of the prior 

distribution at each location. 

The Bayesian Monte Carlo inversion method is very similar to that described in a series 

of recent papers by Shen et al. [2013a,b] and elsewhere [e.g., Shapiro and Ritzwoller, 2002; 

Zheng et al., 2011; Yang et al., 2012; Zhou et al., 2012; Shen et al., 2013c; Tian et al., 2013; Xie 

et al., 2013; Deng et al., 2015; Kang et al., 2015; Shen et al., 2015; Shen and Ritzwoller, 2016]. 

Here, we invert the data at every location on a 0.5° x 0.5° grid and produce a set of models that 

define the posterior distribution of models that fit the data acceptably. We summarize each 

posterior distribution by its mean, which we refer to as the “mean model”, and standard 

deviation, which together define the final model with an estimate of uncertainty at each depth 

and for each model variable. We present the model here in terms of the inherent elastic tensor 

and its orientation (dip and strike). A discussion of the apparent anisotropy that results from this 

representation occurs in section 4.6.1. Examples of marginal posterior distributions of selected 

model characteristics are presented in Figures 4.9 and 4.10 for 10 km and 30 km depth, 

respectively, and are discussed further below. 

4.5.1 Example results at four locations 

We first present the results of the inversion of the data presented in Figure 4.5 at the four 

locations identified in Figure 4.2a: Point A in eastern Tibet, Point B in the Qilian terrane north  
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Figure 4.9. Example comparison of prior and posterior marginal distributions from the Bayesian 
Monte Carlo inversion for five example model parameters at 10 km depth for Point A in Tibet 
(Fig. 4.2a). White histograms are the prior marginal distributions and red histograms are the 
posterior marginal distributions. The average and standard deviation of the posterior distributions 
are presented on each plot. 
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Figure 4.10. Similar to Fig. 4.9, but at 30 km depth, again for Point A in Tibet. 
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of Tibet, Point C in the central Chuandian terrane just off southeastern edge of the Tibetan 

plateau, and Point D in the Yunnan-Guizhou plateau.   

At Point A, the Love-Rayleigh phase velocity difference increases with period, while the 

amplitude of Rayleigh wave azimuthal anisotropy decreases with period (Figure 4.5a-c). Figure 

4.5a-c shows that the data are fit well (red lines) by the mean model with the parameterization 

that allows two different dip angles in the crust. The fit delivered by the mean models produced 

from inversions with two other parameterizations are also shown in Figure 4.5a-c: an isotropic 

model (green lines) and a model with a constant dip angle throughout the crust (black lines). 

Neither of these models can fit the Love wave and Rayleigh wave phase speeds simultaneously 

across most of Tibet. This provides the primary justification for the introduction of the 

discontinuity in dip angle in the middle crust in our parameterization.  

Aspects of the posterior distributions at Point A are presented in Figures 4.9 and 4.10, 

which display marginal distributions for inherent , , η, dip angle θ, and strike 

angle ϕ at depths of 10 km and 30 km. These are five of the seven parameters that describe the 

elastic tensor and its orientation at each depth. The other two (compressional moduli A, C) are 

scaled from the shear moduli L and N and are, therefore, not shown. At both depths L and N are 

well constrained; the standard deviations of the posterior distributions are less than about 1% at 

both 10 km and 30 km depth. The strike angle is constant in the crust and is also well 

constrained, with a standard deviation of about 3°. In contrast, η is not well constrained at either 

depth, which tends to be true across the study region. The most notable difference between the 

two depths is the very different dip angle at 10 km (71°±9°) compared with 30 km (8°±5°). The 

foliation plane dips steeply in the upper crust and is sub-horizontal in the lower crust at this 

location in eastern Tibet, and across most of Tibet, as we will show. In the lower crust here, the 

L / ρ N / ρ
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foliation plane is observationally indistinguishable from horizontal (i.e., the symmetry axis is 

indistinguishable from vertical). 

This information can be viewed in a different way in Figure 4.11 in which one standard 

deviation bounds around the mean of the posterior distribution are presented as a function of 

depth for the dip angle and inherent S wave anisotropy, γ (eqn. (4.5)). The change in the dip 

angle with crustal depth is shown for Point A in Tibet in Figure 4.11a and γ is seen in Figure 

4.11b to range from 3-5% in the uppermost crust (depth < 10 km), to about 7% at 40 km depth, 

and then decrease with depth to ~4-5% in the lowermost crust. 

At Point B, which is located in the Qilian terrane just north of Tibet, the isotropic model 

also does not fit the data (Fig. 4.5d-f), thus crustal anisotropy is also required outside of Tibet.  

However, the data can be fit with either model in which we allow the dip angle to change in the 

middle crust or constrain it to be constant throughout the crust. The reason for this is seen in 

Figure 4.11c, which shows that the dip angle is essentially indistinguishable between the upper 

and lower crust at this location (~40°).  Figure 4.11d shows that γ is approximately constant 

with depth, averaging about 4% across the crust at this location. 

At Point C, the data differ from those at both Points A and B in that the Love-Rayleigh 

phase speed difference can nearly be fit with an isotropic model (Fig. 4.5g; indicating near-zero 

apparent radial anisotropy). However, the high amplitude of azimuthal anisotropy guarantees the 

existence of crustal anisotropy. Similar to Point B, the dip angle (~60°) at Point C does not 

change strongly with depth across the crust (Fig. 4.11e), but the dip angle is steeper than at Point 

B. The amplitude of inherent S-wave anisotropy γ averages between 2% and 3% across most of 

the crust (Fig. 4.11f), which is weaker than at Points A and B.  

Crustal anisotropy at Point D is more similar to Tibet in that two dip angles are needed to  
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Figure 4.11. Posterior distributions of inherent anisotropic variables at Points A –D (Fig. 4.2a) 
showing (a,c,e,g) the vertical variation of the dip angle θ and (b,d,f,h) the inherent S-wave 
anisotropy . The one-standard deviation extent of the posterior distribution is shown at each 
depth with the grey corridor and the average is plotted with bold black solid lines. Only the 
crystalline crustal part of the model is shown because sediments are isotropic and the mantle is 
parameterized in terms of apparent moduli, so no inherent property is inferred. 
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fit the data shown in Figure 4.5j-l. Although the dip angle (Fig. 4.11g) in the upper crust is 

similar to that in Tibet (>70°), the dip angle in the lower crust is larger (~20°) and is 

distinguishable from zero. Thus, the lower crustal foliation plane in the Yunnan-Guizhou plateau 

is not as horizontal as beneath Tibet, but is shallowly dipping. Also, the vertical distribution of 

inherent S-wave anisotropy at Point D (Fig. 4.11h) differs from Tibet. The anisotropy in Tibet is 

strong throughout the crust, whereas beneath the Yunnan-Guizhou plateau it is concentrated in 

the uppermost (~4%)  and lowermost crust (~5%) with a minimum at a depth of about 15 km 

(~1.5%). 

In section 4.6.1, we discuss the apparent crustal anisotropy computed from the inherent 

anisotropy and dip angle discussed here, as well as apparent mantle anisotropy. 

4.5.2 Results across the entire region: mean of the posterior distribution 

Aspects of the resulting model (dip angle θ, inherent S wave anisotropy γ), defined as the 

mean of the posterior distribution at each depth, are shown in Figure 4.12 at depths of 10 km and 

30 km in the crust. These depths bracket the discontinuity in dip angle across the entire study 

region. The estimated strike of anisotropy, which is constant with depth within the crust, is 

shown in Figure 4.13a in which the orientation of the bars indicates the strike orientation (ϕ). As 

described in Section 4.4, we have deliberately narrowed the allowed range of η by eliminating 

small η values; thus our resulting models approximately possess so-called elliptical anisotropy 

[e.g., Thomsen, 1986; Xie et al., 2015]. As a consequence, the crustal strike orientation generally 

follows the Rayleigh wave fast axis orientation at short periods (Fig. 4.3c).  However, as 

discussed by Xie et al. [2015], if η is allowed to vary broadly enough there will be two subsets of 

models in the posterior distribution with orthogonal strike angles. We circumvented this 

bifurcation by constraining the η to be relatively large. Nevertheless, at each location there is  
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Figure 4.12. Map views of the dip angle θ and inherent S-wave anisotropy , respectively, at 
depths of: (a, b) 10 km and (c, d) 30 km.  
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Figure 4.13. (a) The orientation of the local crustal strike angle ϕ determined here, which is 
constant vertically throughout the crust, is shown with blue bars. (b) Crustal strike orientation 
perpendicular to the results shown in (a), acknowledging the ambiguity in the estimate of the 
crustal strike angle.   
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another strike orientation that is consistent with our data, which we show in Figure 4.13b. We 

note that if the dip angle is small so that the foliation plane is nearly horizontal, the strike angle 

loses its significance.   

At 10 km depth (Fig. 4.12a,b), the foliation plane in the upper crust is steeply dipping 

across most of the study region, including the Tibetan plateau and its surroundings. In contrast, 

the Qaidam basin, Ordos block, southern Tibet, and the Sichuan basin are characterized by 

shallow dip angles in the shallow crust. The inherent S-wave anisotropy (Fig. 4.12b) ranges from 

~2% to ~6% across most of the study region. Inherent S-wave anisotropy in the shallow crust is 

not noticeably stronger in Tibet than in its surrounding areas. Because the sediments in the model 

are isotropic, anisotropy in the sediments may bias γ to larger values at 10 km depth beneath the 

deep sediments of the Sichuan and Qaidam basins.  

At 30 km depth (Fig. 4.12c,d), the interior of eastern Tibet has a sub-horizontal foliation 

plane that is largely indistinguishable from a VHS medium.  Near the boundaries of the Tibetan 

plateau, particularly between Tibet and the western Yangtze craton (including the Sichuan Basin) 

and in the Qilian terrane north of Tibet, the medium is moderately to steeply dipping in the 

middle to lower crust (Fig. 4.12c).  The inherent S-wave anisotropy (Fig. 4.12d) is relatively 

large across the entire region of study with amplitudes ranging from about 3% to 6%. The 

strongest inherent S-wave radial anisotropy is observed in the interior of eastern Tibet and the 

Yunnan-Guizhou plateau south of the Sichuan basin. Weaker inherent S-wave anisotropy is 

observed near the eastern boundary of the Tibetan plateau and in the Sichuan basin and Ordos 

block. At most places, γ grows with depth in the crust but not beneath the major basins.  

For a more complete view of crustal anisotropy, two vertical profiles of crustal inherent 

S-wave anisotropy and dip angle are presented in Figure 4.14. The locations of the two profiles  
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Figure 4.14. Vertical transects of inherent S-wave anisotropy γ and dip angle θ along profiles A 
and B identified in Fig. 4.2b. In (a) and (b) dip angle is color-coded and the orientation of the 
foliation plane is presented with short blue bars. In (c) and (d), γ is color-coded in percent. Only 
the crustal part of the model is presented because the mantle is parameterized in terms of 
apparent moduli. 
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are shown in Figure 4.2b. Profile A starts just north of the Kunlun fault east of the Qaidam 

basin, runs through the Songpan-Ganzi terrane of eastern Tibet and the Chuandian terrane, off 

the southeastern margin of Tibet, and into the Yunnan-Guizhou plateau. Profile B runs from the 

boundary between the Lhasa and Qiantang terranes in eastern Tibet, through the Qiangtang and 

Songpan-Ganzi terranes, and northeast off the Tibetan plateau to terminate just within the Ordos 

block. Figures 14a and 14b present the dip angles along these profiles in two ways: color-coded 

and also with orientation bars that lie along the foliation plane at 50 km lateral intervals. The 

vertical bifurcation of the dip angle between the steeply dipping upper and shallowly dipping 

lower crust is the most striking feature of both profiles. The principal exception occurs near the 

southeastern border of Tibet where steeping dipping anisotropy appears throughout the entire 

crust (Fig. 4.14a). Figures 14c and 14d present inherent S-wave anisotropy (γ) and illustrates 

that along these profiles γ tends to grow with depth in the crust. In general γ is more 

homogeneous laterally than vertically, although it is smaller beneath the Ordos block than 

elsewhere along these profiles. As discussed earlier,γ is poorly estimated below 50 km depth. 

Because the lower crustal dip angle is small across most of the study region, the strike 

angle for the lower crust has little significance. This may be one of the reasons why a single 

strike angle at each location across crust suffices to fit the data in Tibet. As discussed in section 

4.6.1, this is related to the fact that there is very low amplitude apparent azimuthal anisotropy in 

the lower crust of Tibet. 

Discussion of the interpretation of these results is delayed until section 4.6.2. Comparison 

with apparent radial and azimuthal anisotropy, which are the more commonly estimated 

quantities in surface wave studies, is found in section 4.6.1. We also show γ at 5 km above Moho 

in section 4.6.3.1 while discussing the vertical distribution of the amplitude of inherent 
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anisotropy. 

4.5.3 Data misfit 

The misfit to the data (Rayleigh wave phase speeds, Love wave phase speeds, amplitude 

and fast axis directions of Rayleigh wave azimuthal anisotropy) is presented as the square root of 

the reduced chi-squared misfit in Figure 4.15. Specifically, misfit is defined as follows. For 

model m, let S(m) be the reduced chi-square: 

       (4.8)
 

where Di is the observation of datum i, D(m)i is that datum predicted from model m, is 

the standard deviation of datum i, and N is the total number of observations. The error bars in 

Figure 4.5 illustrate the nature and number of the observations and their standard deviations. The 

misfit presented in Figure 4.15 is the square root of S(m) across the study region. A value of 

unity would indicate that the data are fit on average at the level of one standard deviation. The 

data across most of the region are fit at a level better than 1.5 standard deviations, with the 

exception of the large sedimentary basins (Sichuan, Qaidam). To fit the data in the basins we 

would need to introduce anisotropy to the sediments, which complicates the inversion and is 

beyond the scope of this paper.  

4.5.4 Results across the entire region: standard deviation of the posterior distribution 

As discussed by Shen and Ritzwoller [2016], it is not entirely straightforward how to use 

the posterior distribution to quantify model uncertainty. They argue that the standard deviation of 

the posterior distribution does not provide an estimate of the effect of systematic errors and 

provides an over-estimate of the effect of non-systematic errors. They go on to quantify  

S(m) = 1
N

(D(m)i − Di )
2

σ i
2

i=1

N

∑

σ i
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Figure 4.15. Geographic variation in data misfit produced by the best-fitting model at each 
location. Misfit is defined as the square root of the reduced chi-squared value at each location 
(eqn. (4.8)). 
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non-systematic errors in several different ways and estimate that the standard deviation of the 

posterior distribution over-estimates the effect of non-systematic errors by about a factor of 4. 

Here, we present the standard deviation of the posterior distribution to guide the use of the model 

and refer to it as model uncertainty, but it should be understood that this uncertainty does not 

include potential systematic contributions and is probably a very conservative estimate of non-

systematic error.  

The standard deviation of the posterior distribution (uncertainty) is shown in Figure 4.16 

at depths of 10 and 30 km for dip angle and inherent S-wave anisotropy γ. The uncertainty for 

dip lies between 5° and 15° at both 10 and 30 km depths in most regions remote to the Sichuan 

and Qaidam basins (Figures 16a,b). (The uncertainty beneath the basins is magnified because 

the data cannot be fit as well there due to the fact that we have not included anisotropy in the 

sediments.) In contrast, as shown in Figure 4.16e, the standard deviation of the posterior 

distribution for the strike angle is smaller, averaging about 7° outside the basins, but is larger 

near the periphery of our study region where the fast axis directions of Rayleigh waves are less 

well constrained. One reason the strike uncertainty is smaller than the dip uncertainty is because 

the strike angle is constrained to be constant within the crust, whereas the dip angle is allowed to 

change within the crust. A second reason is that strike is constrained in a direct way by 

observations of the Rayleigh wave fast azimuth, whereas the dip angle trades off with the 

inherent elastic moduli and together they are less directly constrained by our observations.  The 

average value of 7° is close to the uncertainty for Rayleigh wave fast azimuth at short periods 

(e.g., Figures 5c,f,i,l).  

The average uncertainty for inherent S-wave anisotropy (γ) is about 1.2% at 10 km depth 

and slightly larger at 30 km depth (Figures 16c,d). At both depths, the uncertainty is larger  
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Figure 4.16. Map views of the standard deviation of the posterior distribution for (a,b) dip angle 
θ  and (c,d) inherent S-wave anisotropy  at depths of 10 km and 30 km, respectively. (e) 
Standard deviation of the posterior distribution for strike angle, which is constant in the crust.  
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outside of Tibet. At 30 km depth, the uncertainty is extremely large in the southeastern part of 

the study region. This is because uncertainty grows near to the Moho due to trade-offs across the 

interface. The Moho lies between 35 and 40 km where large uncertainties exist in γ. The 

estimated uncertainty in γ at 5 km above Moho is shown and discussed in section 4.6.3.1. 

Formally, it is larger at this depth than shallower in the crust but the result we show later actually 

underestimates uncertainty below 50 km depth because it reflects the weak anisotropy constraint 

(γ ≤ 10%), which stabilizes the inversion below a depth of 50 km and reduces the uncertainty 

estimate. 

 



203 

 

 

 

4.6 Discussion 

4.6.1 Model presented in terms of apparent anisotropy 

In section 4.5, we present the estimated THS model in terms of the mean of the posterior 

distribution of the inherent elastic moduli and orientation at each depth. Particular emphasis is 

placed on the inherent S-wave anisotropy γ (eqn. (4.5)) and the dip and strike angles (θ,ϕ) that 

describe the orientation of the medium because these are the variables that are best constrained 

by surface wave data. The inherent representation of anisotropy presents the elastic tensor in the 

coordinate frame of the medium as shown in Figure 4.1. In the medium frame, the 3-axis of the 

coordinate system aligns with the symmetry axis of the medium and there is no azimuthal 

anisotropy. However, in the coordinate system of observation the 3-axis lies normal to the 

Earth’s surface and observations of anisotropy depend on how components of the elastic tensor 

are affected by the tilt of the medium. When a hexagonally symmetric medium is tilted, both 

apparent S-wave radial anisotropy ( , eqn. (4.6)) and apparent SV-wave azimuthal anisotropy (

, eqn. (4.7)) may be observed. Indeed, most studies of anisotropy using surface waves have 

described anisotropy in terms of  [e.g., Shapiro et al., 2004; Panning and Romanowicz, 2006; 

Marone et al., 2007; Nettles and Dziewoński, 2008; Duret et al., 2010; Huang et al., 2010; 

Moschetti et al., 2010; Yuan et al., 2011; Xie et al., 2013; French and Romanowicz, 2014] or  

[e.g., Simons et al., 2002; Marone and Romanowicz, 2007; Yao et al., 2010; Lin et al., 2011; 

Yuan et al., 2011; Pandey et al., 2015]. As discussed by Xie et al. [2015] the apparent values can 

be computed from the inherent values. In order to aid comparison with other studies, we 

summarize here the apparent S-wave radial anisotropy and apparent azimuthal anisotropy 

computed from the estimated inherent elastic tensor and its orientation.  

γ̂

Γ̂

γ̂

Γ̂
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Figure 4.17 presents results for crustal apparent radial anisotropy and apparent 

azimuthal  anisotropy at the same locations shown for inherent S-wave anisotropy γ and dip 

angle θ in Figure 4.11. Figure 4.17 also presents results for and  in the mantle because we 

parameterize the mantle in terms of apparent quantities. Mantle apparent radial anisotropy is 

set to 4.5% at all locations, although V̂SV  and apparent azimuthal anisotropy change spatially.  

Apparent radial anisotropy is qualitatively similar in the crust at Points A and D (Fig. 

4.17a,g), being weakly negative in the upper crust and more strongly positive in the lower crust. 

γ̂  attains a maximum value of about 7% at about 45 km depth at Point A and is negative (-1.5%) 

in the upper crust. Because the foliation plane of the lower crust is sub-horizontal across most of 

Tibet, inherent S-wave anisotropy γ and apparent radial anisotropy  in the lower crust are 

very similar at Point A (Figs. 11b, 17a). Also at Points A and D, apparent azimuthal anisotropy 

Γ̂  dominantly arises from the upper crust. Apparent azimuthal anisotropy is indistinguishable 

from zero in Tibetan lower crust (Fig. 4.17b), thus the lower crustal strike angle has little 

significance.  

At Points B and C, is approximately constant in the crust. At Point C it is 

indistinguishable from zero even although the inherent anisotropy γ averages about 3%. This is 

caused by a dip angle of about 60° across the entire crust, a value that lies near the zero-crossing 

of anisotropy shown in Figure 4.6. Γ̂  also is approximately constant with depth in the crust at 

Points B and C. 

Mantle apparent radial anisotropy (4.5%) tends to be stronger than crustal radial 

anisotropy except at Point A in Tibet where lower crustal  reaches 7%. At Point A in Tibet,  
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Figure 4.17. Posterior distributions of apparent radial ( ) and apparent azimuthal ( ) 
anisotropy defined similarly to Fig. 4.11 for comparison.  
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upper crustal apparent azimuthal anisotropy (2-3%) is stronger than mantle apparent azimuthal 

anisotropy (~1.2%).  

Horizontal slices at depths of 10 km and 30 km are presented for the apparent quantities 

 and  in Figure 4.18, to contrast with the inherent quantities γ and θ found in Figure 4.12. 

Negative commonly coincides with large  in the shallow crust, again due to large dip angle 

and is explained by Figure 4.6.  Similarly, in the deep crust large coincides with small due 

to a shallow dip angle. Finally, vertical transects of the apparent quantities  and  are 

presented in Figure 4.19 for comparison with the inherent quantities plotted in Figure 4.14.  

Compared with inherent S-wave anisotropy γ, the apparent radial anisotropy  (Fig. 

4.18a,c; 19a,b) displays much stronger lateral variations because it reflects variations in dip 

angle in addition to inherent anisotropy. The steep dip angle in the upper crust (Fig. 4.12a) 

produces negative apparent radial anisotropy (apparent VSH < apparent VSV) across much of the 

study region (e.g., Fig. 4.18a), with the principal exceptions occurring beneath large sedimentary 

basins. Figure 4.19 shows that the negative apparent anisotropy in the upper crust extends 

beneath much of both vertical profiles.  Such negative  values was observed across parts of 

Tibet by Xie et al. [2013], who interpreted them as evidence for steeply dipping fractures or 

faults in the shallow Tibetan crust. Due to the shallow lower crustal dip angles across much of 

the study region, γ and are similar in the lower crust. Thus across much of the region, Figure 

4.12c is similar to Figure 4.18c, with the notable exceptions being in regions with steep lower 

crustal dip angles such as the regions flanking Tibet. Profile A in Figure 4.19a illustrates one of 

these exceptions (longitudes between 101.3° and 102.5°) and shows that negative apparent radial 

anisotropy extends throughout the crust in the central-to-southern part of the Chuandian terrane  
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Figure 4.18. Map views of apparent radial ( ) and apparent azimuthal ( ) anisotropy defined 
similarly to Fig. 4.12 for comparison. 
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Figure 4.19. Vertical transects of apparent radial ( ) and apparent azimuthal ( ) anisotropy 
defined similarly to Fig. 4.14 for comparison.  
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near the southeast border of Tibet.  

Azimuthal anisotropy is not an inherent property of the elastic tensor, but reflects the 

directional dependence of Rayleigh wave speeds that results from the amplitude of inherent 

anisotropy and the tilting of the medium. When the dip angle is small, as it is across much of the 

lower crust of Tibet (Fig. 4.12c), the apparent azimuthal anisotropy is minimal (Fig. 4.18d). In 

contrast, lower crustal apparent azimuthal anisotropy (Fig. 4.18a) is particularly strong near the 

periphery of Tibet where the lower crustal dip angle is steep. Unlike the lower crust, the upper 

crust is steeply dipping across much of the study region, so upper crustal apparent azimuthal 

anisotropy is also strong across most of the region (Fig. 4.18b). Apparent azimuthal anisotropy, 

being strong in the upper crust and weak in the lower crust at most locations, is seen clearly in 

the two vertical profiles in Figure 4.19c,d.  

In summary, apparent azimuthal  and radial  anisotropy bifurcate vertically in most 

of the study region.  Apparent azimuthal anisotropy is strong principally in the upper crust 

whereas apparent radial anisotropy is strong mostly in the lower crust. The principal exception to 

this bifurcation lies predominantly near the periphery of Tibet, where the dip angle is nearly 

constant throughout the crust. 

4.6.2 Geological and physical significance 

4.6.2.1 Regionalization 

The results presented here illustrate that the inferred crustal anisotropy is of two principal 

types that segregate into the two regions depicted in Figure 4.20: Region 1 (red color, Tibet and 

the Yunnan-Guizhou plateau region) and Region 2 (blue color, regions near the periphery of 

Tibet). The sedimentary basins define a third region that we do not discuss here. 

Γ̂ γ̂
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Figure 4.20. Regionalization of anisotropy in the final 3-D model. The dashed line indicates the 
study region. The blue shaded regions are characterized by moderately to steeply dipping 
foliations throughout the entire crust.  The red shaded regions have foliations dipping steeply in 
the upper crust overlying a sub-horizontally foliated middle-to-lower crust. 
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Region 1: In the interior of eastern Tibet, the upper crust has a steeply dipping foliation 

plane, which generates negative apparent radial anisotropy, and the middle-to-lower crust has a 

sub-horizontal foliation in which the dip angle θ is often indistinguishable from zero. This results 

in a large positive apparent Vs radial anisotropy in the lower crust. Tibet itself has high 

seismicity with earthquakes occurring to a depth of about 15-20 km within Tibet [Chu et al., 

2009; Zhang et al., 2010; Sloan et al., 2011]. Therefore, the upper crust to this depth probably 

undergoes brittle deformation. Steeply dipping foliation could result from fractures or faults that 

are sub-vertical or steeply dipping. In contrast, the nearly horizontal foliation plane of the 

middle-to-lower crust may result from the deeper crust undergoing predominantly horizontal 

ductile deformation in which melt-rich layers or planar mica sheets form in response to the 

deformation. Interestingly, this pattern of anisotropy is not unique to Tibet, but is also observed 

south of the Sichuan basin in the Yunnan-Guizhou Plateau.  

Region 2: Near the boundary of eastern Tibet and regions north of Tibet, such as the 

Qilian terrane, there is a depth constant moderate dip angle through the entire crust that results in 

negative to slightly positive apparent radial anisotropy throughout the crust. From Region 1 to 

Region 2, the orientation of the middle-to-lower crustal foliation plane rotates from horizontal to 

moderately or steeply dipping. This lateral change of orientation may result from resistance 

forces applied by the rigid and relatively undeformed Sichuan basin, Yangtze craton and Ordos 

block. 

4.6.2.2 Physical significance 

Our principal results are represented with a pair of variables at each location and depth 

from which we can compute apparent radial and azimuthal anisotropy: inherent S-wave 
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anisotropy γ and dip angle θ. These variables allow us to predict the primary aspects of our 

observations. However, there are many constraints and assumptions underlying these results. 

Perhaps most significant amongst these is the assumption that the elastic tensor at all depths in 

the crust possesses hexagonal symmetry with a slow symmetry axis. 

There are reasons to believe that hexagonal symmetry is a reasonable assumption for the 

crust. The cause of crustal anisotropy is related to shape preferred orientation (SPO) and lattice- 

or crystal-preferred orientation (CPO) of Earth’s materials. In the crust, SPO can be caused by 

fluid-filled cracks and layering of materials with different compositions [e.g., Crampin et al., 

1984], and both situations can be approximated with a hexagonally symmetric medium with a 

slow symmetry axis. Other than SPO, another possible cause of seismic anisotropy is CPO of the 

crystallographic axes of elastically anisotropic minerals. Mica and amphibole are primary 

candidates for crustal anisotropy [Mainprice and Nicolas, 1989]. With increasing mica content, a 

deformed rock becomes anisotropic and tends to be approximately hexagonally symmetric with a 

slow symmetry axis [Shao et al., 2016; Weisss et al., 1999].  Weiss et al. [1999] argues that most 

deep crustal rocks are quasi-hexagonal, although some studies [e.g., Tatham et al., 2008] 

conclude that the deep continental crust contains little mica, and amphibole is a more plausible 

explanation for deep crustal anisotropy. The presence of amphibole would reduce a rock’s 

overall symmetry from hexagonal to a lower symmetry such as orthorhombic [Shao et al., 2016]. 

Therefore, in many cases, a hexagonally symmetric medium with a slow symmetry axis is a 

reasonable approximation for crustal material, and in this circumstance the inferred dip and strike 

angles probably represent the orientation of the foliated anisotropic materials in the crust. But in 

the presence of abundant amphiboles, orthorhombic rather than hexagonal symmetry may be 

more appropriate. In this case, for example, it would not clear how to interpret the estimated dip 
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angle, which could be understood a proxy for deviation from hexagonal symmetry. 

Even when hexagonal symmetry is an appropriate assumption for the anisotropy of 

crustal rocks, the dip and strikes angles shown in Figures 4.12 and 4.14 represent only one of 

several possible orientations that are consistent with surface wave data. Xie et al. [2015] point 

out that there are two principal ambiguities in orientation that arise using surface wave data alone 

to estimate a depth-dependent THS model. First, there is the dip ambiguity that results from a 

symmetry or a pure geometrical trade-off. Surface waves are not capable of distinguishing 

between structures with dip angle θ and angle 180° - θ (i.e., left dipping and right dipping). As a 

result, surface waves cannot distinguish between a structure that dips only toward one-side from 

a fold that is composed of a combination of left- and right-dipping foliations. Secondly, there is 

the strike ambiguity. Surface waves do not distinguish between anisotropic structures that differ 

in strike angle by 90°. This is not a geometrical symmetry but emerges because of covariances 

between the elastic moduli, and is related to the so-called ellipticity of the elastic tensor, as 

discussed in Xie et al. [2015]. We have eliminated this ambiguity by narrowing the range of η 

considered but show both strike angles in Figure 4.13. The limitation we imposed on the 

allowed η values does not affect our principal conclusions. However, it will be important in the 

future to attempt to distinguish between the two strike angles by invoking other data (e.g., 

receiver function observations). 

4.6.2.3 Sedimentary basins 

As discussed in section 4.4, we parameterized sedimentary basins as isotropic even 

though our data present evidence that the sediments are anisotropic, as seen clearly by significant 

data misfit under the Sichuan and Qaidam basins in Figure 4.15.  

Figure 4.21 presents a comparison of the results of inversion of our data at a point in the  
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Figure 4.21. (a-b) Posterior distributions of estimated dip angle θ and inherent S-wave 
anisotropy γ for a point in the Sichuan basin (105°, 31°) presented as in Fig. 4.11 with no 
anisotropy in the sediments. (c-d) Posterior distributions at the same location where anisotropy 
and an independent dip angle is allowed in the sediments. 
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Sichuan basin (105°, 31°) with (Fig. 4.21c,d) and without (Fig. 4.21a,b) anisotropy in the 

sediments. Misfit (S1/2, equation 4.8) reduces from 3.44 to 1.40 with the introduction of 

anisotropy in the sediments at this point. The inherent anisotropy in the sediments is 

exceptionally strong (~13%) and the dip angle is shallow. Thus, the sediments dominantly 

produce apparent radial anisotropy with little associated apparent azimuthal anisotropy. 

Including anisotropy in the sediments does not strongly change inherent S-wave anisotropy in 

the crystalline crust (Fig. 4.21a,c) It does, however, reduce the lower crustal dip angle by about 

10°, which more strongly segregates anisotropy between the upper and lower crust. However, 

these changes are within the estimated uncertainties. These results are similar to what we find at 

other locations within the Sichuan and Qaidam basins where surface wave observations are 

reliable and the sediments are thicker than 2 km in the reference model.  

We conclude, therefore, that the specification of isotropic sediments changes our 

estimates of inherent S-wave anisotropy and dip angle in the crystalline crust within stated 

uncertainties, and does not modify the primary conclusions of the study. In the future, 

parameterizing the sediments to include anisotropy is recommended, but in doing so it is also 

advisable to include other constraints on sedimentary structure such as receiver functions or 

Rayleigh wave H/V to improve the estimate of sedimentary thickness. Uncertainties in the 

thickness of sediments directly affect estimates of the inherent anisotropy of the sediments. For 

example, at the point shown in Figure 4.21, our reference model [Shen et al., 2016] indicates a 

sedimentary thickness of about 4 km. If the sediments were actually thicker, then the estimate of 

the inherent S-wave anisotropy would be smaller. Uncertainty in sedimentary thickness is one of 

the reasons we do not highlight structure in the basins in this paper.  

4.6.3 Comparison with other studies 
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4.6.3.1 Vertical distribution of anisotropy in the crust 

Figure 4.14c,d shows that the strength of inherent S-wave anisotropy is stronger in the 

middle-to-lower crust than in the upper crust across the study region. A comparison of Figures 

12b and 12d similarly shows this trend. To illustrate this trend, Figure 4.22a presents inherent S-

wave anisotropy 5 km above Moho. Inherent S-wave anisotropy in the deep crust is similar to the 

middle crust, but stronger than the shallow crust. Figures 18a,c, 19a,b, and 22c illustrate that the 

same trend holds for apparent radial anisotropy.  

The nearly constant apparent radial anisotropy from middle to lower crust is different 

from the study of Xie et al. [2013], which concluded that apparent radial anisotropy is strongest 

in the middle crust. The difference between these two studies is due to two factors: (1) Love 

wave observations at periods below 40 sec are only weakly sensitive the shear wave speeds in 

the lower crust of Tibet. As a consequence, inherent S-wave anisotropy γ is poorly determined in 

the lowermost crust (Fig. 4.8a). (2) The study of Xie et al. [2013] and the current paper have 

different parameterization and place different constraints on anisotropy in the crust. Xie et al. 

[2013] uses the azimuthally invariant parts of Rayleigh and Love waves to invert for the apparent 

radial anisotropy without inferring the inherent properties, and  is constrained to be 0 at the 

Moho. In contrast, the current study infers the inherent properties (e.g., γ, θ, Φ) from which 

apparent radial anisotropy  is then derived. Here, we require 0 ≤ γ ≤ 10% and the discontinuity 

in θ determines the resulting . The result is that Xie et al. [2013] attempts to find a model that 

fits their data while minimizing lower crustal anisotropy whereas the current study applies the 

weak anisotropy constraint across the entire crust. The differences between the results of these 

two studies illustrate that the strength of anisotropy below about 50 km depth cannot be 

determined by the data alone, but is shaped largely by constraints imposed in the inversion.  

γ̂ γ̂

γ̂

γ̂
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Figure 4.22. Aspects of inherent and apparent anisotropy estimated at a depth 5 km above the 
Moho: (a) inherent S-wave anisotropy γ, (b) standard deviation of the posterior distribution for γ, 
(c) apparent radial anisotropy γ̂ , and (d) apparent azimuthal anisotropy Γ̂ . 
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Better determination of the amplitude of inherent S-wave anisotropy in the Tibetan lower crust 

will require Love wave observations at periods longer than 40 s. Such measurements will 

probably derive from earthquake based observations rather than ambient noise.  

4.6.3.2 Other aspects of the model 

Many studies of Tibet might meaningfully be compared with the results we present here. 

We briefly discuss comparisons with three general types of studies: (1) studies that have 

identified differences between northern and southern Tibet, (2) studies that attempt to draw 

conclusions about the vertical distribution of strain near the southeast border of Tibet in the 

Chuandian terrane or Yunnan-Guizhou plateau, and (3) receiver function studies that attempt to 

produce information about crustal anisotropy.  

(1) Differences between northern and southern Tibet have been widely observed in other 

studies. Shear wave splitting studies [e.g., McNamara et al., 1994; Huang et al., 2000; Hirn et 

al., 1995] find a systematic rotation of the fast azimuth from southern to northern Tibet. 

Compared with southern Tibet, slower shear wave speeds [e.g., Yang et al., 2012] and slower Pn 

velocities [e.g.,McNamara et al., 1997] are observed in northern Tibet. Some studies [e.g., 

Huang et al., 2000; Nabelek et al., 2009] suggest that 32°N marks the northern end of the 

subducted Indian plate.  Although our study region only covers the eastern part of Tibet, we also 

observe differences between northern and southern Tibet on the western side of our study region. 

For example, compared with the southern part of our study region (Qiangtang terrane), the 

northern part (Songpan-Ganzi) has a steeper upper crustal dip angle (Figures 12a, 14b) and 

stronger middle crustal inherent anisotropy (Figure 4.12d, 14d). 

(2) In southeastern Tibet (near the Chuandian terrane and the Yunnan-Guizhou plateau) 

the deformation mechanism remains under debate.  Shear wave splitting studies observe a sharp 
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transition in mantle anisotropy across about 25°N latitude. North of this boundary the fast 

polarization orientation is mostly North-South, which is consistent with surface strain, while in 

the south the fast polarization orientation changes suddenly to East-West, which deviates from 

the surface strain [Sol et al., 2007; Lev et al., 2006]. Such deviation was used as evidence for the 

decoupling between the crust and mantle near the southeastern edge of Tibet because shear wave 

splitting is mainly caused by mantle anisotropy.   

We find a similar pattern of spatial variation in Rayleigh wave fast axis orientations in 

this region. For the northern part of southeastern Tibet, Rayleigh wave fast axes are nearly 

constant with period lying within about 20° of North-South (e.g., Figure 4.5i Point C), while 

south of 25°N latitude the fast azimuth is more complicated. It remains oriented North-South at 

short periods but changes to more nearly East-West at longer periods (e.g., Figure 4.5l Point D; 

Figures 3c,d). In our model, the crustal strike typically follows the Rayleigh wave fast azimuth 

at short periods (Figures 3c, 13a), and the mantle fast azimuth follows the Rayleigh wave fast 

azimuth at long periods.  

We tend not to attribute the different fast axis orientations between the crust and upper 

mantle to decoupling between crustal and mantle strains for the following reasons. First, as 

pointed out by Wang et al. [2008] and Fouch and Rondenay [2006], anisotropy may manifest in 

the crust and mantle in very different ways for the same stress geometry. For example, crustal 

open cracks might align orthogonal to the direction of maximum extension, while in the mantle 

the fast direction of relatively dry olivine might align parallel to the maximum extension 

direction. Secondly, the possible existence of water or melt could make the interpretation more 

complicated [e.g., Kawakatsu et al., 2009; Holtzman et al., 2003]. Moreover, as discussed in 

section 4.6.2.2 and by Xie et al. [2015], the Rayleigh wave fast azimuth and strike orientations of 
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anisotropy are ambiguously related to one another if non-ellipticity of anisotropy is taken into 

account. Therefore, it is hazardous to draw conclusions on the coupling or decoupling of the 

crust and mantle deformation based on seismic anisotropy observations alone. However, Shen et 

al. [2005] argue that southeastern Tibet has a weak lower crust underlying a stronger, highly 

fragmented upper crust by analyzing GPS data. This could provide a possible mechanism to 

decouple the upper crust from the upper mantle.  

(3) The tilted hexagonally symmetric (THS) model that we produce is qualitatively 

similar to that inferred by some receiver function studies. For example, in central Tibet, Ozacar 

and Zandt [2004] used receiver functions to study the tilt of crustal anisotropy, and found that 

near-surface anisotropy has a steeply dipping fabric (~60°-80°), while mid-crustal anisotropy has 

a shallowly dipping fabric (~18°). This result qualitatively agrees with our findings across most 

of eastern Tibet. In addition, the strike angles of our THS model (and the fast directions of the 

short period Rayleigh waves) are parallel to the fast axis orientations revealed by the Moho Ps 

splitting near the eastern edge of the high plateau [e.g., Sun et al., 2015; Kong et al., 2016].  Sun 

et al. [2015] further suggested that lower crustal flow may extrude upward into the upper crust 

along the steeply dipping strike faults under the Longmenshan area at the edge of the Sichuan 

Basin (Figure 4.9 in their paper), resulting in the surface uplift of the Longmenshan. Our 

observation of a rapid change of dip angle of the THS system from subhorizontal to subvertical 

beneath the same area (Fig. 4.12c) is consistent with this suggestion.   
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4.7 Summary and Conclusions 

With ambient noise data recorded at CEArray, China Array, and PASSCAL stations that 

are located across eastern Tibet and adjacent areas, we measure Love and Rayleigh wave 

isotropic phase speeds and Rayleigh wave azimuthal anisotropy. In order to explain these 

observations jointly, we apply a method that inverts for an anisotropic medium represented by a 

depth-dependent tilted hexagonally symmetric (THS) elastic tensor. We perform the inversion 

with a Bayesian Monte Carlo method that produces depth-dependent marginal posterior 

distributions for the five inherent elastic moduli (A, C, N, L, and F or η) as well as dip and strike 

angles on a 0.5°x0.5° spatial grid. The final 3-D model is composed of the mean and standard 

deviation of each of these model variables.  

The paper is motivated by the three questions listed in the Introduction, which are 

answered here. (1) Observations of apparent radial and apparent azimuthal anisotropy from 

surface waves can, indeed, be fit well with the oriented hexagonally symmetric elastic tensor 

model, analogous to the fit of similar data across the western US [Xie et al., 2015]. The principal 

exception to this finding is that to fit the data well within the Sichuan and Qaidam basins, we 

would have needed to introduce very strong anisotropy into the sediments (Fig. 4.21), which was 

beyond the scope of this paper. (2) In contrast to results in the western US, we find that the data 

across much of the study region could not be fit with a single orientation for the elastic tensor at 

all depths in the crust. Specifically, we find that two dip angles (one in the upper crust and the 

other in the middle to lower crust) are needed in Tibet and the Yunnan-Guizhou plateau. 

However, a single strike angle in the crust does suffice to allow the data to be fit near the 

periphery of Tibet. (3) The vertical distribution of anisotropy within Tibet is similar to that 

beneath the Yunnan-Guizhou plateau, but both regions differ from the periphery of Tibet where 
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only a single dip angle is need. 

Our results, therefore, segregate the area of study into two regions based on crustal 

anisotropy. Region 1 includes the interior of eastern Tibet and the Yunnan-Guizhou plateau. In 

this region, steeply dipping upper crust overlies shallowly dipping middle to lower crust and 

inherent S-wave anisotropy (eqn. (4.5)) is strong throughout the crust with larger amplitudes in 

the middle-to-lower crust. As a result, the apparent radial anisotropy  (eqn. (4.6)) and apparent 

azimuthal anisotropy  (eqn. (4.7)) bifurcate vertically.  tends to be weak and negative in the 

upper crust and is strong and positive in the middle-to-lower crust while  is strong mostly in 

the upper crust. The steep dip to the symmetry axis in the upper crust may result from fractures 

or faults that are sub-vertical or steeply dipping. In contrast, the sub-horizontal or shallow 

dipping symmetry axes in the middle-to-lower crust may result from ductile deformation that 

aligns the orientation of anisotropic minerals such as mica.  Region 2 covers the edge of eastern 

Tibet and regions north of Tibet where the foliation across entire crust has a moderate to steep 

dip angle and inherent S-wave anisotropy does not change strongly with depth. As a result, 

apparent radial anisotropy  is negative to slightly positive through the entire crust, and apparent 

azimuthal anisotropy  is strong throughout the crust. The more steeply dipping foliation planes 

may be caused by the reorientation of anisotropic minerals as crustal flows rotate and shear near 

the border of Tibet, which may result from resistance forces imposed by the more rigid and 

relatively undeformed surroundings to Tibet.  

In the future, the introduction of other data sets may improve the current inversion, which 

is based exclusively on surface waves from ambient noise. Such information could provide new 

insight into crustal and mantle deformation and the generation of more realistic petrologic 
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models that agree with the elastic tensors inferred. (1) Azimuthal variations in receiver functions 

[e.g., Levin and Park, 1997,1998; Ozacar and Zandt, 2004; 2009; Schulte-Pelkum and Mahan, 

2014a,b] as well as the splitting of the P-to-S converted phase [e.g., Rumpker et al., 2014; Sun et 

al., 2015a] can provide important point constraints on crustal anisotropy and could also help to 

identify depths at which crustal anisotropy changes dip angle. In some areas receiver function 

waveforms observe clear azimuthal variations, and these waveforms could be inverted 

simultaneously for the layered THS system [e.g., Ozacar and Zandt et al., 2004; Schulte-Pelkum 

and Mahan, 2014a] together with surface wave data. (2) Rayleigh wave H/V ratio provides 

sensitivity to the velocity structure at shallow depths (upper ~5km), and would help to resolve 

anisotropy in the sedimentary basins. (3) Shear wave splitting, both SKS and the splitting of 

Moho converted P-to-S phases, could be combined with surface wave data to provide additional 

constraints on the depth-integrated amplitude of apparent azimuthal anisotropy [e.g., Lin et al., 

2010; Montagner et al., 2000]. (4) In addition, longer period surface wave measurements are 

needed to improve estimates of mantle anisotropy, including the type of anisotropy (e.g., 

hexagonal symmetry with a fast or slow symmetry axis, orthorhombic symmetry) and the 

orientation of the anisotropic media.    
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CHAPTER V 

CONCLUSION AND FUTURE PLAN 

5.1 Summary and conclusions 

In this thesis, I have developed an oriented elastic tensor inversion method that explains 

different aspects of the surface wave observations simultaneously in terms of a tilted hexagonally 

symmetric medium. The surface wave measurements from large arrays, the development of this 

method, and its application to W. US, and E. Tibet form the major components of this thesis.  

The oriented elastic tensor inversion method inverts for the inherent properties of the 

medium represented by a hexagonally symmetric elastic tensor, with an arbitrarily oriented 

symmetry axis, which I refer to as ‘tilted’. The elastic tensor at each depth is described by 5 

elastic moduli (A, C, N, L and F) and the tilt is defined by 2 rotation angles: the dip and strike, 

which are illustrated in Figure 1.1b. In total, 7 depth dependent parameters describe this tilted 

hexagonally symmetric medium (or THS). We refer to the 5 elastic moduli as ‘inherent’, as they 

reflect the characteristics of the elastic tensor irrespective of its orientation. Limited by the fact 

that surface wave data are strongly sensitive to part of the 7 unknowns, a straightforward 

inversion for the THS is impractical using surface wave data alone. Therefore, we cast the 

inversion problem in terms of a Bayesian Monte Carlo approach in which we estimate a range of 

elastic tensors that agree with the data.  

Comparing with traditional practices, this new approach possesses some significant 

advantages. First, different aspects of surface wave measurements are used simultaneously to 

obtain one simple and self-consistent model. Inferences about the inherent elastic properties of 

the medium are obtained and apparent properties can then be derived, however, traditionally very 
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few studies try to infer the inherent properties or the orientations of the medium. Second, the 

Bayesian Monte Carlo inversion enables the assumptions and prior constraints on the model to 

be clearly presented in terms of prior distributions. Besides, this process utilizes the uncertainties 

from surface wave measurements, and naturally propagates the data uncertainty into the model 

uncertainty.  

The major conclusions drawn from the thesis are summarized here.  

• With large arrays, high quality surface wave measurements with error estimates can be 

obtained. We have performed extensive seismic data processing on continuous data 

recorded at seismic arrays in US and China. In the US, I use over 800 Transportable 

Array (TA) stations of Earthscope/USArray deployed from 2005 to 2010, and in China, ~ 

800 stations from arrays deployed by different agencies between 2000 and 2012 are 

compiled through collaborations with multiple scientists. These data are processed to 

perform surface wave tomography, and measurements of Love wave speeds and 

azimuthally varying Rayleigh wave speeds together with their uncertainties are 

constructed. Chapter II, III and IV describe aspects of the data processing, and details of 

data quality control can be found in Zhou et al. [2012], which is not included in this 

thesis.  

• Overall, the oriented elastic tensor inversion method explains the surface wave data well 

in both W. US and E. Tibet, subject to the constraints listed in Chapters III and IV.  

• In W. US, the tilt angles (dip, strike) are constrained to be depth-constant in the crust. 
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Inherent S-wave anisotropy is fairly homogeneous vertically across the crust, on average, 

and spatially across the W. US. And the orientations of the hexagonally symmetric 

medium are geologically correlated. 

The estimated dip may be interpreted in two alternative ways. It is either an actual 

measure of the dip of the foliation plane of anisotropic material within the crust, or it is 

proxy for another non-geometric variable, most likely a measure of deviation from 

hexagonal symmetry.  First, it is possible that the observed dip angle is proxy for other 

variables. Even though our models are expressed in terms of a tilted hexagonally 

symmetric medium, the approximation to hexagonal symmetry may not be accurate 

everywhere. Therefore, the dip may be a result of approximating orthorhombic or other 

lower-symmetry material with hexagonal symmetry. Second, it is likely to be at least 

some component of dip is related to the actual dip of the foliation of the material. In fact, 

spatial variations of dip make geologic sense in some regions. For example, observed dip 

are shallow beneath the Basin and Range province, which is consistent with large-scale 

crustal extension along low-angle normal faults and horizontal detachment faults. The 

steeper dips observed in California are also consistent with a lower crust consisting of 

foliated schist.  

There are two groups of THS fit the data equally well; one group has nearly elliptical 

anisotropy while the other group has non-elliptical anisotropy, and their strikes 

orthogonal to each other.  Therefore, interpretation of surface wave (Rayleigh wave) fast 

axis direction in terms of crustal structure must be performed with caution. 

• In E. Tibet, THS with depth-constant orientation cannot explain the data in some regions 

(e.g., part of E. Tibet and part of Yunnan-Guizhou Plateau). Therefore, THS with depth-
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varying orientation is introduced to solve this problem. The dip is allowed to be different 

between the upper 1/3 and lower 2/3 of the crust, while the strike is constrained to be the 

same through the entire crust.  

Our results segregate the area of study into two regions: 

Region 1 includes the interior of E. Tibetan Plateau and the Yunnna-Guizhou plateau. In 

this region, steeply dipping upper crust overlies shallowly dipping middle to lower crust 

and inherent S-wave anisotropy is strong throughout the crust with larger amplitudes in 

the middle to lower crust. As a result, the apparent radial anisotropy and apparent 

azimuthal anisotropy bifurcate vertically.  Apparent radial anisotropy tends to be negative 

in the upper crust and is strong and positive in the middle-to-lower crust while apparent 

azimuthal anisotropy is strong mostly in the upper crust. The steep dip to the symmetry 

axis in the upper crust may result from cracks or faults that are sub-vertical or steeply 

dipping. In contrast, the sub-horizontal or shallow dipping symmetry axes in the middle-

to-lower crust may result from ductile deformation that aligns the orientations of 

anisotropic minerals such as mica.   

Region 2 covers the edge of eastern Tibet and regions north of Tibet where the entire 

crust has a moderate to steep dip angle and inherent S-wave anisotropy does not change 

strongly with depth. As a result, apparent radial anisotropy is negative to slightly positive 

through the entire crust, and apparent azimuthal anisotropy is strong throughout the crust. 

The more steeply dipping foliation planes may be caused by the reorientation of 

anisotropic minerals as crustal flows rotate and shear near the border of Tibet, which may 

result from resistance forces imposed by the rigid and relatively undeformed 
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surroundings to Tibet. 

 

5.2 Future work 

There are a few works that can be proposed for the future: 

• Add different data to the inversion. (1) Receiver functions could help to determine intra-

crustal discontinuities related to features such as a mid-crustal low velocity zone, and also 

help to identify depths at which crustal anisotropy changes dip angle. In some areas 

receiver function waveforms observe clear azimuthal variations, and these waveforms 

could be inverted simultaneously for the layered THS system [e.g., Ozacar and Zandt et 

al., 2004; Schulte-Pelkim and Mahan 2015] together with surface wave data. (2) 

Rayleigh wave H/V ratio provides sensitivity to the velocity structure at shallow depths 

(upper ~5km), and would help to resolve anisotropy in the sedimentary basins. (3) Shear 

wave splitting, both SKS and the splitting of Moho converted P-to-S phases, could be 

combined with surface wave data to provide additional constraints on the depth-

integrated amplitude of apparent azimuthal anisotropy. 

• Investigate more about elliptical and non-elliptical anisotropy. The concept of non-

elliptical anisotropy is not well recognized in the global seismology, while it is 

commonly used in the field of petrology and exploration geophysics. The effect of non-

elliptical anisotropy on the seismic waves is not well understood in global seismology, 

and could be an interesting area for future study.  

• Move beyond hexagonal symmetry. As discussed in both Chapter III and Chapter IV, 

although we assume the crustal material to be hexagonally symmetric following the 



229 

 

 

 

traditional simplification, there are reasons to believe that the crustal material is more 

complex than hexagonally symmetry. And there are papers talking about effect of 

orthorhombic symmetry [e.g., Tsvankin, 1997]. Therefore, as quality and quantity of 

seismic data increases, moving beyond hexagonal symmetry may be the future direction, 

as it may provide more accurate description of the Earth’s elastic property.  

• Improve long period data. Upper mantle anisotropy provides important information on the 

dynamic of the lithosphere, therefore, it would be interesting to apply this oriented elastic 

tensor method to image mantle anisotropy.  However, some of the assumptions I made in the 

crust are probably not appropriate for the mantle. For example, unlike mica the anisotropy 

related to olivine is probably orthorhombic in symmetry or hexagonal in symmetry but with a 

fast symmetry axis.  

• Understand how anisotropy scales up. Petrology studies provide important information on 

understanding the seismic anisotropy.  However, the study of petrology and seismology are 

at very different scales, and it is unclear how does large scale structures (e.g., fold) affect the 

overall anisotropy measured by seismic data. 

• Ultimately, one may aim to interpret the results in terms of petrological models that agree 

with the inferred elastic tensors.  
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