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Abstract
Stevenson, Samantha (PhD, Atmospheric & Oceanic Sciences)
The Past, Present and Future of the El Niño/Southern Oscillation
Thesis directed by Assistant Professor Baylor Fox-Kemper

Predicting how the strength and character of the El Niño/Southern Oscillation (ENSO) will
change as the climate warms is crucial for a number of societal impacts, yet there are fundamental
limitations to our understanding of ENSO dynamics. The major obstacles are related to sampling
length, physical adjustments to climate changes, errors in model physics and uncertainties in forcing
projections. This dissertation uses these issues to assess what we currently can and cannot say about
future ENSO variability.

The temporal extent of modern observations is too short to properly measure natural ENSO
variations: averaging together at least 200 years is required to obtain robust ENSO statistics in a
stable climate. Using paleoclimate ‘proxies’ to extend the observational record is another option,
but is complicated by the uncertainties involved in translating between model and proxy signals.
Coral oxygen isotopes, the most commonly used ENSO proxy, are shown to be governed by nonlinear
dynamics: a more accurate ‘forward model’ for coral δ18O is needed. Even using such a model, at
least 4-5 contemporaneous records will be required for accurate ENSO amplitude estimation.

Simulations using several IPCC-class general circulation models (GCMs) are used to demonstrate
that the adjustment to climate change itself takes place over decadal timescales, meaning that ENSO
response is not statistically significant during the 21st century. This implies that current model
intercomparison experiments are insufficient to measure the true range of ENSO climate sensitivity.
However, significant changes to atmospheric teleconnections may take place within the 21st century:
the NCAR Community Climate System Model version 4 (CCSM4), for example, predicts harsher
winters in the Southwestern US during La Niña and weaker Australian teleconnections during both
El Niño and La Niña.

Stabilized CCSM3.5 simulations are then performed, which show that once the climate has
equilibrated, the ENSO response to a CO2 increase eventually does become significant. However,
the details of that response are sensitive to small changes in model physics: the ENSO climate
sensitivity in the CCSM3.5 and CCSM4 oppose one another, and the mechanisms for the difference
are as yet unclear. Seasonal forcing, high-frequency wind stress variability, or other processes may
be responsible, but a complete diagnosis requires longer CCSM4 simulations than are currently
available.

Finally, an additional complication is discussed: future ENSO projections all rely on the stan-
dardized emissions scenarios from the IPCC. Projections of future emissions reductions may be
overly optimistic, perhaps requiring attention to a wider range of CO2 changes for accurate ENSO
impacts studies.



iv

Acknowledgments

I was supported by the CIRES graduate student fellowship and Innovative Research Program, as
well as NASA’s Earth and Space Science Fellowship, while pursuing this dissertation work.

I could not have done this without the guidance of my advisor, Baylor Fox-Kemper, who has
been a tremendous help to me throughout my entire time at CU. Thank you for always being there
to talk to me and helping me pursue my passions, even when they were scattered and vague. Thanks
also to Markus Jochum for helping me with my model runs, for being an advocate for me at NCAR,
and for many helpful discussions. Thanks go to Balaji Rajagopalan and Roger Pielke, Jr. for all
of their help with projects that broadened the scope of my dissertation work, and to Antonietta
Capotondi and Weiqing Han for always being willing to discuss research.

I also want to thank my amazing husband Steve for being so supportive and helping out with
the rest of our life while I was busy working. You were always there to tell me not to worry so
much, and I hope someday I will figure out how to listen.



Contents

1 Introduction 1
1.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of ENSO Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Atmospheric Teleconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Modeling ENSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Using Paleoclimate Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Implications for Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 How Well Can Coral Oxygen Isotope Records Constrain Past ENSO Variability? 27
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Coral Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Linear Pseudoproxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Nonlinear Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Translation Using Climate Field Reconstruction . . . . . . . . . . . . . . . . . . . . . 43
2.6 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 When Do Two ENSO Spectra Differ From One Another? 49
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Wavelet Probability Analysis: Conceptual Approach . . . . . . . . . . . . . . . . . . 52
3.3 Comparing Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Comparing a Model with Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 ENSO Self-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Will There Be A Significant Change to El Niño in the 21st Century? 63
4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Oceanic Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Atmospheric Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 How Do El Niño/La Niña Characteristics Respond to Climate Change? 75
5.1 Event Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Markov GLM methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Set of best predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 El Niño/La Niña event statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents vi

6 How Does CO2 Affect ENSO Dynamics in a Stable Mean Climate? 87
6.1 Importance of An Equilibrated Mean State . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Circulation Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 2-4 Year Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Role of Seasonal Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.7 5-7 Year Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 How Realistic Are Emissions Scenarios to Begin With? 104
7.1 Emissions Projections: AR4 vs. AR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Decarbonization in the RCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Energy Use in the RCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Conclusions 115
8.1 Past ENSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Present-Day ENSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Future ENSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4 El Niño/La Niña Events and Teleconnections . . . . . . . . . . . . . . . . . . . . . . 121
8.5 Ideas and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.5.1 Diagnosing Differences Between Model ENSO Response . . . . . . . . . . . . 123
8.5.2 Response to Transient Atmospheric Forcing . . . . . . . . . . . . . . . . . . . 125
8.5.3 Improving Model/Proxy Comparisons . . . . . . . . . . . . . . . . . . . . . . 126

8.6 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 128

A Appendix A 170

B Appendix B 194

C Appendix C 195

D Appendix D 196

E Appendix E 231

F Appendix F 243



List of Tables

3.1 Equations describing the wavelet basis functions used in this chapter. Equations are
reproduced from Table 1 of [Torrence 1998]. For the Morlet and Paul wavelets, the
integer m represents the order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Regression parameters for several test cases. . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Table 1 from ([Stevenson 2011b]; Appendix 3). For transient simulations, the CO2

value quoted is the approximate value at the end of the simulation period. . . . . . 65

5.1 Table 3 from ([Stevenson 2012b]; Appendix 5). “Set of best predictors for the CCSM4
ensembles. Numbers indicate the value of regression coefficients for each ensem-
ble/variable combination.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Table 2 from ([Stevenson 2012b]; Appendix 5). “Return periods for 5-year El Niño
and La Niña events (units of years).” . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Table 1 from ([Stevenson 2012a]; Appendix 6). SRES families and associated patterns
of economic, population, and technological growth. . . . . . . . . . . . . . . . . . . . 105

7.2 Table 2 from ([Stevenson 2012a]; Appendix 6). “RCPs recommended for use in AR5.
Modeling groups are: the Asia-Pacific Integrated Model (AIM), the Model for Energy
Supply Strategy Alternatives and their General Environmental Impact (MESSAGE),
the Mini-Climate Assessment Model (MiniCAM), and the Integrated Model to Assess
the Global Environment (IMAGE).” . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



List of Figures

1.1 First principal component of SST variability between 1980-2010, generated using the
HadSST2 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Plate 2 from [Wang 2004], showing variations in El Niño onset. a) Mean March-May
anomaly during the El Niño years between 1950-1976; b) same as a) for 1976-1996;
c) same as a) for the 1997-98 event; d) December 2001-February 2002 SST anomaly
(onset of 2002-03 El Niño.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Figure 1 from [Wang 2004], illustrating the negative feedbacks which make up
the unified oscillator. Pictured here are wave reflections at the eastern bound-
ary [Picaut 1997] and the western boundary [Suarez 1988, Battisti 1989], leading to
Rossby and Kelvin waves respectively; meridional heat transport due to anomalous
Sverdrup transport [Jin 1997]; and wind-forced Kelvin waves in the western Pacific
[Weisberg 1997, Wang 1999]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Wintertime teleconnections with El Niño (courtesy of the NOAA Climate Prediction
Center). La Niña teleconnections generally are the reverse of El Niño, although the
pattern is not perfectly symmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Reproduction of Figure 4 from [Trenberth 1998]. “Schematic view of the dominant
changes in the upper troposphere, mainly in the northern hemisphere, in response
to increases in SSTs, enhanced convection, and anomalous upper tropospheric di-
vergence in the vicinity of the equator (scalloped region). Anomalous outflow into
each hemisphere results in subtropical convergence and an anomalous anticyclone
pair straddling the equator, as indicated by the streamlines. A wave train of al-
ternating high and low geopotential and streamfunction anomalies results from the
quasi-stationary Rossby wave response (linked by the double line). In turn, this typ-
ically produces a southward shift in the storm track associated with the subtropical
jet stream, leading to enhanced storm track activity to the south (dark stipple) and
diminished activity to the north (light stipple) of the first cyclonic center. Corre-
sponding changes may occur in the southern hemisphere.” . . . . . . . . . . . . . . . 10

1.6 Reproduction of Figure 2 from [Turner 2004]. “Schematic illustration of the pattern
of upper tropospheric height anomalies over the Pacific Ocean during the early stage
of an ENSO event in the Southern Hemisphere winter (June-August). The stippling
shows the region of enhanced convection over the central equatorial Pacific and the
arrows indicate the westerly wind anomalies in the jet streams. From [Karoly 1989]” 13



List of Figures ix

1.7 Figure 3 from [Collins 2010]. “Projected changes in the amplitude of ENSO vari-
ability, as a response to global warming, from the CMIP3 models. The measure is
derived from the interannual standard deviation (s.d.) of a mean sea-level-pressure
index, which is related to the strength of the Southern Oscillation variations. Positive
changes indicate a strengthening of ENSO, and negative changes indicate a weaken-
ing. Statistical significance is assessed by the size of the blue bars, and the bars
indicated in bold colours are from those CMIP3 CGCMs that are judged to have the
best simulation of present-day ENSO characteristics and feedbacks.” . . . . . . . . . 21

2.1 Schematic illustrating potential methods of ENSO model validation. . . . . . . . . . 29

2.2 Figure 4 from [McGregor 2011a], showing various time series generated from living
Kiritimati corals. Top: transects across the same coral at various angles to the growth
direction. Bottom: δ18O time series from various corals collected on Kiritimati. . . 30

2.3 Reproduction of Figure 1 from [Lough 2010]: diver collecting sample from massive
Porites coral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Figure 1a from [Stevenson 2011c], showing errors in linear pseudoproxy conversion.
Background colors represent the leading PC of HadSST over 1958-1990; gray bars
show the variance of δ18O over the same time period, and red bars the variance of
errors arising from the linear pseudoproxy estimation. . . . . . . . . . . . . . . . . . 35

2.5 Verification that coral δ18O PC1 contains ENSO-related variability. Time series of
the first PC is shown in black, NINO3.4 SST in red. . . . . . . . . . . . . . . . . . . 37

2.6 Figure 2a from [Stevenson 2011c], showing errors in coral δ18O spectra from linear
pseudoproxy estimation. Local (red) and dating (yellow) uncertainties are applied to
the individual δ18O time series before computing the first PC. Errors in pseudoproxies
are calculated from Equation 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Figure 2b from [Stevenson 2011c], illustrating uncertainties in quantitative model
ENSO validation using linear pseudoproxies. Here the pseudo-PC1 from each ensem-
ble is shown in blue, and the associated errors in gray. . . . . . . . . . . . . . . . . . 39

2.8 Figure 1c from [Stevenson 2011c], showing 2-7 year bandpass filtered δ18O versus
NINO3.4 SST for Kiritimati. Time is indicated by the color coding. . . . . . . . . . . 40

2.9 Fraction of false nearest neighbors as a function of embedding dimension, for all coral
records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Figure 3 from [Stevenson 2011c]. Error analysis for estimation of NINO3.4 SST
spectra using climate field reconstruction (RegEM). Errors are once again shown as
envelopes: local/age model effects (yellow), dating uncertainties (red) and ensemble
scatter from CCSM (purple). Here two different RegEM reconstructions are per-
formed to illustrate the effects of varying the calibration interval: 1965-1990 (green)
and 1958-1970 (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Figures x

2.11 Comparison of NINO3.4 SST variances from different sources. Black: HadSST version
2. Red: Box-average over NINO3.4 of the SST field reconstruction of [Evans 2002].
Blue: Application of RegEM using a calibration interval from 1939-1986. Box height
is equivalent to the bootstrap 90% confidence interval. . . . . . . . . . . . . . . . . . 45

2.12 Figure 3a from [Stevenson 2011c], showing the influence of sampling error on RegEM
reconstructions of NINO3.4 SST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Figure 1 from ([Stevenson 2010]; Appendix 2). “Probability distribution functions
for mean NINO3.4 wavelet power. The gray line represents the median value for the
model simulation, while the white line is the mean value generated using the CORE
hindcast. Dashed black lines correspond to the 25th and 75th percentile values for
the model simulation (interquartile range).” . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Schematic illustrating the calculation and distribution of the wavelet probability in-
dex. a) WPI value for a single comparison. b) generation of the WPI distribution;
dissimilar (similar) subsamples have small (large) WPI. . . . . . . . . . . . . . . . . . 54

3.3 Figure 2d from [Stevenson 2011b], showing the WPI distributions generated from
comparing subintervals of the CCSM4 20th and 21st century simulations with subin-
tervals of the CCSM4 1850 control simulation. Here 30 years is used as the length
for all sampling intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Selected panels from ([Stevenson 2010]; Appendix 2)Figure 3, showing the results of
testing the CCSM3.5 and CM2.1 control simulations against one another using the
CORE hindcast as a reference. In all panels, confidence levels plotted range from 0
(agreement) to 1 (disagreement). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Selected panels from ([Stevenson 2010]; Appendix 2)Figure 3, showing the results
of testing the CCSM3.5 and CM2.1 controls against observations (CORE hindcast).
Subinterval length used here is 55 years. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Selected panels from ([Stevenson 2010]; Appendix 2)Figure 2, showing the 90% confi-
dence intervals on WPI distributions generated from the CCSM3.5. Left: self-overlap
calculations. Right: model/data distribution using the CORE hindcast. . . . . . . . 58

3.7 Figure 2 from ([Stevenson 2010]; Appendix 2), showing the regression of 90% con-
fidence interval widths against subinterval length, for self-overlap calculations. CC-
SMcontrol (NCAR CCSM3.5) data appears as red X’s, GFDL CM2.1 as blue squares
and IPSL CM4 as green circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Self-overlap regressions for (a) red and (b) white noise spectra. . . . . . . . . . . . . 61



List of Figures xi

4.1 Figure 3 from ([Stevenson 2011b]; Appendix 3): “Summary of changes to the atmo-
sphere/ocean mean state between CCSM4 ensembles. Lefthand column: ensemble-
mean pattern of changes between RCP8.5 and the 20th century, with boxes indicating
averaging regions. Righthand column: distribution of regionally-averaged diagnostics
for each ensemble, corresponding to the quantity on the left, as a function of CO2

stabilization level. (a) SST (◦C); (b) Thermocline depth (Z20); (c) Vertical temper-
ature profile (◦C); (d) Wind stress magnitude (N/m2); (e) Precipitation (mm/day).
Note that panel h shows the vertical temperature derivative dT/dz rather than the
mean value of T(z); here z is positive downwards, and dT/dz has units of ◦C/m.
In all righthand panels, the horizontal lines inside the boxes indicate the ensemble
median, the extent of the boxes the distance between the 25th and 75th percentiles,
and the whiskers the 2.5th and 97.5th percentiles. Where present, + symbols indicate
outliers. All box averages on the right-hand side show the averages inside the boxes
drawn on the lefthand panels: with the exception of panel h, which instead shows
the vertical derivative of temperature averaged inside the box in panel c. ” . . . . . . 66

4.2 Figure 1b from ([Stevenson 2011b]; Appendix 3), showing spectral ‘envelopes’ for the
NINO3 SST time series from the CCSM4 ensembles. Spectra are calculated using
a Morlet wavelet transform of the SST timeseries. Envelopes for the ensembles are
calculated by finding the maximum and minimum at each wavelet scale from spectra
of each ensemble member. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Figure 2a from [Stevenson 2011b], showing bandpassed NINO3 SST variance from
the CCSM4 ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Figure 4 d,h,l from [Stevenson 2011b], showing the delayed response of the ocean to
climate change in RCP 8.5. Lefthand panel shows difference maps taken between the
first and second halves of the run: (2051-2100) - (2005-2050). Middle panel shows
the vertical profiles of temperature averaged over the three boxes pictured at left:
equatorial (EQ), northern (N) and southern (S). In these panels, the solid lines show
the vertical profiles for the first half of the run and the dashed lines the profiles for
the second. Righthand panel shows the time series of thermocline depth averaged
over the same regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 NINO3 spectra for the 20th century, RCP4.5 and RCP 8.5 ensembles using: a) the
CanESM2, b) the IPSL CM5A, and c) the CSIRO Mark 3.6. . . . . . . . . . . . . . . 71

4.6 Panels a and d from Figure 5 in [Stevenson 2011b]: El Niño DJF. “a) Composite for
20th century ensemble. d) RCP 8.5 - 20th c. In all panels, surface air temperature
(◦C) is shown in color and sea level pressure (hPa) is shown in contours (contour in-
terval 0.25 hPa). Negative anomalies are indicated as blue colors or dashed contours.
In panel d, SLP anomalies significant at 90% are indicated by thicker contours, and
only the significant surface air temperature values are plotted.” . . . . . . . . . . . . 72

4.7 Panels a and d from Figure 5 in [Stevenson 2011b]: same as Figure 4.6 for La Niña
DJF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Panels a and d from Figure 5 in [Stevenson 2011b]: La Niña JJA. . . . . . . . . . . . 74



List of Figures xii

5.1 Figure 1a,b from ([Stevenson 2012b]; Appendix 5), showing a) the simulated NINO3.4
time series and b) the seasonal variance from the Markov GLM model. . . . . . . . . 79

5.2 Figure 3 from ([Stevenson 2012b]; Appendix 5). “Lag-correlation maps with NINO3.4
SST, lag 3 months. a) SST, b) thermocline depth, c) zonal wind stress, d) submonthly
zonal wind stress variance. Black boxes indicate the positions of the averaging regions
used to generate the Markov GLM predictors, which are labeled according to the
naming conventions in Table 5.1. Note that panel d uses a different color scale than
panels a-c, owing to the much smaller correlations with wind stress variance.” . . . . 81

5.3 Figure 2 from ([Stevenson 2012b]; Appendix 5). “El Niño/La Niña statistics for
the 21st century ensembles, simulated using the Markov GLM. Solid lines indicate
the PDF for the 20th century, with red and blue indicating El Niño and La Niña,
respectively. Event magnitudes appear in panels a-c; El Niño persistence in d-f; and
La Niña persistence in g-i.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Figure 1a from ([Stevenson 2011a]; Appendix 4), showing the variability of the NINO3
SST. Spectra for 100-year subsamples of each simulation are calculated using the
Morlet wavelet transform, and envelopes represent the scatter between them. . . . . 90

6.2 Figure 2a,b from ([Stevenson 2011a]; Appendix 4), showing bandpassed NINO3 SST
variances bandpassed between a) 2-4 years and b) 5-7 years. . . . . . . . . . . . . . . 91

6.3 Figure 3b,e,h from ([Stevenson 2011a]; Appendix 4), showing changes in the mean
atmospheric state between PD and PI. b: Wind stress magnitude (colors) and di-
rection (arrows). e: Precipitation. h: Vertical pressure velocity ω. Yellow boxes
show the approximate positions of the Rossby wave pathways active in the SFM-like
mechanism discussed in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Figure 5a,b from [Stevenson 2011a], showing the mean changes to the circulation in
the STC between PD and PI (units of Sv). . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Panels b,e,h from ([Stevenson 2011a]; Appendix 4)Figure 7, illustrating the oceanic
variability in the 2-4 year band in PD. Left: SST. Middle: Thermocline depth (Z20.5).
Right: Subsurface ocean temperature. In all panels, PD values are given in contours
and the % difference from PI in color shading. . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Reproduction of Figure 8 from ([Stevenson 2011a]; Appendix 4). Variability in sub-
surface ocean temperature (variance of gridpoint time series, bandpass filtered with
3dB points at 2 and 4 years). Thick solid lines indicate the mean position of the
thermocline; dashed lines show the ±1σ uncertainty on the mean thermocline position. 96

6.7 Figure 4-5 from [Xie 2004], a schematic illustrating the WES feedback. . . . . . . . . 97

6.8 Figure 9 from ([Stevenson 2011a]; Appendix 4), showing the 2 month - 2 year band-
passed variance in zonal wind stress. “a) Zonal wind stress variance στ for PI (N2/m4).
b) % change in στ between PD and PI. Black boxes indicate the position of the SFM-
like pathways, and are identical to the regions defined in Figure 6.3.” . . . . . . . . . 99



List of Figures xiii

6.9 Figure 9 from ([Stevenson 2011a]; Appendix 4): Lag-correlations between the curl of
the wind stress and thermocline depth at zero lag. Correlations for PI are shown as
contours in panel a); in panels b-c contours indicate the values of the lag-correlations,
while colors show the percentage change from PI. Black boxes are identical to those
in Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.10 Bandpassed standard deviations of thermocline depth, with 3dB points at 5 and 7
year periods. Contours indicate the magnitude of the standard deviation (m2), and
colors show the percentage change relative to the lower-CO2 end member in each
comparison. These correspond to (PD-PI)/PI (left) and (HC-PD)/PD (right). . . . . 102

6.11 Bandpassed standard deviation of zonal wind stress, with 3dB points at 5 and 7 year
periods. Contours and colors follow the same convention as Figure 6.10. . . . . . . . 103

7.1 Figure 5 from [Moss 2010]. MESSAGE (RCP 8.5) is shown in gray, AIM (RCP 6.0)
in blue, GCAM/MiniCAM (RCP 4.5) in pink and IMAGE (RCP 2.6) in green. (a)
Top-of-atmosphere radiative forcing, W/m2. (b) CO2 emissions in gigatons. . . . . . 106

7.2 a) Figure 2 from [Pielke Jr. 2008], showing decarbonization for the SRES scenarios
over 2000-2010. b) Figure 3 from ([Stevenson 2012a]; Appendix 6), showing the same
quantities for the RCP baseline scenarios. . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 A reproduction of Figure 4 from ([Stevenson 2012a]; Appendix 6), showing figures
from the literature on each RCP. “(a) Figure 3.7 from [Weyant 2009], showing the
contribution to emissions reductions by fuel type for RCP2.6. Here ‘IND’ refers to
the developed countries and ‘DEV’ to those in the developing world. (b) Figure
4.11 from [Clarke 2007], showing projected global energy emissions by fuel type for
RCP4.5. Values shown are the differences between the RCP4.5 pathway and the
GCAM ‘reference’ scenario. (c) Figure from the IPCC Special Report on Carbon
Capture & Storage, showing energy use by fuel type for RCP8.5.” . . . . . . . . . . . 110

8.1 Reproduction of Figure 13 from ([Stevenson 2011a]; Appendix 4). Sub-monthly zonal
wind stress variance (N2/m−4). a: Mean variance for PI (CCSM3.5), years 200-1000.
b: Difference between HC and PI (CCSM3.5), years 200-1000 for both. c: Mean
variance for RCP 4.5 (CCSM4), years 2250-2299. d: Difference between RCP4.5 and
the CCSM4 1850 control (years 800-1299). Note that in panels b,d, the units are %
(given relative to PI for panel b, CCSM4 1850 control for panel d). . . . . . . . . . . 124



Foreword

I would like to start this dissertation with some advice that I got from Brian Toon when I first began
the PhD program at CU. He told our incoming class about the process of research, and pointed out
that there is one key ability without which it is nearly impossible to successfully complete a research
project. That is: the ability to state the purpose of your project in a single sentence... or ideally, as
a single question. So I have included the underlying questions from each of the component projects
that make up my dissertation as the titles of the corresponding chapters. But fundamentally, all of
the work that has gone into all of the projects has been aimed at answering one single question:

How will anthropogenic climate change affect tropical climate variability?

And over the course of my PhD, I have realized that before answering that question, one has to
think about an even more fundamental one that all too often goes both unasked and unanswered:

How well do we know what we think we know about the climate system?

For my PhD work, I have been focusing on tropical ocean dynamics and specifically the El
Niño/Southern Oscillation, but I would like to continue to expand my research horizons over the
course of my career. What I would really most like to know is:

How will anthropogenic climate change affect the world we live in?

I hope that this dissertation successfully explains what I have done so far and motivates what I
would like to do in the future.
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1.1 Historical Background

The phenomenon now known as the El Niño/Southern Oscillation (ENSO) has a long and interesting

history. It was first noticed by fishermen in northern Peru, who named the abnormally warm current

which arrived during the winter of certain years after ‘El Niño’, or the Christ child. During an El

Niño, unusually warm waters led to enhanced precipitation along the South American coast, which

affects both agriculture and the health of local ecosystems. Study of the El Niño phenomenon in

Peru began in earnest during the late 1800s, when the Peruvian currents were documented and

related to changes in local rainfall [Carranza 1891, Carillo 1892].

ENSO was originally named for an oceanic phenomenon, but we now know that it could not

exist without communication with the atmosphere. The Southern Oscillation is the atmospheric

component of ENSO, and is often measured using the difference in sea level pressure between Tahiti
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and Darwin (northern Australia). Discovery of the Southern Oscillation took place around the

same time as work on El Niño: the first identification of the Southern Oscillation was made by

[Hildebrandsson 1897], who measured pressure differences between Sydney and Buenos Aires.

Sir Gilbert Walker was the first to provide a systematic analysis of sea level pressure variability

across the Pacific: spatial correlations were mapped out for the first time in [Walker 1924]. The sem-

inal papers by [Walker 1932, Walker 1937] built on the lag-correlations identified in [Walker 1924],

in an effort to identify coherent patterns which would enable long-term predictability. This turned

out to be much more difficult than anticipated, but the indices identified by Walker for the North

Atlantic and North Pacific Oscillations are still in widespread use today.

Figure 1.1: First principal component of SST variability between 1980-2010, generated using the
HadSST2 dataset.

We now know that the Southern Oscillation’s ‘seesaw’ in sea level pressure between the eastern

and western Pacific is driven by large-scale changes in the tropical atmospheric circulation. But

it was not until 1969 that a consistent physical explanation for this behavior was put forth, by
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Jacob Bjerknes. Previous to this, a connection between SST and Pacific rainfall had been suggested

[Leighly 1933] but did not receive much attention: the Bjerknes paper provided the physical in-

sight necessary to tie everything together. Bjerknes proposed that anomalously warm sea surface

temperatures (SSTs) in the central and eastern Pacific were a consequence of anomalously weak

equatorial trade winds, which led to anomalously cold SSTs in the western Pacific. The weaker

western Pacific convection then requires that the zonal flow aloft must weaken, as a consequence

of continuity. Bjerknes named the overturning pathway the ‘Walker Circulation’ after Sir Gilbert

(who had died roughly 10 years previously).

The trade wind-SST relation described above is often referred to as the ‘Bjerknes feedback’,

which simply describes the tendency of an SST anomaly to lead to a wind stress anomaly which

reinforces the initial disturbance. For example: an initial warm SST anomaly in the eastern Pacific

weakens the Walker circulation [Gill 1980, Lindzen 1987] and is self-sustaining. Thus events can

persist throughout the winter and into the following spring, as was the case for the strong El Niños

observed during recent years [Rasmusson 1982]. The Bjerknes feedback, in other words, is what

allows an El Niño event to grow.

The strong El Niño event of 1982-3 provided the impetus for establishing a moored observational

network for monitoring ENSO. The size and persistence of the El Niño was not correctly predicted

by any forecasting system at the time, nor was it even detected until months after the start of

the event [McPhaden 1998]. The late detection was partly due to the neglect of real-time reports

of extremely warm SST during the fall of 1982, which were ignored because the preconditioning

thought to be essential for El Niño had not occurred. This included stronger-than-normal trade

winds [Wyrtki 1975] and abnormal warming off the western coast of South America during boreal

spring [Rasmusson 1982], neither of which were detected.

After the shock of the 1982-3 El Niño, the Tropical Ocean-Global Atmosphere (TOGA) program

[WCRP 1995], already in the planning stages at the time, was given even higher priority by the

scientific community. This program was designed to provide real-time, in situ observations of wind

stresses, SST, and subsurface ocean conditions, and has proved to be one of the most successful
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oceanographic observational campaigns ever conducted.

Plate 2. SST anomaly composites showing the differences in the onset of El Niño over the last five decades. (a) El Niño
between 1950 and 1976, (b) El Niño between 1977 and 1996, (c) the 1997–98 El Niño, and (d) the 2002–03 El Niño. The
composites are calculated by averaging the SST anomalies during March–May of the El Niño year. Since the 2002–03 El
Niño started earlier, its composite used the SST anomalies of December 2001 to February 2002.
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Plate 1. In situ components of the ENSO observing system. The four major elements are the TAO/TRITON array of
moored buoys (red diamonds), an island tide-gauge network (yellow circles), surface drifters (arrows), and the volunteer
ship program (blue lines). Various satellites are intensively used to complement the in situ network. This ensemble of
instruments delivers in near-real time data on surface and subsurface temperature and salinity, wind speed and direction,
sea level, and current velocity (Courtesy of Michael J. McPhaden, TAO Project Office).

Figure 1.2: Plate 2 from [Wang 2004], showing variations in El Niño onset. a) Mean March-May
anomaly during the El Niño years between 1950-1976; b) same as a) for 1976-1996; c) same as a)
for the 1997-98 event; d) December 2001-February 2002 SST anomaly (onset of 2002-03 El Niño.)

Since the establishment of TOGA, the diversity of behavior among El Niño events has become

clear: the same is true for La Niña, as the cold phase of the oscillation is now called. The overall

‘shape’ of ENSO is classically a horseshoe-like pattern in SST, with the strongest anomalies in the

eastern equatorial Pacific. An example is shown in Figure 1.1, which depicts the first principal

component of SST variability over the 1980-2010 period. The SST anomaly pattern for individual

events, however, can differ markedly: for some El Niños, the anomalies form first in the eastern

Pacific, and for others the warming begins in the central Pacific (Figure 1.2). The wind patterns

associated with these events also change dramatically depending on the location and strength of the

SST anomalies, which has important implications for the atmospheric impacts of individual events

(see Section 1.3).

1.2 Overview of ENSO Dynamics

The major dynamical ‘ingredients’ for ENSO are:
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1. A positive feedback between the trade winds and sea surface temperature

2. A negative feedback delayed in time from a developing SST anomaly

The first allows an El Niño/La Niña to grow; the second allows the oscillation to switch phases.

As discussed previously, the positive SST/wind stress feedback is that of [Bjerknes 1969]: an increase

in the Walker circulation increases trade wind strength and therefore creates a larger zonal SST

gradient which further increases the Walker circulation. The discovery of a negative feedback to

halt the developed event, however, took substantially longer: in fact, multiple negative feedbacks

likely operate simultaneously.

Four major feedbacks have been proposed as part of theoretical ‘oscillator’ models for ENSO

[Wang 2004]. Western boundary wave reflection is used in the delayed oscillator mechanism of

[Battisti 1989, Suarez 1988]. Discharge of heat from the tropics is cited in the [Jin 1997] recharge

oscillator. The western Pacific oscillator of [Weisberg 1997, Wang 1999] uses a wind-forced Kelvin

wave initiated in the western Pacific warm pool. Finally, anomalous zonal advection was pro-

posed as the negative feedback mechanism in [Picaut 1997]‘s advective/reflective oscillator. In

reality, these mechanisms are likely to be dynamically linked and are thus not truly independent

[Picaut 2002], which was one reason for the development of the so-called ‘unified oscillator’ treatment

by [Wang 2001]. The unified oscillator allows all four negative feedbacks to operate simultaneously,

so that all of them contribute to the damping of an El Niño/La Niña event.

All of the oscillator models for ENSO have one thing in common: they assume that the dominant

mode of variability is self-sustaining. For some model parameter values, a regular oscillation occurs

at a single period: for others, chaotic behavior is observed [Wang 1996, Neelin 1993, Wang 2001]. In

either case, the oscillation persists once it has begun. An alternative but equally valid approach is

to view ENSO as a stochastic perturbation about a stable mean state. In the stochastic framework,

events are triggered individually, and the maintenance of an oscillation is not guaranteed. This is

the so-called ‘series of events’ framing [Kessler 2002].
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, (1a)

, (1b)

, (1c)

, (1d)

where T is SST anomaly in the equatorial eastern Pacific, h is
thermocline depth anomaly in the off-equatorial western
Pacific, and τ1 and τ2 are zonal wind stress anomalies in the
equatorial central Pacific and in the equatorial western Pacific,
respectively. The parameters a, b1, b2, b3, c, d, and e are con-
stants. The parameters η, δ, µ, and λ represent the delay times.
The parameters ε, Rh, Rτ1, and Rτ2 are damping coefficients.

The first term on the right-hand side (RHS) of equation (1a)
represents the positive feedback in the coupled system. The
second term represents the negative feedback due to wave
reflection at the western boundary. The third term represents
the negative feedback due to the wind-forced wave contribu-
tion in the equatorial western Pacific. The fourth term repre-
sents the effect of wave reflection at the eastern boundary. The
last term is a cubic damping term that does not affect oscilla-
tory behavior, but it limits anomaly growth [Battisti and Hirst,
1989; Wang, 2001a]. Equation (1b) states that the off-equato-

rial western Pacific thermocline anomaly is controlled by the
wind stress in the equatorial central Pacific, with a damping rate
of Rh. Equation (1c) shows that zonal wind stress anomaly in
the equatorial central Pacific is related to the eastern Pacific
SST anomaly, and equation (1d) states that the zonal wind
stress anomaly in the equatorial western Pacific is related to the
off-equatorial western Pacific thermocline anomaly. By further
simplifications and assumptions, the unified oscillator can
reduce to the different ENSO oscillators.

3.1.1. The delayed oscillator. The delayed oscillator (Fig-
ure 2) does not consider the coupled role of the western Pacific
in ENSO and wave reflection at the eastern boundary. By set-
ting b2 = 0 and  b3 = 0 in equation (1a), the western Pacific
variables τ2 and h are decoupled from the coupled system. If we
further drop the time derivative of equation (1c), the unified
oscillator reduces to:

. (2)

Equation (2) is the delayed oscillator of Suarez and Schopf
[1988] and Battisti and Hirst [1989]. The first term on RHS
of equation (2) represents the positive feedback by ocean-
atmosphere coupling in the equatorial eastern Pacific, i.e.,
the Bjerknes feedback. The second term is the delayed nega-
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Figure 1. Schematic diagram of the unified oscillator for ENSO. Bjerknes positive ocean-atmosphere feedback leads the
equatorial central/eastern Pacific to a warm state (El Niño). Four negative feedbacks, required to turn the warm state
around, are (1) reflected Kelvin wave at the ocean western boundary, (2) discharge process due to Sverdrup transport, (3)
western Pacific wind-forced Kelvin wave, and (4) reflected Rossby wave at the ocean eastern boundary. These negative feed-
backs correspond to the delayed oscillator, the recharge oscillator, the western Pacific oscillator, and the advective-reflec-
tive oscillator. The unified oscillator suggests that all of the four negative feedbacks may work together in terminating El
Niño warming. The four ENSO oscillators are special cases of the unified oscillator.

Figure 1.3: Figure 1 from [Wang 2004], illustrating the negative feedbacks which make up the unified
oscillator. Pictured here are wave reflections at the eastern boundary [Picaut 1997] and the western
boundary [Suarez 1988, Battisti 1989], leading to Rossby and Kelvin waves respectively; meridional
heat transport due to anomalous Sverdrup transport [Jin 1997]; and wind-forced Kelvin waves in
the western Pacific [Weisberg 1997, Wang 1999].

High-frequency atmospheric noise is a leading candidate for stochastic ENSO forcing. The

‘SST mode’ of [Neelin 1991] is one such mechanism, where events are generated by interaction

between SST and the atmospheric boundary layer. Similar dynamics were described using observed

SST anomalies [Penland 1995]: the ‘optimal growth mode’ for anomalies was diagnosed, in which

atmospheric forcing creates an El Niño event by perturbing the SST gradient. The sources of

atmospheric noise may be varied: the Madden-Julian Oscillation [Madden 1994], westerly wind

bursts [Gebbie 2007, Tziperman 1997], or even the cumulative effect of a variety of perturbations

[Kleeman 2006, Kleeman 2008] have all been proposed.

In reality it is likely that both stochastic ‘SST’ and subsurface ‘oscillator’ modes occur [Jin 1993,

Neelin 1993]. Indeed, observations of ENSO events over the past few decades [McPhaden 2009,

Wang 2002] have identified both types of dynamics through an investigation of the propagation

direction of SST anomalies: thermocline-driven anomalies tend to propagate eastward as equatorial

Kelvin waves [Fedorov 2001], while SST-driven anomalies propagate westward as a consequence of
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the thermally induced wind stresses [Gill 1980].

The question of inter-event differences leads naturally to a consideration of decadal vari-

ability. This gained popularity as a result of the changes observed in 1976-7, now widely

cited as a ‘regime shift’ [Ebbesmeyer 1991, Graham 1994, Hare 2000] where the behavior of

ENSO changed significantly. Additional regime shifts have since been proposed at earlier times

[Kondo 1988, Mantua 1997, Zhang 1997]. The extratropics are now invoked to explain regime shifts,

and the ‘North Pacific Oscillation’ (NPO; [Gershunov 1998]) or ‘Pacific Decadal Oscillation’ (PDO;

[Mantua 1997]) has since become widely accepted as a possible mechanism.

Reviews of mechanisms for extratropical ENSO influences are numerous [Latif 1998, Miller 2000,

Minobe 2000, Mantua 2002, Wang 2004]. In the ocean, subduction of anomalously warm/cold water

has been hypothesized to affect the equator [Deser 1996, Zhang 1998] through modulations of the

subtropical cell [Gu 1997, McCreary 1994]. However, disagreement remains as to the importance

of STCs to decadal variability [Schneider 1999b, Izumo 2002], since models indicate that tropical

decadal variability is not controlled by transport from the subtropics [Schneider 1999a]. The amount

of water transported into the thermocline may be more important [Kleeman 1999].

Finally, the role of the seasonal cycle should be discussed. The ‘phase-locking’ of ENSO to the

boreal winter months has been well documented in both observations [Rasmusson 1982] and models

[Xie 1995, Guilyardi 2006], and has been proposed as a source of ENSO’s irregularity. Previous

modeling studies [Chang 1995, Tziperman 1997, Jin 1994] showed that an interaction between the

seasonal cycle and interannual variability could lead to a transition between periodic and chaotic

regimes. The seasonal cycle has also been linked to El Niño initiation and termination through

seasonal shifts in the equatorial trade winds [Lengaigne 2006] and corresponding effects on atmo-

sphere/ocean feedbacks. Seasonal changes in the extratropical SST may also lead to the initia-

tion of an El Niño/La Niña [Alexander 2002, Alexander 2010]: this is discussed in more detail in

([Stevenson 2011a]; Appendix 4).
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1.3 Atmospheric Teleconnections

The societal impacts of ENSO are felt through indirectly forced variations in the atmosphere: out-

side the tropical Pacific, these impacts are referred to as teleconnections. The basic idea behind

atmospheric teleconnections is that a tropical SST anomaly leads to changes in the tropical circula-

tion, which in turn affects circulation in the extratropics [Lau 1997, Trenberth 1998, Hoerling 2002].

Anomalies in SLP and precipitation associated with El Niño in the extratropics have been summa-

rized by [Ropelewski 1987] and are depicted graphically in Figure 1.4.

Figure 1.4: Wintertime teleconnections with El Niño (courtesy of the NOAA Climate Prediction
Center). La Niña teleconnections generally are the reverse of El Niño, although the pattern is not
perfectly symmetric.

The tropospheric response to ENSO has both a zonally symmetric and an asymmetric com-

ponent. Zonal-mean surface air temperatures are warmer during the El Niño and colder during

the La Niña phases of the oscillation [DeWeaver 2002]. For example, during El Niño when sur-

face air temperatures are warmer, the upper troposphere is heated in the west Pacific due to the

latent heat released from the additional convection; in the east Pacific, adiabatic heating from
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increased subsidence takes place [Trenberth 1998, Horel 1981]. The zonal-mean surface air temper-

ature anomalies in the subtropics are of opposite sign to the tropical anomalies, which combined

with the corresponding geopotential height anomalies leads to an induced westerly anomaly aloft

between 20-30◦N [Clarke 2008].

Zonally asymmetric anomalies are created by extratropical Rossby wave activity

[Trenberth 1998, Holton 2004, Horel 1981]. The anomalous convection associated with ENSO cre-

ates anomalous upper tropospheric divergence; the net effect is an alternating series of cyclones

and anti-cyclones carrying energy to the extratropics (Figure 1.5). The wave train response has

an impact on the position of the storm track; typically the track shifts southward during El Niño,

which in turn influences precipitation over the United States. This effect has since been replicated

with dynamical models [Branstator 1983, Hoskins 1981, Webster 1981].

Here I focus on teleconnections with three regions, which are important for later analyses: the

North Pacific/western United States, Australasia, and the Southern Ocean.

North Pacific/United States. In the North Pacific, anomalies in SLP associated with ENSO

are typically in the form of an unusually strong Aleutian Low during El Niño and a blocking high

during La Niña [Hoerling 2002, Deser 1995]. The teleconnection (often referred to as the Pacific-

North American, or PNA) is strongest during boreal winter when the event is at peak intensity. The

primary mechanism for the PNA is the transport of energy between the tropical and extratropical

eastern Pacific; this takes place through the action of Rossby waves. [Hoskins 1981] showed that

the dispersion of energy from a barotropic quasi-stationary Rossby wave source should be primarily

poleward and eastward of the source; in this case, the storm track. Since then, numerous other

factors have been identified which are important for the PNA. The vertical structure of tropical

heating anomalies influences their meridional propagation [Ting 1993]; the longitudinal position of

heating can also be important for the midlatitudes [Simmons 1982, Webster 1988, Hoskins 1991].

The midlatitude jets themselves can also control the propagation of anomalies created in the tropics,

‘guiding’ anomalies into the eastern Pacific [Karoly 1983, Hoskins 1993].

Typically, El Niño events are associated with increased rainfall in the Southwest United States
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Figure 4. Schematic view of the dominant changes in 
the upper troposphere, mainly in the northern hemi- 
sphere, in response to increases in SSTs, enhanced 
convection, and anomalous upper tropospheric diver- 
gence in the vicinity of the equator (scalloped region). 
Anomalous outflow into each hemisphere results in sub- 
tropical convergence and an anomalous anticyclone pair 
straddling the equator, as indicated by the streamlines. 
A wave train of alternating high and low geopotential 
and streamfunction anomalies results from the quasi- 
stationary Rossby wave response (linked by the dou- 
ble line). In turn, this typically produces a southward 
shift in the storm track associated with the subtropical 
jet stream, leading to enhanced storm track activity to 
the south (dark stipple) and diminished activity to the 
north (light stipple) of the first cyclonic center. Cor- 
responding changes may occur in the southern hemi- 
sphere. 

2.2. Decadal Variability Throughout the 
Pacific 

An example of an important teleconnection emerging 
from the tropical Pacific on longer timescales has been 
documented in the North Pacific in winter, with the 
period of the fluctuations exceeding 20 years. In par- 
ticular, a decade-long change in the North Pacific at- 
mosphere and ocean beginning around 1976 and lasting 
until at least 1988 has been noted by Trenberth [1990]. 
A comprehensive review of many related aspects, in- 
cluding linkages to changes in the tropical Pacific SSTs 
which generally increased after 1976, has been given by 
Trenberth and Hurrell [1994]. 

Observed significant changes in the atmospheric cir- 
culation for the 1976-1988 period involve the PNA tele- 
connection pattern (Figure 1), so that there was a 
deeper and eastward shifted Aleutian low pressure sys- 
tem (positive PNA) in the winter half year which ad- 
vected warmer and moister air along the west' coast of 
North America and into Alaska and colder air over the 
North Pacific. Consequently, there were increases in 
temperatures and SSTs along the west coast of North 
America and Alaska but decreases in SSTs over the cen- 
tral North Pacific [Tanimoto et al., 1993; Kawamura, 
1994], as well as changes in coastal rainfall and stream- 
flow and decreases in sea ice in the Bering Sea. Asso- 
ciated changes occurred in the surface wind stress and, 
by inference, in the Sverdrup transport in the North 
Pacific Ocean and had a distinctive signature through- 
out the upper ocean to greater than 400 m depth [Deser 
et al., 1996]. Changes in the mean flow were accompa- 
nied by a southward shift in the storm tracks and as- 
sociated synoptic eddy activity [Trenberth and Hurrell, 
1994] and in the surface ocean sensible and latent heat 
fluxes. The deeper Aleutian low and associated changes 
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Figure 5. Composites of observed anomalies in monthly averaged 500 mbar height (solid con- 
tours are positive, dashed contours negative, contour interval 25 m) and in root-mean-squares of 
500 mbar height fluctuations with timescales of 2.5-6 days (stippling, see scale bar at bottom). 
These composites are based on individual groups of 10 winter months corresponding to opposite 
extremes of selected principal modes of storm track variability in the North Pacific. The specific 
months in each group are listed in Table 2 of Lau (1988) under the headings of (a) P2 High 
Composite, and (b) P2 Low Composite. 

Figure 1.5: Reproduction of Figure 4 from [Trenberth 1998]. “Schematic view of the dominant
changes in the upper troposphere, mainly in the northern hemisphere, in response to increases in
SSTs, enhanced convection, and anomalous upper tropospheric divergence in the vicinity of the
equator (scalloped region). Anomalous outflow into each hemisphere results in subtropical conver-
gence and an anomalous anticyclone pair straddling the equator, as indicated by the streamlines. A
wave train of alternating high and low geopotential and streamfunction anomalies results from the
quasi-stationary Rossby wave response (linked by the double line). In turn, this typically produces
a southward shift in the storm track associated with the subtropical jet stream, leading to enhanced
storm track activity to the south (dark stipple) and diminished activity to the north (light stipple)
of the first cyclonic center. Corresponding changes may occur in the southern hemisphere.”
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[Ropelewski 1996, Cayan 2010, Rasmusson 1982, Cayan 1992, Dettinger 2000, Gershunov 1998].

Teleconnections are more predictable over the Southwest (AZ/NM) than the Mountain West

(CO/UT) states, due to the influence of the Rocky Mountain topography on the upper-level flow

[Rasmusson 1982]. El Niño years generally see enhanced summer rainfall and larger snowpack in

the northern Colorado River Basin, while La Niña winters can lead to enhanced snowpack in the

southern Rockies. However, this influence is not perfectly symmetric between the El Niño and La

Niña phases, and the effect on snowpack is dependent on the seasonal storage of snow from the

previous year [Clark 2001]. This may have important implications for the future availability of wa-

ter in the lower Colorado River Basin and associated reservoir storage levels as the climate warms

[Rajagopalan 2009, McCabe 2007].

Australasia. Teleconnections with the Southern Hemisphere are generally weaker and more

variable than their Northern Hemisphere counterparts [Trenberth 1998]. In Australia, La Niña is

linked with extreme weather events like flooding and cyclone activity, while extreme droughts are

often found during El Niño years [Nicholls 1996]. This is a consequence of the shifts in the Walker

circulation and associated convection, with the eastward shift of the warm pool during El Niño bring-

ing rains further from the Australian coast. El Niño-related droughts have led to increased interest

in operational ENSO forecasting in the area [Power 1999, Kiem 2001, Zhang 1992, Simpson 1993],

especially in the highly subscribed Murray Darling Basin [Smith 2010]. ENSO influences have also

been observed on vegetation [Nicholls 1991, Holmgren 2006], as well as various types of animal life

[Letnic 2005, Howden 2004, Holmgren 2001] and bushfire activity [Skidmore 1987, Lucas 2007].

The Walker cell’s influence is strongest in tropical northern Australia. However in the extrat-

ropics, Rossby wave dynamics become important once again. The wave pattern equivalent to the

PNA in the Southern Hemisphere is often referred to as the Pacific South American (PSA) pat-

tern [Karoly 1989, Mo 1987], and is qualitatively similar to the PNA [Ghil 1991]. This pattern is

believed to dominate due to the prevalence of upper-level westerlies near the equator which allow

tropical divergence-induced heating to be carried by quasi-stationary Rossby waves [Cai 2011].

The Indian Ocean influences Australia as well. Rossby wave trains propagating eastward from
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the Indian Ocean can impact Australian rainfall and temperature [Saji 2003] and are modulated

by the Indian Ocean Dipole (IOD; [Ashok 2003, Risbey 2009]). The IOD connection implies a

strong connection with ENSO activity, since the IOD is strongly correlated with ENSO [Saji 1999].

During the positive phase of the IOD, SSTs are cooler in the western Pacific, leading to suppressed

convection over the Maritime Continent. The reverse is true during negative IOD periods, when

convective activity is enhanced. Convective anomalies during the IOD function analogously to

convection in the Pacific; a warm (cold) SST anomaly will lead to anomalous surface convergence

(divergence) and to divergence (convergence) in the upper troposphere.

Thus far, less work has focused on the role of Indian Ocean diabatic heating anomalies in trigger-

ing teleconnected events than on the North American equivalent. However, recent work [Cai 2011]

indicates that IOD-induced Rossby wave trains [Saji 2003] affect the baroclinic structure of the

troposphere over the Maritime Continent via changes to the mean midlatitude westerlies. Oro-

graphic effects may influence the precise extent of these teleconnections [Hendon 2007], particularly

in southeastern Australia. However, generally speaking a positive IOD can be associated with re-

duced rainfall across the southern part of the country due to the southward shift of the jet stream.

Southern Ocean. Finally, I briefly consider teleconnections with the high-latitude Southern

Hemisphere, which are reviewed in [Turner 2004]. Once again, the communication between regions

relies heavily on Rossby wave trains [Held 1989, Karoly 1989]: generally speaking, the southeastern

Pacific experiences high (low) geopotential height anomalies during El Niño (La Niña). Figure

1.6 shows a schematic of Rossby wave trains propagating towards the Antarctic from the tropical

Pacific; this structure can be generally understood as relating to the PSA through its interaction

with the Antarctic Circumpolar Wave (ACW; [White 1996]). The PSA leads to subtropical SST

anomalies in the South Pacific, which then propagate southwards and are eventually absorbed into

the Antarctic Circumpolar Current (ACC; [Cai 2001]).

Sea ice cover near Antarctica is thought to be influenced by ENSO as well [Turner 2004], al-

though the mechanisms of their interaction are complex. In the Ross Sea (south of New Zealand),

wind forcing plays an important role in controlling sea ice extent. In the South Pacific, the PSA
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Rossby wave trains known as the Pacific North American (PNA) pattern (Rasmusson, 1991; Hoerling and
Kumar, 1997); however, the evidence for ENSO in the South Pacific is not as clear as north of the equator.
Karoly (1989) carried out a superposed epoch analysis of South Pacific upper-air fields and showed that
a wave train was present during the austral winter in ‘warm’ events, which became known as the Pacific
South American (PSA) connection. This wave train affects the synoptic conditions across the southern part
of South America (Ruttlant and Fuenzalida, 1991), as well as the Antarctic Peninsula (Harangozo, 2000).
Karoly’s work covered only three El Niño events that occurred during the period 1972–83, which raises
the question of how stable the results are in the long term. Figure 2 shows the upper tropospheric height
anomalies during winter for the three El Niño events examined by Karoly. The Rossby wave train can be
seen clearly as an arc of high–low–high anomalies extending in a southeasterly direction from the area of
increased convective activity in the central Pacific towards the Antarctic. Figure 3 shows comparable winter-
season 500 hPa height anomaly maps, but derived separately for both El Niño and La Niña events, and based
on all events during the period 1979–99. This period was chosen since high-quality fields are available from
the European Centre for Medium-Range Weather Forecasts reanalysis project (Gibson et al., 1996). The mean
anomaly for El Niño events is very similar to that found by Karoly, with an anticyclonic anomaly over the
Amundsen–Bellingshausen Sea (ABS) and a slightly weaker, cyclonic anomaly centred on 48 °S, 140 °W.
The anomalies found during La Niña events are in almost exactly the same locations as those for El Niño,
but of opposite sign.

Further evidence for the varying nature of the wave train between different phases of the ENSO cycle
was found by Houseago et al. (1998), who carried out a Hovmöller analysis on the Australian daily analyses
for the period 1973–94. They found a propagation of negative height and temperature anomalies from the
subtropics to high-latitude areas of the South Pacific during ‘cold’ events up to the peak of the event, with a
persistence of the anomaly for about a year at subpolar latitudes. For all ‘warm’ events, except 1982, there

Figure 2. Schematic illustration of the pattern of upper tropospheric height anomalies over the Pacific Ocean during the early stage of
an ENSO event in the Southern Hemisphere winter (June–August). The stippling shows the region of enhanced convection over the

central equatorial Pacific and the arrows indicate the westerly wind anomalies in the jet streams. From Karoly (1989)

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 1–31 (2004)

Figure 1.6: Reproduction of Figure 2 from [Turner 2004]. “Schematic illustration of the pattern
of upper tropospheric height anomalies over the Pacific Ocean during the early stage of an ENSO
event in the Southern Hemisphere winter (June-August). The stippling shows the region of enhanced
convection over the central equatorial Pacific and the arrows indicate the westerly wind anomalies
in the jet streams. From [Karoly 1989]”
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teleconnection leads to anomalous southerly flow during El Niño, which leads to colder surface air

temperatures; however, the pre-existing ice extent is also important in determining the magnitude

of the ENSO influence [Weatherly 1991, Harangozo 2000].

Correlations between sea ice and tropical SST indicate that there is a quasi-periodic sea ice signal

which may have a resonant relationship with NINO4 SST [Xie 1994a]. Later studies have since

shown a link between surface air temperature and sea ice extent in the Amundsen-Bellingshausen

Sea (≈ 60◦S, 120 − 130◦E) with a lag time of 6 months [Yuan 2000, I. 1995]. The teleconnection

patterns observed in the CCSM4 20th/21st century simulations seem to be consistent with these

results, and will be documented in Chapter 4.

1.4 Modeling ENSO

The simple oscillator models of Section 1.2 do not capture stochastic forcing or extratropical telecon-

nections: fully coupled atmosphere-ocean models are required to correctly represent ENSO. The first

such model (the ‘Zebiak-Cane’ model) was developed by [Zebiak 1987], which was able to reproduce

the overall spatial structure, amplitude, and period of the oscillation. The Zebiak-Cane model is still

often used for long-term ENSO studies due to its inexpensive computational setup: but it represents

the tropics only, excluding potentially important extratropical processes. This model also relies on a

prescribed annual cycle, which is not an accurate assumption since interaction between the seasonal

cycle and ENSO can be quite important [Lengaigne 2006, Tziperman 1997, Neelin 2000, An 2001].

Representing the full spectrum of coupled atmosphere-ocean physics requires the use of a gen-

eral circulation model (GCM), but ENSO representation in GCMs has historically been fairly

poor. Previous to the Fourth Assessment Report of the intergovernmental Panel on Climate

Change (IPCC), the majority of GCMs were not able to accurately reproduce ENSO-like oscil-

lations [Meehl 1989, Sperber 1987, Meehl 1990], though some aspects of variability were captured.

[Neelin 1992] summarized the state of the art in modeling ENSO at the time, including ‘simple’

models with a reduced set of atmospheric physics, atmospheric GCMs, and fully coupled GCMs.
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There was a huge spread in the representation of tropical variability in the models: some showed

SST anomalies propagating across the Pacific, while in others the anomalies developed in a single

location. Some models exhibited very weak tropical SST variability, sometimes so weak that vari-

ability could not be classified. The differences between models could not be fully explained by those

authors, but they concluded that model resolution and variations in climatological mean state were

likely important.

Large improvements in model ENSO have been made since the 1990s. [AchutaRao 2002] re-

viewed model performance for the Coupled Model Intercomparison Project (CMIP2), and found

that performance was substantially better, but that the models still had major problems. At this

time, flux correction was still a common practice in GCM studies: top-of-atmosphere radiative fluxes

were specified to prevent the model mean state from rapidly falling out of equilibrium. Roughly half

the CMIP2 models employed flux correction, which improved the mean state biases but generally

did not improve ENSO behavior. The majority of models also showed an overly rapid and regular

ENSO. Some of these errors were attributed to poor representation of wind stress field [Davey 2002],

which were proposed to lead to problems in SST. Also generally speaking, the CMIP2 models were

unable to place ENSO-related variability in the correct location: variations were displaced to the

west [Latif 2001].

The next generation of coupled GCMs (the CMIP3 models) shows improvement

[AchutaRao 2006, Guilyardi 2009b, Meehl 2007a]. The CMIP3 models avoid flux correction for

the most part, and are generally better at reproducing the overall ENSO frequency. The ENSO

‘center of action’ also generally moves eastward relative to the CMIP2 models, in better agree-

ment with observations. However, there is a large scatter in the ENSO amplitude reported by the

CMIP3 models, with many models showing much stronger or weaker variability than observations

[Guilyardi 2009b]. The same is true of the mean state in the tropics: the equatorial wind stress is

too strong, and tropical wind stress contained too close to the equator [Capotondi 2006]. The cold

tongue also extends too far west and shows colder-than-observed SSTs [Reichler 2008].

The coarser-resolution CMIP3 models under-represent the strength of upwelling in coastal re-
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gions, leading to a warm SST bias along the equator, as well as the coasts of Africa and North

and South America. [Gent 2010] showed that increasing model resolution from 2◦ to 0.5◦ greatly

reduced these biases, by allowing orographic effects to more strongly influence surface winds near

the coasts. However, most models were run at 1-2◦ resolution, so these biases remain an issue.

The CMIP3 models also retain the ‘double ITCZ’ problem of previous model generations. The

SPCZ extends too far east, with a precipitation excess over the majority of the tropics and a deficit

along the equator. The mechanisms for the double ITCZ bias were investigated in the CMIP3

models by [Lin 2007], who found that atmospheric feedbacks were the dominant factor. Some

combination of an overly strong Bjerknes feedback, an overly sensitive dependence of atmospheric

humidity on SST (surface-latent heat flux feedback; [Wallace 1992]), and an overly weak dependence

of cloud amount on precipitation (SST-surface shortwave heat flux feedback; [Ramanathan 1991])

was responsible. The biases toward strong equatorial trade winds and insufficient SST-stratus

feedback also contribute.

The current generation of GCMs, developed for CMIP5, shows the best ENSO representation

to date. For example, in the CCSM4 [Gent 2011], improvements in model resolution have allowed

better representation of atmospheric convective processes [Neale 2008, Neale 2011b], which leads

to improvements in teleconnections between ENSO and the extratropics [Deser 2011] as well as

lengthening the ENSO period to a more realistic value [Jochum 2010, Neale 2011a]. As of this

writing, the CMIP5 simulations have just been completed, and no comprehensive review of their

performance is yet available. However, expectations are that CMIP5 should prove to be a significant

advancement over CMIP3.

All ENSO model evaluations rest on comparing the model output with observations, but the

complex nature of the oscillation makes it unclear which metric is the best to use. Is it more

important to correctly capture the mean structure of tropical SST, or of the wind stress? What

about the subsurface ocean? This is an ongoing debate in the community. Recent work by the

CLIVAR Pacific panel addresses the issue of ENSO metrics; to compile the most accurate assessment

of ENSO performance, a variety of observations are required. ENSO is typically defined using one
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or more SST ‘indices’, being box-averages over a given region (i.e. NINO3, 5◦S-5◦N, 190-240◦E);

but this neglects measures of atmospheric variability. The western Pacific precipitation, mean zonal

wind stress, surface heat fluxes, and SST annual cycle are all commonly used to evaluate model

errors [Guilyardi 2009b].

A more comprehensive analysis of climate model metrics was performed by [Gleckler 2008], who

compared the last 20 years of the CMIP3 20th century simulations to observational data from a

variety of sources. Those authors found that no one model was systematically better than all others

in every variable, and indeed the multi-model mean outperformed the individual models in most

quantities examined. They also found little correlation between the accurate representation of the

mean climate and of interannual variability: getting the mean state right is not enough to guarantee

a good ENSO.

There is one final impediment to validating model ENSO: the impact of natural variability

within the climate system. The observational record length is extremely short, especially for some

atmospheric variables like heat fluxes and precipitation where accurate observations date only from

the satellite era (i.e. CMAP; [Xie 1997]). Since numerical models become widely used, they have

been put to work in constructing reanalyses to fill in the gaps between sparse measurement in

a dynamically consistent way: the two most commonly used reanalysis products are the ERA40

[Uppala 2005] and the NCEP/NCAR [Kalnay 1996]. These are improvements in many ways over

the instrumental data alone, but do suffer from some limitations, particularly when reconstructing

earlier time periods.

Even if it were possible to create a completely accurate observational record extending back an

arbitrary length of time, one would still need to know how long that record actually needed to be.

This will be dependent on the application, of course: but for ENSO, we know that modulations

occur even within the records we do have, suggesting that the available observations may not be

long enough. Systematic investigations of ENSO convergence in GCMs are few: [Wittenberg 2009]

showed that timescales of centuries are required, using the GFDL CM2.1. I have since been able to

quantify the convergence rate more precisely, and find that 250 years typically provides sufficient
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averaging time ([Stevenson 2010]; Appendix 2). This is described in Chapter 3.

1.5 Using Paleoclimate Information

To obtain measurements with baselines longer than a few decades, we must turn to paleoclimatic

indicators. When combined with modern observations, proxies can dramatically increase the length

of ENSO records; reviews of the topic may be found in [Cane 2005, Chiang 2009]. But the trouble

with reconstructing ENSO (among other factors; see below) is the necessity for high-resolution

proxy data. When working with proxies like lake/ocean sediments which have very slow deposition

rates, it is most often impossible to resolve individual events.

Using low-temporal resolution proxies has has led to some debate over ENSO mean state ver-

sus variability in reconstructions: for example, [Cane 2001, Molnar 2002] suggested that permanent

El Niño-like conditions may have existed during the Pliocene (3-2 Ma) [Ravelo 2006, Wara 2005],

while GCM studies of the same period show no indication of an absence of variability [Fedorov 2006,

Haywood 2007]. To some extent, this debate illustrates the difference between model validation for

the mean state and the variance about the mean. Although proxy data provides an accurate assess-

ment of quantities like mean surface temperature [Mann 2008, Mann 2009], the accuracy required

to correctly capture the magnitude of variability may be much higher. In a sense, the problem of

ENSO model validation is inherently quantitative.

Of all the proxies currently in use, coral records are best suited for ENSO reconstructions due

to their tropical location and high temporal resolution. The majority of coral analyses focus on the

oxygen isotopic composition of their aragonite skeletons (typically reported as δ18O, the ratio of 18O

to 16O abundance). δ18O can be complicated to interpret due to the combined influence of tem-

perature and salinity [Weber 1972, Leder 1996, Quinn 1993, Urban 2000, Linsley 2004, Felis 2003].

For corals located in the western Pacific warm pool, salinity can be the dominant contributor to

the signal [Tudhope 2001], while locations in the central/eastern Pacific tend to be dominated by

temperature changes [McGregor 2004]. Of course, knowing that a location experiences more or less



1.5. Using Paleoclimate Information 19

influence from salinity in the present climate is no guarantee that the same was true in the past,

especially for more distant time periods such as the Last Glacial Maximum (LGM) when global

conditions were dramatically different [McCulloch 2000, Guilderson 2001].

The true extent of processes controlling the coral δ18O signal are likely quite complex, and local

environmental influences most likely play a role [McGregor 2011a]. Many coral samples are collected

from island locations, and although every effort is made to sample in such a way as to minimize

local effects, this is not always possible. For example, corals on the Huon peninsula of Papua New

Guinea feel effects from river runoff in certain locations [Tudhope 1995], and corals collected from

microatoll environments on Kiritimati island in the central Pacific are subject to influences from

lagoonal effects [McGregor 2011a, Woodroffe 2003]. The best way to minimize these complicating

influences is to collect multiple corals from each location - then environmental factors may be

controlled and hopefully subtracted from the signal [Lough 2010]. However, this is complicated to

do in practice, since collecting live corals is expensive and it is often impossible to know whether

fossil corals are contemporaneous until after they have been analyzed in the lab. The majority of

locations from which coral δ18O records have been obtained, therefore, have only one or two time

series available. These are available through the NOAA Paleoclimatic Database, and to date roughly

20-30 high-quality records exist for tropical Pacific locations. Still, this network is very sparse by

modern standards [Evans 1998] and the number of simultaneous records available for times before

the 20th century is smaller still.

Because the coral network is so sparse, the use of climate models is essential to provide a

dynamical framework within which to understand the coral signal. This has been done with some

success by the Paleoclimate Modelling Intercomparison Project (PMIP; [Joussaume 2000]) which is

currently in its third iteration. PMIP3 will perform modeling experiments for the last millennium,

the mid-Holocene, and the Last Glacial Maximum (LGM) with all the CMIP5 models. But the

majority of the PMIP models do not have the capacity to directly simulate proxy signals like coral

δ18O, making it difficult to compare model output to proxy records. An exception is the NASA

Goddard Institute for Space Studies (GISS) model [Schmidt 2005, Schmidt 2006], which is able to
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simulate seawater δ18O but which suffers from poor ENSO representation [Guilyardi 2009b].

How important is it to directly represent δ18O in climate models? This dissertation will ar-

gue that it is very important indeed. Currently the most common technique for quantitative

model/proxy comparison is the use of linear ‘pseudoproxies’ (i.e. [Brown 2008, Thompson 2011]).

I have performed a detailed investigation of the accuracy of such methods using modern corals

([Stevenson 2011c]; Appendix 1); I find that a linear representation is wholly inadequate to describe

the relation between δ18O and climate variables. Yet there are not many good model/proxy conver-

sion methods available, which may be problematic for paleo-ENSO model validation. Results from

this analysis are described in Chapter 2.

1.6 Implications for Climate Change

If the modern observational record is too short to constrain present-day ENSO, and the paleoclimate

records are too uncertain to constrain past ENSO, then where does that leave us in terms of

understanding changes to future ENSO? The issue of how climate change will affect ENSO dynamics

is one of the most important topics in the field at the moment, and yet the tools available for looking

at the problem are notorious for their lack of ability to make correct predictions. These, of course,

are coupled GCMs.

The CMIP5 simulations are just beginning to show results at the time of this writing. This means

that assessing the state of model ENSO representation must rely on CMIP3 results until the CMIP5

simulations have been completely analyzed. [Collins 2010] has published a review of the CMIP3

ENSO projections, and finds that there is a huge spread in future ENSO amplitude among models.

Figure 1.7 illustrates this disagreement; here the models which perform best relative to observations

are represented in bold. Interestingly, the ‘best’ models do not show any better agreement than the

full set of models; this suggests that projected future ENSO amplitude changes have little to do

with the overall performance of a given GCM.

There are certainly many well-understood responses to climate change, however, which are
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past millennium49,50. However, there is no direct palaeo-analogue 
of the rapid greenhouse-gas-induced climate change that we are 
currently experiencing.

Detecting externally forced changes in the characteristics of 
ENSO using observational and climate change simulations is dif-
!cult because of the large intrinsic variations in ENSO behaviour, 
which can occur on multidecadal and centennial timescales, even 
in the absence of external changes52–54. "is problem can be par-
tially overcome in CGCMs by performing multiple runs with the 
same model and measuring forced changes against natural vari-
ability from long, unforced control experiments. However, in the 
real world this is not possible, and naturally occurring variability 
could be masking changes driven by global warming.

ENSO processes and feedbacks may be a#ected by greenhouse-
gas-induced changes in mean climate or by direct changes to some 
of those physical feedbacks and this could, in turn, lead to changes 
in the characteristic amplitude or frequency of ENSO events. As 
illustrated in Fig. 3, some CGCMs show an increase in the ampli-
tude of ENSO variability in the future, others show a decrease, and 
some show no statistically signi!cant changes. Figure 3 is based 
on just one of many studies that have come to the same conclu-
sions9,10,55–60. Based on the assessment of the current generation of 
CGCMs, there is no consistent picture of changes in ENSO ampli-
tude or frequency in the future. However, by assessing individual 
feedback processes16 separately in CGCMs, we can shed some light 
on how ENSO might be a#ected by climate change:

Mean upwelling and advection. Both the mean upwelling of cold 
water in the eastern equatorial Paci!c and the mean subsurface 
advection act to strengthen the climatological temperature gradi-
ents in the horizontal and the vertical. If a positive thermal anomaly 
occurs in the east Paci!c, then these processes damp that anom-
aly. Mean upwelling and mean advection in CGCMs are reduced 
under climate change due to the general weakening of the equa-
torial trade winds25. "is would lead to a tendency for enhanced 
ENSO activity.

!ermocline feedback. Changes to the eastern equatorial Paci!c 
thermocline depth can a#ect the character of El Niño. A $atten-
ing of the equatorial thermocline on interannual timescales leads 
to a positive SST anomaly in the east Paci!c. As the climatologi-
cal thermocline shoals in CGCMs under greenhouse warming, 
the SST response to an anomaly in thermocline depth should 
increase15. In CGCM projections, changes in the mean depth 
of the thermocline in the east Paci!c are a#ected by two com-
pensating processes; thermocline shoaling or rising up tends to 
reduce the depth in the east, but a reduction of the equatorial 
thermocline slope tends to deepen it24,25. "ese changes could 
be expected to enhance the amplitude of ENSO events under 
climate change.

SST/wind stress (Ekman) feedback. A weakening of the wind stress 
during El Niño events on interannual timescales leads to positive 
SST anomalies as less cold water is pumped upwards from below the 
surface of the ocean. "ose positive SST anomalies further weaken 
the wind stress. "is e#ect could increase under climate change 
because of the reduced mixed-layer depth that arises as a result of 
the reduced mean trade wind strength, and increased thermal strat-
i!cation15,33. Wind stress anomalies could become more e#ective 
at exciting SST anomalies; in addition, the wind stress response to 
SST anomalies can become stronger in regions where SST increases 
are largest15, that is, on the equator. Both e#ects would tend to 
amplify ENSO.

Surface zonal advective feedback. "is is a positive feedback in 
the ENSO cycle. "e anomalous zonal advection of the mean SST 

gradient ampli!es El Niño events during their growth phase. As 
there is little change in the mean zonal SST gradient in CGCMs 
(Fig. 2c), it is unlikely that this feedback would change signi!-
cantly under climate change. However, it might be important if 
the relative frequency of occurrence of di#erent types of ENSO 
modes changes31. "e zonal advective feedback is more promi-
nent in central Paci!c El Niño, or ‘Modoki’, variability in which 
SST anomalies occur principally in the central Paci!c without the 
warm anomalies in the east.

Atmospheric damping. "e atmospheric damping of SST anoma-
lies is generally partitioned into components associated with sen-
sible and latent heat $uxes, and surface short wave (SW) and long 
wave (LW) $uxes. In general we expect that SST anomaly damp-
ing through surface $uxes will increase because of increased cli-
matological SSTs15,17. "is increase would therefore tend to reduce 
ENSO variability. Surface $ux damping might also change because 
of mean cloud changes brought about by weakening of Walker cir-
culation and/or changes in cloud properties. Cloud feedbacks and 
their link to the two large-scale circulation regimes that operate in 
the east Paci!c (subsidence and convective61) remain a large uncer-
tainty in CGCMs17,62, probably driving a large fraction of the ENSO 
errors in the control climate conditions of present-day CGCMs17.

Atmospheric variability. Westerly wind variability in the west 
Paci!c, o%en associated with coherent intraseasonal variability 
and the MJO, has been shown to be important in triggering and 
amplifying El Niño events63–66. "ermocline anomalies excited 
in the west can propagate to the east, where they are ampli!ed. 
Climate change simulations in several CGCMs project a future 
enhancement of the intraseasonal variability in the equatorial 
Paci!c in response to greenhouse gas increase, and this is an 
important factor for potential intensi!cation of the El Niño activ-
ity38. However, it should be noted that the simulation of the MJO 
and related activity is perhaps one of the major weaknesses of cur-
rent CGCMs, but is an area in which there is considerable poten-
tial for improvement.

Other processes and feedbacks. Other processes have been shown 
to play a role in determining the precise characteristics of ENSO 
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Figure 1.7: Figure 3 from [Collins 2010]. “Projected changes in the amplitude of ENSO variability, as
a response to global warming, from the CMIP3 models. The measure is derived from the interannual
standard deviation (s.d.) of a mean sea-level-pressure index, which is related to the strength of the
Southern Oscillation variations. Positive changes indicate a strengthening of ENSO, and negative
changes indicate a weakening. Statistical significance is assessed by the size of the blue bars, and
the bars indicated in bold colours are from those CMIP3 CGCMs that are judged to have the best
simulation of present-day ENSO characteristics and feedbacks.”
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generally well represented in GCMs. The mean-state response of the atmosphere and ocean to CO2

increases is one of these. The robust mean-state responses identified in multiple coupled GCMs are:

a decrease in the atmospheric overturning circulation, a decrease in the zonal SST gradient along

the equator, an increase in the meridional SST gradient between the tropics and extratropics, an

increase in vertical thermal stratification in the ocean, a weakening of the equatorial trade winds

and an eastward shift of the Walker cell.

Weaker Walker circulation. As the climate warms, the mean saturation vapor pressure of the

atmosphere should rise, in accordance with the Clausius-Clapeyron relationship:

dlnes
dT

=
L

RT 2
= α(T ) (1.1)

([Held 2006] equation 1), which leads to an increase of roughly 6%/◦K. [Held 2006] then com-

pute the rate of increase in global mean precipitation with rising temperature, using the CMIP3

simulations for various models. Precipitation increases by only 2%/◦K; this slower increase requires

a compensating decrease in the convective mass flux. The rate of exchange of mass between the

atmospheric boundary layer and the free troposphere must decrease, and the only way to accomplish

this in a global-mean sense is to decrease the strength of the Walker circulation. This has been

confirmed using both GCM studies and theoretical predictions [Vecchi 2007].

Weaker equatorial trade winds. As a direct consequence of the weaker Walker circulation, the

strength of the equatorial trade winds should decrease with climate change. Once again, this has

been diagnosed in coupled GCMs as well as 20th century observations [Vecchi 2006, Power 2007,

Zhang 2006, Karnauskas 2009].

Eastward shift of the Walker cell. The shift of the Walker circulation is primarily to the east

under climate change. As the trade winds weaken, warm water is ‘piled up’ in the western Pacific to

a lesser degree, and waters in the central and eastern Pacific are now up to several degrees warmer
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than the previous climatological average. A larger portion of these waters will now be sufficiently

warm to create strong convective activity, thus enhancing convection in the central Pacific.

Decreased equatorial zonal SST gradient. The strength of the zonal SST gradient along the

equator is set by the Walker circulation and by coupling with the atmospheric boundary layer. When

the equatorial trades decrease, the Bjerknes feedback requires that the SST gradient decreases as

well.

During the late 1990s, there was some disagreement over the direction of change of the zonal

SST gradient in a warming climate. One school of thought predicted a decrease in SST gradient

[Meehl 1996] since the formation of additional cloud cover over the warm western Pacific would lead

to a ‘shielding’ effect and inhibit further warming. The other argued that the equatorial upwelling

in the eastern Pacific would overcome the warming due to climate change, thus increasing the

equatorial trades and opposing the changes to the Walker circulation. This ‘dynamical thermostat’

[Cane 1997] is not observed to dominate in the CMIP3 models; the improved representation of

equatorial upwelling in the higher-resolution models allows us to conclude that upwelling is not,

after all, more powerful than climate change.

Increased meridional SST gradient. In addition to the reduction of the Walker circulation

strength, a corresponding weakening is seen in the Hadley circulation [Held 2006]. The weaker

equatorward flow in both hemispheres should then lead to a differential reduction in the strength

of the trade winds, with winds at higher latitudes experiencing a more pronounced weakening than

lower latitudes as a result of the Coriolis force ([Stevenson 2011b]; Appendix 3). Since the transport

in the subtropical cells is bound up with the curl of the wind stress [McCreary 1994, Liu 1995], the

transport of warm water from the tropics to the subtropics should therefore decrease as a result of

climate change. The net effect is a reduction in the divergence of heat flux away from the equator;

more heat is built up at lower latitudes, and the meridional SST gradient therefore increases as the

climate warms.



1.6. Implications for Climate Change 24

Increased oceanic thermal stratification. The surface-intensified warming in the tropics has

been documented in many model studies [Timmermann 1999]. This is due to the larger surface

heating created by CO2 radiative forcing, which requires an increase in the vertical temperature

gradient to compensate [Yeh 2009, Collins 2010].

Shifts in atmospheric teleconnections. This is less straightforward than the mean-state

changes, but there is a body of literature on ENSO teleconnection response to climate change.

The teleconnection response is thought to be caused by overall shifts in the general circulation

[Meehl 1993, Meehl 2006]. [Meehl 2007b] used a six-member ensemble to show that the position of

ENSO teleconnections shifts with climate change: the Aleutian Low anomaly, for example, shifts

northeastward as the climate warms. Changes in the Australasian teleconnection, in contrast, are

most likely connected with the IOD response to climate change [Cai 2009, Cai 2011].

The fact that the mean state response to ENSO is relatively well understood makes GCMs’

inability to agree on a direction of future ENSO change all the more puzzling. The answer is

thought to be related to differences in model physics; since ENSO is so sensitive to air-sea coupling

strength, even a small change in feedback parameters could potentially spell the difference between a

stronger or weaker oscillation in the future [Guilyardi 2009a]. The coupling parameters, additionally,

may change under global warming even within a single model, as documented by [Philip 2006].

My contribution to the ENSO/climate change question has been published in ([Stevenson 2011b];

Appendix 3) and is described in Chapter 4. I certainly do not neglect the contributions of previous

studies; but there is another possible explanation for the disagreements between CMIP models which

has not been investigated to date. The 20th century, after all, is a period which is experiencing rapid

changes to atmospheric forcing. These changes are imposed in a global-mean sense (since CO2 is well

mixed throughout the atmosphere) and lead to preferentially enhanced polar warming. This imposes

an extratropical forcing which is communicated to the tropics on a relatively long timescale, on the

order of decades [Boccaletti 2004]. Could it be that ENSO simply does not respond significantly to
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climate change during such a short time period? This seems to be the case in at least four of the

CMIP5 models, and most likely even more - which implies that our approach to studying future

ENSO must change as a community.

If the 21st century truly is too short to diagnose a significant ENSO response to climate change,

then this has another important implication. The CMIP5 experiments, in this case, are not a

real test of the ENSO/climate change link, since they are comparing changes that are themselves

insignificant. In other words, the underlying model ENSO sensitivity to climate change remains an

unknown. We cannot claim to know what a quantity is, after all, until we have actually measured

it! But interestingly, changes to teleconnections may become significant much faster than ocean

dynamics (Chapter 4; ([Stevenson 2011b]; Appendix 3)) and the same may be true for El Niño event

statistics (Chapter 5; ([Stevenson 2012b]; Appendix 5)). Thus, the required timescale depends on

exactly what question you are asking - even as far as ENSO is concerned.

The last chapter of this dissertation is devoted to doing the problem ‘right’, in a sense: to

examining the dynamical response of ENSO to CO2 increases using a clean experimental setup.

The only way to isolate the effects of CO2 alone, in the absence of sampling issues or differences in

model physics, is to run the same model for multiple centuries in an identical configuration changing

nothing but CO2 concentration. I have done this using the low-resolution version of the CCSM3.5

([Stevenson 2011a]; Appendix 4), and discuss mechanisms for the amplitude increase in Chapter 6.

I conclude with a brief foray into science policy ([Stevenson 2012a]; Appendix 6). The entire

investigation of the ENSO response to climate change relies on the use of standardized greenhouse

gas predictions for the 21st century [Moss 2010]. Yet the contents of these scenarios are something

of a ‘black box’ to the climate modeling community. How realistic are the assumptions which go into

the creation of the CMIP5 scenarios - or as they are now called, the Representative Concentration

Pathways? Are changes to those assumptions important enough to affect the answer to the ENSO

question? Chapter 7 will show that the technological advances predicted in the 21st century may

be dramatically overestimated, which has implications for every branch of climate science. It is

my hope that this dissertation’s results will help to underscore the need for better communication
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between investigators of a variety of backgrounds.
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2.1 Motivation

Paleo-reconstructions of ENSO are useful for climate model validation in several respects - in ad-

dition to being interesting in their own right, of course. A model may represent modern climate

correctly, but for the wrong reasons: the number of compensatory feedbacks within the climate

system makes it relatively easy for errors to cancel one another out. Proxy reconstructions provide

a test of model physics in climate regimes which might differ dramatically from those used to tune
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the model initially: if a climate model is able to reproduce observations dating from very different

epochs, then we can be more certain that the model physics are correctly represented.

For the most recent past, paleoclimate indicators are also useful for extending the modern

instrumental record. As will be discussed in Chapter 3, the observations available from modern

instruments are much too short to properly measure natural ENSO variability. The only way to

extend the record farther back is to use naturally preserved proxies which record the climate at the

time of their creation. A variety of proxies are commonly used, including tree rings, speleothems

(stalactites/stalagmites), lake sediments and others. Here I focus on coral reefs since they are the

most common proxy within the tropical Pacific. As noted in Section 1.5, the majority of coral

analyses use the oxygen isotopic ratio of the aragonite skeletons (δ18O) as a proxy for local climate

variability.

The complexity of the coral δ18O signal makes its interpretation in a given coral record difficult.

Yet this is exactly what must be done, if one hopes to understand whether a climate model is

correctly representing climate variability in that location. Towards that end, there has been a

recent push towards ‘forward modeling’, or the inclusion of oxygen isotopes within a GCM to allow

for a direct, ‘apples to apples’ comparison. But this represents an enormous investment in human

resources and model infrastructure, and to date the vast majority of CMIP-class models do not

incorporate oxygen isotopes. Even those which do offer isotope-enabled configurations (NASA GISS

and NCAR CCSM) do not resolve processes on the appropriate spatial scale and do not directly

simulate coral reefs, only going as far as computing the δ18O of seawater. So is there anything that

the climate community can do in the meantime to bridge the gap between coral δ18O variability

and model ENSO? Or are we doomed to wait until the technology improves?

In the no-forward-modeling limit, one is constrained to translate the models into the data ‘lan-

guage’, the data to the models, or both the models and data to some other metric of interest. For

ENSO, the metric of interest might be something like an estimate of NINO3.4 SST, the leading

mode of SST variability, or another index which is sensitive to ENSO variability (for example: the

Coupled ENSO Index of [Gergis 2005], the Multivariate ENSO Index of [Wolter 1998], or others.)



2.1. Motivation 29

All ENSO metrics, however, require information from multiple locations to be combined to form an

estimate of the total amplitude of variability. The options for model/proxy comparison are shown

schematically in Figure 2.1. Here, conversions which take place after a model simulation is complete

are referred to as pseudoproxies; conversions which rely on direct simulation of the proxy signal are

termed forward models.

Proxy
(coral !18O)

Models
(SST/SSS)

ENSO

Forward modeling

Pseudoproxy

Direct ENSO calc.

“Reverse” estimation

Figure 2.1: Schematic illustrating potential methods of ENSO model validation.

Leaving aside the question of converting between the model and proxy signals, some sources of

error must be considered regardless. The major ones considered in this chapter are:

1. Errors from age model estimation and/or local influences. Since collecting coral

records is a difficult, expensive, and time-consuming process, there is typically only one coral

available from any given location. This leads to the possibility of undetected errors from local

climatic influences. There is also the possibility of introducing errors through the process of

estimating an age model: typically coral δ18O records follow a sinusoidal pattern governed by

the seasonal cycle, and this is exploited to assign exact calendar ages within a given year. The

combined influence of local effects and age model uncertainty should lead to scatter between

simultaneous δ18O measurements from corals collected at a single location.

A recent study by [McGregor 2011a] provides a unique look at age model/local uncertainty:

multiple records are available for Kiritimati Island (pronounced ‘Christmas’) in the central
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Pacific. The mean standard deviation between δ18O time series is roughly 0.21h, which is

relatively small compared with δ18O variability in most locations. As an illustration, see

Figure 2.2 from [McGregor 2011a].
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Figure 2.2: Figure 4 from [McGregor 2011a], showing various time series generated from living
Kiritimati corals. Top: transects across the same coral at various angles to the growth direction.
Bottom: δ18O time series from various corals collected on Kiritimati.

2. Effects of sample size. As mentioned above, estimating ENSO amplitude requires data

from multiple locations around the Pacific. But how many points are required? There is no

consensus on this in the paleoclimate community. Typically studies are conducted using only

one coral record at a time; however, some field reconstructions are available which cover the

past few centuries [Evans 2002, Ault 2009, Wilson 2010, D‘Arrigo 2005, D‘Arrigo 2006]. The

influence of sample size varies according to the ENSO reconstruction employed; details are

provided in later sections.

3. Dating uncertainty. When collecting fossilized coral samples, one does not have the luxury



2.2. Coral Data 31

of using a calendar to get the date for a given measurement. In fact, collecting multiple coral

records from the same time period is an extremely difficult process, since it is often not obvious

whether two fossil corals are contemporaneous until after they have been sampled and taken

back to the lab. Dating corals relies on radioactive decay of U-series elements. The typical

accuracy of absolute dates on fossil corals is roughly 5-10 years [Cobb 2003]; this must be

taken into account when looking at the combined signal from multiple records.

After the above sources of error have been accounted for, there still remains the question of

introducing additional uncertainty from the model/proxy conversion. This is the subject of the

remainder of this chapter.

2.2 Coral Data

Data from modern corals was obtained from the World Data Center for Paleoclimatology website

(WDCP1), and from Helen McGregor at the University of Wollongong for the Kiritimati records

[McGregor 2011a]. Requirements for inclusion of a given coral record in my dataset are: a location

in the tropical Pacific (23◦S-23◦N, 60-300◦E), at least 4 samples/year (seasonal resolution), and a

statistically significant correlation between the coral δ18O time series and NINO3.4 SST. This led

to a set of 11 coral records from 10 different sites (two records are available from Nauru). The time

period for analysis was chosen to be 1958-1990 so that information from all corals was available

simultaneously.

The locations of each record are shown in Figure 2.4. All coral records were derived from samples

taken from the massive Porites species (Figure 2.3) unless otherwise indicated.

Laing/Madang [Tudhope 2001]: (4.15◦S, 144.9◦E),( 5.2◦S, 145.8◦E). Laing is located

along the northeastern coast of Papua New Guinea; Madang Island is further down the coast. These

samples were collected from living corals, and ages assigned on the basis of δ18O and δ13C seasonality

1http://www.ncdc.noaa.gov/paleo/paleo.html
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WIREs Climate Change Climate records from corals

Corals as sources of paleoclimatic
information for the tropical oceans
Tropical coral reefs are charismatic and complex
ecosystems that are uniquely defined in terms of
both their biological components and the geological
structures they create.14 Their distribution is largely
confined to shallow, warm, well-lit tropical oceans
within about 30◦ latitude of the equator.15 Coral reefs
are already proving to be particularly vulnerable to
a rapidly changing global climate as a consequence
of their sensitivity to thermal stress (resulting in
mass coral bleaching due to the break down of the
coral–algal symbiosis) and changes in ocean chemistry
resulting from oceanic absorption of about a third
of the extra carbon dioxide humans have injected
into the atmosphere.16–18 At the heart of tropical
coral reefs is the process of calcification, whereby
the colonial coral animals (with the assistance of
the extra energy provided by their single-celled algal
symbionts, zooxanthellae) lay down a skeleton of
calcium carbonate fast enough to withstand the
natural forces of erosion. The result is a myriad of
skeletal growth forms ranging from delicate branching
corals to massive coral bommies19 that can be several
meters in height (Figure 1).

The discovery of alternating dense and less dense
bands in such massive corals and their demonstration
as annual20 opened the door to the ‘vast storehouses
of information about chemical and physical changes
of waters in which they grew’ [Ref 21, p. 274].
These annual density band pairs are evident when
slices (typically 5–10 mm thick) of coral skeleton,

taken perpendicular to the vertical growth axis, are
X-rayed [Figure 2(a)]. There are several characteristics
of massive coral skeletons that make them significant
archives of past tropical climates and environments:

1. Chronological (i.e., dating) control provided by
annual density bands

2. Rapid and continuous linear growth (∼1–2 cm
per year) allowing annual to subannual temporal
resolution (cf., tree rings which result from
seasonal cessation of growth)

3. Growth of some colonies to several meters
in height providing several hundred years of
continuous record

4. Location in tropical ocean regions which are
poorly represented by other sources of high-
resolution proxy climate data

5. Incorporation of a range of geochemical tracers
into the calcium carbonate skeleton that reflect
environmental conditions in which the coral
grew

6. Good preservation (and retention of annual
integrity) after death allowing high-resolution
paleoclimatic reconstructions of well-dated win-
dows of the more distant past

There are several massive coral species which
potentially contain chronologically reliable growth
records.18 To date, the vast majority of paleo-
climatic records (see NOAA Paleoclimatic Data

FIGURE 1 | Coring large
Porites coral, Rowley Shoals,
Western Australia (Photo credit:
Eric Matson, AIMS).

Volume 1, May/June 2010  2010 John Wiley & Sons, L td. 319
Figure 2.3: Reproduction of Figure 1 from [Lough 2010]: diver collecting sample from massive
Porites coral.

and skeletal growth bands. These sites both experience substantial precipitative influences.

Tarawa Atoll [Cole 1993]: 1.0◦N, 172.0◦E. Tarawa Atoll is another western Pacific location:

intense rainfall has been observed to radically alter sea surface salinity here, and Tarawa is therefore

sometimes viewed as recording changes to convective activity in the western Pacific warm pool

[Cole 1993]. This record was collected at 6.7m depth from a forereef site (seaward side of the atoll)

and sampled 16x/year. Ages were determined through seasonal δ13C variability, and δ13C/δ18O

values interpolated to monthly resolution.

Palmyra [Cobb 2001]: 5.9◦N, 197.9◦E. Palmyra is an equatorial central Pacific site which

experience both SST and SSS signals. The [Cobb 2001] record was generated from a coral collected

at roughly 30’ depth near the center of a large reef flat. Submonthly samples were possible due to

the large coral growth rate, and intra-annual chronology established by fitting the δ18O seasonal

cycle. [Cobb 2001] estimate the dating error due to age model estimation at ≈4 months.
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Maiana [Urban 2000]: 1.0◦N, 173.0◦E. Maiana is located in the central Pacific, near to

Tarawa. Conditions are therefore similar in terms of the SST/SSS influences. The [Urban 2000]

record was collected at 1mm resolution from a living coral and dated using X-ray imaging of the

growth bands.

New Caledonia (Amedee) [Quinn 1998]: 22.5◦S, 166.5◦E. Amedee Island is located in

the Coral Sea, and is part of the territory of New Caledonia. The region experiences strong influence

from the seasonal motions of the Soth Pacific Convergence Zone [Morliere 1986] as well as the local

currents [Quinn 1998]. This record was collected from a living coral in 3m of water, and was then

sampled 12x/year.

Clipperton [Linsley 1999]: 10.3◦N, 250.8◦E. Clipperton Atoll is the easternmost atoll in

the Pacific [Linsley 2000], 1100km off the coast of Mexico. Being at 10◦N latitude, pronounced

differences in δ18O during different El Niño events can occur at Clipperton due to the position of

equatorial rain bands [Deser 1990], which form more frequently during strong events. This record

was collected from a carbonate terrace surrounding the atoll, and sampling performed at 12x/year.

Kiritimati [McGregor 2011a]: 1.9◦N, 202.6◦E. Kiritimati Atoll is located nearly at the

center of the NINO3.4 region. As such it makes a sensitive recorder of ENSO variability, and for

the most part δ18O variability is dominated by SST signals. The record used here was spliced

together from several different coral samples [Evans 1998, Woodroffe 2003] collected from Porites

microatolls on the island. Microatolls are just that: small atolls which form in shallow-water lagoonal

environments on the island. [McGregor 2011a] find that inter-colony reproducibility is greater for

microatolls than other growh forms, which may potentially imply that the local/age model influences

quoted above are lower limits on the true value for some locations. Here corals were sampled at

roughly fortnightly resolution, then interpolated to 12 samples/year.

Secas [Linsley 1994]: 8.0◦N, 280.0◦E. Secas Island, off the coast of Panama, is extremely
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close to Clipperton Atoll, and as such has a similar climate. The ITCZ plays an important role

in the δ18O signal [Linsley 1999]. The sample was collected from 3m depth, with a chronology

developed based on X-rayed growth bands. 1mm sampling was performed, then interpolated to

10 samples/year. [Linsley 1994] use band counting to establish the chronology back to roughly

1800AD.

Nauru [Guilderson 1999]: 0.5◦S, 166.0◦E. Nauru Island is squarely within the western

Pacific warm pool, and the semiannual cycle in SST is dominant due to the equatorial location

of the island; overall variations in SST are relatively small, less than 2◦ [Guilderson 1999]. The

variations in precipitation, however, can be dramatic: from nearly no rain to upwards of 4m annually

[Baker 1995].

These corals were collected off the north shore of the island, at 14m depth. Density banding

structures were not very pronounced, meaning that density-based dating was not possible. Instead,

the age model was constructed using the seasonally varying δ13C measurements, and the second

coral (‘Nauru 2’) was mapped to the first coral (‘Nauru 1’) after the model was completed. Overall

dating uncertainties are estimated at 2-3 months.

2.3 Linear Pseudoproxies

Next I consider errors due to pseudoproxy conversions. The simplest after-the-fact comparison of

coral δ18O and climate variables is the use of a linear regression:

δ18O = β0 + β1(SST ) + β2(SSS) + ε (2.1)

where the regression coefficients βn are obtained through least-squares error minimization and

the error term ε is assumed to be normally distributed. (Note: this is not a good assumption, as

many of the error PDFs actually show significant skewness. Details are available in the Supplemen-
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tary Information to ([Stevenson 2011c]; Appendix 1).

Some previous studies have used basin-scale relationships to define common βn for all coral

records in a given basin [Thompson 2011]; this, however, does not lead to the optimal regression.

I have therefore used a multivariate regression algorithm to fit each coral time series individually.

Observational data is derived from the HadSST reconstruction and from SODA for SST and SSS,

respectively.

Figure 2.4: Figure 1a from [Stevenson 2011c], showing errors in linear pseudoproxy conversion.
Background colors represent the leading PC of HadSST over 1958-1990; gray bars show the variance
of δ18O over the same time period, and red bars the variance of errors arising from the linear
pseudoproxy estimation.

Sources of error from a linear pseudoproxy conversion are:

1. Errors in regression coefficients. This is a consequence of the least-squares regression

algorithm. The errors for each coefficient can be modeled using a t distribution and the

standard deviation returned from the fitting algorithm:

σ(β̂j) =
√
σ̂2Cjj ; σ̂2 =

∑n
i=1 ε

2
i

n− 3
(2.2)

where n is the length of the time series, σ̂ is the variance of the errors, and Cjj is the jth

diagonal element of the covariance matrix [Montgomery 2007].
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2. Errors from fit residuals. This is equivalent to the ε term from Equation 2.1, and turns out

to be the largest contribution to pseudoproxy conversion error. I have modeled this for each

fit using kernel density estimation (KDE) and simulate errors by sampling from the empirical

distribution for each individual coral.

The details of the error fitting and resampling methods are given in ([Stevenson 2011c]; Appendix

1); Figure 2.4 is a reproduction of Figure 1 from that paper, which shows the magnitudes of the

coral δ18O errors thus simulated. The spatial structure of the first principal component of SST

variability from HadSST is shown in color. Superimposed on this pattern are the δ18O variance

errors in red, next to the input δ18O variance in black. Errors in the simulated δ18O variance

for each site are anywhere from 33%-185% of the input value, which is a strong argument for the

inaccuracy of single-site estimation of δ18O variability.

It remains to be seen whether the noise terms are able to drown out the covarying signal between

the coral records. Indeed, this is what is most often done when sufficient coral data are available

[Evans 1998]. To see whether the covarying δ18O mode is captured in the instrumental record, I next

compute δ18O pseudoproxies from the instrumental SST and SSS using Equation 2.1, then calculate

the first principal component between the simulated δ18O time series. Principal components are

calculated by singular value decomposition of the covariance matrix:

C = OOT = UΛV T (2.3)

where O is the matrix of coral δ18O time series and C the covariance. The principal components

are then given by UΛ, and take the form of a time series. I have included a figure illustrating the

results below (Figure 2.6); this is Figure 2a from [Stevenson 2011c]. Now the only sources of error

on the input coral δ18O PC1 (Figure 2.6, red envelope) are local effects and age model estimation.

These two sources of error are relatively small compared to the input spectrum, with the spectral

peak remaining well-defined.

One important note when working with PCA is that the modes thus calculated are not necessarily



2.3. Linear Pseudoproxies 37

Figure 2.5: Verification that coral δ18O PC1 contains ENSO-related variability. Time series of the
first PC is shown in black, NINO3.4 SST in red.
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representative of physically independent oscillations. I therefore confirm that the first principal

component (PC1) is related to ENSO by correlating its time series with NINO3.4 SST: results are

shown in Figure 2.5. The correlation is statistically significant, with a correlation coefficient of

-0.54. Since this is much larger than the correlation between NINO3.4 and any other δ18O principal

component, I conclude that PC1 contains the majority of ENSO-related variability.

If the linear pseudoproxy noise does not contaminate the covarying mode, and ENSO is well

represented in the first covarying mode, then the coral δ18O PC1 should be replicable using the

instrumental pseudoproxies. When the fir residual errors are applied to the pseudoproxies, the

results (in Figure 2.6) are striking: the peak near 3 years is not captured at all. Additionally, the

error envelope on the PC1 spectrum is enormous, with spectral power ranging from 0-200% of the

mean value (from Equation 2.1) at any given frequency. I note that pseudoproxy PC1 still retains

the highest correlation with NINO3.4 (not pictured), indicating that the spectral mismatch is not

an artifact of ‘bleeding’ of ENSO variance between pseudoproxy modes.

Figure 2.6: Figure 2a from [Stevenson 2011c], showing errors in coral δ18O spectra from linear
pseudoproxy estimation. Local (red) and dating (yellow) uncertainties are applied to the individual
δ18O time series before computing the first PC. Errors in pseudoproxies are calculated from Equation
2.1.

Using linear pseudoproxies to capture variability does not yield accurate ENSO spectral esti-

mates, even when 11 different simultaneous coral records are available. This seems to be a rather

discouraging result, as it implies that quantitative model ENSO validation is simply not possible.
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Indeed, Figure 2.7 shows that errors in the pseudoproxies calculated from CCSM4 20th century SST

and SSS overwhelm the input signal.

Figure 2.7: Figure 2b from [Stevenson 2011c], illustrating uncertainties in quantitative model ENSO
validation using linear pseudoproxies. Here the pseudo-PC1 from each ensemble is shown in blue,
and the associated errors in gray.

Although errors in linear pseudoproxies are very large, the situation is not as hopeless as it

might seem: there are ways to mitigate the problem. One option is to improve our understanding

of the processes controlling the δ18O signal: but as the next section will show, this may prove to be

extremely complicated.

2.4 Nonlinear Time Series Analysis

Given the limitations of the linear approach, the next challenge is to explain why exactly the linear

pseudoproxy approximation yields such inaccurate results. If one plots coral δ18O vs. local SST, the

result is a simple scatter plot, as seen in many previous studies. But the bandpass-filtered time series

show quite different behavior: Figure 2.8 shows the coral δ18O vs. NINO3.4 SST, where both time

series have been bandpassed over the 2-7 year period range. This plot bears a striking resemblance

to high-order phase orbits: could it be that there really are predictable dynamics which govern coral

δ18O on interannual timescales, that are simply not well described by a linear approximation?

Some insight into coral δ18O dynamics is possible using nonlinear techniques. For example,
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Figure 2.8: Figure 1c from [Stevenson 2011c], showing 2-7 year bandpass filtered δ18O versus
NINO3.4 SST for Kiritimati. Time is indicated by the color coding.

it is possible to estimate the number of independent variables required to describe δ18O using

the ‘embedding dimension’ [Sangoyomi 1996]. Full details of the calculations are described in the

Supplementary Information to [Stevenson 2011c], but the basic idea of the calculation is this: the

time series is represented in a ‘pseudo-phase space’ as a function of delayed versions of itself (the

‘method of delays’: [Takens 1981]).

~x = x(t), x(t− τ), x(t− 2τ), ...x(t− (m− 1)τ) (2.4)

where τ is the delay time, chosen to maximize the information about the phase trajectory

included. Mutual information [Fraser 1986] is chosen as the method of optimizing τ , following

[Sangoyomi 1996]:

MI =
∑ ∑

p(x(t), x(t− τ))log(
p(x(t), x(t− τ))
p(x(t))p(x(t− τ))

) (2.5)

where p(x(t), x(t− τ)) is the joint probability distribution of the original and lagged time series,
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and p(x(t)) and p(x(t − τ)) the probability distributions of the original and lagged time series

individually. The optimal lag τ minimizes the mutual information between lagged time series; this

is equivalent to saying that τ is chosen such that the delayed time series are as independent of each

other as possible.

After the pseudo-phase space representation is computed, the embedding dimension is calculated

using the so-called ‘false nearest neighbors’ approach [Kennel 1992]. False nearest neighbors are

defined as ‘neighbors’ within the time series, which appear when the series is projected into a

dimensional space too small to fully describe its dynamics. The true embedding dimension, then, is

the one which causes the false nearest neighbors to disappear. The embedding dimension threshold

Rtol is the factor by which the Euclidean distance Rd increases when the dimension is increased by

1:

R2
d+1(n, r)−R2

d(n, r)
R2
d(n, r)

> Rtol (2.6)

This is taken to be 15 in these calculations.

The embedding dimensions for each of the 2-7 year bandpass filtered coral δ18O time series

are shown in Figure 2.9 (Supplementary Figure 3 in [Stevenson 2011c]). The ‘true’ embedding

dimension, here, is the value where the false nearest neighbors fall to 0: this happens at dimensions

of 3-4 for all corals. The SST/SSS approximation may not be so bad in reality, but the true

relationship with δ18O may be more complex than the linear pseudoproxy approach would indicate.

Unfortunately, the embedding dimension calculation does not provide any information on what

the independent variables needed to describe coral δ18O might be, only on their number. It is

entirely possible that the δ18O value of seawater is one of these variables; this should experience

interannual modulations, related to the transport of different water types past the coral sites. A

full investigation of δ18O dynamics, however, is left for future work.
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Figure 2.9: Fraction of false nearest neighbors as a function of embedding dimension, for all coral
records.
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2.5 Translation Using Climate Field Reconstruction

The previous section clearly indicates that a more sophisticated conversion between

ENSO/δ18O/climate model output is required. This chapter is not intended to provide an ex-

haustive look at every possible model/proxy conversion; but I have investigated one alterna-

tive method that seems to hold more promise than linear pseudoproxies. This is the applica-

tion of climate field reconstruction (CFR) techniques to translate both model and proxy data

into ENSO metrics. CFR is extremely popular in the hemispheric reconstruction community

[Mann 2007, Mann 2008, Mann 2009, Emile-Geay 2011a, Emile-Geay 2011b], and provides highly

accurate results of Northern Hemisphere mean temperatures over the modern epoch by exploiting

covariances between known values to estimate the quantity of interest at the desired time.

A widely-used CFR technique at the moment is the so-called regularized expectation maximiza-

tion algorithm, or RegEM [Schneider 2001]. Expectation maximization (EM) is a technique used

to compute maximum-likelihood estimates for parameter values for statistical models, where the

parameters are dependent on unknown variables; a full description is available in [Dempster 1977].

For this particular application, the parameters are the mean and covariance matrix.

The expectation step of EM uses an initial guess for the model parameters to compute the

expectation value of the log-likelihood function, which is simply the logarithm of the likelihood L:

L(θ|x) = fθ(x) (2.7)

Here, L is the probability of a given model parameter θ given the observed dataset x and

the assumed probability distribution function of θ, fθ. In the second (maximization) step, this

expectation value is used to find the model parameters which maximize the log-likelihood function.

The difference between EM and the regularized version of the algorithm is the fact that the

treatment of [Dempster 1977] assumes the data follow a Gaussian distribution. For typical sets of

climate data this is not the case; not only that, but the small number of data points available for

typical climate variables often leads to a rank-deficient covariance matrix [Schneider 2001]. This
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leads to an ill-conditioned maximum likelihood estimator, which can be remedied by using several

different regularization techniques [Schneider 2001]. I have adopted truncated total least-squares

regression (TTLS), following [Mann 2007]; this approach uses a truncated basis of principal compo-

nents from the covariance matrix to compute the optimal regularization parameter, and was shown

to have better performance than other regularization methods.

Figure 2.10: Figure 3 from [Stevenson 2011c]. Error analysis for estimation of NINO3.4 SST spectra
using climate field reconstruction (RegEM). Errors are once again shown as envelopes: local/age
model effects (yellow), dating uncertainties (red) and ensemble scatter from CCSM (purple). Here
two different RegEM reconstructions are performed to illustrate the effects of varying the calibration
interval: 1965-1990 (green) and 1958-1970 (red).

For this portion of the analysis, I have adopted the NINO3.4 SST as my ENSO metric of choice:

both instrumental records and model output are converted to NINO3.4 SST, rather than using δ18O

PC1 as in Section 2.3. The results are shown in Figure 2.10, which is a representation of Figure 3

from ([Stevenson 2011c]; Appendix 1). Now that I am not applying a conversion method between

proxies and model output, there is no need for simulation of regression errors etc.: but the local/age
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model and dating uncertainty calculations have been applied as in Section 2.3, and appear as the

envelopes surrounding the NINO3.4 estimates.

Using the RegEM algorithm requires the use of the covariances between known NINO3.4 and

δ18O values over a specified time interval, referred to as the ‘calibration interval’. The choice of

calibration interval is crucial, since the resulting spectrum is highly sensitive to changes in the input

covariance matrix. When one is predicting values for NINO3.4 SST outside of the temporal range

covered by that covariance matrix, there is a tendency for underprediction of the true variance.

This is apparent in Figure 2.10, which shows the 1958-1990 NINO3.4 spectrum estimated using

calibration intervals of 1965-1990 and 1958-1970. NINO3.4 is very well reproduced by coral δ18O

in the former case, and dramatically underestimated in the latter.

Figure 2.11: Comparison of NINO3.4 SST variances from different sources. Black: HadSST version
2. Red: Box-average over NINO3.4 of the SST field reconstruction of [Evans 2002]. Blue: Ap-
plication of RegEM using a calibration interval from 1939-1986. Box height is equivalent to the
bootstrap 90% confidence interval.
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The underestimation of variance is evident in both spectral space and in total variance, and

appears in pre-existing SST reconstruction products as well. This indicates that the problem

is not unique to RegEM, but general to CFR approaches. An example is shown in Figure

2.11, where I have plotted the total variance in NINO3.4 SST over the time period 1939-1986

from HadSST. As a comparison, I then show the RegEM reconstructions over the same time

period, and the NINO3.4 variance from the [Evans 2002] field reconstruction. The reconstruc-

tion technique in [Evans 2002] is a PCA-based approach, called reduced-space objective analysis

[Kaplan 1997, Kaplan 1998, Kaplan 2000]. In both the [Evans 2002] and RegEM reconstructions,

NINO3.4 variance is underestimated relative to HadSST.

Figures 2.10 and 2.11 demonstrate that even though climate field reconstructions are more

accurate than linear pseudoproxies, they are still limited in their utility for past climates when

there is no prior knowledge of the true covariance between coral sites and ENSO. In this case,

we must rely on estimates from the modern climate; and the problem of variance underprediction

becomes worse as the separation time from the calibration interval increases. This is not a huge

problem when the goal is to reconstruct the mean of a given field [Mann 2009], but does present an

issue when trying to reconstruct interannual variability.

2.6 Recommendations

Based on the results of the previous sections, I can now make some recommendations on what

is required for quantitative model ENSO validation in past climates. Our understanding of the

dynamics which govern the coral δ18O signal is clearly incomplete; even still, using a bivariate

linear pseudoproxy approximation is entirely inadequate. This approximation is so uncertain that

even the dominant covarying mode between coral sites cannot be distinguished.

Given the shortcomings of the linear model, it seems that forward modeling of coral δ18O

is necessary to provide an accurate answer. In fact, the large embedding dimensions in Figure

2.9 suggest that a detailed process study may be required before coral δ18O can be accurately
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incorporated into GCMs. In the absence of this capacity, it would seem on the basis of Section 2.4

that at a minimum, a more sophisticated pseudoproxy is required to convert between model and

proxy signals.

Figure 2.12: Figure 3a from [Stevenson 2011c], showing the influence of sampling error on RegEM
reconstructions of NINO3.4 SST.

Another issue, of course, is data availability. All the results in this chapter thus far assume

that 11 corals, measured more or less simultaneously, are available: far more than are normally

available for coral paleoclimate research. I have therefore performed a preliminary investigation

into the necessary sample size for identification of the covarying mode; results are shown in Figure

2.12. This figure was created by randomly selecting a subsample of specified size from the coral

dataset, then rerunning the RegEM calculation. I find that the covariance matrix is insufficient to

reproduce the NINO3.4 spectrum accurately if only 4 corals are used, especially at longer periods;

moderate accuracy is achieved with 5 or more. This leads me to conclude that the optimal dataset

for paleo-ENSO model validation consists of at least 5 corals, dated to within 10 years of one another

(see [Stevenson 2011c] for the details of the dating uncertainty calculation).

Finally, the problem of variance underprediction remains. The current ‘cutting edge’ of field
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reconstructions is the use of Bayesian techniques [Tingley 2010a, Tingley 2010b]; those authors

found that Bayesian methods were superior to RegEM in retaining the variance of the original time

series. I would ideally like to attempt such reconstruction methods in the future, to see whether

the errors involved are still prohibitively large in comparison to the input values.

In conclusion, the problem of paleo-ENSO model validation is a difficult one, and the tools

currently being used for the problem are too uncertain to provide an accurate answer. But this does

not mean that the problem is intractable, only that more attention needs to be paid to the errors

involved and the most appropriate ways to decrease their magnitudes.
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3.1 Motivation

The last chapter has demonstrated that reconstructing past ENSO variability using paleoclimate

records is extremely difficult. But the issue of the too-short modern observational record still

remains: this makes it quite difficult to determine when changes to ENSO are statistically significant

in comparison to natural variability. In this chapter, I describe a new technique for isolating changes

to a spectrum over time.

A great many significance tests already exist, designed for use with various types of distribu-

tions. Parametric tests are most commonly used, but the results are only valid if the underlying

assumptions of the test have been satisfied. The most commonly used parametric tests are the
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T-test and the F-test: these give the significance of differences between distribution means and

variances, but require that the populations being compared are normally distributed.

To get around the distribution requirements of parametric tests, nonparametric approaches have

been developed which can be applied to data of arbitrary distributions. One such method is the

Kolmogorov-Smirnov (K-S) test, which measures changes to the cumulative distribution function

(CDF) of two distributions, then determines whether those differences could have arisen by chance.

Other nonparametric tests include the Wilcoxon rank-sum test and the Kruskal-Wallis test, which

look at the distribution of the ‘ranks’ of relative magnitudes of values, as well as many others.

Are any of these tests suitable for measuring ENSO changes? Given their number, it seems that

there should be no problem finding one. But natural ENSO changes are so large that they make

the use of traditional testing methods nearly impossible. Consider NINO3.4 SST, one of the most

commonly used ENSO metrics. The skewness of the NINO3.4 distribution has been well established

in previous work [Kessler 2002, Burgers 1999, Okumura 2010], meaning that any test relying on the

normality of distributions will not yield accurate results. Additionally, tests which measure changes

to the mean of a distribution alone do not show whether the strength of variability has changed

during a given period. This means that tests like the Wilcoxon rank-sum or other nonparametric

tests for changes on the mean are of limited use as well. Even the K-S test does not work well,

since it is actually too sensitive. Very small changes to the CDF are detected by the K-S test:

changes that are easily created by natural variability within a single ENSO time series. This has

been verified using the CCSM: when the K-S test is run on various combinations of centuries within

a single long CCSM control simulation, a great many of them show up as different from one another.

Even more worrying are the results from the CCSM4 20th and 21st century ensemble simulations

([Stevenson 2011b]; Appendix 3). As part of my analysis of the ENSO response to climate change

(see Chapter 4), I ran the K-S test on ensemble members versus one another. If this test really

is picking up only changes due to real physical differences, one would expect that members of the

same ensemble would show up as alike. The same radiative forcing applied to the same set of model

physics should lead to the same simulated NINO3.4 SST distribution: but in fact, what happens is
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that every ensemble member differs from every other. Once again, changes to the ENSO distribution

due to natural variability are extremely large compared with typical applications of nonparametric

tests. To accurately assess when two ENSO spectra differ from one another, a less sensitive test

must be devised which takes into account the expected variations in the distribution with time.

What is the optimal way to measure changes to the ENSO distribution? One obvious considera-

tion is the frequency of the signal: ENSO is characterized specifically by the interannual variability

in the Pacific. A method of diagnosing ENSO changes must therefore be able to filter out low-

frequency (decadal) signals, as well as higher-frequency seasonal and annual ‘noise’. The metric

used should also be able to measure ENSO-related variability localized in time, so that portions of

a time series may be compared against one another. These characteristics are exactly those which

define wavelets [Daubechies 1990], which are similar to the simpler windowed, or short-time, Fourier

transform:

f̂(τ, ω) =
∫ ∞

−∞
f(t)g(t− τ)e−jωdt (3.1)

Here g is the window function (typically a Gaussian) and τ is an imposed time delay. The

wavelet transform also uses a function to filter the input signal in time and frequency: but this

time, rather than applying a window of a given length in time/frequency, the size of the window is

allowed to vary with frequency so that signals at higher frequencies are sampled at higher temporal

resolution. Mathematically, this means that a wavelet basis function (h) of a given shape is adopted,

then translated in both time(τ) and scale (s):

h(t) = |a|− 1
2h(

t− τ
s

) (3.2)

where a is an arbitrary amplitude. This approach is often referred to as the ‘translation and dilation’

approach [Daubechies 1990], and is what allows the wavelet transform to provide a higher-quality

representation of the signal than a windowed Fourier transform. Wavelet basis functions may have

many shapes, but are required to have zero mean and to be localized in both time and frequency
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[Farge 1992].

The technique I have developed uses empirically derived distributions of the wavelet spectral

power to diagnose changes to ENSO: I have named it wavelet probability analysis, or WPA. In this

analysis, I make use of three major wavelet basis functions [Torrence 1998]: the Morlet, derivative-

of-Gaussian (DOG) and Paul. The Morlet and Paul basis functions are complex, while the DOG

is real-valued: this may lead to some differences in the sensitivity of each to small-scale features in

the input signal, but does not affect the major results discussed here.

Table 3.1: Equations describing the wavelet basis functions used in this chapter. Equations are
reproduced from Table 1 of [Torrence 1998]. For the Morlet and Paul wavelets, the integer m
represents the order.

Morlet π−
1
4 eiωoηe−

η2

2

Paul 2mimm!√
π(2m)!

(1− iη)−(m+1)

DOG (−1)m+1q
Γ(m+ 1

2
)

dm

dηm (e−
η2

2 )

3.2 Wavelet Probability Analysis: Conceptual Approach

An illustration of modeled ENSO variability is shown in Figure 3.1, within a control simulation

performed using the CCSM3.5 ([Stevenson 2010], Figure 1). For comparison, the hindcast product

of [Large 2008] (the Common Ocean-Ice Reference Experiment, or CORE) is shown as the white

line, and the PDF of wavelet power at each scale value is plotted in color. Agreement between

the model and observations is relatively good at some frequencies, and much worse at others (i.e.

periods longer than ≈8 years). WPA is designed to distinguish times when natural variability can

and cannot be invoked to explain data/model offsets.

I have defined a metric called the wavelet probability index (WPI) to provide a quantitative

measure of data/model agreement. WPI is simply the integral of the joint probability distribution

of the wavelet transform for two time series (Figure 3.2a). As such, it is constrained to have a value
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Figure 3.1: Figure 1 from ([Stevenson 2010]; Appendix 2). “Probability distribution functions for
mean NINO3.4 wavelet power. The gray line represents the median value for the model simulation,
while the white line is the mean value generated using the CORE hindcast. Dashed black lines
correspond to the 25th and 75th percentile values for the model simulation (interquartile range).”

between 0 and 1, with higher values indicating that the similarity between the time series is larger.

Mathematically, the WPI is defined as:

WPI(ν) =
∫ ∞

0
F (σ, ν)dσ =

∫ ∞

0
f1(σ, ν)f2(σ, ν)dσ (3.3)

where f1(σ, ν) and f2(σ, ν) are two PDFs of wavelet power σ at frequency ν. The value of WPI

relative to its distribution then becomes the statistic for testing differences between ENSO spectra,

the equivalent of using the T and F distributions for the T and F tests. In those tests, however, the

distribution of the test statistic was known, and the value computed for a given test used to derive

statistical significance. Here the entire idea was not to specify an a priori distribution for the WPI,

so this must be derived empirically for the application at hand. All possible non-overlapping subsets

of the time series are compared, whose joint probability distributions yield various WPI values (a

schematic is shown in Figure 3.2). This then forms the WPI distribution.
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Wavelet Power

similar subsets: large WPI

dissimilar 
subsets: small 

WPI

Note: real spectra 
are non-normal

Figure 3.2: Schematic illustrating the calculation and distribution of the wavelet probability index.
a) WPI value for a single comparison. b) generation of the WPI distribution; dissimilar (similar)
subsamples have small (large) WPI.

The technique naturally lends itself to several different applications: one may compare the

relative performance of two different climate models (Section 3.3), compare subsamples within a

given time series (Section 3.5), or validate a model against observations (Section 3.4).

3.3 Comparing Model Performance

To compare the performance of two climate models using WPA, first what is needed is a ‘reference’

time series. This may be a control simulation if the goal is to diagnose responses to climate change

(see Chapter 4), or it may be a set of observations if the goal is to find out which model has a better

simulation of the 20th century. The reference time series provides a consistent dataset against which

to measure changes in spectral behavior: it is compared with subsamples of each time series to form

two WPI distributions. Then one may answer the question: Are subsets of one time series more

similar to the reference than subsets of the other?

An example of WPI distributions used to diagnose the response to climate change in the CCSM4
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([Stevenson 2011b]; Appendix 3) is shown in Figure 3.3, where the distributions have been smoothed

using kernel density estimation. Here the reference time series is the 1300-year CCSM4 control

simulation [Deser 2011] and the WPI distributions were created using subsamples of the 20th and

21st century ensembles. 90% confidence intervals on WPI are shown as the horizontal lines.
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Figure 3.3: Figure 2d from [Stevenson 2011b], showing the WPI distributions generated from com-
paring subintervals of the CCSM4 20th and 21st century simulations with subintervals of the CCSM4
1850 control simulation. Here 30 years is used as the length for all sampling intervals.

The issue which must now be confronted is how to decide when changes to the WPI distributions

are significant. The approach I have taken in ([Stevenson 2010]; Appendix 2)is to simply compute

the confidence intervals and to see whether they overlap. The significance at level α is computed by

finding the 1-α% confidence intervals and testing for overlap between them. Thus, differences at the

90% significance level (α = 0.1) correspond to the situation where the 90% confidence intervals do

not overlap. This is most likely not the most accurate way to diagnose the significance of changes,

but in the absence of a less sensitive significance test is the best I have been able to do.
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Figure 3.4: Selected panels from ([Stevenson 2010]; Appendix 2)Figure 3, showing the results of
testing the CCSM3.5 and CM2.1 control simulations against one another using the CORE hindcast
as a reference. In all panels, confidence levels plotted range from 0 (agreement) to 1 (disagreement).

The diagnosis of differences between models seems to work relatively well, in that the results

are consistent with the qualitative assessments performed by previous researchers. As an example,

see Figure 3.4, which is a reproduction of a panel from ([Stevenson 2010]; Appendix 2) Figure 3,

showing the differences between a control simulation with the GFDL CM2.1 [Wittenberg 2009] and a

control simulation with the NCAR CCSM3.5 (‘PI’ in Chapter 6). The models are broadly consistent

with one another, but show some substantial differences at longer periods. Given the short extent

of modern observations, diagnosing the sources of long-period offsets is difficult. However, the

known biases in the GFDL CM2.1 ENSO-extratropical teleconnection patterns [Wittenberg 2006]

may account for some of the differences seen in Figure 3.4.

3.4 Comparing a Model with Observations

The process for comparing a climate model with observations is nearly identical to that for com-

paring two models with one another. This time, the WPI distribution generated from comparing

subintervals of a model simulation is tested against that generated from comparing subintervals

of the simulation to observations (the reference). Figure 3.5 shows the results of performing such

a comparison. Here the various horizontal lines indicate significance levels of 90%, 95% and 99%;

differences between the CCSM and observations (again, the ocean hindcast product of [Large 2008])
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are insignificant for the most part. Insignificance is denoted by a value for 1 - αmax of less than 0.9

in Figure 3.5.

Figure 3.5: Selected panels from ([Stevenson 2010]; Appendix 2)Figure 3, showing the results of
testing the CCSM3.5 and CM2.1 controls against observations (CORE hindcast). Subinterval length
used here is 55 years.

Despite the insignificance of differences, there may nonetheless be a true offset between the

model and observations (Figure 3.6). If the modeled and observed NINO3.4 SST values were truly

generated from the same distribution, then one would expect that the upper bound of the 90%

confidence interval would approach 1 as the subinterval length became longer: but this does not

seem to be the case in Figure 3.6. This suggests that the WPI-based approach is detecting a real

difference between the two time series, which is borne out by the fact that the upper limits for

model subintervals compared with each other do approach 1 as their length increases.

Choosing larger ‘chunks’ of the model simulation results in differences with the ocean hindcast
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Figure 3.6: Selected panels from ([Stevenson 2010]; Appendix 2)Figure 2, showing the 90% confi-
dence intervals on WPI distributions generated from the CCSM3.5. Left: self-overlap calculations.
Right: model/data distribution using the CORE hindcast.

which are significant at much higher levels than those in Figure 3.5 ([Stevenson 2010], not pictured).

There may be sampling influences at play: the 1000-year CCSM3.5 simulation is able to represent a

much larger degree of natural variability than is present in the 55-year hindcast. Some of this vari-

ability may or may not be consistent with the true extent of natural variability, but it is impossible

to distinguish the two using such a short record.

3.5 ENSO Self-Convergence

What exactly is the length of time needed to observe ENSO before the full range of natural variabil-

ity has been sampled? The limitations of paleoclimate indicators mean that this question cannot

yet be answered precisely (Chapter 2), but model simulations can provide some insight. Comparing

the WPI confidence intervals in Figure 3.6, it is clear that the width of the confidence interval

decreases with subinterval length. When using WPI calculated from model subintervals compared

to one another (hereafter the ‘self-overlap’ distribution), the decrease in 90% confidence interval
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Figure 3.7: Figure 2 from ([Stevenson 2010]; Appendix 2), showing the regression of 90% confi-
dence interval widths against subinterval length, for self-overlap calculations. CCSMcontrol (NCAR
CCSM3.5) data appears as red X’s, GFDL CM2.1 as blue squares and IPSL CM4 as green circles.

width with length is well fit by an exponential decay curve:

lnW90% = β0 + β1L (3.4)

where L is the subinterval length and W90% the width of the self-overlap confidence interval.

The decay curve is plotted in Figure 3.7, for three different coupled climate models: the NCAR

CCSM3.5, GFDL CM2.1 and IPSL CM4 (E. Guilyardi and M. Khodri, personal communication).

What is remarkable about Figure 3.7 is that the decay rate is statistically identical between all three

models, which were derived using very different model physics and have very different simulated

ENSO behavior [Capotondi 2006]. This implies that there is something fundamental about the
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ENSO spectrum which causes the decay rate to be so similar between models1. To test how the

rate of WPI convergence compares with what one would get from simple noise, I ran tests using

1500-year time series of red and white noise processes. The results are shown in Figure 3.8. I

note that the plots in Figure 3.8 use a significance level of 50% to exclude noise from the wavelet

spectrum prior to the WPI calculation, rather than the 90% used in previous calculations. This was

necessary to prevent the entirety of the AR(0)/AR(1) time series from being discarded.

I find that both the red and white noise spectra are able to reproduce the self-convergence behav-

ior of the coupled climate models relatively well. This is a striking result, and may have implications

in terms of how the long-term predictability of ENSO is understood. Oceanic variability is often

modeled as a red-noise process, while atmospheric variability more closely resembles white noise

[Hasselmann 1976, Frankignoul 1977]: in either case, the memory in the system may be contribut-

ing to the WPI convergence rate. Since these rates are roughly identical for both cases, it is not

possible to distinguish between them on the basis of these results. However, the noise comparisons

do indicate that the inter-model agreement likely represents more than sheer coincidence.

The stable rate of exponential decay in Figure 3.7 is convenient in the sense that it allows the

necessary length of time for the oscillation to converge to be derived analytically. To do this for a

particular model, the intercept β0 must be estimated using a short integration of the model; then L,

the required length for stable ENSO statistics, is the value at which the confidence interval width

W90% = 0.1. This leads to estimates of roughly 250-370 years for the three models considered

([Stevenson 2010]; Appendix 2).

The derivation of the necessary run length for a given model is important since many of the

control simulations currently used for climate change studies are much shorter than this. There

is currently a push towards using longer control simulations, and some of the CMIP5 groups have

adopted millennial-scale controls [Deser 2011, Wittenberg 2009], but this is not part of the official

CMIP5 experimental design [Taylor 2009]. It is my hope that this work can start to motivate

1Note that although the regression slope β1 is the same between models, the intercept β0 does differ: this can be
interpreted as a difference in the degree to which self-convergence is ‘built in’ to the particular model ([Stevenson 2010];
Appendix 2).
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(a)

(b)

Figure 3.8: Self-overlap regressions for (a) red and (b) white noise spectra.
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additional attention to longer stabilized control simulations (see also Chapter 6).

Table 3.2: Regression parameters for several test cases.

Time Series β0 β1 ∆β0 ∆β1

White (AR(0)) -0.608 -0.0054 -0.720 - -0.497 -0.0060 - -0.0048
Red (AR(1)) -0.133 -0.0050 -0.433 - 0.167 -0.0065 - -0.0035
CCSMCTL -0.891 -0.0057 -1.09 - -0.694 -0.0067 - -0.0047

GFDL CM2.1 -0.956 -0.0042 -1.06 - -0.852 -0.048 - -0.0037
IPSL CM4 -0.504 -0.0048 -0.683 - -0.324 -0.0057 - -0.0039
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Will There Be A Significant Change to
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Climate changes within the 20th century have been well documented, and all indications are that

changes will continue into the 21st century and beyond [Pachauri 2007]. As the climate warms, the

circulation of the atmosphere and ocean are expected to change as well: along with these changes

come potential influences on ENSO and its impacts.

Rather than considering individual events, what is usually done in GCM studies of ENSO and

climate change is to consider the change to overall ENSO amplitude. Agreement between different

models has historically been poor, however: as of CMIP3, roughly half of the models predicted

an increase in ENSO amplitude with CO2 increase, half a decrease, and some showed responses

which were statistically identical to zero (Figure 1.7). Taken along with the results of the preceding

chapters, this implies that we need to think carefully about the statistical significance associated

with projections of 21st century ENSO changes.

Here I explore the effect of increasing ensemble size on the significance of ENSO response, and
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examine some of the implications for GCM studies of ENSO more generally. The majority of these

results have been published in ([Stevenson 2011b]; Appendix 3).

4.1 Simulations

The version of the model used in this study is the most recent incarnation of the NCAR Community

Climate System Model (CCSM), version 4 [Gent 2011]. The CCSM4 does not include dynamic

representations of the ecosystem, but represents a substantial advance in the representation of the

physical climate system over the CCSM3. The differences are described in detail in [Gent 2011],

but the most relevant changes for ENSO include ([Stevenson 2011b]; Appendix 3):

Changes to the atmospheric convection scheme. The convective parameterization de-

veloped by [Richter 2008] has been implemented, which includes the ability of convective plumes

in the tropics to dilute and to transport momentum. These adjustments result in a substan-

tial improvement in the representation of tropical climate in general [Neale 2011a], and ENSO

in particular [Neale 2008]. The Madden-Julian Osscillation (MJO) is also improved in CCSM4

[Subramanian 2011].

Improved representation of the Equatorial Undercurrent (EUC). The tropical temper-

ature bias in CCSM4 is much improved over CCSM3, and much of that improvement is thought to

be due to the improved representation of the EUC [Large 2006]. Oceanic diffusion is now dependent

on background stratification [Danabasoglu 2007], the vertical resolution has been increased from 40

to 60 levels, and the diapycnal diffusivity has a more realistic value [Jochum 2009].

Reduced bias in the equatorial cold tongue. As noted in Section 1.4, the equatorial

cold tongue is typically too cold and extends too far west in GCMs; both biases were quite pro-

nounced in CCSM3. The bias is much reduced in the CCSM4, which may be due in part to the

sharper equatorial currents and corresponding improvements in simulating tropical instability waves

[Jochum 2008].
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Table 4.1: Table 1 from ([Stevenson 2011b]; Appendix 3). For transient simulations, the CO2 value
quoted is the approximate value at the end of the simulation period.

Simulation Length (years) Ensemble size CO2 (ppm) Stable/transient
1850 control (PI) 1300 1 250 Stable
20th century 156 6 350 Transient
RCP 2.6 95 5 450 Transient
RCP 4.5 95 5 550 Transient

RCP 4.5 extension 200 1 550 Stable
RCP 8.5 95 1 1300 Transient

The simulations used in this chapter are summarized in Table 4.1; this is reproduced from

Table 1 of ([Stevenson 2011b]; Appendix 3). I have referred to simulations with stabilized top-of-

atmosphere radiative forcing as “Stable” and simulations representing climate change as “Transient”.

The “transient” simulations are the 20th and 21st century ensembles; these are each composed of 5-6

simulations. Also included here are the stable 1300-year 1850 CCSM4 control [Deser 2011] and the

‘extension’ run for RCP4.5, which simulates a stabilized climate at 4.5 W m−2 top-of-atmosphere

radiative imbalance out to 2300.

4.2 Statistical Significance

Here I combine several different methods for measuring the significance of ENSO climate change

responses, to make sure the results are robust against the choice of analysis technique. All rely

primarily on diagnosing SST variability, since this is the most commonly used measure of ENSO

amplitude. In ([Stevenson 2011b]; Appendix 3) I have looked at variability in both the eastern and

western Pacific, but find that the results do not change substantially: significance tests therefore

focus on NINO3 SST, where the majority of the ‘action’ takes place.

The spectrum of NINO3 variability is shown in Figure 4.2 for all ensembles, where spectra have

been calculated using a Morlet wavelet decomposition. The ‘envelopes’ shown in this figure are

calculated by taking the spectrum of each individual ensemble member, then finding the distance
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Figure 4.1: Figure 3 from ([Stevenson 2011b]; Appendix 3): “Summary of changes to the atmo-
sphere/ocean mean state between CCSM4 ensembles. Lefthand column: ensemble-mean pattern of
changes between RCP8.5 and the 20th century, with boxes indicating averaging regions. Righthand
column: distribution of regionally-averaged diagnostics for each ensemble, corresponding to the
quantity on the left, as a function of CO2 stabilization level. (a) SST (◦C); (b) Thermocline depth
(Z20); (c) Vertical temperature profile (◦C); (d) Wind stress magnitude (N/m2); (e) Precipitation
(mm/day). Note that panel h shows the vertical temperature derivative dT/dz rather than the
mean value of T(z); here z is positive downwards, and dT/dz has units of ◦C/m. In all righthand
panels, the horizontal lines inside the boxes indicate the ensemble median, the extent of the boxes
the distance between the 25th and 75th percentiles, and the whiskers the 2.5th and 97.5th per-
centiles. Where present, + symbols indicate outliers. All box averages on the right-hand side show
the averages inside the boxes drawn on the lefthand panels: with the exception of panel h, which
instead shows the vertical derivative of temperature averaged inside the box in panel c. ”
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between the minimum and maximum wavelet power. The most obvious feature in Figure 4.2 is

the lack of change between ensembles, all of which overlap. Going from low CO2 (20th century) to

high (RCP 8.5), there does seem to be a tendency towards weaker ENSO amplitude, but based on

the amount of overlap, one would intuitively tend to say that the decrease will not be statistically

significant.

All significance tests agree with the intuitive expectation from Figure 4.2: as an example, see

Figure 4.3 which shows not the spectrum, but the variance of NINO3 SST in the ENSO band

(2-7 year periods). Confidence intervals are computed using a bootstrap randomization procedure

applied by choosing subintervals of a given length. Here ‘Full’ refers to the use of the full ensemble

member in each ensemble, and the other labels in Figure 4.2 to the appropriate subinterval length.

The dependence of significance on subinterval length once again appears in Figure 4.3, where 30-

year subsamples are unable to distinguish any ensemble from any other. More unexpected is the

fact that using the full length of each ensemble member yields the same result.

Fig. 1. Spectral ‘envelopes’ for each CCSM4 ensemble, calculated using a Morlet wavelet
transform of the SST timeseries. a: NINO3.4 SST for the 20th century ensemble, pre-
industrial (1850) control and the RCP 4.5 extension. b: NINO3 SST for the 20th and 21st
century ensembles. c: Same as b, for NINO4 SST. Envelopes for the forced ensembles are
calculated by finding the maximum and minimum at each wavelet scale from spectra of each
ensemble member. Envelopes for the 1850 control and RCP 4.5 extension are calculated
from spectra of 100-year subintervals of those simulations.

45

Fig. 1. Spectral ‘envelopes’ for each CCSM4 ensemble, calculated using a Morlet wavelet
transform of the SST timeseries. a: NINO3.4 SST for the 20th century ensemble, pre-
industrial (1850) control and the RCP 4.5 extension. b: NINO3 SST for the 20th and 21st
century ensembles. c: Same as b, for NINO4 SST. Envelopes for the forced ensembles are
calculated by finding the maximum and minimum at each wavelet scale from spectra of each
ensemble member. Envelopes for the 1850 control and RCP 4.5 extension are calculated
from spectra of 100-year subintervals of those simulations.

45

Figure 4.2: Figure 1b from ([Stevenson 2011b]; Appendix 3), showing spectral ‘envelopes’ for the
NINO3 SST time series from the CCSM4 ensembles. Spectra are calculated using a Morlet wavelet
transform of the SST timeseries. Envelopes for the ensembles are calculated by finding the maximum
and minimum at each wavelet scale from spectra of each ensemble member.

Unfortunately, there does not exist a control run sufficiently long at high CO2 to confirm that

the weakening ENSO seen in the RCP simulations will eventually become significantly different from
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PI. The RCP 4.5 extension run and PI are still statistically identical at 100-year sampling intervals

(red bars in Figure 4.3), and the RCP4.5 extension is itself only 200 years long. In the absence of a

longer control simulation, I can only speculate that CCSM4’s ENSO will continue to weaken with

sustained CO2 increases.
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s. 46Figure 4.3: Figure 2a from [Stevenson 2011b], showing bandpassed NINO3 SST variance from the

CCSM4 ensembles.

4.3 Oceanic Adjustment

The results of Section 4.2 seem straightforward in some sense, since they simply imply that the 20th

century is too short to properly constrain ENSO statistics. The surprising aspect of these results

is that what was analyzed in Section 4.2 was 5-6 separate realizations of the climate. In total, the

20th century ensemble has 936 model years and each of the RCP ensembles have 475; if simply

having a given number of model years was sufficient to provide improvements to ENSO statistics,

the CCSM4 ensembles should be well over the threshold. Given that even the ensemble means do

not seem to differ (not pictured), what is causing the lack of statistical significance in the ENSO

response to climate change?

The difference seems to be the delayed response of the ocean to the changes in radiative forcing
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imposed by anthropogenic climate change; merely averaging together additional ensemble members,

each of which experience the same change in greenhouse gas concentrations as a function of time,

does not average out the effects of that change. Throughout the course of each simulation, the

change in CO2/greenhouse gas concentration changes the total heat content of the atmosphere: the

effects of this heating tend to be amplified at high latitudes. The additional heat in the subtropical

ocean then warms the water transported to the equator in the subtropical cell; eventually, a new

equilibrium is reached. Communication between the subtropics and the tropics takes place on

relatively long timescales: most models of the adjustment to an instantaneous temperature change

show that the adjustment time is on the order of decades [Kessler 2006, Blanke 1997].

Shown in Figure 4.4 is the oceanic temperature and thermocline structure for RCP8.5; being

the highest-CO2 ensemble, the largest impact is seen here. Results for the other ensembles may be

found in ([Stevenson 2011b]; Appendix 3). The difference between mean thermocline position during

(2050-2100) and (2005-2050) are shown in the left-hand panel of Figure 4.4; as described above, the

largest signal is seen in the extratropics. However, there is a large signal in the tropical temperature

as well: see Figure 4.4, center panel, which shows the time-averaged vertical temperature profile for

(2005-2050) and (2050-2100) in the ‘equatorial’, ‘North’, and ‘South’ boxes in the left-hand panel

of Figure 4.4. There is a marked increase between the first and second halves of the simulation, due

to the continuous rise in temperature throughout the course of the 21st century (Figure 4.4, right).

The large extratropical signals in Figure 4.4 support the hypothesis that the changes in tropical

atmosphere/ocean mean state during the simulation period are driving variability within the 21st

century which cannot be averaged out by increasing ensemble size. This means that in the real

world, ascribing observed changes in ENSO to climate change may not become possible for a very

long time.

The idea that the 21st century is too short to detect an ENSO response is further supported

by results using other CMIP5 models. To date, the majority of modeling groups have run only

one or two ensemble members for CMIP5: the exceptions to this are CanESM2, IPSL CM5 and

CSIRO Mark 3.6. For these three models, therefore, I have reproduced the analysis for CCSM4 SST
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Fig. 4. Trends in thermocline depth (measured as the depth of the 20◦C isotherm) for the
CCSM4 ensembles. Lefthand panels (a-d) show difference maps taken between the first and
second halves of the run: (2051-2100) - (2005-2050) for the RCPs, and (1931-2005) - (1850-
1930) for the 20th century. Middle panels (e-h) show the vertical profiles of temperature
averaged over the three boxes pictured at left: equatorial (EQ), northern (N) and southern
(S). In these panels, the solid lines show the vertical profiles for the first half of the run and
the dashed lines the profiles for the second. Righthand panels (i-l) show the time series of
thermocline depth averaged over the same regions. Rows correspond to the four simulation
ensembles: 20th century (a,e,i), RCP 2.6 (b,f,j), RCP 4.5 (c,g,k) and RCP 8.5 (d,h,l).
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Figure 4.4: Figure 4 d,h,l from [Stevenson 2011b], showing the delayed response of the ocean to
climate change in RCP 8.5. Lefthand panel shows difference maps taken between the first and second
halves of the run: (2051-2100) - (2005-2050). Middle panel shows the vertical profiles of temperature
averaged over the three boxes pictured at left: equatorial (EQ), northern (N) and southern (S). In
these panels, the solid lines show the vertical profiles for the first half of the run and the dashed lines
the profiles for the second. Righthand panel shows the time series of thermocline depth averaged
over the same regions.

variability and find that the climate change response is also insignificant in all three (Figure 4.5).

4.4 Atmospheric Response

The response time of the atmosphere is much faster than that of the ocean. Perhaps this means

that some of the atmospheric impacts of ENSO might show more rapid changes, even when the

ocean response is insignificant.

My goal here is not to provide a comprehensive assessment of all possible ENSO teleconnections;

I am only trying to provide a sense of whether it is possible for the atmospheric response to proceed

on much faster timescales than the oceanic. As such, I have looked at some of the most commonly

used diagnostics for atmospheric teleconnections. This analysis follows that used in [Deser 2006]:

composites for El Niño and La Niña during DJF and JJA are constructed for each of the ensemble

members. El Niño and La Niña events are defined as periods during which the DJF SST anomaly

exceeded +/- 1 standard deviation, relative to a linearly detrended mean state. Figures 4.6-4.8

show the resulting composites: surface air temperatures are shown in colors and sea level pressure



4.4. Atmospheric Response 71

a)

b)

c)

Figure 4.5: NINO3 spectra for the 20th century, RCP4.5 and RCP 8.5 ensembles using: a) the
CanESM2, b) the IPSL CM5A, and c) the CSIRO Mark 3.6.
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anomalies as contours. Changes to teleconnections are indeed statistically significant, but only

during some seasons and only in certain regions. The largest changes are observed in the regions

discussed in Section 1.3: south of the Aleutian Islands in the North Pacific, the western Pacific

warm pool near Indonesia, and the Southern Ocean near 240◦E.

In the North Pacific, the teleconnection changes are consistent with [Meehl 2007a],

[Meehl 2007b]: the teleconnection pattern moves systematically to the north and east with CO2.

This is manifested during El Niño DJF as a negative SLP anomaly change over the northern

US/Canada, and a positive one in the central Pacific just north of Hawaii (Figure 4.6). [Meehl 2007b]

ascribe this change to a shift in the mean circulation, related to the development of an anomalous

upper-tropospheric wave-5 response.

Fig. 5. Composite El Niño DJF anomaly map for the CCSM4 ensembles. In Figures 5-8,
El Niño and La Niña events are defined as years where the deseasonalized DJF NINO3.4
SST anomaly exceeds +/- 1 standard deviation relative to a linearly detrended time-mean
state. a) Composite for 20th century ensemble. b) RCP 2.6 - 20th c. c) RCP 4.5 - 20th c.
d) RCP 8.5 - 20th c. In all panels, surface air temperature (◦C) is shown in color and sea
level pressure (hPa) is shown in contours (contour interval 0.25 hPa). Negative anomalies
are indicated as blue colors or dashed contours. In panels b-d, SLP anomalies significant
at 90% are indicated by thicker contours, and only the significant surface air temperature
values are plotted.
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Figure 4.6: Panels a and d from Figure 5 in [Stevenson 2011b]: El Niño DJF. “a) Composite for
20th century ensemble. d) RCP 8.5 - 20th c. In all panels, surface air temperature (◦C) is shown
in color and sea level pressure (hPa) is shown in contours (contour interval 0.25 hPa). Negative
anomalies are indicated as blue colors or dashed contours. In panel d, SLP anomalies significant at
90% are indicated by thicker contours, and only the significant surface air temperature values are
plotted.”

Australasian teleconnections seem to suggest an overall weakening of the ENSO influence with

climate change. For example, the low pressure anomaly during El Niño DJF south of Tasmania



4.4. Atmospheric Response 73

(30-40◦S, 160-180◦E) weakens with CO2, as does the high over mainland Australia. This is shown

in the right-hand panel of Figure 4.6 as a positive and negative anomaly in each of these regions,

respectively. During La Niña DJF, the same pattern is seen, with opposite sign ([Stevenson 2011b];

Appendix 3). One might also view this as a weakening of the anomalous tropospheric convergence

associated with warm SST anomalies in the region, which in turn might mitigate the associated

reduction in rainfall. Perhaps droughts/flooding might become weaker in Australia during future

El Niño/La Niñas?

Fig. 6. Same as Figure 5, for La Niña DJF.
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20th century RCP 8.5

Figure 4.7: Panels a and d from Figure 5 in [Stevenson 2011b]: same as Figure 4.6 for La Niña DJF.

Finally, the teleconnection changes with the Southern Ocean become most apparent during JJA.

I have included only the La Niña phase in this chapter (Figure 4.8), but the anomalies during El

Niño are largely the reverse of this picture in the Southern Ocean ([Stevenson 2011b]; Appendix 3).

Note that RCP 2.6 is included as the comparison case in Figure 4.8 rather than RCP 8.5; this is

because RCP 2.6 shows the strongest change relative to the 20th century. I have not been able to

identify an exact reason for the nonmonotonic behavior of this particular teleconnection, but can

speculate that it may have to do with the fact that the TOA radiative forcing in RCP2.6 stabilizes

more quickly than in either of the other two scenarios.
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The low-pressure anomaly during La Niña JJA near 60◦S, 240◦E is apparent in the 20th century

mean (Figure 4.8, left). This is consistent with the mean teleconnections described in [Turner 2004]

(Section 1.3). However, looking at the RCP 2.6 anomaly a dipolar pattern of changes is visible,

with a negative anomaly over the Amundsen-Bellingshausen Sea and a positive anomaly near the

Drake Passage. This could be related to a shifting of the PSA pattern discussed in Chapter 1 -

a northwestward shift of the PSA would be consistent with the expected slowdown of the Hadley

circulation with climate change [Meehl 2007b], ([Stevenson 2011a]; Appendix 4).

Fig. 8. Same as Figure 5, for La Niña JJA.
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20th century RCP 2.6

Figure 4.8: Panels a and d from Figure 5 in [Stevenson 2011b]: La Niña JJA.

Overall, the results of this chapter clearly demonstrate that changes to ENSO and to its telecon-

nections cannot be considered interchangeably, since the timescales for each are so different. Thus

it may be possible to make predictions of societal impacts in the future, without knowing the details

of how the oceanic dynamics may change.



Chapter 5

How Do El Niño/La Niña Characteristics

Respond to Climate Change?

Contents

5.1 Event Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Markov GLM methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Set of best predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 El Niño/La Niña event statistics . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Event Characteristics

The previous chapter illustrates the potential importance of the different response times in the

atmosphere and ocean. In a scenario when the oceanic ENSO response to climate change has not

yet become significant, it is entirely possible that changes to atmospheric teleconnections may take

place. This begs the question of whether the overall properties of El Niño/La Niña events may be

distinguished from one another in such a scenario. Here I define event ‘properties’ as the magnitude

and persistence of individual events. One may imagine that a given amount of SST variability

may be created by El Niño/La Niña events with various combinations of magnitudes and lengths.

Several very large events may cause the same amount of variance as many more smaller events.

From Chapter 4, we know that the overall variability does not change significantly in the CCSM4

21st century ensemble. Does that necessarily mean the same thing for the events themselves?



5.1. Event Characteristics 76

The problem with considering event statistics in the CCSM4 ensembles is that their sizes are

relatively small: the maximum ensemble size as of this writing was 6. But building up robust event

statistics requires a much larger ensemble. In order to increase the effective ensemble size without

spending many CPU hours re-running the CCSM4, one may build a statistical model conditioned

on the CCSM4 ensembles, to generate additional time series having the same overall statistical

properties. This provides a measure of the expected spread in event magnitude/persistence given a

larger ensemble.

Many statistical models have been created for ENSO in the past; for instance, several forecasting

models are used by the International Research Institute for Climate and Society (IRI) at Columbia

University1. Notable examples include linear inverse models (LIMs; [Penland 1995, Penland 1993,

Penland 1998]), canonical correlation analysis (CCA; [Barnston 1992, Barnett 1987]) and seasonal

Markov modeling [Xue 2000, Xue 1994]. These, of course, are not the only statistical models in

use: there are many more examples not discussed here [Tangang 1997, Clarke 2003, Landsea 2000,

Mason 2002].

Generally speaking, the major limitation of statistical forecasting methods is that their results

depend upon multivariate relationships observed in the past, and do not always account for the

physical processes driving a particular event. For instance, LIM specifies a system using the em-

pirically derived modes generated from the lagged covariance matrix, with stochastic perturbations

applied to ensure that the dominant mode is robust against noise. The seasonal Markov model also

uses the dominant covarying modes: in this case, EOFs are used to construct a seasonally varying

Markov chain for forecasting.

To get away from the reliance of statistical models on the stationarity of past covariances,

the use of coupled GCMs has risen in popularity as the representation of ENSO-relevant physics

improves [Jin 2008]. A wide variety of GCMs are typically used in the production of opera-

tional ENSO forecasts, though this does not eliminate the influence of systematic model bias

[Rosati 1997, Schneider 2003, Kug 2007, Kug 2008, Latif 1998]. Given the strengths and weak-

1http://portal.iri.columbia.edu/portal/server.pt?
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nesses of the statistical and dynamical approaches, some combination of both seems to be the best

bet for simulating the spread in El Niño/La Niña characteristics with climate change. This chapter

presents an attempt to do just that.

5.2 Markov GLM methods

I have developed my own statistical model for predicting NINO3.4 SST, which relies on the combi-

nation of a Markov chain and a generalized linear model (GLM). The Markov approach allows the

system state (El Niño, neutral or La Niña) during the previous seasons, as well as the probability

of transitioning into a different state in the current season, to be taken into account. The GLM

allows additional predictors containing physical information about the system to be included.

A generalized linear model is exactly what the name indicates: an extension of the ‘classical’

linear regression to more complex relationships, where the distribution of the variable involved need

not be normal and the variables themselves need not be continuous [Dobson 2002]. In general,

the prediction given by the regression model can be viewed as the expected value of the dependent

variable (for example, NINO3.4 SST) given the independent variable (for example, mean zonal wind

stress). The univariate linear regression of y on x can then be viewed as:

E(Y ) = µ = β0 + β1x (5.1)

More generally, given a set x̃ of independent variables, a multivariate linear regression at timestep

i yields a prediction for Y of

E(Yi) = x̃Ti β (5.2)

This formulation assumes that Y is normally distributed. However, the same approach can be

used in the case where Y follows any of a class of exponential distributions
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f(y|θ) = exp[a(y)b(θ) + c(θ)d(y)] (5.3)

where θ is a single parameter specifying the distribution [Dobson 2002].

The other strength of the GLM framework is that both continuous and categorical variables may

be included. For a categorical variable (i.e. El Niño/La Niña state), the variable is transformed

using a function called the link function, which has a specified form for any given member of the

exponential distribution family. In general, the link function g relates the predicted mean value of

the dependent variable y to the (categorical) covariate x:

g(µi) = x̃Ti β (5.4)

For this particular problem, the system states are the only categorical variables: these follow a

multinomial distribution. The link function in this case becomes the expression for the transition

probability between states:

p =
exp(x̃Tβj)

1 +
∑Nj

j=1 x̃T
j βj

(5.5)

where j is the index for a given state. The regression is then performed using an algorithm written

in R, and the set of best predictors obtained (see Section 5.3).

The model was validated against the 20th century ensemble to be sure that it correctly repre-

sented the majority of the statistics from the input time series: the overall performance is quite

good. A sample of model diagnostics are shown in Figure 5.1, which gives selected panels from

([Stevenson 2012b]; Appendix 5) Figure 1. The seasonal variance is well captured by the model,

and the magnitude of individual events is accurately represented. Not shown are the PDFs of El

Niño and La Niña, which are also generally well represented ([Stevenson 2012b]; Appendix 5). This

lends credence to the use of the model for generation of additional 21st century time series.
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Table 1: Simulations used in this study. For the RCPs, the CO2 value quoted is the approximate value at
the end of the simulation period.

Simulation Length (years) Ensemble size CO2 (ppm)
20th century 156 6 350

RCP 2.6 95 5 450
RCP 4.5 95 5 550
RCP 8.5 95 1 1300

in the fall (season 4 in Figure 1b), but the CCSM4 input value is well within the simulated interquartile
range.

Figure 1: Model validation for the 20th century CCSM4 ensemble. a) NINO3.4 SST time series. b) Seasonal
NINO3.4 variance. c) El Niño PDF. d) La Niña PDF. In all panels, the 20th century ensemble is shown as
the red solid line (red circles in panel b), simulated values boxplotted in black.

The magnitudes of El Niño and La Niña events show a large degree of scatter in the simulated values. In
Figure 1c,d the red line shows the ensemble-mean PDF for both, with the black boxes representing simulated
values; the space between outliers is large compared with the probability values from the 20th century en-
semble. Consistent with the time series results in Figure 1a, there seems to be increased error in representing
very large El Niño and La Niña events. However, there is a tendency towards overestimation of the likelihood
of large events; the red line in Figure 1c,d falls below the median of the simulated distributions for both El
Niño and La Niña for anomalies larger than ≈ 2.5◦C. However, the overall performance is reasonable; we
therefore have reasonable confidence in the results of simulated statistics for the RCP ensembles. A summary

3

Figure 5.1: Figure 1a,b from ([Stevenson 2012b]; Appendix 5), showing a) the simulated NINO3.4
time series and b) the seasonal variance from the Markov GLM model.

5.3 Set of best predictors

One of the advantages of using a statistical model is the ability to study changes in the dependency

of NINO3.4 SST on various physical parameters. But which variables are potentially the most

important to begin with? This depends on the dynamics of the system being modeled.

I refer back to the oscillator models discussed in Section 1.2 for some general guidance, and choose

to model a subset of the possible physical processes contributing to ENSO. Some measure of the

development of SST anomalies will be necessary: thus I include the NINO3.4 SST during previous

seasons. There will most likely be contributions from subsurface disturbances: the thermocline

depth must be included. The zonal wind stress on and off the equator is related to changes in ocean

heat content (Section 1.2), so this is included as well. Finally, the variance of the zonal wind stress

in the western Pacific may trigger El Niño events: so this makes up the final set of predictors.

Variables are generated from box-averages of the relevant field, within regions chosen to maximize

their correlation with the NINO3.4 SST. A schematic of the resulting predictors is shown in Figure

5.2. Thermocline regions are chosen along the equator and near 10◦N/S to capture Kelvin and
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Rossby wave excitation. Interestingly, these latter two regions are very similar to the Rossby wave

pathways seen in a previous version of the CCSM, and the correlations in the Northern and Southern

Hemispheres are out of phase with one another: this points to a potential role of the seasonal cycle

in the generation of El Niño/La Niña events ([Stevenson 2011a]; Appendix 4).

The zonal wind stress predictors are averaged in the north central Pacific, the Indian Ocean, and

the equatorial central Pacific (Figure 5.2c). The equatorial correlation is a simple consequence of

the [Bjerknes 1969] feedback. The North Pacific region likely comes into play during the generation

of anomalous Sverdrup transport [Jin 1997]. Finally, the Indian Ocean anomalies are related to

the shift in position of the mean convective center over the western Pacific warm pool during El

Niño/La Niña.

The triggering of El Niño events by stochastic wind variability is a topic of much debate, as

discussed in Chapter 1. There have been some efforts to catalog westerly wind burst activity

by the region of wind variability, with the warm pool subdivided into as many as 8-10 regions

[Harrison 1997]. I have not used such a complex system here, since the zonal wind stress variance

is not a very important predictor of NINO3.4 SST (note the low correlations of variance with

NINO3.4 in Figure 5.2d). Instead, I average the variance over the western Pacific warm pool and

over the eastern Indian Ocean, for a rough idea of the efficiency of high-frequency wind variability

in triggering ENSO events.

The choice of predictors is done using a stepwise regression algorithm, where successive subsets

of the initially input regression parameters are taken until a ‘best’ prediction is achieved. Here I

minimize the ‘Bayesian information criterion’, or BIC [Sakamoto 1986], to determine the best fit:

BIC = −2ln(L) + kln(N) (5.6)

where L is the maximized value of the likelihood function for the model, k is the number of

regressors, and N the length of the time series. For the exponential distribution,
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Figure 5.2: Figure 3 from ([Stevenson 2012b]; Appendix 5). “Lag-correlation maps with NINO3.4
SST, lag 3 months. a) SST, b) thermocline depth, c) zonal wind stress, d) submonthly zonal wind
stress variance. Black boxes indicate the positions of the averaging regions used to generate the
Markov GLM predictors, which are labeled according to the naming conventions in Table 5.1. Note
that panel d uses a different color scale than panels a-c, owing to the much smaller correlations with
wind stress variance.”
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L =
N∏

i=1

λe−λxi (5.7)

The BIC penalizes models with larger numbers of regressors and is, as such, more parsimonious

than other commonly used criteria [Akaike 1974]. Although not a guarantee that the regressors

included in the model will be physically meaningful, using BIC nonetheless gives an idea of the true

importance of a given predictor.

For each ensemble, time series of NINO3.4 and the predictors from each ensemble member are

concatenated together and the GLM fit calculated for the full ensemble simultaneously. The set of

best predictors for each ensemble is shown in Table 5.1: full details of the regression procedure are

found in ([Stevenson 2012b]; Appendix 5).

Table 5.1: Table 3 from ([Stevenson 2012b]; Appendix 5). “Set of best predictors for the CCSM4
ensembles. Numbers indicate the value of regression coefficients for each ensemble/variable combi-
nation.”

Predictor 20th c. RCP 2.6 RCP 4.5 RCP 8.5
Lag-1 state -0.119 -0.0404 -0.133 -0.117
Lag-2 state 0.587 0.430 0.588 0.527
Lag-3 state -0.227 -0.203 -0.256 -0.165
Lag-1 value 0.114 0.083 0.149 0.108

RW path Z (N) -8.99 ×10−5 -7.56 ×10−5 -1.03 ×10−4 -6.58 ×10−5

RW path Z (S) 9.24×10−5 2.77×10−5 1.48 ×10−4 4.83 ×10−5

Ind. Ocn. Z 1.12×10−4 1.11×10−4 4.84 ×10−5 2.86 ×10−4

E. Pac. Z 2.06×104 1.83×10−4 6.59×10−5 3.49 ×10−4

Mean Taux 3.90 4.74 4.96 3.34
Ind. Ocn. Taux -0.208 -0.474 -0.899
N. Pac. Taux 0.0826

WPWP Taux var. -1.86 -1.39 -1.55 -1.37
Ind. Ocn. Taux var -0.325 -0.496

Sin 0.127 0.0833 0.105
Cos -0.153 -0.142 -0.0706 -0.0817

For the most part, the set of best predictors is relatively similar between ensembles. However,

there may be a tendency for wind stress variables to become less important with increased CO2.
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For example, the North Pacific zonal wind stress disappears from the predictor set in the RCPs,

and the Indian Ocean wind stress is not included in the RCP8.5 predictor set. Indian Ocean wind

stress variance shows nonmonotonic behavior, appearing in the 20th century and RCP4.5.

The magnitudes of the regression coefficients do not show strong CO2 dependencies: I therefore

try not to draw too many conclusions from coefficient changes. I do note, however, that the changes

are consistent overall with the known shifts in the Walker circulation: the convective cell moves

east with CO2 in the CCSM4 (Chapter 4), which one might expect to cause the western Pacific and

Indian Oceans to become less important in initiating El Niño events.

5.4 El Niño/La Niña event statistics

I next examine the statistics of individual events. I have simulated each CCSM4 ensemble 1000

times using the Markov GLM, and present the resulting PDFs in Figure 5.3 (Figure 2 from

([Stevenson 2012b]; Appendix 5)). Here, magnitudes are calculated for each event as the mean

NINO3.4 SST over the time during which the system was in the appropriate state. All of the RCP

ensembles show a tendency towards narrowing of the La Niña magnitude PDF and a shortening of

the high-power El Niño PDF tail (Figure 5.3a-c), relative to the 20th century.

There is a reduction in El Niño persistence in the RCP ensembles, especially in RCP2.6 (Figure

5.3d-f, g-i). For La Niña, in contrast, the changes in persistence PDF seem not to be as large; the

RCP4.5 and 8.5 results in particular show that the interquartile range (IQR) for the simulated time

series brackets the 20th century PDF (Figure 5.3h,i). In short: El Niño events tend to weaken and

become less persistent with CO2, while La Niña events weaken but do not change much in length.

The combined weakening of El Niño and La Niña events will lead to an overall weakening of the

ENSO amplitude; this is completely consistent with the results from Chapter 4. The persistence

results are somewhat surprising, and suggest that perhaps a portion of the ENSO weakening in the

21st century is caused by less persistent El Niños. I will also note here that even though the changes

seen in magnitude and persistence make intuitive sense, they are not statistically significant given
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that the IQR for the simulated time series so often covers the 20th century La Niña values.

Figure 5.3: Figure 2 from ([Stevenson 2012b]; Appendix 5). “El Niño/La Niña statistics for the 21st
century ensembles, simulated using the Markov GLM. Solid lines indicate the PDF for the 20th
century, with red and blue indicating El Niño and La Niña, respectively. Event magnitudes appear
in panels a-c; El Niño persistence in d-f; and La Niña persistence in g-i.”

Finally, I consider the implications of these results for protracted El Niño and La Niña events.

When one ENSO phase lasts longer than a few years, it can have profound implications for certain

regions. In particular, El Niños longer than 5 years have been the subject of some debate, since

estimating their expected return period under climate change is extremely difficult using the short

instrumental record [Rajagopalan 1997, Trenberth 1996]. The large ensemble size and physically-

based prediction method makes the Markov GLM an ideal candidate for repeating the calculation;
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expected return periods for 5-year (20 season) El Niño and La Niña events are given in Table

5.2. Calculations are performed using the transition probabilities determined from the simulated

NINO3.4 index:

R5yr = p−N (5.8)

where N = 20 seasons and p represents the (El Niño-El Niño) or (La Niña-La Niña) transition

probability calculated from that particular simulated time series.

Table 5.2: Table 2 from ([Stevenson 2012b]; Appendix 5). “Return periods for 5-year El Niño and
La Niña events (units of years).”

Ensemble 10%, EN Median, EN 90%, EN 10%, LN Median, LN 90%, LN
20th c. 1,078 3,325 41,337 3,905 7,718 17,388
RCP 4.5 6,041 20,872 104,388 827 5,449 21,938
RCP 8.5 9,504 34,872 155,864 12,870 55,475 342,005

Table 5.2 shows that the median return periods for El Niño increase monotonically: protracted

El Niños become less common with climate change. However, Table 5.2 also shows that the 90%

confidence intervals on the return periods overlap: the return periods are statistically indistinguish-

able from one another. Likewise, the 90% confidence intervals for the return period of 5-year La

Niña events also overlap between ensembles, despite the fact that the change in the median return

period is no longer monotonic.

The overall conclusions that I draw from this analysis are that the characteristics of individual

events change in ways that are reflective of the changes in overall ENSO strength in the CCSM4.

The amplitude of ENSO tends to weaken with CO2, due preferentially to a weakening of El Niño,

with some La Niña weakening as well. Very strong events become less frequent with CO2, and the

El Niño events which do occur tend to be less persistent. This means that we can expect ENSO

in the future to be both weaker and possibly more predictable overall... at least, if the results

from CCSM4 are representative of the real climate. But even still, if the quantity of interest is the
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appearance of El Niño/La Niña events which last for 5 years or longer, detecting any change to the

frequency of those events will be basically impossible given observations of the 21st century alone.
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6.1 Importance of An Equilibrated Mean State

Based on the results of the previous chapters, it becomes relatively simple to summarize the limi-

tations of our ability to measure ENSO climate sensitivity ([Stevenson 2011a]; Appendix 4):

1. Sampling effects from using an insufficiently long record

2. Long-term background state shifts due to changes in the radiative forcing imposed on the

ocean

3. Errors in model physics
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I will not spend too much time addressing the last point since issues of model bias require a large

sample of multi-century simulations with different GCMs, which currently do not exist (see Section

8.5.1). However, it is important to bear in mind that all of the model results in this dissertation

will be subject to potential model biases. That said, the results of the last two chapters lead to a

single conclusion. In order to understand the sensitivity of model ENSO to CO2 increases, a series of

model experiments is necessary where the same GCM is run for multiple centuries, changing nothing

except the CO2 concentration. I have conducted three such simulations with the CCSM3.5, a slightly

older version of the CCSM4 which does not include some of the newest physical parameterizations.

These experiments are constructed such that the mean climate in each simulation is stable, allowing

influences from background heat content anomalies to be ruled out as potential drivers for dynamical

change. Of course, this experimental design does not show the response to a time-varying forcing,

which is the relevant question for climate change. Still, it provides mechanistic insight into the CO2

response, which can then be used to understand the results of further climate change studies.

6.2 Simulations

The configuration of the model used in this chapter is discussed in ([Stevenson 2011a]; Appendix

4). I have used a low-resolution version of the CCSM3.5 called the T31x3, which uses T31 spectral

truncation in the atmosphere (roughly 3.75◦ resolution) and a spatially varying resolution in the

ocean. The ocean model places the north pole over Greenland, and the resolution in that region

is roughly 40km x 40km. Zonal resolution in the ocean is larger at the equator (340km), and

meridional resolution varies as well: 70km in the equatorial region and 350km in the North Pacific.

This grid configuration is designed to provide the best possible representation of deep convection in

the Arctic and upwelling/heat uptake along the equator.

The T31x3 was designed to run efficiently for long periods of time, and was primarily intended

for paleoclimate applications. A description of the T31x3 CCSM3 is available in [Yeager 2006]:

the present configuration differs from that setup in several ways. In the atmosphere, the most
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important difference is the use of the new convection scheme described in [Neale 2008]. In the

ocean, changes were made to the thickness diffusivity [Danabasoglu 2007], which is now a function

of ocean stratification, and to the diapycnal diffusivity [Jochum 2009]. The ocean viscosity was also

reduced to a more realistic value [Jochum 2008]. These changes are similar to those implemented

in the CCSM4, and the ENSO representation in the T31x3 CCSM3.5 is as good as the CCSM4, if

not better [Neale 2008, Deser 2011].

The three simulations I conducted were all begun at the same initial condition: the climatology

of [Levitus 1998]. CO2 was then set to one of three values, and the model integrated for 1000

years. Each model reached equilibrium after about 200 years, and no additional external forcing

was applied. Model years 200-1000 were used in the analysis to prevent contamination from ramp-

up effects. CO2 values were chosen to span the range of observed CO2 concentrations over the past

100 years, and some of the range expected in the future: values are 255, 355 and 455ppm. Hereafter,

the simulations are referred to as ‘pre-industrial’ (PI; 255ppm), ‘present-day’ (PD; 355ppm) and

‘high-CO2’ (HC; 455ppm).

6.3 Statistical Significance

The assessment of statistical significance in the CCSM3.5 runs is very similar to the analysis per-

formed in ([Stevenson 2011b]; Appendix 3) for the CCSM4 simulations. A full description is avail-

able in ([Stevenson 2011a]; Appendix 4).

The spectrum of NINO3 SST is presented in Figure 6.1. Here, the scatter between 100-year

subsamples is used to construct ‘envelopes’ of variability: subsamples were randomly chosen from

the simulation period, and the wavelet spectrum recomputed for each according to the wavelet

toolkit of [Torrence 1998]. As in Chapter 4, the Morlet wavelet basis function was used, and the

bias correction of [Liu 2007] applied to prevent the artificial enhancement of wavelet power at large

periods.

The most notable result in Figure 6.1 is the increase in spectral power at 2-5 year periods as
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CO2 increases. The increase between PI and PD is small, and there is some overlap between the

envelopes. Changes in HC are larger: this simulation shows a substantial increase in power over

both of the other two. I also note that this increase is seen using 100-year intervals, which are

expected to experience substantial natural variability (Chapter 3; ([Stevenson 2010]; Appendix 2)).

This is therefore an indication that the ENSO amplitude is quite sensitive to CO2.

Changes at other periods are also interesting. There is a definite enhancement with CO2 in the

power between 6-18 month periods in Figure 6.1. Longer periods, however, seem to be less sensitive

to CO2: the spectral envelopes in Figure 6.1 are indistinguishable at periods longer than 5 years,

which in itself is an interesting result. More details on longer-period variability may be found in

Section 6.7.

Fig. 1. Spectral range for 100-year subintervals taken from each of the three equilibrated
CCSM3.5 simulations. PI: pre-industrial (255 ppm CO2). PD: present day (355 ppm CO2).
HC: high CO2 (455 ppm CO2). Top panel: NINO3 SST. Bottom panel: NINO4 SST. All
wavelet power values are given in ◦C2.
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Figure 6.1: Figure 1a from ([Stevenson 2011a]; Appendix 4), showing the variability of the NINO3
SST. Spectra for 100-year subsamples of each simulation are calculated using the Morlet wavelet
transform, and envelopes represent the scatter between them.

To confirm that the spectral results in Figure 6.1 are not an artifact of the wavelet decompo-

sition, I next show the variance of NINO3 SST, bandpass filtered to lie within 2-4 and 5-7 year

periods (Figure 2a,b from ([Stevenson 2011a]; Appendix 4)). Confidence intervals in Figure 6.2 are

computed using a bootstrapping procedure, where subsamples of a particular length are selected

randomly and the variance for each computed. This leads to a dependence of the 90% confidence
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interval on the subsampling length, as would be expected. For 30-year subsamples, the variability is

indistinguishable between all simulations. However, using 400-year subsamples it becomes possible

to tell the difference between simulations: most likely the differences become significant at sampling

intervals shorter than this. As for the spectra, an overall increase in 2-4 variance is observed, but

the 5-7 year variance does not change significantly between any of the simulations.

Fig. 2. Illustration of the significance of differences between CCSM3.5 simulations. a,b:
NINO3 SST variance subsampled at 30-year (blue; dashed line) and 400-year (green; solid
line) intervals. c,d: Probability distribution functions of scale-averaged wavelet power. Top
row uses a 2-4 year bandpass filter, bottom row a 5-7 year filter. Bandpass filters used are
10th order Butterworth filters, and filter endpoints specified as the 3dB half-power points.
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Figure 6.2: Figure 2a,b from ([Stevenson 2011a]; Appendix 4), showing bandpassed NINO3 SST
variances bandpassed between a) 2-4 years and b) 5-7 years.

6.4 Circulation Changes

Changes to the mean state of the atmosphere are shown in Figure 6.3; here I have reproduced

only the panels of Figure 3 in [Stevenson 2011a] which show the PD-PI differences1 for wind stress,

precipitation and vertical pressure velocity ω. The overall subtropical wind stress anomalies are

primarily meridional, with northerly anomalies in the Southern Hemisphere and southerly anomalies

in the Northern: this is consistent with a slowdown of the Hadley circulation. Anomalies along

the equator have a stronger zonal component, tending towards weakening of the trade winds and

therefore a weakening of the Walker circulation. The precipitation anomalies in the center panel of
1The shape of the HC-PD differences is largely the same as PD-PI: ([Stevenson 2011a]; Appendix 4).
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Figure 6.3 are consistent with this picture: the eastward shift and weakening of the Walker cell is

reflected in the negative anomalies in the Indian Ocean and positive anomalies in the central/eastern

Pacific. Likewise, the equatorial ω anomalies show a similar pattern: the tendency is towards higher

ω (weaker ascent) over the Indian Ocean and lower ω (weaker subsidence) in the central/eastern

Pacific.

Fig. 3. Changes to the mean state of the atmosphere. Left-hand column: mean state for PI.
Middle column: differences between PD and PI. Right-hand column: differences between HC
- PD. Top row (a-c): differences in wind stress (arrows show direction, colors the magnitude
of the wind stress difference). Middle row (d-f): differences in precipitation. Bottom row
(g-i): Differences in ω, vertical pressure velocity at 500 mb. In the middle and right-hand
columns, the yellow boxes show the approximate positions of the pathways active in the
SFM-like mechanism.
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Figure 6.3: Figure 3b,e,h from ([Stevenson 2011a]; Appendix 4), showing changes in the mean
atmospheric state between PD and PI. b: Wind stress magnitude (colors) and direction (arrows).
e: Precipitation. h: Vertical pressure velocity ω. Yellow boxes show the approximate positions of
the Rossby wave pathways active in the SFM-like mechanism discussed in the text.

The features highlighted in the yellow boxes of Figure 6.3 are quite interesting: here there is

anomalous convergence in the Northern Hemisphere, and anomalous divergence in the Southern

Hemisphere. In both regions, the mean changes to ω are positive and are just poleward of the main

anomaly: these ‘pathways’ coincide with the regions previously identified as important for seasonal

forcing [Alexander 2002, Vimont 2003] and are locations where Rossby waves tend to be active. The

role of seasonal forcing will be discussed in more detail in Section 6.6.

The changes to the mean circulation of the atmosphere drive corresponding changes in the ocean.

Generally speaking, the changes to the oceanic mean state in CCSM3.5 (not pictured) are in the

same direction as the changes observed in CCSM4 ([Stevenson 2011a]; Appendix 4). The zonal SST

gradient along the equator is reduced owing to enhanced warming in the eastern Pacific, and the

vertical thermal and density stratifications increase as well. Transport in the subtropical cell (STC)
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is reduced with CO2 (Figure 6.4): changes typically range from 5-10%, and the majority tend to

decrease the existing circulation. The exception is the surface region in the Northern Hemisphere

near 5◦N, where circulation increases slightly. This may be a locally driven circulation caused by

the increased convergence near 5-10◦N, which would tend to enhance the existing subduction in the

northern branch of the STC.

Fig. 5. Summary of the circulation of the tropical Pacific. Upper panels: overturning
streamfunction for the subtropical cell (units of Sv). Lower panels: strength of the Ekman
pumping ∇×τ

ρof
(values x 106). The contours indicate the magnitude of the relevant quantity

(in PI for panels a/d, PD for panels b/e and HC for panels c/f), while the colors show the
percentage change relative to PI (i.e. for HC, colors show (HC - PI)/—PI— x 100%).
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Figure 6.4: Figure 5a,b from [Stevenson 2011a], showing the mean changes to the circulation in the
STC between PD and PI (units of Sv).

6.5 2-4 Year Variability

I next investigate the cause of the 2-4 year variability increase. A variety of possible diagnos-

tics exist, including compositing [Deser 2006], analysis of the dominant modes of oceanic variabil-

ity [Capotondi 2006], measurement of coupling between various regions [Philip 2006], heat bud-

geting [DiNezio 2010], measurement of the magnitude of variability in ENSO-sensitive regions

[Collins 2010], and many more. This means that choosing a single set of metrics by which to

measure ENSO changes can be a bewildering prospect: indeed, there is no one standard measure
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for ENSO [Guilyardi 2009b].

I begin by asking the question: Can changes to the 2-4 year NINO3.4 variance in the CCSM3.5

be ascribed to changes in the excitation of a mode similar to one of the theoretical oscillators

described in Chapter 1? For example, does the delayed oscillator mode become more or less active

with CO2? This type of thinking must be done with care, since the various oscillators involve

processes which strongly covary (Section 1.2, cf. [Wang 2001]). Nonetheless, it provides a useful

conceptual framework.

If a delayed oscillator-like mechanism is responsible for the majority of the ENSO climate re-

sponse, then one or more of the following characteristics is likely to change with CO2:

1. The excitation of off-equatorial Rossby waves

2. Wave reflection at the western boundary of the Pacific

3. The propagation of anomalies from the western boundary to the eastern Pacific

First I consider the growth of eastern Pacific SST anomalies. The most straightforward conse-

quence of an increase in oceanic thermal stratification is an increase in the SST anomalies associated

with a given displacement of the thermocline. Figure 6.5 shows the standard deviations of SST and

thermocline depth: an increase is seen with CO2 in both. In the SST panel (left), the majority of the

changes happen near the equator, where there is a net decrease in variability in the western Pacific

and a net increase in the central/eastern Pacific. This is what one might expect if the generation

of El Niño events was taking place near the eastern boundary of the warm pool, for example.

The thermocline variability in Figure 6.5 does appear to represent an enhanced excitation of

equatorial Kelvin waves with CO2. The ‘lobes’ of variability near 5◦S/N are qualitatively consistent

with an increase in excitation of subsurface variability in this region; some of that increase in energy

is then transmitted to the Kelvin wave mode, which accounts for the enhanced variability along

the equator and at the eastern boundary of the basin. The off-equatorial signal is not very large,

suggesting that transmission of subsurface variability from the subtropics to the tropics via delayed
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Fig. 7. Oceanic variability (bandpass filtered with 3dB points at 2 and 4 years). Each
panel shows the variance of the relevant quantity. Top panels: SST (◦C2). Middle panels:
thermocline depth (m2). Bottom panels: Subsurface temperature (◦C2).
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Figure 6.5: Panels b,e,h from ([Stevenson 2011a]; Appendix 4)Figure 7, illustrating the oceanic
variability in the 2-4 year band in PD. Left: SST. Middle: Thermocline depth (Z20.5). Right:
Subsurface ocean temperature. In all panels, PD values are given in contours and the % difference
from PI in color shading.

oscillator-like reflection at the eastern and western boundaries is not a dominant mechanism in this

model.

The subsurface temperature variability shows some interesting structure (Figure 6.5, right).

There appears to be a ‘center’ of variability along the main thermocline, near 100m depth in the

central Pacific. Two other regions of large variability are also visible: one centered in the east-

ern/central Pacific surface layer, and another at the eastern boundary. All three centers strengthen

with CO2.

Thus far, the CO2-induced changes seem relatively straightforward. The increase in vertical

stratification leads to enhanced SST variability, and the eastward expansion of the warm pool aids

in the growth of SST anomalies. The slackened equatorial easterlies also contribute to the ease

with which SST anomalies propagate across the basin as Kelvin waves and grow into full-fledged

El Niño events. This is not exactly the same formulation as the delayed oscillator, since the role of

wave reflection seems to be relatively minimal, but nonetheless relies on relatively well-understood

equatorial wave dynamics.

There is another complicating factor, however, which must be considered: the pronounced hemi-

spheric asymmetry in CO2 sensitivity, which is not easily explainable by a meridionally symmetric

model like the delayed oscillator. The point is illustrated in Figure 6.6, which shows the vertical
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Figure 6.6: Reproduction of Figure 8 from ([Stevenson 2011a]; Appendix 4). Variability in subsur-
face ocean temperature (variance of gridpoint time series, bandpass filtered with 3dB points at 2
and 4 years). Thick solid lines indicate the mean position of the thermocline; dashed lines show the
±1σ uncertainty on the mean thermocline position.
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profile of subsurface temperature variability at 5◦S-5◦S as well as 10-20◦N and S. The changes to

variance between hemispheres are strikingly different: there is a decrease in variability in the North-

ern Hemisphere (Figure 6.6, top row) and an increase in the Southern (Figure 6.6, bottom row).

Thus a hemispherically asymmetric mechanism is required to explain these changes.

6.6 Role of Seasonal Forcing

The presence of seasonal footprinting-like pathways in Figure 6.3 provides an indication that changes

to the seasonal cycle might provide the necessary asymmetric driver: thus the seasonal influence on

ocean dynamics is next considered.

It is first necessary to understand a fundamental feedback: the ‘Wind-Evaporation-SST’, or

‘WES’, feedback [Xie 1994b]. A schematic illustration of WES feedback near the equator is provided

in Figure 6.7: an initial warm anomaly slightly to the north of the equator will lead to an SLP

gradient driving northward flow. Then the Coriolis force accelerates the anomalous wind to the

west (east) in the Southern (Northern) Hemisphere, which tends to increase (decrease) evaporation

and creates a cold (warm) anomaly in SST. This is the mechanism often cited for the northward

displacement of the ITCZ [Xie 2004], and will operate in the CCSM3.5 as well.! !"#$%&'(#)$*+,-.(&/+01!"#$!
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Figure 6.7: Figure 4-5 from [Xie 2004], a schematic illustrating the WES feedback.



6.6. Role of Seasonal Forcing 98

The WES feedback occurs in any region where air-sea coupling takes place. In the Northern

Hemisphere extratropics, for example, a warm SST anomaly will drive an anticyclonic circulation

which interacts with the westerly trades to induce a cold (warm) anomaly to its north (south).

The reverse is true in the Southern Hemisphere: the corresponding tendencies are for anomalies

to propagate to the southwest in the Northern Hemisphere and to the northwest in the Southern

Hemisphere.

In the seasonal footprinting mechanism of [Vimont 2003, Alexander 2002], the WES feedback is

the dominant process. The initial disturbance there is generated by PDO-like variability centered

near the Aleutian Islands. An initial positive SST anomaly eventually generates an El Niño event

during the following winter: likewise, a cold SST anomaly leads to a La Niña event. Modeling ex-

periments have since confirmed that both El Niño and La Niña may be triggered by this mechanism

[Alexander 2010].

Here, I primarily focus on the tropics rather than invoking the PDO; nonetheless, the phys-

ical mechanism is the same. My hypothesis is that the interaction between the seasonal cycle

of the Hadley cell with the ocean via the WES feedback is responsible for driving the weaken-

ing/strengthening of variability in the Northern/Southern Hemisphere. This seems to be due to the

overall enhancement of the seasonal cycle in the eastern Pacific with CO2.

A strengthening of the SST seasonal cycle in the NINO3 region means that during boreal summer

when the meridional temperature gradient is at its climatological maximum, the overall magnitude

of that gradient will be larger. A larger meridional temperature gradient will lead to a larger

mean cross-equatorial flow, and therefore to larger hemispheric asymmetries in wind structure due

to the WES feedback. Specifically, this will lead to increased convergence (divergence) in the

Northern (Southern) Hemispheres. The influence on Ekman pumping will be towards strengthening

(weakening) of the mean subduction near 5-10◦.

If this seasonal influence is indeed important, then there should be evidence for a hemispherically

asymmetric change in seasonally forced wind stress variability. Figure 6.8 shows the bandpassed

variance of the zonal wind stress between 2 months-2 years, chosen to cover the semi-annual and
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Fig. 9. Changes to atmospheric variance, bandpass filtered with 3dB points at 2 months
and 2 years. Boxes indicate the positions of anomalous convergence/divergence from Figure
3. a) Surface heat flux variance σQ for PI (W2/m4). b) % change in σQ between PD and
PI. c) % change in σQ between HC and PI. d) Zonal wind stress variance στ for PI (N2/m4).
e) % change in στ between PD and PI. f) % change in στ between HC and PI. Black boxes
indicate the position of the SFM-like pathways, and are identical to the regions defined in
Figure 3.
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Fig. 9. Changes to atmospheric variance, bandpass filtered with 3dB points at 2 months
and 2 years. Boxes indicate the positions of anomalous convergence/divergence from Figure
3. a) Surface heat flux variance σQ for PI (W2/m4). b) % change in σQ between PD and
PI. c) % change in σQ between HC and PI. d) Zonal wind stress variance στ for PI (N2/m4).
e) % change in στ between PD and PI. f) % change in στ between HC and PI. Black boxes
indicate the position of the SFM-like pathways, and are identical to the regions defined in
Figure 3.
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Figure 6.8: Figure 9 from ([Stevenson 2011a]; Appendix 4), showing the 2 month - 2 year bandpassed
variance in zonal wind stress. “a) Zonal wind stress variance στ for PI (N2/m4). b) % change in στ
between PD and PI. Black boxes indicate the position of the SFM-like pathways, and are identical
to the regions defined in Figure 6.3.”
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annual cycle. The boxes in Figure 6.8 are identical with the boxes in other figures, and show that

there is in fact a decrease in variability in the Northern and increased variability in the Southern

Hemisphere near 5-10◦ in the eastern Pacific.

Communication between the atmosphere and ocean takes place through Ekman pumping. Figure

6.9 measures the correlation between the wind stress curl and thermocline depth, a direct proxy

for the strength of Ekman pumping anomalies. And indeed, it is not only the overall variability

on seasonal timescales which varies asymmetrically, but the Ekman pumping itself. This will tend

to generate subsurface disturbances in the ocean, which will then propagate toward the tropics as

Rossby waves.

Fig. 10. Lag-correlations between the curl of the wind stress and thermocline depth, for
all simulations. Top panels (a-c) show the zero-lag correlation for PI-HC; bottom panels
(d-f) show correlations at lag 2 months (wind stress leading). Correlations for PI are shown
as contours in panels a) and d); in panels b-c and e-f contours indicate the values of the
lag-correlations, while colors show the percentage change from PI. Black boxes are identical
to those in Figure 3.

51

Figure 6.9: Figure 9 from ([Stevenson 2011a]; Appendix 4): Lag-correlations between the curl of
the wind stress and thermocline depth at zero lag. Correlations for PI are shown as contours in
panel a); in panels b-c contours indicate the values of the lag-correlations, while colors show the
percentage change from PI. Black boxes are identical to those in Figure 6.3.

Figure 6.9 is somewhat incomplete since it does not show the phase of Ekman pumping in relation

to the seasonal cycle. If one examines the phases of variability in each location (([Stevenson 2011a];

Appendix 4) Figures 11 and 12, not pictured), it becomes clear that Ekman pumping anomalies are

strongest during boreal summer in the Northern Hemisphere and boreal winter in the Southern. This

tends to lead to the initiation of El Niño/La Niña events due to Northern Hemisphere anomalies,

whereas their termination is tied more directly to Southern Hemisphere anomalies. The shift toward
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enhanced Southern Hemisphere variability thus leads to more efficient event termination. Combined

with the larger equatorial event generation via Kelvin waves, this contributes to the larger amplitude

of ENSO variability.

These results provide an interesting comparison with the analysis of [Philander 2003], who hy-

pothesized that a deeper thermocline and weaker trade winds would lead to a weaker ENSO. Their

mechanism was a weakening of the air-sea coupling and a warming of the waters upwelled to the

surface in the eastern Pacific. This result built on stability analysis of a linearized atmosphere-ocean

system [Fedorov 2001]. Mean changes in the CCSM3.5 seem consistent with the [Philander 2003]

picture at first glance: the trade winds do weaken with CO2, and the depth of the 20◦C isotherm

increases in the equatorial Pacific. All else being equal, this would seem to be conducive to a

weakening of ENSO. However, the thermal stratification also increases, and the depth of the maxi-

mum vertical temperature gradient becomes shallower - changes which are more favorable to ENSO

strengthening. To make things more complicated, the same mean-state changes in CCSM4 lead to

a weaker ENSO ([Stevenson 2011b]; Appendix 3), so the mean state change alone is clearly insuf-

ficient to determine the ENSO response. All in all, it is not surprising that a simplified analysis

like [Philander 2003] does not capture the full ENSO response - a more complete consideration of

coupled processes is necessary.

6.7 5-7 Year Variability

I conclude with a brief investigation of the longer-period variability (P ≥5 years) in PI, PD and HC.

Although changes to the tropical SST signal are insignificant here, there still may be interesting

changes to the dynamics: a full exploration is beyond the scope of this dissertation, however.

I have performed an analysis of the bandpassed standard deviations of wind stress and thermo-

cline depth. If the delayed oscillator or a similar mechanism is the dominant source of variability

at these frequencies, one would expect to see changes similar to those at 2-4 year periods. Consis-

tent with such a hypothesis, the thermocline depth changes between PD and PI (Figure 6.10) are
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Figure 6.10: Bandpassed standard deviations of thermocline depth, with 3dB points at 5 and 7
year periods. Contours indicate the magnitude of the standard deviation (m2), and colors show the
percentage change relative to the lower-CO2 end member in each comparison. These correspond to
(PD-PI)/PI (left) and (HC-PD)/PD (right).

qualitatively similar to Figure 6.5, with enhanced excitation of the equatorial Kelvin wave mode

creating larger variations in the eastern Pacific. However, the pattern of HC-PD changes is very

different, appearing in many ways as a mirror image of the PD-PI panel. Variability strengthens

(weakens) along the western boundary (central Pacific) in HC-PD, while the opposite is true in PD-

PI. Likewise, variability near 250◦E is enhanced in HC-PD and suppressed in PD-PI. I hypothesize

that this represents a shift in the location of Kelvin wave generation by westerly wind bursts near

the edge of the western Pacific warm pool [?]. It is possible that the enhanced variability in PI may

represent a balance between two competing influences: the increased stratification in the eastern

Pacific and the reduced equatorial trade winds. The former tends to favor wave generation, the

latter to suppress it. However, testing this hypothesis definitively is left to future work.

Extratropical influences may also be expected to become important at these periods, and the

variability in wind stress is therefore considered out to latitudes of 60◦N and S in the upper panels

of Figure 6.11. A lobe of variability can be seen off the Aleutian Islands in both panels, which may

be associated with PDO-like dynamics. This lobe shifts southward substantially in PD relative to

PI, as evidenced by the deficit (excess) near 60◦N (50◦N). However, the shift between HC and PD

is much smaller, only a few percent of the PD value. Thus there may be interesting nonlinearities
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Figure 6.11: Bandpassed standard deviation of zonal wind stress, with 3dB points at 5 and 7 year
periods. Contours and colors follow the same convention as Figure 6.10.

in wind-forced dynamics in the extratropics, which bear further investigation.
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I have been interested in the connection of climate science with science policy for quite some time,

since knowledge only truly benefits society if it is communicated to the people making decisions.

During the course of my PhD, I have tried to understand how climate science and policy might

interact, and how climate science research is viewed by the policy community, by participating in

the CU graduate certificate program in science and technology policy. On a personal note, I found

the experience completely fascinating in some respects and extremely frustrating in others: the

other students often came from a political science or humanities background, and communication

could sometimes be difficult. But one thing that I did learn is that we as climate scientists often

take for granted some of the highly complex social and economic issues that have to be considered

when dealing with the climate system. So I would like to use the last chapter of this dissertation to

highlight one area that is treated as a ‘black box’ by the climate science community: namely, the

AR5 ‘emissions scenarios’. In addition to being something that is important for climate scientists

to understand when working with simulations of the 21st century, the emissions scenario issue
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highlights the need for truly interdisciplinary collaboration.

As an introduction: I put emissions scenarios in quotations above because properly speaking, the

AR5 does not use scenarios per se. Instead, the ‘Representative Concentration Pathways’, or RCPs,

were developed specifically to be independent of socioeconomic development. This is a laudable

goal, and represents a substantial advance over the previous generation of scenarios used in the

AR4. However, as I will discuss in this chapter, there is a great deal of technological improvement

which is implicitly built in to the AR5 pathways, as was the case for their predecessors. This

does not necessarily mean that the mitigation goals set by the AR5 are impossible, but it may be

substantially more difficult to achieve those goals than the IPCC lets on: having a realistic sense

of the difficulty of the challenge is going to be crucial for developing policy strategies to deal with

climate change.

7.1 Emissions Projections: AR4 vs. AR5

The defining feature of the RCPs, as noted above, is the fact that they are projections designed

using a specified top-of-atmosphere radiative forcing, rather than specified profiles of greenhouse gas

emissions. This represents a conceptual reversal from the previous generation of scenarios, described

in the ‘Special Report on Emissions Scenarios’, or SRES [Nakicenovic 2000].

Table 7.1: Table 1 from ([Stevenson 2012a]; Appendix 6). SRES families and associated patterns
of economic, population, and technological growth.
Family Economic Growth Population Growth Technological Development

A1 rapid peaks in mid-century, rapid introduction of new,
then declines efficient technologies

A2 fragmented, slow continuous slow increase
B1 transition to service same as A1 clean, resource-efficient

/information economy
B2 intermediate continuous increase diverse, slower development

(slower than A2)

To provide some context for comparison, the four major SRES scenario ‘families’ are described in

Table 7.1 (Table 1 from ([Stevenson 2012a]; Appendix 6)). The four families represent four different
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philosophies of how social and economic systems will develop over the course of the 21st century.

Generally the B families are more stringent mitigation pathways, and the A families represent more

rapid growth with larger associated greenhouse gas emissions. The A1B scenario in particular is

often used as the so-called ‘business as usual’ projection [Schneider 2001, Stroeve 2007]. That said,

the past 10 years have shown even faster emissions growth than the A1B [Raupach 2007].

The four RCPs (RCP 2.6, 4.5, 6.0 and 8.5) cover a broadly similar range in climate projections as

the SRES: projected CO2 emissions and radiative forcing are shown for each in Figure 7.1. Each of

the RCPs was constructed using a ‘baseline’ scenario from a different integrated assessment model,

which combines economic and policy simulations with representations of the agricultural sector and a

simplified version of the physical climate system. From this, combined with the desired stabilization

top-of-atmosphere forcing, the emissions pathway is derived. Pathways are then replicated with a

second model to ensure the reliability of the projection [Weyant 2009].

targets identified by policy makers. In addition, the integrated assess-
ment modellers will develop entirely new scenarios with different
radiative forcing pathways to explore additional issues and un-
certainties. For example, new reference scenarios will be developed
to explore alternative demographic, socioeconomic, land use, and
technology scenario backgrounds. Scenarios will be created to explore
alternative stabilization levels, includinghigherovershoot pathways, as
well as the technology, institutional, policy and economic conditions
associated with these pathways. Other scenarios will be developed to
explore uncertainties in processes such as the terrestrial carbon cycle,
the ocean carbon cycle and the atmospheric chemistry of aerosols. A
variety of new regionally based scenarios will be developed using
regional models by research teams in developing and transition-
economy countries. The process by which new scenarios will be pro-
duced and the nature of coordination across research teams is not
specified here and remains to be determined.

The socioeconomic assumptions underlying the new emissions
scenarios (along with information about the spatial distribution of
these characteristics, when possible) will be used to develop scenarios
of factors affecting vulnerability, and will then be paired with climate
model results to provide consistent inputs for impact, adaptation and
vulnerability research. It is an open research question how wide a
range of socioeconomic conditions could be consistent with a given
forcing pathway, including its ultimate level, pathway over time and
spatial pattern; however, the range of underlying socioeconomic
scenarios that are consistent is potentially very wide (carbon cycle
uncertainties are among the major unknowns affecting scenario
development46).

A significant portion of the new research anticipated to result from
the RCPs and the subsequent process will be assessed in the IPCC’s

Fifth Assessment Report, now under way and scheduled for release
during 2013 and 2014.

Selection process for the RCPs
A careful selection process was used to identify the RCPs, using
criteria that reflected the needs of both climate scenario developers
and users3. As a user of the RCPs and the ensuing research, the IPCC
requested the development of new scenarios compatible with the
literature of reference and mitigation scenarios and helped catalyse
the selection process. The criteria established by the research com-
munity included compatibility ‘with the full range of stabilization,
mitigation, and reference emissions scenarios available in the current
scientific literature’43; amanageable and even number of scenarios (to
avoid the inclination with an odd number of cases to select the central
case as the ‘best estimate’); an adequate separation of the radiative
forcing pathways in the long term in order to provide distinguishable
forcing pathways for the climatemodels; and the availability ofmodel
outputs for all relevant forcing agents and land use. The scientific
community used these criteria to identify four radiative forcing path-
ways, and a new Integrated Assessment Modelling Consortium
(IAMC), comprising 45 participating organizations (http://www.
iamconsortium.org), then assembled a list of candidate scenarios
for each radiative forcing level from the peer-reviewed literature.
The selection process relied on previous assessment of the literature
conducted by IPCC Working Group III during development of the
Fourth Assessment Report49. Of the 324 scenarios considered, 32met
the selection criteria and were able to provide data in the required
format. An individual scenario was then selected for each RCP
(Table 1). The final RCP selections (RCP2.6, RCP4.5, RCP6.0 and
RCP8.5) were made on the basis of discussions at an IPCC expert

Table 1 | The four RCPs

Name Radiative forcing Concentration
(p.p.m.)

Pathway Model providing RCP* Reference

RCP8.5 .8.5Wm22 in 2100 .1,370 CO2-equiv. in 2100 Rising MESSAGE 55,56

RCP6.0 ,6Wm22 at stabilization after 2100 ,850 CO2-equiv. (at stabilization after 2100) Stabilization without
overshoot

AIM 57,58

RCP4.5 ,4.5Wm22 at stabilization after 2100 ,650 CO2-equiv. (at stabilization after 2100) Stabilization without
overshoot

GCAM 48,59

RCP2.6 Peak at ,3Wm22 before 2100 and
then declines

Peak at ,490 CO2-equiv. before 2100 and
then declines

Peak and decline IMAGE 60,61

*MESSAGE, Model for Energy Supply Strategy Alternatives and their General Environmental Impact, International Institute for Applied Systems Analysis, Austria; AIM, Asia-Pacific Integrated
Model, National Institute for Environmental Studies, Japan; GCAM, Global Change AssessmentModel, Pacific Northwest National Laboratory, USA (previously referred to asMiniCAM); IMAGE,
Integrated Model to Assess the Global Environment, Netherlands Environmental Assessment Agency, The Netherlands.
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Figure 5 | Representative concentration pathways. a, Changes in radiative
forcing relative to pre-industrial conditions. Bold coloured lines show the
four RCPs; thin lines show individual scenarios from approximately 30
candidate RCP scenarios that provide information on all key factors
affecting radiative forcing from ref. 47 and the larger set analysed by IPCC
Working Group III during development of the Fourth Assessment Report49.

b, Energy and industry CO2 emissions for the RCP candidates. The range of
emissions in the post-SRES literature is presented for the maximum and
minimum (thick dashed curve) and 10th to 90th percentile (shaded area).
Blue shaded area corresponds to mitigation scenarios; grey shaded area
corresponds to reference scenarios; pink area represents the overlap between
reference and mitigation scenarios.
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Figure 7.1: Figure 5 from [Moss 2010]. MESSAGE (RCP 8.5) is shown in gray, AIM (RCP 6.0) in
blue, GCAM/MiniCAM (RCP 4.5) in pink and IMAGE (RCP 2.6) in green. (a) Top-of-atmosphere
radiative forcing, W/m2. (b) CO2 emissions in gigatons.

Generally, the more stringent RCPs (2.6 and 4.5) most closely resemble the SRES B families;

the less stringent (6.0 and 8.5) more closely resemble the SRES A families. Some of the similar-

ities between the SRES and RCPs, in fact, go beyond the qualitative. For instance, the RCP2.6
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[van Vuuren 2007, Van Vuuren 2006] was developed using a baseline emissions pathway derived

from the SRES B2 [Weyant 2009] and modified to better fit the demographic trends from 2000-2010

by [van Vuuren 2007]. This is the lowest radiative forcing pathway, and has the notable feature of

requiring negative emissions by 2100 (Figure 7.1).

The least stringent pathway, the RCP8.5 [Rao 2006, Riahi 2007], is also derived from a base-

line projection which heavily draws on the SRES. The revisions made to the A2 scenarios in the

derivation of RCP8.5 are discussed in [Riahi 2007], which mostly have to do with modification of

population growth and technological development estimates to better fit UN projections. In this

pathway, CO2 levels rise well above 1000ppm, and continues to rise in 2100 and beyond (Figure

7.1b).

The two middle pathways, RCP 4.5 [Clarke 2007] and RCP 6.0 [Fujino 2006], were derived

from baseline scenarios developed independently from the SRES. In the RCP4.5, technological

improvements are assumed to result in large energy efficiency improvements over the course of the

21st century, with each dollar of 2100 gross domestic product (GDP) produced using only 25% as

much energy as the equivalent in 2000 [Clarke 2007]. The RCP6.0 team derived their scenarios using

data from the International Energy Association [Fujino 2006], and technological improvements in

this scenario lie between the projections of the other groups. Both show CO2 emissions stabilizing

by the end of the 21st century (Figure 7.1b).

Table 7.2: Table 2 from ([Stevenson 2012a]; Appendix 6). “RCPs recommended for use in AR5.
Modeling groups are: the Asia-Pacific Integrated Model (AIM), the Model for Energy Supply Strat-
egy Alternatives and their General Environmental Impact (MESSAGE), the Mini-Climate Assess-
ment Model (MiniCAM), and the Integrated Model to Assess the Global Environment (IMAGE).”

Name Forcing (W/m2) CO2 level Modeling group Country/region
RCP8.5 8.5 ≥ 1370 MESSAGE Austria
RCP6 6.0 850 AIM Japan
RCP4.5 4.5 650 MiniCAM USA
RCP2.6 3.0 490 IMAGE Netherlands
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7.2 Decarbonization in the RCPs

Any effective climate change mitigation strategy must necessarily incorporate substantial reductions

in world energy consumption [Hibbard 2007, Hoffert 1998, Hoffert 2002]. One of the more commonly

used metrics is the decarbonization rate, defined simply as the rate of change of carbon emissions

per unit of GDP. The decarbonization rate is the product of two quantities: the carbon intensity

(CI) and energy intensity (EI). CI is a measure of the carbon emission required per unit of energy

generated, while EI measures the amount of energy required to produce a unit of GDP.

Being the ‘state of the art’ in our knowledge of climate change, the scenarios used for the IPCC

are often looked on as representing what is achievable given current economic realities. But this

is not necessarily the case: for example, [Pielke Jr. 2008] calculated the projected decarbonization

rates from the SRES scenarios. Using a ‘frozen technology’ baseline simulation, they show that the

decarbonization in the AR4 simulations relies on ‘automatic’ efficiency improvements which account

for a large fraction of CO2 emissions reductions. This means that the effort required to achieve the

SRES mitigation goals may be larger than anticipated.

The RCPs are designed to avoid being tied to a single possible socio-economic outcome - how-

ever, they still do require large decarbonization rates. To provide a ‘ballpark’ estimate of the

degree of decarbonization required for the RCP stabilization targets, I have recreated Figure 2 from

[Pielke Jr. 2008]. For RCP4.5 and 8.5, I have used the baseline scenario from which the projection

was derived. This was not available for RCP2.6 and 6.0, so I used the GCAM ‘replicate’ simulation

instead. Results are shown in Figure 7.2, using time periods of both 2000-2010 and 2010-2100.

There is a notable lack of differences between the 2000-2010 and 2005-2020 RCP values; roughly

the same range of carbon and energy intensities are covered by both groups of scenarios. Also inter-

esting is the difference between the 2000-2010 and 2010-2100 results: particularly for RCP2.6, the

required mean decrease in carbon intensity over the 21st century is much larger than that currently

observed (Figure 7.2b, red star).
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a)

shows the same breakdown in the 6 ‘illustrative’ 
SRES scenarios1 (plus the mean of these 6 and 
of the 35 complete SRES scenarios considered 
by the IPCC). In all cases, the IPCC assumes 
that most of the challenge (between 57% and 
96%) of achieving stabilization at around 500 
parts per million will occur automatically, leav-
ing a much smaller emissions-reduction target 
for explicit climate policies.

Unpredictable future
The IPCC scenarios include a wide range of 
possibilities for the future evolution of energy 
and carbon intensities. Many of the scenarios 
are arguably unrealistic and some are likely 
to be unachievable. For instance, the IPCC 
assumptions for decarbonization in the short 
term (2000–2010) are already inconsistent 
with the recent evolution of the global econ-
omy (Fig. 2). All scenarios predict decreases 
in energy intensity, and in most cases carbon 
intensity, during 2000 to 2010. But in recent 
years, both global energy intensity and car-
bon intensity have risen, reversing the trend 
of previous decades. 

Most SRES scenarios also predict a rapid 
decline in energy intensity (exceeding 1.0% per 
year), which may be neither realistic nor achiev-
able. To achieve a century-long 1.0% annual 
rate of energy intensity decline requires very 
large increases in energy efficiency8. Even with 
a substantial policy effort this would be very 
difficult to achieve. Only about 20% (± 10%) of 
global energy intensity decline can be expected 
from sectoral shifts in economic activity, such as 
from manufacturing to services8. The rest must 
come from improved efficiencies in individual 
energy-using sectors, requiring either technol-
ogy changes or new technologies. 

One reason for the current rise in global energy 
and carbon intensities is the economic transfor-
mation taking place in the developing world, 

especially in China and India. As development 
proceeds, rural populations move to high-rise 
buildings that consume energy and energy-
intensive materials. This process is likely to con-
tinue, not only in these countries, but all over 
populous south Asia, and eventually Africa, 
until well beyond 2050. An analysis of China’s 
carbon-dioxide emissions estimated them to 
be rising at a rate of between 11% and 13% per 
year9 for the period 2000–2010, which is far 
higher than that assumed by the SRES scenarios 
for Asian emissions (2.6–4.8% per year).

Because of these dramatic changes in the glo-
bal economy it is likely that we have only just 
begun to experience the surge in global energy 
use associated with ongoing rapid develop-
ment. Such trends are in stark contrast to the 
optimism of the near-future IPCC projections 

and seem unlikely to alter course soon. The 
world is on a development and energy path 
that will bring with it a surge in carbon-dioxide
 emissions — a surge that can only end with a 
transformation of global energy systems. We 
believe such technological transformation will 
take many decades to complete, even if we start 
taking far more aggressive action on energy 
technology innovation today.

Enormous advances in energy technology 
will be needed to stabilize atmospheric carbon-
dioxide concentrations at acceptable levels. If 
much of these advances occur spontaneously, 
as suggested by the scenarios used by the IPCC, 
then the challenge of stabilization might be less 
complicated and costly. However, if most decar-
bonization does not occur automatically, then 
the challenge to stabilization could in fact be 
much larger than presented by the IPCC10,11. 

The IPCC plans to update the SRES for its 
next report (due in 2013 or later), but in the 
meantime climate policy would be better 
informed by having a clear view of the size of 
the technological challenge. 

There is no question about whether 
technological innovation is necessary — it is. 
The question is, to what degree should policy 
focus directly on motivating such innovation? 
The IPCC plays a risky game in assuming that 
spontaneous advances in technological inno-
vation will carry most of the burden of achiev-
ing future emissions reductions, rather than 
focusing on creating the conditions for such 
innovations to occur. !
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Figure 2 | Decarbonization discrepancies. Implied 
rates of carbon- and energy-intensity decline 
from the 2000 Special Report on Emission 
Scenarios, showing six illustrative scenarios. 
The red marker indicates actual observations 
(2000–2005) based on global economic growth 
calculated using market exchange rates.

Figure 1 | Cumulative emissions. A range of ‘built-in’ emissions reductions (blue) in the scenarios used 
by the Intergovernmental Panel on Climate Change (IPCC). Total cumulative emissions to 2100 
associated with a frozen-technology baseline are shown for: six individual scenarios, the means of these 
scenarios (n=6), and for all 35 IPCC scenarios, and the median of the scenario set (AR4). Additional 
reductions will have to be achieved by climate policy (red), assuming carbon-dioxide stabilization at 
about 500 parts per million (p.p.m.), leaving allowed emissions for this stabilization target (yellow). 
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Figure 7.2: a) Figure 2 from [Pielke Jr. 2008], showing decarbonization for the SRES scenarios over
2000-2010. b) Figure 3 from ([Stevenson 2012a]; Appendix 6), showing the same quantities for the
RCP baseline scenarios.
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7.3 Energy Use in the RCPs

Figure 7.2 implies that despite the new approach to simulating 21st century economic development,

the RCPs include some of the same built-in assumptions is leading to decarbonization predictions

which might be extremely difficult to achieve in practice. This begs the question: where are we

going wrong? Are the energy use projections in the RCPs completely unrealistic, or can we use

them to make specific policy recommendations? A complete answer to these questions is beyond

the scope of this dissertation, of course. However, to provide some perspective on the types of

technologies the RCPs rely on most heavily, I have performed a brief overview of the literature on

the subject.

(a)

Figure 3.6: Final Energy by form 
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Figure 4.10. Global Primary Energy Consumption by Fuel Across Scenarios (EJ/yr).  The transition to stabilization, reflected most fully in the Level 1 stabilization scenarios,
means an eventual phase-out of fossil fuel use unless CCS is employed. Consumption of non-fossil energy sources increases 6-fold to 14-fold over the century in the Level 1 stabilization
scenarios. In the IGSM stabilization scenarios, more of the emissions reductions are met through demand reductions than in the scenarios from the other two modeling groups, with 2100
energy use cut by up to one-half relative to the reference scenario in 2100. In the MiniCAM Level 1 scenario, in contrast, total energy is reduced by less than 20%. Levels 2, 3, and 4 require
progressively less transformation compared with the reference scenarios in the coming century, delaying these changes
until beyond 2100. [Notes. i. Oil consumption includes that derived from tar sands and oil shales, and coal consumption includes
that used to produce synthetic liquid and gaseous fuels.  ii. Primary energy consumption from nuclear power and non-biomass
renewable electricity are accounted for at the average efficiency of fossil-fired electric facilities, which vary over time and across
scenarios. This long-standing convention means that, all other things being equal, increasing efficiency of fossil-electric energy
lowers the contribution to primary energy from these sources.]
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(c)

Figure 7.3: A reproduction of Figure 4 from ([Stevenson 2012a]; Appendix 6), showing figures
from the literature on each RCP. “(a) Figure 3.7 from [Weyant 2009], showing the contribution to
emissions reductions by fuel type for RCP2.6. Here ‘IND’ refers to the developed countries and
‘DEV’ to those in the developing world. (b) Figure 4.11 from [Clarke 2007], showing projected
global energy emissions by fuel type for RCP4.5. Values shown are the differences between the
RCP4.5 pathway and the GCAM ‘reference’ scenario. (c) Figure from the IPCC Special Report on
Carbon Capture & Storage, showing energy use by fuel type for RCP8.5.”
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Figure 7.3 shows the distributions of energy use by sector over time in RCP2.6, 4.5 and 8.5.

The overall picture is very clear: climate mitigation will require a drastic shift away from fossil fuels

and toward more renewable sources of energy. This is done in all of the RCPs by some combination

of energy efficiency improvements, reduction of oil and other fossil fuel consumption, adoption of

solar/wind/biomass/hydrothermal technologies, and the capture and sequestration of associated

carbon emissions.

Improvements to Energy Efficiency

Efficiency improvements are difficult to predict; [van Vuuren 2007] cites this as one of the largest

uncertainties in future CO2 projections in RCP2.6. The implementation will vary widely among

world regions, with a range in RCP2.6 of 0.8% to 1.8%/year. In RCP8.5, efficiency becomes impor-

tant as well: [Riahi 2007] find that this could account for up to 10-20% of the total greenhouse gas

reductions.

The International Energy Association (IEA) has assessed our current ability to implement energy

efficiency improvements, and find that improvements sufficient to stabilize the climate at 2.4◦C

above present will be difficult indeed [IEA 2008]. Efficiency improvements must be applied across

every sector of society, but doing so requires dedicated action from governments. Once efficiency

measures are implemented, however, the IEA finds that they could save up to 8.2 gigatons of

CO2/year [IEA 2008].

Use of Fossil Fuels

Fossil fuels are likely to remain a key source of energy throughout the 21st century: this is true

in both the RCP projections and those of the World Energy Outlook [WEO 2009]. For example,

coal is projected to account for up to 30% of total energy use in RCP4.5 [Clarke 2007]. ‘Clean

coal’ technologies, which would reduce the associated CO2 emissions, are being investigated at the

moment [Chen 2010] but implementation is still at the testing stage1. Thus, the outcome of coal

production on future CO2 levels is currently unclear.
1http://fossil.energy.gov/programs/powersystems/cleancoal/publications/CCT_Program_Update_2009.pdf
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Oil is also likely to remain in high demand [WEO 2009], although all the RCPs project that ‘peak

oil’ will be achieved during the 21st century and production/use will therefore decline. Alternative

sources such as tar sands and oil shales may come into play [Bartis 2005], but their feasibility is

questionable at this point.

Nuclear Energy

All four RCPs project a large increase in nuclear energy production, since the technology is

mature and has minimal associated greenhouse gas emissions. Despite the recent safety concerns

raised by the disaster at the Fukushima plant in Japan [Christodouleas 2011], nuclear energy still

has great potential for CO2 emission mitigation. Currently Germany, Japan and Finland rely on

nuclear energy for more than 25% of their energy [U.S. Dept. of Energy 2010] and China and India

are currently making moves toward increasing their nuclear capacity.

Issues with nuclear power, in addition to safety, revolve around political/financial/logistical

obstacles. Nuclear plants require a huge up-front cost, and waste disposal remains a controversial

issue [Chapman 1987]. The adoption rate in the RCPs for nuclear technology may or may not be

realistic; much will depend on the details of demographics and regional politics in the next few

decades.

Use of Renewable Energy Technologies

In the RCPs renewables consist of a combination of wind, solar, hydroelectric and biomass tech-

nology. Interest in wind energy has been steadily growing for the past few decades, especially in

Europe [EWEA 2009, Zarvos 2003] and the United States [NAS 2010, AWEA 2010]. The Euro-

pean and Australian wind power goals are 40% and 12% of energy production from wind by 2030,

respectively [Fichaux 2009, AWEA 2010]. Even in the developing world, where coal is a larger con-

tributor to total energy, there is interest in wind as well [GWEC 2008]. Recent assessments of the

total capacity for wind power [Lu 2009, Archer 2005, Wiser 2011] suggest that the energy supply is

plentiful; this makes wind energy an attractive option.
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Biomass energy is a general term for energy from biological sources, including ethanol, biodiesel,

or any other products burned for energy. The primary source of biomass energy, in terms of total

energy production, comes from liquid fuels, and the projected contribution from biomass may be

quite substantial (FIgure 7.3). However, there are unintended consequences of liquid biofuels which

may complicate their widespread adoption. For example, ethanol production in the US can lead to

an artificial increase in food prices elsewhere [Partnership 2009]; the influence is difficult to quantify

[Mitchell 2008, Trostle 2008, CBO 2009] but must be considered when discussing the issue.

Use of Carbon Capture and Sequestration

Finally, carbon capture and sequestration (CCS; [Fisher 2007]) is a major contributor to green-

house gas mitigation in the RCPs. When considered in the context of the current status of the

technology, the amount of CCS assumed in the RCPs is worrying: up to 50% of the total CO2

reductions by 2100 is achieved through CCS.

Given the potential for CCS to solve the climate crisis, it is naturally enough a subject of

intense research [Hendriks 2002, van Alphen 2010]; a review of the efforts in the US is available in

[Litynski 2008]. Sites for carbon storage have been identified in the US [Klara 2003, Klara 2002]

and are being evaluated at the moment. In addition to the technical unknowns with CCS, unsolved

issues include the economics of storage and local political and safety concerns [Hawkins 2009]. In

short, a great deal more research is needed to evaluate whether CCS truly can provide a feasible

reduction in atmospheric CO2 content.

Investigating the details of the emissions scenarios and the RCPs was an eye-opening experience

for me, since as a climate modeler one typically does not have much exposure to the social and

economic issues that go into scenario development. But keeping in mind the fact that the RCPs

may be underestimating the magnitude of climate change will most likely be very important as I

move forward, since possibly it may be necessary to test ENSO sensitivity to a much wider range of

CO2 concentrations than is represented in the RCPs. This is probably true for many other impacts
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studies as well, and also highlights the need for greater communication between the physical climate

science and integrated assessment modeling/policy communities.



Chapter 8

Conclusions
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If I had to summarize the results of my dissertation in just one sentence, I would say that what

I have learned is: predicting future changes to ENSO behavior is a lot harder than I thought when

I started. We don’t have enough data to properly measure the extent of natural variability in the

modern climate, and paleoclimatic ENSO proxies are so uncertain that using them to extend the

instrumental record is extremely difficult. The adjustment to climate change takes place on decadal

timescales, meaning that ENSO response may not really be statistically significant at all during the

21st century, but changes in the atmosphere may be felt sooner than that. We do know that once

the climate has stabilized, ENSO responses will eventually become significant, and that changes to

the mean atmospheric circulation as well as to high-frequency wind variability will be important in
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determining that response. But we need to take the results from all the 21st century projections

with a grain of salt, keeping in mind that in addition to the known problems with coupled climate

models, the greenhouse gas emission projections used to drive the models may themselves be flawed.

It may sound a bit like this dissertation is aimed at trying to prevent firm conclusions from being

drawn about ENSO: but actually this is just the opposite of my goal. It is my belief that science

is best served when the limitations of any given analysis are well defined - even if that prevents

the question one is interested in from being answered right away. I hope that the results of this

dissertation will help advance our knowledge of projected future tropical climate variability.

8.1 Past ENSO

There are systematic issues with estimating the strength of past ENSO variability using coral δ18O.

The major errors which must be accounted for are age model estimation, local influences, sampling

effects and uncertainty in absolute dating. In Chapter 2 I simulated these sources of error, and find

that the majority are relatively small in comparison with the input variance. Age model and local

influences were computed using a set of corals collected from Kiritimati island in the central Pacific:

the typical uncertainty in total δ18O variance is about 0.21h, which for most coral locations is

10-20% of the input signal. For locations with weak variability, age model and local effects may

become more of a concern; the most accurate results would ideally be obtained by a reproducibility

study using corals collected from that particular location.

The major problems with ENSO estimation from proxies arise when trying to convert between

proxy data and model output. Forward modeling is currently not a viable option, as even isotope-

enabled models only simulate seawater δ18O and not the signal expected in the reef itself; conversion

must therefore be performed after the model is run. The most common method of after-the-fact

conversion between coral δ18O and ENSO variability is the use of a linear pseudoproxy, which

assumes that δ18O is a linear function of SST and SSS alone [Brown 2008, Thompson 2011]. I have

calculated pseudoproxies using instrumental data from HadSST and SODA (Section 2.3), and use



8.1. Past ENSO 117

a Monte Carlo simulation to estimate the magnitude of uncertainties in single-site δ18O variance

due to the fit residuals. This is much larger than local/age model uncertainty, and can be as large

as 185% of the input variance. The errors are so large that they drown out the covarying mode

between the modern coral sites as well; the PC1 of linear pseudoproxies calculated from HadSST

and SODA bears little resemblance to that calculated from the δ18O records themselves. This

failure of the linear approach may be due to fundamental nonlinearities in the signal: calculating

the required dimension to describe the δ18O signal reveals that 3-4 independent variables will be

needed. Alternatively, SST/SSS/seawater δ18O might be sufficient to specify coral δ18O, but only

on local scales.

Given that a linear approach does not seem to work, I next attempt to investigate other methods

of δ18O-ENSO conversion. One possibility is the use of climate field reconstruction techniques; but

all CFR methods make the assumption of a stationary covariance matrix between the coral sites

and ENSO. I have performed example calculations using the regularized expectation maximization

algorithm of [Schneider 2001], one of the most commonly used CFR methods. I find that if RegEM

is used to predict the ENSO amplitude at a time when no covariance information is available, there

is a systematic underprediction of variance. This is a known feature of CFR [Mann 2009], and makes

it nearly impossible to correctly capture past ENSO magnitudes when no covariance information is

available. It is possible that the effect may be mitigated by the implementation of Bayesian methods

for imputing past δ18O values [Tingley 2010a, Tingley 2010b]. Forward modeling, however, would

provide the optimal solution, since then the coral and model output could be directly compared.

One encouraging aspect of the ([Stevenson 2011c]; Appendix 1) analysis was that the errors

in absolute dating and the influence of a restricted sample size seem manageable. In particular,

randomly assigning a dating error of ±10 years to each coral did not lead to a large influence on

the coral δ18O PC1, suggesting that the covarying mode between fossilized corals might be robust

against U-series dating uncertainties. The same is true for randomly selecting a subsample of the

modern corals and re-computing δ18O PC1, with the caveat that at least 5-6 corals seem to be

required to detect the majority of the signal.



8.2. Present-Day ENSO 118

8.2 Present-Day ENSO

I have investigated the limitations of the modern observational record as well. Identifying epochs

when differences between ENSO spectra are statistically significant is extremely difficult due to

the large degree of natural variability in the system, and most commonly used statistical tests

either make assumptions which are invalid for ENSO or are too sensitive to be useful. I have

therefore developed a new, wavelet-based technique for identifying significant differences, and named

it wavelet probability analysis (WPA). WPA functions by assessing changes to the distribution of

the joint probability between subsets of a time series/pair of time series; this is referred to as the

wavelet probability index (WPI) and adopted as the test statistic. Results are described in detail

in ([Stevenson 2010]; Appendix 2) and summarized in Chapter 3.

I apply WPA to three different situations: comparison of the performance of two different climate

models, validation of a climate model against observations, and determination of the necessary

simulation length for accurate measurement of ENSO statistics. In all three cases, what is being

compared are two different distributions of WPI generated from subsamples of the time series. The

first instance compares the WPI from subsamples of two climate models, with a reference time series

(in my case ocean observations from the CORE hindcast of [Large 2008]). The second compares

WPI distribution from climate model subsamples versus the reference, to the WPI distribution from

climate model subsamples versus each other.

Using three different GCMs, I find that the width of the 90% confidence interval on the WPI

distribution declines with sampling length at an identical rate in several different models. Fitting

an exponential curve to that decay leads to a required simulation length of somewhere between

270-370 years. This is long in comparison with many control simulations currently used for climate

change applications, suggesting that perhaps a ‘paradigm shift’ in model experiment design may be

required.

I find that the overall performance of CCSM3.5 relative to CORE is better than the performance

of the GFDL CM2.1, which is consistent with previous assessments of the two models [Neale 2008,
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Wittenberg 2006]. There do seem to be some offsets in both models relative to observations, but

overall the CCSM3.5 reproduces observed NINO3.4 variability very well. However, the use of 55-

year subsamples makes it difficult to say whether the observed model/data offsets are real or due

to sampling error. This raises another interesting point: the WPI convergence relationship can just

as easily be applied to instrumental data as to climate model output. When this is done, a similar

answer results: an SST dataset must be roughly 170 years long to provide stable ENSO statistics!

Clearly we do not have nearly enough observations of the real world, making the assessment of

paleoclimate applications in Chapter 2 all the more relevant.

8.3 Future ENSO

The analysis of uncertainties in measuring past and present ENSO naturally leads one to wonder

what the implications are for future ENSO. I was fortunate enough to work with the CCSM4 CMIP5

20th and 21st century simulations just before their release ([Stevenson 2011b]; Appendix 3), and

found that the answer is not as straightforward as one might imagine. When the scatter between

ensemble members is taken into account, the statistical significance of inter-ensemble changes is

extremely low by several different measures. There does seem to be a slight tendency towards

weaker ENSO with higher CO2, but this should not be taken as definite by any means.

A null result like this one is always a bit unsatisfying, so I have investigated the possible reasons

for the lack of significant signal between ensembles. Chapter 3 established that 100 years of data is

not enough to distinguish climate change influences from natural variability, but each of the different

21st century scenarios has at least 5 100-year ensemble members, and the 20th century ensemble

has 6. One might think that 500-600 years of model output would be sufficient to ‘beat down’

the statistical noise, but in fact all ensemble members are subject to the same imposed trends from

anthropogenic forcing. This leads to a warming throughout the course of the simulation period which

is particularly pronounced in the extratropics, and which is stronger in the higher-CO2 ensembles.

That extratropical influence then takes time to propagate down into the tropics; the timescale is
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on the order of decades. That is, several decades after the external radiative forcing has stabilized

are required for the tropics to come into equilibrium with the new mean climate. That point is

where the ‘clock’ should start for obtaining the required 250-300 years of data to constrain ENSO

behavior. All in all, it comes as little surprise that the significance of inter-ensemble changes is so

low.

An insignificant response is also seen in the CanESM2, IPSL CM5A and CSIRO Mark 3.6: the

result is robust across models. This has profound implications for climate change experiments like

CMIP. The model simulations currently being performed as part of CMIP are not sufficiently long

to provide a definite answer to the question of ENSO’s response to climate change: model ENSO

climate sensitivity is as yet still an unknown. We cannot rule out, on the basis of CMIP simulations,

the possibility that inter-model differences are an artifact of sampling bias. Only very long model

simulations at stabilized CO2 can definitively show how ENSO amplitude may change in a given

model.

I have been able to diagnose model ENSO climate sensitivity in the CCSM3.5. I conducted

several 800-year simulations, each with identical model configurations varying only the atmospheric

CO2 concentration. Adopting values appropriate for 1850, 1990 and ≈2050 AD, I find that the

amplitude change is indeed significant with CO2, and that an increase in ENSO variability is seen.

This is a striking contrast with the CCSM4’s (slightly) weaker ENSO at high CO2, since these are

two members of the same model family. It would seem that it may be easy to get dramatic changes

to model ENSO climate sensitivity, with only slight changes to model physics.

There are substantial changes to the mean state and circulation of the atmosphere and ocean

in CCSM3.5 as CO2 increases. An increase in vertical thermal stratification is seen, along with a

weakening of the equatorial trades and an eastward extension of the warm pool. Enhanced equatorial

Kelvin wave activity occurs at higher CO2, excited in the central Pacific near the edge of the warm

pool: this would tend to imply an increase in the excitation of El Niño and La Niña events, all else

being held equal.

The enhanced wave activity certainly does play a role in the increased ENSO amplitude. But
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there is also an interesting hemispheric asymmetry seen in CCSM3.5, along the equatorward edges

of the subtropical gyres; variability in the Southern Hemisphere strengthens, while variability in the

Northern Hemisphere weakens ([Stevenson 2011a]; Appendix 4). This occurs as the overall Hadley

circulation migrates southward during boreal summer and the seasonal cycle in SST gets stronger

overall. I have shown in Chapter 6 that an enhancement in Ekman pumping occurs during boreal

winter in the Southern Hemisphere, and a weakening of Ekman pumping occurs during boreal

summer in the Northern Hemisphere, along the pathways previously identified as important for

excitation of El Niño events [Alexander 2002, Alexander 2010]. The Southern Hemisphere Rossby

wave pathway appears to be more active than the Northern in terminating the El Niño/La Niña

phase in CCSM3.5, because of the seasonality of the signal. Thus, an enhancement of the Southern

Hemisphere forcing would lead to more efficient event termination, and when taken in combination

with the enhanced excitation along the equator, a stronger ENSO amplitude overall.

8.4 El Niño/La Niña Events and Teleconnections

The climate change analysis of Chapter 4 also examined the different response times in the atmo-

sphere and ocean. Despite the lack of significant changes to overall ENSO amplitude, I found that

it was still possible for the atmospheric teleconnections during El Niño and La Niña to change sig-

nificantly over the course of the 21st century (Section 4.4). I focused particularly on three regions,

which seemed to show the largest changes with CO2: the North Pacific, Australasia, and the far

southern central Pacific.

The North Pacific is a highly studied region for teleconnections [Deser 2006, Meehl 2007a]; the

influence of the Aleutian Low on the climate of the western United States and Canada makes

understanding changes in that region important for North Americans. In the CCSM4, changes

consistent with the predictions of [Meehl 2007b] are observed during El Niño DJF: the pattern of

SLP and surface temperature shifts to the north and east as CO2 increases. The strength of the

blocking high during La Niña DJF increases, possibly indicating a tendency towards harsher La
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Niña winters in the American Southwest.

In the western equatorial Pacific, changes are seen during El Niño/La Niña DJF as well. Changes

are generally consistent with an overall weakening of the Australasian teleconnection: during El

Niño, a positive anomaly is seen just south of Tasmania and a negative anomaly is seen over

mainland Australia, which tend to oppose the prevailing teleconnection patterns. The reverse is

seen during La Niña: taken together, these suggest that maybe the impacts of ENSO will not be

felt as strongly in Australia during future climates.

In the Southern Ocean, changes are a bit more difficult to interpret. The shifts in teleconnections

are nonmonotonic with CO2, being strongest in RCP2.6: I speculate that this has something to

do with the more stable climate in this scenario. The main feature in the Southern Ocean is seen

during La Niña JJA, where the prevailing low weakens substantially between the 20th century and

RCP 2.6. This may be related to a shift in the Pacific-South American teleconnection pattern,

equivalent to the PNA shift seen in the Northern Hemisphere.

In addition to teleconnections, I also consider the possibility that the statistics of El Niño and

La Niña events may change between ensembles; this issue is addressed in Chapter 5. The effective

ensemble size for the CCSM4 20th and 21st centuries is enlarged by simulating the NINO3.4 SST

time series for each ensemble, using a combined Markov chain/generalized linear model approach

([Stevenson 2012b]; Appendix 5). There appears to be a tendency for the wind stress and the

seasonal cycle of SST to become less important in predicting NINO3.4 SST at higher CO2, which

may be related to the weakening of variability in both variables in CCSM4. In general, both El Niño

and La Niña weaken with CO2, and El Niño events become less persistent as well. The statistical

significance of changes to magnitude and persistence are likely not very high, consistent with the

results of Chapter 4; likewise, the return periods for 5-year events do not change significantly

between ensembles.
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8.5 Ideas and Future Directions

Working on the research for this dissertation has left me with at least as many questions as answers:

I summarize a few of them below. These may serve as useful starting points for future investigations.

8.5.1 Diagnosing Differences Between Model ENSO Response

The stabilized CCSM3.5 simulations of ([Stevenson 2011a]; Appendix 4) showed a dramatically

different ENSO response from the forced simulations in ([Stevenson 2011b]; Appendix 3). Unfortu-

nately, as of this writing there do not exist CCSM4 simulations of sufficient length to allow me to

understand the reasons for these differences. I suspect, however, that part of the difference has to

do with changes to high-frequency wind stress variability; this is a triggering mechanism very often

discussed for El Niño events [Gebbie 2007, Harrison 1997, Vecchi 2000]. I have taken a preliminary

look at wind stress variability, by examining the ‘highpass filtered’ submonthly wind stress variance

output from the CCSM ([Stevenson 2011a]; Appendix 4). If one assumes that all of this variability

has to do with westerly wind bursts, then the results of Figure 8.1 would tend to indicate that

WWBs strengthen in CCSM3.5 and weaken in CCSM4. If this is the case, then it would make

intuitive sense that ENSO amplitude should respond accordingly; but there are other processes

which must be taken into account for an accurate representation of the wind stress influence (i.e.

the Madden-Julian Oscillation [Subramanian 2011]).

In reality, there are a large number of possible explanations for inter-model ENSO differences.

However, in the absence of statistically significant changes to ENSO, one is constrained to ignore

these processes for the most part. Thus one of the things I would like to see in the future is a series

of very long, standardized simulations of stabilized climates, with a variety of GCMs. This seems

to me to be a natural extension of CMIP, and allows for a much more meaningful investigation of

tropical variability since sampling effects would no longer be a concern.

Although the signal is not yet significant, it would nonetheless be interesting to see whether the

seasonally forced WES feedback mechanism described in ([Stevenson 2011a]; Appendix 4)operates



8.5. Ideas and Future Directions 124

Figure 8.1: Reproduction of Figure 13 from ([Stevenson 2011a]; Appendix 4). Sub-monthly zonal
wind stress variance (N2/m−4). a: Mean variance for PI (CCSM3.5), years 200-1000. b: Difference
between HC and PI (CCSM3.5), years 200-1000 for both. c: Mean variance for RCP 4.5 (CCSM4),
years 2250-2299. d: Difference between RCP4.5 and the CCSM4 1850 control (years 800-1299).
Note that in panels b,d, the units are % (given relative to PI for panel b, CCSM4 1850 control for
panel d).
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in the CCSM4. The mean state changes in CCSM4 are in the same direction as in CCSM3.5,

which might suggest a similar WES response, but the NINO3 SST seasonal cycle seems to weaken

with CO2 in CCSM4. Thus it is unclear how the WES feedback might respond in CCSM4, and

the relationship between this change and the ENSO amplitude is also unknown. Answering this

question will require reproducing the same diagnostics used in ([Stevenson 2011a]; Appendix 4), for

the CMIP5 simulation ensembles.

Along the same lines, the interesting dynamical variations seen in the CCSM3.5 simulations at

longer periods may bear further investigation. In particular, the role of the mean position of the

warm pool in generating delayed oscillator-like variability may be quite interesting, as is the role of

extratropical variability. It is possible that the interaction between ENSO and extratropical modes

like the PDO responds nonlinearly to climate change, and the patterns of extratropical wind stress

response change nonmonotonically in the CCSM3.5. A complete dynamical diagnosis, similar to

the one for ENSO presented here, would be an interesting project in itself.

8.5.2 Response to Transient Atmospheric Forcing

Another issue I have run across during the course of this research is the question of the response

to changing background forcing. All of the timescale estimates for ENSO statistical convergence

presented in this dissertation ([Stevenson 2010]; Appendix 2) are only valid when the background

state is stable. Yet one could perform a similar analysis on simulations where a time-varying radia-

tive forcing is imposed. And in fact, this is the relevant situation for climate change applications.

Some interesting questions then arise:

• Do the statistics of ENSO variability converge when there is a monotonic trend in tropical

ocean heat content?

• If so, how does the convergence rate vary with the magnitude of the trend?

• What are the implications for atmospheric circulation and ENSO teleconnections?
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• Are the dynamical changes seen in the time-varying case similar to those in the stable mean

climate experiment?

Any of these would make an interesting topic for future investigation.

8.5.3 Improving Model/Proxy Comparisons

Another potentially rewarding area is improving comparisons between climate models and proxy

data. This is a hot topic in the paleoclimate community at the moment [Phipps 2011], given the

lack of forward modeling capacity in the current-generation CMIP models. The analysis in Chapter

2 focused on using coral δ18O to reconstruct ENSO, but it is entirely possible that using additional

proxies from other sources might improve the ENSO accuracy substantially [McGregor 2011b].

One obvious next step is to create a more detailed forward model for coral δ18O. As noted in

Chapter 2, the dimension of the coral δ18O signal ranges from 6-8, and constructing a simplified

mathematical model for δ18O using local environmental variables would be a fascinating project in

itself. Doing such a thing would require close interaction with experts in coral isotope analysis, and

as such was not something I could complete within this dissertation. However, I hope to extend the

collaborations I have formed in Australia and to continue this work over the course of the next few

years.

I expect that there will be many potential issues with improving the δ18O forward modeling

capacity, which will have to be confronted. In particular, the questions which will need to be

answered include:

• How big are local influences (i.e. runoff/lagoon effects) compared with variations in the large-

scale (open ocean) environment?

• Is there a good way to predict the δ18O of seawater based on open-ocean conditions?

• What is the proper mathematical form of the relation between coral δ18O and local climate?

I anticipate that many more questions will arise during the course of this work.
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8.6 Final Thoughts

I began this project as an attempt to identify the mechanisms for decadal variability of ENSO

amplitude and the associated dynamics; but this was a question I never managed to answer. Instead,

what I found was that there are fundamental gaps in our knowledge - and in the way most ENSO

experiments are constructed - that prevent a straightforward diagnosis.

This dissertation has shown that it is possible to quantify the necessary length of time for ENSO

behavior to ‘settle down’ statistically in a stable mean climate. The result obtained agrees well

with previous qualitative assessments, and should provide motivation for lengthening the control

simulations currently used for climate change studies. It also dovetails nicely with the experiments

conducted with the CCSM3.5, which are the first comprehensive examination of CO2-induced ENSO

changes using millennial-scale GCM simulations.

The climate change simulations with CCSM4 have shown that the ENSO climate change response

may take much longer than previously thought. This implies that the climate modeling community

may need to rethink the entire approach to multi-model ENSO/climate change studies. It may

make more sense to look in more detail at changing atmospheric teleconnections/regional impacts,

rather than the slowly adjusting oceanic variability.

Now that I am able to examine my dissertation work with the benefit of hindsight, it is clear that

looking at ENSO from a statistical perspective allowed me to take a somewhat ‘holistic’ approach to

understanding the problem. I very much enjoyed the opportunity to think about past, present and

future ENSO changes simultaneously, and the things I learned during each portion of the project

helped to inform the questions I asked during the others. I would like to apply the same perspective

to other problems in climate science in the future.

I have learned a great deal during the course of this work - I hope that it has been interesting

to read about, as well.
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Quantifying the Limitations of Paleo-ENSO Model

Validation

Samantha Stevenson, Helen McGregor, Steven Phipps

& Baylor Fox-Kemper

El Niño/Southern Oscillation (ENSO) dynamics show large centennial modula-

tions, meaning that an accurate estimation of baseline ENSO variability requires

the use of paleoclimate proxies to extend the modern observational record. Coral

oxygen isotopes are the most commonly used ENSO proxy, but isotopic varia-

tions are not directly simulated in the majority of IPCC-class coupled climate

models, necessitating a conversion between isotope and climate signals for quan-

titative comparisons. However, when errors from linear climate-δ18O ‘pseudo-

proxy’ conversions are calculated, they are so large that they overwhelm the

input signal, even when multiple coral sites are combined. Climate field recon-

struction improves ENSO estimation, but suffers from chronic underprediction

of variance when simulating times outside the calibration interval. However, an

error analysis on modern corals shows that the dominant mode of variability is

relatively insensitive to dating uncertainties between coral δ18O records. Accu-

rate, quantitative ENSO model validation will require the use of >4-5 contem-

poraneous fossil corals, in combination with either: isotope-enabled modeling,

more accurate pseudoproxy calculations, or improved estimates of the covariance

matrix between ENSO and all proxy locations during past climates.

The El Niño/Southern Oscillation (ENSO) is highly variable on long timescales, and previous
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studies have shown that the 20th century observational record is too short to constrain ENSO

statistics (Stevenson et al., 2010, 2011; Wittenberg, 2009). Coral oxygen isotopes (δ18O )

are often used to measure past ENSO variations, but δ18O is influenced by both temperature

and salinity, among other effects: additionally, most CMIP-class general circulation models

do not provide direct simulations of the δ18O signal (‘forward modeling’). A quantitative

comparison of modeled and observed ENSO amplitudes therefore requires some after-the-fact

conversion between δ18O , ENSO and climate variables.

Throughout this study, “ENSO variability” and “ENSO amplitude” will be taken as the

variance of tropical Pacific surface waters. It will be compared to δ18O and climate mod-

els variance in properties at varying locations. Often a power spectrum decomposition of

the variance will be used so that the frequencies comprising the modeled variance are re-

vealed.

Previous studies have used ‘pseudoproxy’ conversions to estimate model δ18O time series

(Thompson et al., 2011; Brown et al., 2008), where empirical relations (often linear re-

gressions) are used to calculate δ18O from instrumental data or climate model output. In

this study, linear pseudoproxies are shown to be to uncertain to provide ENSO amplitude

measures, even when many δ18O time series are combined. Here, 11 sites spanning the

tropical Pacific are chosen, such that records cover the 1959-1990 period at seasonal res-

olution (> 4 samples/year; see Methods). The δ18O time series is linearly regressed onto

SST and SSS from HadSST (Rayner et al., 2006) and SODA (Carton and Giese, 2008)

(δ18O = β0 + β1(SST ) + β2(SSS)), and the resulting errors modeled using a Monte Carlo

technique (see Supplementary Material). Errors from local influences and offsets in times

assigned to δ18O measurements (age models) are estimated from 5 contemporaneous modern

corals from Kiritimati in the central Pacific (McGregor et al., 2011; Woodroffe et al., 2003;
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Evans et al., 2000; Nurhati et al., 2009), and these errors are found to be relatively small

(mean σ = 0.253h). However, the residuals from the above regression gave error variances

comparable to the input value in many cases (Figure 1a).

The large fit+residual error arises from the nonlinear dependence of the δ18O signal on

many variables. Figure 1c shows the relation between 2-7 year bandpassed δ18O and SOI

time series; a high-order phase orbit is apparent, and suggests that additional processes

beyond SST/precipitation may be important. The ‘embedding dimension’, or number of

independent variables needed to describe the signal (Sangoyomi et al., 1996), is ≈5-7 (see

Methods, Supplementary Information for a complete description). The additional variables

are as yet unknown; perhaps local influences, the δ18O value of seawater, or trends in climate

variables account for some of the signal. However, local SST and SSS alone can only partially

predict the δ18O variance at a given site.

ENSO amplitude estimates do not rely on a single location; rather, variability at multiple

points is combined, in both modern and paleoclimatic contexts. Figure 2 shows the spectrum

of the first principal component (PC1) for pseudo-δ18O calculated using HadSST/SODA (see

Methods). Once again, the errors due to linear fit residuals overwhelm the signal; even the

dominant covarying mode between all 11 records cannot be captured by linear pseudoproxies.

These large errors lead to an inability to distinguish model ENSO from proxies (Figure 2b), as

demonstrated using pseudo-δ18O calculated from the CCSM4 20th century ensemble (Gent

et al., 2011). Without shrinking the error envelope, it is thus impossible to tell whether,

much less how, to begin work on model improvements.

If a linear approach is not effective, what other options are available for after-the-fact

model/δ18O conversion? Climate field reconstructions (CFR) are commonly used to translate
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proxy data into climate information; hemispheric temperature reconstructions are a notable

example (Mann et al., 2008, 2009). These methods exploit the covariance between proxy

locations to provide a robust reconstruction of the field of interest, and have been extremely

successful in reproducing mean values for climate variables over long timescales. But can

CFR provide a good estimate of interannual variability? Here, the regularized expectation

maximization (RegEM; (Schneider, 2001)) algorithm is adopted as a representative example

of CFR methods. RegEM uses an iterative estimation procedure to find the mean and co-

variance matrix between known (δ18O) and unknown (NINO3.4 SST) values to reconstruct

the NINO3.4 time series. The covariance matrix must be generated using measurements

over some predetermined ‘calibration interval’; Figure 3 shows RegEM reconstruction of

the HadSST spectrum () for two example intervals, 1965-1990 and 1958-1970. Results are

quite good in the former case, but a substantial underprediction of variance occurs in the

latter. This is likely due to nonstationarity in the covariances between coral sites, and has

strong implications for successful model validation. For instance, if RegEM were used to

reconstruct the ENSO spectrum for a pre-instrumental period, where no information on the

covariances between coral sites and ENSO was available, the resulting spectrum would tend

to have too little variance compared with the ‘real’ answer: it would be impossible to say

how much apparent model error was due to the limitations of the reconstruction algorithm

in that case.

One might imagine that these problems would simply disappear when using forward mod-

eling, since in that case a like-to-like comparison is possible. However, even if δ18O were

directly simulated, additional considerations remain (as well as bias in forward-modeled

δ18O ). It is often difficult to collect multiple contemporaneous fossil corals, and absolute

dating uncertainties may be on the order of 5-10 years or more (Cobb et al., 2003). The
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effects of data sparsity and temporal offsets are therefore simulated using the modern corals

(Methods; Figure 4): note that here no additional errors are included. Errors of up to 10

years in absolute age do not greatly affect the δ18O PC1 spectrum (Figures 2, 3): good news

for future fossil coral collection efforts. Note that this may not be true for other metrics;

the power spectrum has the useful property of insensitivity to phase relationships between

corals, and other measures of ENSO may experience larger phase-related influenced.

The number of corals in the sample has a much greater impact than the temporal offsets

between coral records (Figure 4): here, the sample size is artificially reduced by selecting a

random subsample of the modern corals. Using >5 corals retains most of the δ18O variance,

but for smaller samples much of the signal is lost. The same effect is seen using RegEM

reconstructions (Figure 4b,c), where enormous error bars on NINO3.4 spectra appear for

samples of 4 corals.

These findings suggest that quantitative ENSO model validation will be extremely challeng-

ing in the absence of the capacity for direct simulation of coral δ18O . Figure 4 is a strong

argument for using a large sample (>4-5) of fossil corals, contemporaneous to within 10

years of one another, for ENSO amplitude estimation. However, if the δ18O signal cannot be

computed accurately from climate models, then the question is moot: at a minimum, Figures

1 and 2 demonstrate that a more detailed pseudoproxy calculation which incorporates the

nonlinearities in coral δ18O is required. Unfortunately, using climate field reconstruction does

not appear to improve the accuracy of ENSO amplitude estimation due to the underpredic-

tion of variance associated with changing the calibration interval for reconstruction. If better

estimates of the ENSO/proxy site covariance were available, CFR techniques might prove to

be a useful avenue. However, in the absence of this information we recommend additional

efforts toward forward modeling of coral δ18O within coupled climate models.



Appendix A 176

References

Brown, J., A. W. Tudhope, M. Collins, and H. V. McGregor, 2008: Mid-Holocene ENSO:

Issues in quantitatve model-proxy data comparisons. Paleoceanography, 23, PA3202.

Carton, J. A. and B. S. Giese, 2008: A Reanalysis of Ocean Climate Using Simple Ocean

Data Assimilation. Monthly Weather Review, 136, 2999–3017.

Cobb, K., C. Charles, H. Cheng, and R. Edwards, 2003: El Niño/Southern Oscillation and

tropical Pacific climate during the last millennium. Nature, 424, 271–276.

Evans, M. N., A. Kaplan, and M. A. Cane, 2000: Intercomparison of coral oxygen isotope

data and historical sea surface temperature (SST): Potential for coral-based SST field

reconstructions. Paleoceanography, 15 (5), 551–562.

Gent, P. R., et al., 2011: The Community Climate System Model version 4 . Journal of

Climate, submitted.

Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and

F. Ni, 2008: Proxy-based reconstructions of hemispheric and global surface temperature

variations over the past two millennia. Proceedings of the National Academy of Sciences,

105 (36), 13 253–13 257.

Mann, M. E., et al., 2009: Global Signatures and Dynamical Origins of the Little Ice Age

and Medieval Climate Anomaly. Science, 326, 1256–1260.

McGregor, H. V., M. J. Fischer, M. K. Gagan, D. Fink, and C. D. Woodroffe, 2011: Environ-

mental control of the oxygen isotope composition of Porites coral microatolls. Geochimica

et Cosmochimica Acta, in press.



Appendix A 177

Nurhati, I., K. Cobb, C. Charles, and R. Dunbar, 2009: Late 20th century warming

and freshening in the central tropical Pacific. Geophysical Research Letters, 36, L21 606,

doi:10.1029/2009GL040270.

Rayner, N., P.Brohan, D.E.Parker, C.F.Folland, J.J.Kennedy, M.Vanicek, T.Ansell, and

S. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature

measured in situ since the mid-nineteenth century: the HadSST2 data set. Journal of

Climate, 19 (3), 446–469.

Sangoyomi, T. B., U. Lall, and H. D. I. Abarbanel, 1996: Nonlinear dynamics of the Great

Salt Lake: Dimension estimation. Water Resources Research, 32 (1), 149–159.

Schneider, T., 2001: Analysis of Incomplete Climate Data: Estimation of Mean Values and

Covariance Matrices and Imputation of Missing Values. Journal of Climate, 14, 853–871.

Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser, and G. Meehl, 2011: Will

there be a significant change to El Niño in the 21st century? Journal of Climate, in press:

CCSM4 special issue. doi:10.1175/JCLI-D-11-00252.1.

Stevenson, S., B. Fox-Kemper, M. Jochum, B. Rajagopalan, and S. Yeager, 2010: Model

ENSO Validation Using Wavelet Probability Analysis. Journal of Climate, 23, 5540–5547.

Thompson, D. M., T. R. Ault, M. N. Evans, J. E. Cole, and J. Emile-Geay, 2011: Comparison

of observed and simulated tropical climate trends using a forward model of coral δ18O.

Geophysical Research Letters, 38, L14 706, doi:10.1029/2011GL048224.

Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations?

Geophysical Research Letters, 36, L12 702.

Woodroffe, C. D., B. M. R., and G. M. K., 2003: Mid-late Holocene El Nio variability



Appendix A 178

in the equatorial Pacific from coral microatolls. Geophysical Research Letters, 30, 1358,

doi:10.1029/2002GL015868.



Appendix A 179

Figure 1: Error analysis for single-site estimation of δ18O variance with linear pseudoprox-
ies. a) Map of coral locations, showing the magnitude of δ18O variance (normalized to the
Kiritimati value) in gray and the error on the δ18O variance in red. The percentage values
indicate the proportion of the error on the δ18O variance to the variance itself. Background
colors correspond to the spatial pattern of the HadSST PC1; black circles show the positions
of all coral sites. b) Time series of Kiritimati δ18O from 1958-1986, along with NINO3.4
SST and local SST/SSS at the coral site. All time series have been bandpass filtered using
a 10th order Butterworth filter with 3dB points at 2 and 7 year periods. c) Phase orbit of
bandpass filtered δ18O and NINO3.4 SST; colors indicate the time of each measurement.
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Figure 2: Error analysis for estimation of δ18O PC1 spectra using linear pseudoproxies. a)
Representation of δ18O using instrumental records. HadSST and SODA SSS time series
are used to create pseudo-δ18O for all sites, from which PC1 is calculated. Errors from
local/age model effects (yellow), dating uncertainties (red) and fit residuals (blue) are shown
as envelopes. b) Representation of δ18O using CCSM4 simulations. Errors from local/age
model and dating effects are shown as in a); ensemble scatter appears in purple, and sampling
errors from pseudoproxy fit residuals are shown in green.
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Figure 3: Error analysis for estimation of NINO3.4 SST spectra using climate field re-
construction (RegEM). Errors are once again shown as envelopes: local/age model effects
(yellow), dating uncertainties (red) and ensemble scatter from CCSM (blue). Here two differ-
ent RegEM reconstructions are performed to illustrate the effects of varying the calibration
interval: 1965-1990 (green) and 1958-1970 (red).
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Figure 4: Contribution of sampling errors. a) Linear pseudoproxies. b) RegEM. In both
cases, the sample size is artificially decreased by selecting a random sample (without re-
placement) of 4, 5, or 7 corals, then repeating the calculation. No additional errors are
modeled here.



Appendix A 183

Supplementary Material for Stevenson et al. (2011)

The coral records selected for analysis, along with a brief description of the properties of
each, is provided in Section 1. A description of the techniques used to model errors in
the linear pseudoproxy time series is given in Section 2. Climate field reconstruction using
RegEM is described in Section 3, and the nonlinear time series analysis algorithms used for
the embedding dimension calculations are discussed in Section 4.

1 Coral Records

For the δ18O pseudoproxy calculation and Monte Carlo error simulation, we have chosen all
available coral records from the World Data Center for Paleoclimatology (WDCP) in the
tropical Pacific for which the following criteria were met:

1. Temporal resolution of ≥4 records/year

2. Correlation with NINO3.4 SST significant at or above the 90% confidence level.

This led to the selection of 11 records from 10 locations, which are listed in Table 1. Note
that two coral records are available for Nauru (Guilderson and Schrag, 1999).

Table 1: Basic information on modern (20th century) coral records used for Monte Carlo
error estimation. Except for the McGregor et al. (2011) Kiritimati record, all coral data was
downloaded from the WDCP at http://www.ncdc.noaa.gov/paleo/coral/coral data.html.

Record Citation Time period

Clipperton Linsley et al. (1994) 1707-1984
Kiritimati McGregor et al. (2011) 1938-2004

Laing Tudhope (2001) 1884-1993
Madang Tudhope (2001) 1880-1993
Maiana Urban et al. (2000) 1840-1994

New Caledonia Quinn et al. (1998) 1657-1992
Nauru Guilderson and Schrag (1999) 1891-1995

Palmyra Cobb et al. (2001) 1886-1998
Secas Linsley et al. (1994) 1894-1984

Tarawa Cole et al. (1993) 1893-1989
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2 Linear Pseudoproxies

Conversion to climatic variables in the linear pseudoproxy case is accomplished via a multi-
variate linear regression having the form

δ18O = β0 + β1T + β2S + ε (1)

where T is the local SST, S the local SSS and ε the error in the fit. Data from 1958-
1990 were used, to allow for the maximum time interval with simultaneous SST and SSS
measurements. SST and SSS for all coral sites come from HadSST version 2 (Rayner et al.,
2006) and the SODA reanalysis (Carton and Giese, 2008) datasets, respectively. Data from
the two closest grid points are seasonally averaged to form the best-estimate time series,
then linearly interpolated to match the coral age models.

The best-fit coefficients were calculated using a stepwise linear regression algorithm (Ven-
ables and Ripley, 2002), which selects those predictor variables best suited to represent the
predictand according to a minimization of the Akaike information criterion (AIC; Akaike
(1974)). Regression coefficients for both SST and SSS are given in Table 2: 5 sites show
a significant dependence on both SST and SSS, 5 on SST only, and one (Laing; Tudhope
(2001)) on SSS only.

Table 2: Fit statistics for conversion from climate variables to δ18O. Fit parameters listed
are the result of a stepwise regression of δ18O on SST and SSS; the adjusted R2 is listed in
the last column. N/A indicates that a variable was not included in the best-fit regression.

Record β0 β1 β2 R2 (adj.)

Palmyra -11.60 -0.29 0.59 0.20
Tarawa -33.52 -0.25 1.16 0.38

Nauru (1) -7.81 -0.20 0.37 0.35
Nauru (3) -3.71 -0.36 0.39 0.39
Kiritimati 6.01 -0.19 N/A 0.13

Secas 11.44 -0.44 N/A 0.11
Clipperton 5.95 -0.23 N/A 0.032

New Caledonia 0.52 -0.06 N/A 0.078
Laing 13.55 N/A -0.42 0.018

Madang 13.08 -0.49 N/A 0.061
Maiana -17.8 -0.55 0.93 0.22
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2.1 Error Distributions

In order to estimate the errors ε expected due to local influences and age model uncertainties,
we used data from Kiritimati: a complete analysis would benefit from examining multiple
sites, but Kiritimati was the only location with sufficient sampling density. Six different
coral records from Kiritimati were combined, each having slightly different temporal extent
(Table 3). The standard deviation was calculated as a function of time, for each month
having ≥2 measurements, and the mean value of that standard deviation was adopted in the
Monte Carlo simulations.

Table 3: Kiritimati Island coral records used to estimate errors due to local effects/dating
uncertainties.

Record Citation Time period

Evans 1 Evans et al. (1998) 1938-1993
Evans 2 Evans et al. (1998) 1981-1986
Nurhati Nurhati et al. (2009) 1972-1998

McGregor McGregor et al. (2011) 1994-2007
Woodroffe 1 Woodroffe and Gagan (2000) 1978-1991
Woodroffe 2 Woodroffe et al. (2003) 1989-1999

The remaining contributions to uncertainties are errors in the fitting process. We consider
errors both from the fitted slope and from the residuals; the latter is calculated according
to

Ri = ε = δ18O − (β0 + β1T + β2S) (2)

Residual profiles for 100 Monte Carlo simulations are shown in Figure 1; they are approxi-
mately normal, with some skewness observed in some sites. We note that for each simulated
time series, the slopes β1 and β2 were drawn from a normal distribution with mean equal to
the best-fit βi and standard deviation σβ from the least-squares estimation procedure.

The use of fitted slope error distributions requires the recalculation of the regression intercept
for each time series, which is done by minimizing the least-squares equations in the case where
β1 is constant:

β0 =

∑
δ18O −∑

β1T −
∑
β2S

N
(3)

where N is the number of observations. ε was simulated using kernel density estimation to
compute the probability distribution function (PDF) at each location, then sampling from
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that distribution. The distributions in Figure 1 accordingly reflect contributions both from
βi and R.

Figure 1: Errors in linear pseudoproxies. Lefthand column: PDFs of fit residuals generated
using a Monte Carlo approach. Solid line indicates the median simulated error PDF, and
the dashed lines the 90% confidence interval on the PDF. Righthand column: proportions of
each source of error relative to the input σ2

δ18O. Here the leftmost bar shows the 100% value
(input variance) and the other two show the fit slope/residual and local/age model errors,
respectively. Shaded portions of each bar indicate the 50, 75 and 90% levels for each source
of error.

2.2 Confidence Intervals on δ18O Variance

Applying the simulated errors as offsets to the input coral time series provides a good sense
of the δ18O uncertainty at any given time, but also results in an artificial inflation of the
input variance since the errors are additive noise in this case. We therefore rely on error
propagation to compute the uncertainty on δ18O variance. Let σ be the standard deviation
for any given measurement. Then the error on the variance, Σ, is given by
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Σ = S[
1

N

N∑

i=1

(xi − µ)2] (4)

= S[
1

N

N∑

i=1

x2
i − 2µxi + µ2 (5)

= S[
1

N
(
N∑

i=1

x2
i )− µ2] (6)

where S(x) denotes the error on the quantity x. The overall sample variance is thus

Σ = 2|µ|σ2 − |µ|σ2 = |µ|σ2 (7)

which is applied as the error bar on δ18O variance, as seen in Figure 1 of the paper.

3 RegEM Calculations

The climate field reconstructions relied upon the regularized expectation maximization al-
gorithm developed by Schneider (2001). We have made use of the Matlab suite available
online at http://www.meteo.psu.edu/ mann/Mann/tools/tools.html and described in Mann
et al. (2008, 2009).

The algorithm is an iterative method for estimating the mean and covariance of a missing
portion of a data sample which has been adapted from the expectation maximization (EM)
algorithm of Dempster et al. (1977) (see Little and Rubin (1987) for a review of the method).
EM functions by finding the maximum-likelihood estimators of the model parameters (in the
case of normally distributed data, these are the mean and covariance) given the observed
data, then using the conditional expectation of these parameters to fill in values for the next
iteration. This method works well in the case where the number of variables is small in
comparison with the number of available records; but for climate datasets this is often not
the case, resulting in an underdetermined system. RegEM applies a regularization param-
eter to the covariance matrix (Tikhonov and Arsenin, 1977), which allows a more accurate
determination of the mean and covariance matrix, and therefore the missing values.

The regression model for missing values is

xm = µm + (xa − µa)B + ε (8)
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where xm are the missing values, xa the available values, µm and µa the corresponding means,
B the regression coefficients, and ε the regression error. In the particular case of estimating
NINO3.4 SST from coral δ18O, xa are the coral time series and xm the NINO3.4 time series.
The EM algorithm calculates the matrix B using

B = Σ−1
aa Σma (9)

where Σaa is the covariance matrix between available values and Σma the covariance matrix
between available and missing values. The difference between the EM and RegEM algorithms
is in the calculation of B. RegEM regularizes Σaa through ridge regression, which inflates
the diagonal components of Σaa:

Σ−1
aa < −Σ−1

aa (1 + h2D)−1 (10)

Here the matrix D consists of the diagonal elements of Σaa and h is a regularization param-
eter estimating by minimizing the generalized cross-validation function (Golub et al., 1979;
Hansen, 1997).

4 Nonlinear Time Series Analysis

The estimation of the ‘embedding dimension’ for nonlinear time series is quite complex. This
quantity has been previously shown (Packard et al., 1980; Takens, 1981) to represent the
number of state variables required to describe the behavior of a time series: so for example, if
coral δ18O is controlled solely by a combination of SST and precipitation, then the embedding
dimension should be 2.

Here we follow the approach of Sangoyomi et al. (1996) in estimating the embedding dimen-
sion. The time series is represented in a ‘pseudophase space’ as in Takens (1981), where
delayed versions of the time series form the state space. The ‘delay vector’ of pseudo-state
variables is then given by

~x = x(t), x(t− τ), x(t− 2τ), ...x(t− (m− 1)τ) (11)

where τ is the assumed delay time. The choice of τ is somewhat arbitrary, but the goal is
to choose τ so as to maximize the information about the trajectory included in the delay
vector. Sangoyomi et al. (1996) discuss various methods for choosing τ , and conclude that the
mutual information framework of Fraser and Swinney (1986) is optimal since it incorporates
both linear and nonlinear autocorrelative effects. The mutual information is given by
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MI =
∑ ∑

p(x(t), x(t− τ))log(
p(x(t), x(t− τ))

p(x(t))p(x(t− τ))
) (12)

where p(x(t), x(t − τ)) is the joint probability distribution of the original and lagged time
series, and p(x(t)) and p(x(t − τ)) the probability distributions of the original and lagged
time series individually. For the embedding dimension calculation, we adopt the lag τ corre-
sponding to the first local minimum in MI, which is typically between lags 4-10 for the coral
records; this translates into roughly 4-18 months depending on the temporal resolution of
the data (Figure 2).

Figure 2: Mutual information as a function of lag τ for all coral records.

The delay is next used in the ‘false nearest neighbors’ algorithm of Kennel et al. (1992).
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False nearest neighbors are points which appear as neighbors to a given point when the
time series is projected into a dimension too low to uniquely describe the dynamics. In the
case where the true embedding dimension n = 2, false nearest neighbors for the time series
x(t) = sin(t) might be calculated by projecting this unit circle onto a line. In general, the
‘true’ embedding dimension is estimated by finding the dimension for which the number of
false nearest neighbors drops to 0. Mathematically, a false nearest neighbor is defined as one
where the ratio of Euclidean distances R for dimension d+1 to dimension d is greater than
some tolerance value Rtol:

R2
d+1(n, r)−R2

d(n, r)

R2
d(n, r)

> Rtol (13)

False nearest neighbor calculation results are shown in Figure 3. Both this and the mutual
information calculation were performed using algorithms in the TISEAN package (Hegger
et al. (1999); R package ‘tseriesChaos’). The embedding dimension thus estimated is roughly
the same for all coral δ18O time series - the false nearest neighbor plots cross 0 at dimensions
between 6-8.
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Abstract
The influence of changing atmospheric CO2 concentration on ENSO is explored using 800-
year integrations of the NCAR Community Climate System Model (CCSM3.5), representing
stablilized climates with CO2 at AD 1850, 1990 and 2050 levels. The amplitude of tropical
SST variability increases with CO2 in both the annual and ENSO bands: however, ENSO
changes are significant at annual and 2-4 year periods only. The atmosphere/ocean mean
state response includes: preferential SST warming in the eastern equatorial Pacific, a weak-
ening of the equatorial trade winds, increased vertical ocean stratification, increased surface
heat flux forcing and a contraction of the atmospheric Hadley and oceanic subtropical over-
turning circulations. The delayed-oscillator framework alone cannot explain the observed
hemispheric asymmetry: Southern (Northern) Hemisphere SST and subsurface tempera-
ture variability strengthens (weakens) with CO2. This asymmetry results from excitation of
Rossby waves by seasonal wind stress curl anomalies along the eastern edges of the subtrop-
ical gyres. Finally, shorter, higher-resolution stabilized control simulations with the CCSM4
show that ENSO weakens rather than strengthens with CO2. The difference in ENSO cli-
mate sensitivity is not readily explainable, but may potentially be related to changes to
high-frequency wind stress variability.

1 Introduction

Understanding how the behavior of the El Niño/Southern Oscillation (ENSO) may change
in the future is critical to a variety of social and economic systems (Ropelewski and Halpert,
1996; Rajagopalan and Lall, 1998; Whetton et al., 1990). However, ENSO’s complex and
chaotic nature makes future projections difficult (Collins et al., 2010; Stevenson et al., 2011a).
The major limiting factors in diagnosing future ENSO changes using climate models may
be simply summarized: the record length required to obtain robust ENSO statistics, the
dynamical timescale of ENSO adjustment to changing CO2, and the accuracy of ENSO-
relevant model physics. To date, no modeling experiment has been constructed which can
isolate the influence of CO2 changes in the absence of other effects; this study is an attempt
to provide such an experiment.

Although ENSO has been recognized for many years (Hildebrandsson, 1897; Walker and
Bliss, 1932, 1937), accurate observations are available on the required spatial scale only for
the past few decades. Basinwide real-time monitoring of Pacific ocean conditions began with
the Tropical Atmosphere Ocean (TAO) buoy array (McPhaden et al., 1998), developed as
part of the Tropical Ocean-Global Atmosphere (TOGA) program in the 1980s. Observations
were more sparse before TOGA/TAO began, though reconstructions of SST from the avail-
able observations have been extended back to the 19th century (Smith and Reynolds, 2004;
Rayner et al., 2006).
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The wide variations in ENSO strength during the 20th century have been a topic of interest
for quite some time (Ropelewski and Halpert, 1986; Trenberth and Hurrell, 1994), particu-
larly with respect to the extremely strong events of the 1990s (Trenberth and Hoar, 1996).
The 1970s in particular are thought to represent a ‘regime shift’ in which the dominant ENSO
dynamics were fundamentally altered (Miller et al., 1994); but the statistical significance of
claims of 20th century ENSO changes have been called into question (Rajagopalan et al.,
1997).

How long must one observe the system to be sure of seeing the full range of ENSO charac-
teristics? General circulation model (GCM) simulations carried out by Wittenberg (2009)
using the GFDL model have shown that far from being a definitive indicator of climate
change, centennial variations in ENSO amplitude of a factor of 2 or more are possible simply
due to natural variability, and that several centuries of model output are required for the
system to ‘converge’ to stable statistics. Stevenson et al. (2010) performed a similar analysis
using a wavelet-based technique, and found that roughly 240 years of observations would
be needed to constrain the real ENSO, assuming that the background climate was stable.
There is much interest in using the paleoclimate record to extend the baseline for ENSO
observations (Emile-Geay et al., 2011a,b), but some issues remain with accurate validation
of model ENSO against paleoclimatic proxies (Stevenson et al., 2011b).

The multi-century averaging time required for robust ENSO statistics may explain a great
deal of the uncertainties associated with 21st century projections. Multi-model studies of the
ENSO climate change response are notorious for their disagreement (AchutaRao and Sperber,
2006; Guilyardi, 2006; Collins et al., 2010), but typically use only a few ensemble members for
each climate projection. But attributing the disagreement to the small sample size does not
appear completely satisfactory: an analysis of the 20th and 21st century CCSM4 ensembles,
each containing 5-6 simulations for a total of > 500 model years, showed no significant ENSO
amplitude response to CO2 (Stevenson et al., 2011a). This seems to be due to the fact that
the ocean is continually adjusting to rapidly changing CO2 forcing over the course of the
21st century.

If slow ocean adjustment to changing radiative forcing explains the insignificant ENSO re-
sponse to climate change, then disagreement between transient 20th/21st century model
projections is not surprising. But this also implies that the overall ENSO climate sensitivity
remains an unknown: very long equilibrated simulations at varying CO2 concentrations are
necessary to determine whether the ENSO sensitivity indeed differs between models. Since
model ENSO climate sensitivity may be dependent on small changes to resolution and/or
physical parameterizations (Guilyardi, 2006), looking at long integrations of a single climate
model can thus provide a unique understanding of these effects in the absence of complicating
factors.
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2 Experimental Setup

The numerical experiments are performed using the National Center for Atmospheric Re-
search (NCAR) Community Climate System Model version 3.5 (CCSM3.5), in the fully
coupled configuration (atmosphere, ocean, land and sea ice). The ocean model has a zonal
resolution that varies from 340 km at the equator to 40 km around Greenland, and a merid-
ional resolution that varies from 70 km at the equator to 40 km around Greenland and 350
km in the North Pacific. This spatially varying resolution is achieved by placing the north
pole of the grid over Greenland, and reflects the different relevant length scales of the 2
processes that are most important in maintaining a stable global climate: deep convection
around Greenland and in the Arctic, and oceanic heat uptake at the equator. In the vertical
there are 25 depth levels; the uppermost layer has a thickness of 8 m, the deepest layer has
a thickness of 500 m. The atmospheric model uses T31 spectral truncation in the horizontal
(about 3.75◦ resolution) with 26 vertical levels. The sea ice model shares the same hori-
zontal grid as the ocean model, and the land model is on the same horizontal grid as the
atmosphere. This setup (called T31x3) has been developed specifically for long paleoclimate
and biogeochemistry integrations, and its performance is described in detail by Yeager et al.
(2006). The most significant difference between the present model setup (CCSM3.5) and
the one described in Yeager et al. (2006) is the new atmospheric convection scheme, which
leads to significant improvements in the simulation of ENSO in the high resolution (Neale
et al., 2008) and the present coarse resolution configuration (Jochum et al., 2010). Changes
to the OGCM are a stratification dependent thickness diffusivity (Danabasoglu and Mar-
shall, 2007), which improves the equatorial thermocline; a reduced viscosity (Jochum et al.,
2008) which improves the equatorial surface currents; and an increased background diapycnal
diffusivity (Jochum, 2009), which stabilizes the meridional overturning circulation.

Three integrations of the T31x3 CCSM3.5 have been carried out, each of which cover 1000
model years. The three model simulations were initialized from the climatology of Levi-
tus (1998), and subsequently run without external forcing: each reached equilibrium after
roughly 200 model years2. The equilibrium solution is therefore considered to consist of
model years 200-1000 for each simulation. The only parameter which changes between the
simulations is the atmospheric CO2 concentration; values of 255, 355, and 455 ppm are
adopted to sample the range of concentrations expected over the time period 1850-2050.
Hereafter, the simulations are referred to as the ‘pre-industrial’ (PI; 255 ppm), ‘present day’
(PD; 355 ppm) and ‘high-CO2’ (HC; 455ppm) simulations.

2Some residual spin-up effects remain in the deep (≥ 1000 m) ocean, but are not expected to greatly
impact ENSO dynamics.
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3 ENSO Amplitude Response

The fundamental preliminary question to answer, first, is whether changes to ENSO ampli-
tude between PI, PD and HC are statistically significant. Here the NINO indices NINO3
(5◦S-5◦N, 90-150◦W), NINO4 (5◦S-5◦N, 160◦E-150◦W) and NINO3.4 (5◦S-5◦N, 120-170◦W)
are adopted as a proxy for ENSO, although of course other indices could easily be used
(Gergis and Fowler, 2005; Wolter, 1989; Brown et al., 2008).

The spectral range of NINO3 and NINO4 SST, generated from 100-year subintervals of each
simulation, is shown in Figure 1. Spectra are calculated using the wavelet toolkit of Torrence
and Compo (1998), with the bias correction of Liu et al. (2007) applied to prevent artificial
enhancement at long periods. There is a large degree of overlap between the ‘envelopes’ in
Figure 1, but there is a distinct trend towards high amplitude with CO2 in the eastern Pacific,
which is especially apparent in NINO3 SST. No notable changes in the overall ENSO period
are visible in Figure 1, given the broad spectral peak. However, the increase in seasonal
cycle amplitude with CO2 is substantial, consistent with previous coupled model studies
(Timmermann et al., 2004).

Much attention has been focused on the CP/EP types of ENSO events (Yu and Kao, 2007;
Kao and Yu, 2009). It has been speculated that CP (‘Modoki’) events are more sensitive to
CO2 than EP events, based on a few strong EP events near the end of the 20th century (Yeh
et al., 2009). The distinction between event types is not a primary focus of this work, as the
goal is understanding overall dynamical changes rather than event classification. That said,
NINO3 and NINO4 can be in some sense regarded as ‘proxies’ for the EP and CP centers of
action. If this were to hold true in a more detailed examination of individual events, based
on Figure 1 one would expect that the EP type of ENSO might be more sensitive to CO2

than the CP/Modoki.

The bandpassed3 variance constitutes a good first-order diagnostic for the significance of
ENSO changes. Previous results (Wittenberg, 2009; Stevenson et al., 2010) showed that
several hundred years of data are required for convergence to a stable ‘background’ ENSO
state, and this is upheld in the variance plots in Figure 2. 90% confidence intervals are
constructed by selecting random subsamples of a specified length - when 30 years is used, the
2-4 year confidence intervals overlap for all simulations. Confidence interval width decreases
with sampling length, and the PI/HC offset becomes significant at record lengths of ≈300-
400 years. Strikingly, even at 400 years the variance of PD and HC remain indistinguishable,
an indication of the importance of the degree of CO2 increase for ENSO changes on long
timescales.

3All bandpassing was conducted using a 10th order Butterworth filter; filter start and end points corre-
spond to the 3dB half-power interval boundaries.
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The behavior of the 5-7 year bandpass filtered variance differs greatly from the 2-4 year.
Rather than a monotonic increase with CO2, this band shows an enhancement in PD relative
to both PI and HC. A case could be made for interesting nonlinear dynamical shifts in the
western Pacific at longer periods, where modulations by the Pacific Decadal Oscillation
(PDO) or coupling with the Indian Ocean might be expected to appear (Saji et al., 1999;
Deser et al., 2004; Mantua et al., 1997). Also interesting is the larger decadal modulation
of the 5-7 year variance in PD, as demonstrated by its much larger 90% confidence intervals
at both 30 and 400-year sampling intervals. However, given the fact that the change is not
monotonic with CO2 and that the PI/HC comparison yields insignificant results, the 5-7
year band is not the focus here.

The probability distribution functions (PDFs) for NINO3.4 scale-averaged wavelet power
(SAWP) are shown in Figure 2b for the 2-4 and 5-7 year bands. Here SAWP is calculated
following Torrence and Compo (1998):

SAWP =
δjδt

Cδ

j2∑

j=j1

|Wn(sj)|2
sj

(1)

Changes to the PDF shape are clearly visible in both bands: this changing shape shows up as
a positive result when a Kolmogorov-Smirnov (K-S) test is applied (not pictured). However,
the K-S test can only measure changes to the distribution, not whether those changes could
have arisen from internal ENSO variations. As shown by Stevenson et al. (2011a), the K-S
test yields significant differences even between members of a single ensemble, making a less
sensitive test essential.

The statistical significance of differences between model NINO3.4 spectra are identified using
the wavelet probability analysis (WPA) toolkit developed by Stevenson et al. (2010) and
available over the Web4. The idea behind WPA is that if a single process is responsible
for generating two time series, then their wavelet power PDFs should be roughly the same.
Constructing wavelet PDFs from subsamples of a time series then creates a measure of
natural variability: the degree to which PDFs of subintervals overlap indicates the expected
internal scatter (Stevenson et al., 2010). The significance of differences between two time
series may then be measured via hypothesis testing: the spectral overlap between the wavelet
decomposition of a reference time series (here HadSST NINO3.4) and that of the CCSM3.5
runs is computed, and the resulting distributions compared. The significance level at which
the confidence intervals on the distributions overlap is then the minimum significance at
which they differ. Full details of the procedure are available in Stevenson et al. (2010).

Results from WPA testing are shown in Table 1, calculated using a Morlet wavelet at sub-
sampling length 250 years. Here the numerical convention is to provide the significance of

4http://atoc.colorado.edu/˜slsteven/wpi/
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differences between simulations, where a change significant at the 90% level has a test value
of 0.9. These results are consistent with the variance plots in Figure 2: NINO3 SST variabil-
ity is significantly stronger in the 2-4 year band in HC relative to PI. It should be noted that
although the overall shift in NINO3 2-4 year power is toward stronger variability with CO2,
the change between PD and HC is insignificant. At longer periods (5-7 year band), NINO3
variability is statistically identical between all simulations, as is the case with NINO4 2-4
year variability. This provides additional justification for the exclusion of the 5-7 year period
range from further analysis.

4 Mean Circulation Changes

The assessment of statistical significance in Section 3 provides a strong motivation for un-
derstanding the physical mechanisms by which ENSO changes take place. Linkages between
the mean state of the atmosphere and ocean and ENSO dynamics are a common way of un-
derstanding such changes (Fedorov and Philander, 2000, 2001), although there is still some
debate over whether ENSO should be more properly understood in terms of a modulation of
the mean state, rather than an oscillation about a stable mean (Sun, 2003; Sun and Zhang,
2006). Here, both the mean state and the general circulation of the atmosphere and ocean
are examined.

In the atmosphere, the relevant mean state variables are the wind stress, precipitation and
vertical pressure velocity ω: changes between PD vs. PI and HC vs. PD are shown in Figure
3. The wind stress shift between simulations is consistent with results from Vecchi and
Soden (2007) and Held and Soden (2006), who suggested that the strength of the Hadley
and Walker cells should decrease in a warmer climate due to the decrease in convective
exchange between the boundary layer and free troposphere required by the slower increase
in precipitation relative to humidity. Indeed, a weakening of the equatorial trade winds is
seen with CO2 in Figure 3: westerly anomalies dominate along the equator, which reflects
a decrease in the Walker circulation strength. An eastward shift of the Walker cell is also
reflected in the precipitation and ω panels of Figure 3: larger precipitation and ascending
velocities are seen in the eastern Pacific at higher CO2.

Subtropical meridional wind stress changes are consistent with a weakening of the Hadley
cell (Figure 3b,c): southerly (northerly) anomalies dominate in the Northern (Southern)
Hemispheres. But do these changes truly reflect a shift in the circulation? To answer this
question, the atmospheric overturning streamfunction is calculated and plotted in Figure
4. The formulation of the streamfunction follows Döös and Nilsson (2011): in pressure
coordinates,
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Φ(y, P ) =
1

t− t0

∫ t

t0

∮ ∫ P

0

v(x, y, P ′, t)

g
dP ′dxdt (2)

The circulation is plotted separately for DJF and JJA to allow for ease of interpretation.
During JJA, the northern Hadley cell weakens slightly (≈10% of the PI value) and shifts to
the south, as indicated by the position of the zero contour in Figure 4c. Negative anomalies
in Figure 4d also show the weakening of the Southern Hemisphere branch of the circulation.
The changes during DJF are smaller, only 1-2% percent of the PI streamfunction, and
show less spatial coherence than the JJA anomalies. A small tendency towards poleward
contraction may be evident in both branches (Figure 4d,h), but the dominant influence is
the boreal summer shift (Figure 4a-d).

A weakening of the Hadley circulation, even during the summer months alone, has several
implications. First, the associated reduction in the zonal trade winds will tend to be larger
at higher latitudes, since the Coriolis force on the surface flow is stronger farther from the
equator. This in turn leads to a reduction in the subtropical wind stress curl, which can
be seen in Figure 3b,c. A weaker wind stress curl will then slow subduction and affect
circulation in the subtropical cell, and therefore be felt by the equatorial ocean.

To directly assess changes to the subtropical cell in relation to Ekman pumping, a summary of
both quantities is provided in Figure 5. The oceanic meridional overturning streamfunction
is derived in the appendix; the formulation used in Figure 5 is

Φ =
∫ z

z0
v(y, z)dz −

∫ y

y0
w(y, z0)dy (3)

since now depth coordinates, rather than pressure coordinates, are used. Figure 5 indicates
the reduction in equatorial upwelling, which shrinks by 5-10% in HC relative to PI (Figure
5f). Circulation along the poleward edges of the STC also decreases with CO2 by 10-20%
(Figure 5b,c), which may be interpreted as a contraction of the overturning circulation due
to the reduction in off-equatorial wind stress curl near 10◦N/S (Figure 5e,f). It should also
be noted that there is a small (5-10%) increase in circulation in the core of the STC in HC
and PD relative to PI, near 5◦N/S. This increase is likely related to a change in the source
region for water transported to the tropics along subsurface isopycnals, where the region of
maximum Ekman downwelling has moved closer to the equator (Figure 5c-d).

The change to the oceanic mean state is shown in Figure 6, and reveals two crucial features:
the enhanced SST warming in the eastern Pacific (i.e., the weakened cold tongue; Figure
5b,c), and the increase in equatorial stratification (Figure 5h,i). The enhanced eastern Pacific
warming can be understood as a consequence of the reduction in the zonal trade winds due
to the Bjerknes feedback (Collins et al., 2005). The stratification increase is related to the
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change in the Hadley circulation through its connection with the subtropical cell. A decrease
in heat flux divergence from the equatorial region as the climate warms is a known feature of
coupled GCMs (Collins et al., 2010; Vecchi and Soden, 2007), and should be expected to lead
to an enhanced warming along the equator relative to higher latitudes. Likewise, Liu and
Philander (1995) showed that a weaker subtropical wind stress curl leads to less warm water
being transported to the lower equatorial thermocline, increasing equatorial stratification.
Thus, Figure 5 serves as a confirmation of well-understood dynamical changes.

The increase in vertical stratification and reduction in subtropical wind stress curl seen in
Figures 3 and 6 is expected to be accompanied by a shoaling of the mean thermocline. Is
the expected degree of shoaling sufficient to explain the changes in Figure 6e-f? The scaling
relationship developed by Luyten et al. (1983) and reproduced in Pedlosky (1996) (hereafter
the LPS scaling) is applied to these simulations, to assess whether any further exploration
of the thermocline shift is necessary. The LPS scaling relationship is given by

H =

√
τ0L

γ2ρ0

(4)

where τ0 is the mean subtropical wind stress, L the size of the basin, ρ0 the mean density of
seawater, and γ2 the scaled difference in density for water above and below the thermocline
(γ2 = ρ2−ρ1

ρ0
g). Here τ0 and γ0 have been calculated from the CCSM3.5 output and are

provided in Table 2, along with the other constants used in Equation 4. When the mean
thermocline is calculated using this relationship, the result ranges from 120-106m, values
which are remarkably consistent with the climatological mean thermocline depth in the
ocean model. The equatorial thermocline is somewhat shallower (Table 2) but changes in
depth with CO2 are similar to those in the extratropics.

Thermocline changes from Equation 4 are next compared with the thermocline depths mea-
sured directly in the CCSM3.5. Here the thermocline in the NINO3.4 region has been
calculated based on the position of the maximum vertical temperature gradient, and the
result averaged in time and space. Values are generally shallower than the H values from
Equation 4, ranging from 92-74m. The percentage change from PI to PD is somewhat larger
than the 6% predicted by the LPS scaling, but the PD/HC shoaling is nearly identical.
The thermocline is therefore presumed to be set primarily by nondissipative processes, and
thermocline changes a straightforward consequence of shifts in the general circulation.
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5 Changes to Interannual Variability

Changes to the mean state in CCSM3.5 are consistent with the multi-model results from
AR4 (Guilyardi et al., 2009; AchutaRao and Sperber, 2006; Collins et al., 2010). Note that
no consistency in the sensitivity of ENSO variability to CO2 was found among the AR4
models (Collins et al., 2010); this study is thus a first step towards identification of ENSO
climate sensitivities in this model. The dynamics of the 2-4 year variability is next examined,
in both the atmosphere and ocean.

Figure 7 shows thermocline, SST and subsurface temperature variability calculated using the
standard deviation of the 2-4 year bandpassed time series. SST variability clearly appears
ENSO-like, with the canonical ‘horseshoe’ El Niño pattern visible in the equatorial region.
Signatures of Rossby and Kelvin wave pathways appear in thermocline depth (Figure 7d-f),
with excitation of equatorial Kelvin waves strengthening as CO2 increases.

It should be noted here that the thermocline definition used in Figure 7d-f differs from that
in Section 3. The depth of the maximum temperature gradient does not always match the
depth of the main thermocline, especially in the warm pool polewards of 10◦ where mixed
layer effects seem to dominate. A temperature-based definition seems more appropriate in
this case, and the effects of overall climate change are offset to first order by adding the mean
0-500m warming to the 20◦C thermocline temperature in PI, in PD and HC. This leads to
a 20◦C thermocline in PI, 20.5◦ in PD, and 21◦C in HC.

The increase in subsurface variability is clearly not an artifact of the choice of thermocline
definition - this is demonstrated in Figure 7g-i. These panels show the standard deviation
of temperature as a vertical profile, averaged over latitudes 2◦S-2◦N. Enhanced variability is
seen at the surface and at depth, spread over a depth range much larger than the equivalent
of an 0.5◦C temperature change (≈15m for a mean stratification of -0.02◦C/m).

Interestingly, there seem to be several distinct ‘centers’ of large variance, rather than a uni-
form region of variability; all ‘centers’ strengthen with CO2. The surface SST variability is
relatively straightforward to explain, as a larger stratification necessarily leads to larger tem-
perature signals for a given thermocline anomaly. Indeed, the locations where stratification
increases most dramatically in Figure 7e-f are collocated with the “centers” of increased ac-
tivity in Figure 7g-i. The western Pacific signal near 100-150m depth is likely due to Rossby
wave activity, since the generation region for Rossby waves seen in Figure 7d-f is quite near
these longitudes.

From Figure 7 alone, it is tempting to conclude that an increase in delayed oscillator-like
wave activity (Zebiak and Cane, 1987; Battisti and Hirst, 1989), combined with the increased
equatorial stratification, provides the entire explanation for enhanced ENSO amplitude. Such
an increase in oscillator activity would likely be tied to an increase in the stochastic forcing
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due to westerly wind bursts (Gebbie et al., 2007). However, there still remains the question of
hemispheric asymmetry. The thermocline standard deviation maps in Figure 7d-f show that
the Rossby wave signature grows stronger (weaker) in the Southern (Northern) Hemisphere -
this is again borne out in subsurface temperature variability, and is not readily explained by a
simple oscillator model. Figure 8 shows similar standard deviation maps equivalent to those
in Figure 7g-i, averaged over 10-20◦S, 5◦S-5◦N and 10-20◦N: overall subsurface temperature
variability strengthens in southern latitudes and weakens in northern latitudes.

Subannual wind stress variability is one possible forcing mechanism, and is therefore exam-
ined in Figure 9 using a 2 month to 2 year bandpass filter. Anomalies in the wind stress
are enhanced at higher CO2, along pathways nearly coincident with the anomalous con-
vergence/divergence observed in the wind stress maps of Figure 3b,c. These pathways, it
should be noted, are strikingly similar to the pathways typical of the ‘seasonal footprinting
mechanism’ (SFM) of Vimont et al. (2003) and Alexander et al. (2010). In the SFM picture,
a subtropical signal generated during the previous (boreal) spring triggers an El Niño event:
the features in Figure 9 seem to indicate a similar mechanism at work. As CO2 increases,
not only does the overall strength of Northern (Southern) Hemisphere variability decrease
(increase), but the pathways of variability seem to move toward the equator. This is most
likely a consequence of the decreased meridional flow in both hemispheres.

Why should this meridional asymmetry in wind stress variability be enhanced with CO2?
The eastern Pacific SST seasonal cycle increases in amplitude with CO2, as shown in Figure
1. This leads to a larger meridional temperature gradient in the eastern Pacific which
reaches a maximum during boreal summer. The cross-equatorial atmospheric flow will then
be enhanced during boreal summer, which tends to strengthen trade winds in the Southern
Hemisphere and weaken them in the Northern (Xie and Philander, 1994; Xie, 1996), with
the same impact on the wind stress curl in the two hemispheres. This should then be
expected to lead to a larger (smaller) Ekman pumping signal in the Southern (Northern)
Hemisphere.

The increase in variability in Figure 9 is suggestive, but not conclusive: it remains to be
shown that wind stress variations really are connected with larger ENSO amplitudes. In
the coupled model framework, a definitive mechanistic proof would require additional nu-
merical experiments with varying forcings (e.g., Alexander et al. (2010)); but the necessary
dynamical ‘steps’ can be investigated nonetheless. The correlation between wind stress curl
and thermocline depth is shown in Figure 10 for a lag of 1 month (wind stress curl leading).
Seasonal footprinting-like pathways appear once more, with correlations consistent with an
Ekman pumping signal. Once again, the signal strengthens in the Southern and weakens in
the Northern Hemisphere as CO2 increases: additional circumstantial evidence for a causal
relationship between changes in wind stress curl and wave propagation. Ekman pumping is
becoming more efficient at exciting waves along the SFM pathways in the Southern Hemi-
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sphere, and less efficient in the Northern, as CO2 increases.

The next step in the logical ‘chain’ is to demonstrate a connection between Ekman pumping
along these pathways and initiation/termination of events in the CCSM3.5. The life cycle
of an El Niño event is therefore examined in more detail, using lag-correlations between
thermocline depth/zonal wind stress and the NINO3.4 SST (Figures 10, 11,12). Before the
peak of the El Niño phase, a negative thermocline anomaly forms in the western Pacific,
and sets up across the central portion of the basin (panels a,b). Roughly 3 months before
peak El Niño, a positive thermocline signal propagates in from the north and continues along
the equator as a Kelvin wave before reaching the eastern Pacific and setting up the fully
developed El Niño (panel c). After this point the Southern Hemisphere appears to play a
larger role. 3-6 months after peak El Niño, a negative thermocline anomaly forms in the
eastern Pacific near 15◦S, 250◦E then propagates northwest to the equator (panels d,e). This
anomaly reflects off the western boundary and propagates east as a Kelvin wave to terminate
the event (panel f).

To complete the puzzle, Figures 11 and 12 clearly indicate that the lag-correlations after
peak El Niño strengthen in the Southern Hemisphere (panels e-f), and those before the peak
weaken in the Northern Hemisphere (panels a-b). This is consistent with the changes in
subsurface variability seen in Figure 8, and provides evidence that the Ekman pumping-
induced thermocline activity in Figure 10 is in fact related to ENSO dynamics. In effect,
what seems to occur is the oceanic manifestation of changes to the seasonal footprinting
mechanism: a shift in the seasonal cycle in the eastern Pacific leads to changes in Rossby
wave activity along the pathways previously identified as important for transmission of the
seasonal signal. The novel result here is the role played by the Southern Hemisphere: the
SFM is able to create forcing in both hemispheres, which have opposing influences on El
Niño events.

6 Preliminary Comparison with CCSM4:

Implications for CMIP

The results of the previous sections paint a dynamically consistent picture of the connec-
tion between atmospheric CO2 and ENSO activity. But the oscillation is known to be
highly sensitive to changes in model physics (Guilyardi, 2006; Philip and van Oldenborgh,
2006), meaning that any single-model result is not conclusive in and of itself. In fact, the
CCSM is itself an excellent case study for model physics’ influence on ENSO, as the CCSM4
21st century projections show a slight (though statistically insignificant) decrease in ENSO
amplitude with CO2 (Stevenson et al., 2011a). Unfortunately, there are very few model
experiments which permit robust detection of dynamical changes in the CCSM4 or other
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current-generation coupled models; for example, the CMIP5 simulation suite does not in-
clude stabilized, high-CO2 integrations long enough to provide stable ENSO statistics (see
Taylor et al. (2011) for a description of the CMIP5 experimental design).

Taken in conjunction with Stevenson et al. (2011a), these results present an argument for
additional long climate model simulations at varying CO2 concentrations. Stevenson et al.
(2011a) showed that trends in tropical thermocline depth persist for decades in climate-
change simulations, which is likely part of the reason for the insignificance of the 21st century
ENSO weakening. An experiment like the one presented here, therefore, is the only way to
be sure that the dynamical changes observed are truly due to CO2 influences and are not
biased by a too-short sampling length.

An illustration of the need for long stabilized simulations with additional CMIP-class models
is provided, using the CCSM4 1◦ Representative Concentration Pathway (RCP) ‘extension’
simulations for 2100-2300 (Meinshausen, 2011) as a rough comparison case. It is important to
note that a ‘clean’ comparison with CCSM4 is not possible given the short extent of the avail-
able simulations: the extension simulations are the closest equivalents to a high-CO2 control
currently available, being stabilization scenarios from 2100-2300 for each of the 21st century
projection suites. One of the mid-range extension runs, RCP4.5 (hereafter RCP4.5E), is
adopted as a representative example to illustrate potential ENSO-relevant differences: here
only the last 50 years are used (AD 2250-2299) to minimize ramp-up effects.

The mean-state response of CCSM4 to CO2 increases was documented by Stevenson et al.
(2011a): mean-state changes are qualitatively similar to the T31x3 CCSM3.5. The equatorial
zonal SST gradient and trade winds decrease, ocean stratification increases, and the Walker
circulation shifts eastward: all consistent with the T31x3 CCSM3.5 results. Yet the ENSO
amplitude response appears quite different; the changes from CCSM3.5 to CCSM4 clearly
impact the ENSO climate sensitivity, but why? The answer is probably not a mechanism
like the seasonal SFM activity described above. Preliminary analysis of the CCSM4 sim-
ulations shows similar behavior in thermocline depth correlations with NINO3.4 SST (not
pictured), meaning that an explanation for the ENSO climate sensitivity difference must lie
elsewhere.

The most obvious difference between the T31x3 CCSM3.5 and 1◦ CCSM4 is resolution,
which increases threefold between the CCSM3.5 T31x3 and CCSM4 1◦ configurations. This
in turn has a dramatic impact on convection and therefore on the level of westerly wind
burst (WWB) activity in the model (Neale et al., 2008, 2011). WWBs are weak in the
T31x3 configuration of the CCSM3.5 (Figure 13), but are known to initiate ENSO activity
in the real world (Harrison and Vecchi, 1997; McPhaden, 2004; Lengaigne et al., 2004), often
in conjunction with the Madden-Julian Oscillation (MJO; Madden and Julian (1994); Yu and
Rienecker (1998); Lengaigne et al. (2004)). Perhaps high-frequency wind stress variability is
an important control on ENSO climate sensitivity?
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Here the sub-monthly zonal wind stress variance is used as a rough proxy for WWB activity,
and is mapped over the tropical Pacific (Figure 13). The sub-monthly variance was chosen
as a computationally inexpensive method of measuring the combined influences of WWBs
(which take place a few times per year and last 5-20 days; Harrison and Vecchi (1997))
and synoptic weather activity. Some MJO-related variability may also be captured by this
metric; identifying the proportions of variance associated with each process are beyond the
scope of this section, which aims only to show that high-frequency variance may play a role
in model ENSO sensitivity to climate change.

Figure 13 shows that the patterns of CO2 response are clearly distinct between models; in
particular, the western Pacific warm pool stands out as a region with markedly different
behavior in CCSM3.5 and CCSM4. In CCSM3.5, the total variance off the Papua New
Guinea coast increases by roughly 20%, while a decrease of the same magnitude takes place
over the entire warm pool in CCSM4. This seems in conflict with previous studies (Gebbie
et al., 2007), which find that WWB activity increases with warm pool temperature and
longitudinal extent. Is this an indication that MJO triggering of WWBs (and possibly,
therefore El Niño events) does not occur in the CCSM4? If not, are there other competing
processes which ‘damp out’ the MJO influence on developing ENSO events? How are these
processes represented in other climate models? The present study cannot answer these
questions; however, Figure 13 should serve as ample evidence for changes which affect the
simulated convective influence on ENSO within a single model family. It should also be
noted that high-frequency wind stress variability is only a single example of ENSO-relevant
dynamical changes between models; others doubtless exist.

A complete understanding of the dynamical sensitivities of ENSO with CO2 in coupled
general circulation models requires stabilized simulations at several different CO2 levels,
conducted with a wide variety of models. If CCSM can be considered representative in terms
of ENSO CO2 sensitivity (which question is as yet unanswered), then potentially one might
not detect CO2-induced ENSO changes unless an additional control at CO2 ≥ 450ppm were
run. However, it is clear that whatever the desired CO2 level, quantifying changes to ENSO
dynamics in a statistically robust manner requires multiple centuries at a stable forcing level,
which should be considered during future model intercomparison efforts.

7 Conclusions

This study has provided the first millennial-scale look at ENSO-CO2 linkages in equilibrated
climate model simulations, relying primarily on three T31x3 CCSM3.5 simulations conducted
at 255, 355 and 455 ppm CO2 with otherwise identical model configurations. Changes to
the atmosphere/ocean mean state with increased CO2 are similar to those found in previous
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multi-model studies: enhanced SST warming is seen in the eastern Pacific, reducing the zonal
SST gradient. An overall weakening of the overturning circulations in the atmosphere and
ocean are seen, consistent with the Vecchi and Soden (2007); Held and Soden (2006) picture
of a weakening boundary layer/free atmosphere exchange of moisture. In the atmosphere,
the strongest effect on circulation is seen during boreal summer, when the Hadley cell is at
its northernmost position.

In the ocean, vertical thermal stratification increases, most likely through a combination
of increased surface heat flux, decreased equatorial upwelling and reduced subtropical cell
strength. The thermocline shoals accordingly, by a percentage remarkably consistent with the
scaling relationship derived by Luyten et al. (1983) and presented in detail in Pedlosky (1996).
This indicates that the major processes controlling the climatological mean thermocline
depth are nondissipative: cross-isopycnal mixing may be neglected at equilibrium.

The ENSO variance response to CO2 in the CCSM3.5 is a strengthening which is statistically
significant at 2-4 year periods. Longer-period (5-7 year) oscillations differ between simula-
tions, but the direction of change is nonmonotonic. The physics controlling such changes
is likely complex, and is beyond the scope of this study. However, the change to the SST
seasonal cycle is substantial, with statistically significant strengthening occurring in both
the NINO3 and NINO4 regions.

It is tempting to ascribe the increase in ENSO amplitude to the stratification alone, but
this cannot explain some of the changes to oceanic variability. In particular, there is a
pronounced hemispheric asymmetry in the changes to subsurface temperature variability
observed between simulations. Variability near 10◦N weakens with CO2, and a corresponding
strengthening is seen near 10◦S. These changes occur near the climatological-mean edges of
the subtropical gyres, which are expected to be quite sensitive to changes in the structure of
the wind stress. When the correlation of the Ekman pumping strength and thermocline depth
is calculated, wave generation along the SFM pathways is indeed found to be more (less)
efficient in the Southern (Northern) Hemispheres with CO2. This represents an extension of
the SFM framework to include seasonal forcing from both hemispheres.

The sensitivity of these results to model physics is expected to be quite large, but multi-
century equilibrated simulations with other CMIP5 models are not currently available. As
a first cut, the CMIP5 CCSM4 extension run for RCP 4.5 is adopted as a comparison case
for the CCSM3.5. Substantial differences in the wind stress response to increased CO2 are
observed, although the mean state response to CO2 is the same in both models. A good
illustration of model differences is submonthly wind stress variability, which decreases with
CO2 over the western Pacific warm pool in the CCSM4; perhaps stochastic ENSO forcing is
highly sensitive to the modeled atmospheric convection.

These results show that it is indeed possible to diagnose dynamical influences when ENSO
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changes are statistically significant; however, the mechanism identified here may not be
robust across all models. Even within the same model family, there are large differences to
ENSO climate sensitivity; millennial-scale integrations at varying CO2 levels are necessary to
ensure that sampling bias does not contaminate the results. Improving experimental design
for intermodel comparisons is a challenge to the climate modeling community as a whole,
but is nonetheless an essential step towards understanding the controls on ENSO dynamics
in future climates.

Derivation of the meridional overturning streamfunction.

In the ocean, the meridional overturning streamfunction can be derived in the y-z plane
using the 2-D continuity equation for the zonally averaged flow:

∂v

∂y
+
∂w

∂z
= 0 (5)

(Note that the same relationship holds in the atmosphere if pressure coordinates are used;
then ∂w

∂z
is replaced with ∂ω

∂P
.)

The definition for streamfunction used here is

v =
∂Φ

∂z
;w = −∂Φ

∂y
(6)

This implies that

Φ =
∫ z

z0
−∂w
∂z

dz + a(y) (7)

where a(y) is an arbitrary function of y alone. Then taking the derivative with respect to
y,

∂Φ

∂y
=

∫ z

z0

∂v

∂y
dz +

∂a

∂y
(8)

Using the continuity equation and the definition of the streamfunction in terms of w,

∂Φ

∂y
=

∫ z

z0
−∂w
∂z

dz +
∂a

∂y
= −w(y, z) (9)

Then integrate from y0 to y:
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−w(y, z) = −(w(y, z)− w(y, z0) +
∂a

∂y
(10)

∂a

∂y
= −w(y, z0) (11)

Φ =
∫ z

z0
v(y, z)dz −

∫ y

y0
w(y, z0)dy (12)

Figure 1: Spectral range for 100-year subintervals taken from each of the three equilibrated
CCSM3.5 simulations. PI: pre-industrial (255 ppm CO2). PD: present day (355 ppm CO2).
HC: high CO2 (455 ppm CO2). Top panel: NINO3 SST. Bottom panel: NINO4 SST. All
wavelet power values are given in ◦C2.
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Figure 2: Illustration of the significance of differences between CCSM3.5 simulations. a,b:
NINO3 SST variance subsampled at 30-year (blue; dashed line) and 400-year (green; solid
line) intervals. c,d: Probability distribution functions of scale-averaged wavelet power. Top
row uses a 2-4 year bandpass filter, bottom row a 5-7 year filter. Bandpass filters used are
10th order Butterworth filters, and filter endpoints specified as the 3dB half-power points.

Table 1: Significance of differences in NINO3 and NINO4 spectral power between the
CCSM3.5 simulations. Values are calculated using the wavelet probability analysis tool-
box of Stevenson et al. (2010) and presented using a ‘1 - p’ convention. Here a p-value of
0.1 indicates 90% confidence that spectra differ, and is reported in Table 1 as a value of
0.9. Entries less than 0.9 indicate that spectra are indistinguishable at 90% significance. All
calculations use the Morlet wavelet and subsampling length 250 years.

Comparison NINO3 NINO4

PI/PD 2-4 yr 0.90 0.45
PD/HC 2-4 yr 0.49 0.35
PI/HC 2-4 yr 1.00 0.02
PI/PD 5-7 yr 0.46 0.93
PD/HC 5-7 yr 0.43 0.72
PI/HC 5-7 yr 0.02 0.48
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Figure 3: Changes to the mean state of the atmosphere. Left-hand column: mean state
for PI. Middle column: differences between PD and PI. Right-hand column: differences
between HC - PD. Top row (a-c): differences in wind stress (arrows show direction, colors
the magnitude of the wind stress difference). Middle row (d-f): differences in precipitation.
Bottom row (g-i): Differences in ω, vertical pressure velocity at 500 mb. In the middle and
right-hand columns, the yellow boxes show the approximate positions of the pathways active
in the SFM-like mechanism.
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Figure 4: Changes to the atmospheric overturning streamfunction (units of Sv = 109 kg/s),
corresponding to the strength of the Hadley cell. Here positive values correspond to a
counterclockwise circulation, negative values to clockwise circulation. The position of the
zero contour is shown in boldface. Vertical dashed lines are included to provide visual context
only. a-c: JJA mean for PI, PD and HC respectively. d: Difference between JJA means for
HC and PI. e-h: same as a-d for DJF.
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Figure 5: Summary of the circulation of the tropical Pacific. Upper panels: overturning
streamfunction for the subtropical cell (units of Sv). Lower panels: strength of the Ekman
pumping ∇×τ

ρof
(values x 106). The contours indicate the magnitude of the relevant quantity

(in PI for panels a/d, PD for panels b/e and HC for panels c/f), while the colors show the
percentage change relative to PI (i.e. for HC, colors show (HC - PI)/—PI— x 100%).
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Figure 6: Changes to the mean state of the ocean. Left-hand column gives differences be-
tween PD and PI, right-hand column HC - PD. a,b: Differences in SST (◦C). c,d: Differences
in thermocline depth ( m). e,f: Differences in subsurface temperature (◦C). g,h: Differences
in subsurface potential density (kg/m3 x -1).
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Figure 7: Oceanic variability (bandpass filtered with 3dB points at 2 and 4 years). Each
panel shows the variance of the relevant quantity. Top panels: SST (◦C2). Middle panels:
thermocline depth (m2). Bottom panels: Subsurface temperature (◦C2).
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Figure 8: Variability in subsurface ocean temperature (variance of gridpoint time series,
bandpass filtered with 3dB points at 2 and 4 years). Thick solid lines indicate the mean
position of the thermocline; dashed lines show the ±1σ uncertainty on the mean thermocline
position.
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Figure 9: Changes to atmospheric variance, bandpass filtered with 3dB points at 2 months
and 2 years. Boxes indicate the positions of anomalous convergence/divergence from Figure
3. a) Surface heat flux variance σQ for PI (W2/m4). b) % change in σQ between PD and
PI. c) % change in σQ between HC and PI. d) Zonal wind stress variance στ for PI (N2/m4).
e) % change in στ between PD and PI. f) % change in στ between HC and PI. Black boxes
indicate the position of the SFM-like pathways, and are identical to the regions defined in
Figure 3.
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Figure 10: Lag-correlations between the curl of the wind stress and thermocline depth, for
all simulations. Top panels (a-c) show the zero-lag correlation for PI-HC; bottom panels
(d-f) show correlations at lag 2 months (wind stress leading). Correlations for PI are shown
as contours in panels a) and d); in panels b-c and e-f contours indicate the values of the
lag-correlations, while colors show the percentage change from PI. Black boxes are identical
to those in Figure 3.

Table 2: Estimates of thermocline depth for the CCSM3.5 simulations. H indicates the
thermocline depth calculated from the scaling relationships of Pedlosky (1996), using the
state variables obtained from each simulation. Zmn is the thermocline depth calculated
directly from the CCSM3.5, using the depth at which the vertical temperature gradient is
at a maximum. Zonal wind stress is averaged over the so-called ‘matching’ region in the
subtropics, here defined as 10-20◦N, 190-240◦E. γ2 is calculated using potential densities
above and below the main pycnocline in the NINO3.4 region: averaging depths are 0-50m
for the upper layer and 100-150m for the lower layer. Zmn is calculated over the NINO3.4
region.

Simulation L (km) τx (N/m2) γ2 (kg/m3) ρ0 (kg/m3) H (m) Zmn (m)

PI 3000 -0.0963 -0.0193 1025 120.8 92.3
PD 3000 -0.0947 -0.0218 1025 112.8 79.3
HC 3000 -0.0929 -0.0240 1025 106.5 74.5
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Figure 11: Lag-correlation plot for the 6 months before peak El Niño. PI is shown in the
top row (panels a-c), HC in the bottom (panels d-f). Colors show the correlation coefficient
between NINO3.4 index and thermocline depth at each grid point, with negative correlations
in blue and positive in red. Contours show the correlation coefficient between NINO3.4 index
and zonal wind stress. Zero correlation with wind stress is shown as the thick solid black
line; positive NINO3.4/wind correlations are thin solid lines, negative correlations are dashed
lines. a) 6 months before peak El Niño. b) 3 months before. c) Zero lag: peak El Niño.
Black boxes are identical to those in Figure 3.
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Figure 12: Same as Figure 11, for lags of 3, 6 and 9 months after peak El NIño.



Appendix D 225

Figure 13: Sub-monthly zonal wind stress variance (N2/m−4). a: Mean variance for PI
(CCSM3.5), years 200-1000. b: Difference between HC and PI (CCSM3.5), years 200-1000
for both. c: Mean variance for RCP 4.5 (CCSM4), years 2250-2299. d: Difference between
RCP4.5 and the CCSM4 1850 control (years 800-1299). Note that in panels b,d, the units
are % (given relative to PI for panel b, CCSM4 1850 control for panel d).
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ENSO Characteristics in the CCSM4 21st
Century Projections

Samantha Stevenson and Balaji Rajagopalan

1 Abstract

The influence of climate change on the statistics of El Niño and La Niña events is examined using the
20th and 21st century CMIP5 ensembles run with the NCAR Community Climate System Model version 4
(CCSM4). The effective ensemble size is increased using a combined Markov chain/generalized linear model
(Markov GLM), which allows the creation of NINO3.4 time series having the same statistical properties as
the CCSM4 ensembles. The Markov GLM performs extremely well in reproducing the 20th century NINO3.4
SST. correctly capturing El Niño/La Niña events, seasonal variances and event magnitude PDFs. Predictor
variables required by the Markov GLM are chosen based on the structure of correlations with NINO3.4 SST
in several climate variables, and the set of best predictors changes between ensembles. Wind stress and wind
stress variance appear to become less important at higher CO2, as does the seasonal cycle: this may be
related to the overall weakening observed with CO2 in the CCSM4. The overall statistics of El Niño and La
Niña also change between ensembles, with La Niña events weakening at higher CO2 and El Niño experiencing
only minimal changes. The persistence of both warm and cold events decreases with CO2, which leads to a
longer return period for long (geq5 years in duration) El Niño and La Niñas. However, the 90% confidence
intervals overlap for the 5-year event return periods, suggesting that any change in the mean return period
will be imperceptible over the course of the 21st century.

2 Introduction

The El Niño/Southern Oscillation (ENSO) is a subject of intense study at the moment, due to its complexity
and the variety of impacts it has on societies around the world (Ropelewski and Halpert , 1986). Of particular
interest are ENSO-related drought and flooding events, which are felt acutely in Australia (Nicholls, 1992)
and the Southwestern United States (Cole and Cook , 1998; Cayan et al., 1999), among other places. The
Southwestern US is particularly sensitive to ENSO activity, since streamflow is tightly linked to ENSO
dynamics (Dettinger et al., 2000; Kiladis and Diaz , 1989; Cayan and Webb, 1992). As the overall streamflow
in the Colorado River Basin decreases due to anthropogenic climate change (McCabe and Wolock , 2007;
Ray ; Seager et al., 2007), understanding ENSO behavior may therefore become more and more important
in the future. However, the precise extent of the risk to the Southwestern US’ water supply from climate
change is not well known at the moment, and most likely will depend strongly on the management choices
made in response to the changing climate (Rajagopalan et al., 2009; Barnett and Pierce, 2008).

Given the large changes to climate expected in the next few decades, it is important to understand how
those changes will impact the properties of El Niño and La Niña events. Although internal variability makes
it extremely difficult to identify significant changes to the overall strength of ENSO (Wittenberg , 2009;
Stevenson et al., 2011b), the characteristics of individual events may change on much shorter timescales
(Fedorov et al., 2003; Kao and Yu, 2009). This becomes important when one considers the differences in
Southwest US teleconnections between different types of events. Rainfall in the region is highly sensitive
to the mean position of the jet stream, which leads to large event-to-event changes. Some of the observed
variability may relate to coupling between ENSO and the Pacific Decadal Oscillation (PDO; McCabe and
Dettinger (1999)), while some shifts in teleconnections are also expected due to climate change (Meehl et al.,
2007).

In this study, we week to understand changes to event statistics in a single model, the NCAR Community



Appendix E 233

Climate System Model version 4 (CCSM4; Gent et al. (2011)). Since the overall ENSO response in this model
was previously shown to be insignificant on 50-100 year timescales (Stevenson et al., 2011b), looking at event
statistics illustrates the potential for changes to ENSO characteristics in the absence of a change in ENSO
amplitude. Can one diagnose changes to El Niño persistence, for example, before the ENSO amplitude
changes significantly?

Unfortunately, the small ensemble size used in the CMIP5 simulations (Taylor et al., 2011) makes obtain-
ing robust event statistics impossible. We therefore use a statistical model to increase the effective ensemble
size while retaining the overall characteristics of the simulated time series. The particular model chosen
for this analysis is a combined Markov chain/generalized linear model (GLM) (hereafter MGLM). Use of
the MGLM approach allows one to predict the ENSO amplitude based both on covariates (i.e. wind stress
and thermocline depth) and on the system state during previous seasons (i.e. to account for the increased
probability of an El Niño or La Niña event persisting throughout the course of several months).

3 Modeling Framework

The model is based on the GLM framework used in the stochastic weather generator of Kim et al. (2009),
where a GLM was used to predict the probability of precipitation occurring on a given day, and the dis-
tribution of precipitation then modeled with a gamma distribution. Here the Markov GLM is applied to
input data from the CCSM4 CMIP5 simulations, and seasonally averaged to reduce month-to-month noise.
Ensembles consist of the 20th century (6 simulations) and three of the so-called ‘Representative Concen-
tration Pathway’, or RCP, 21st century projection ensembles (Moss et al., 2010). The RCPs replace the
previously-used IPCC scenarios, and correspond to various levels of top-of-atmosphere radiative forcing at
2100AD. Here, we make use of the RCP2.6, RCP4.5, and RCP8.5 ensembles, spanning the range of potential
climate stabilization outcomes. The ensemble properties are summarized in Table 1.

The model framework here differs from Kim et al. (2009) in two respects:

1. The NINO3.4 SST is predicted directly from the GLM, rather than employing a two-step process where
the system state is modeled independently from the value of the predictand.

2. The lagged system state is computed using a three-state Markov chain rather than a two-state: El
Niño, La Niña, and neutral conditions are allowed. Here values of 1, -1 and 0 are assigned to the three
states, respectively.

The mathematical description of the model is slightly different from that in Kim et al. (2009): as is
standard in linear regressions, the NINO3.4 SST TN34 estimate has the form

TN34 = xTβ (1)

where β estimates are created for the system state variables via maximum-likelihood estimation. The
independent variable matrix xT is made up of time series for both continuous and categorical covariates:
the continuous covariates are box-averaged time series of field variables (see Section 5) and two sinusoidal
functions which simulate the seasonal cycle. The sinusoids are given by sin( 2πt

4 ) and cos( 2πt
4 ), respectively.

β values for the categorical system state variables are calculated using the logit function for a multinomial
distribution. If there are Nj system state variables, then this leads to the following expression for the
transition probabilities:

p =
exp(xTβj)

1 +
∑Nj

j=1 xT
j βj

(2)

The glm package in R was used to perform all fitting.
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Table 1: Simulations used in this study. For the RCPs, the CO2 value quoted is the approximate value at
the end of the simulation period.

Simulation Length (years) Ensemble size CO2 (ppm)
20th century 156 6 350

RCP 2.6 95 5 450
RCP 4.5 95 5 550
RCP 8.5 95 1 1300

4 Event Statistics

Figure 1 summarizes the statistics of El Niño and La Niña events simulated from the CCSM4 20th century
ensemble. To verify that the model correctly reproduces the gross properties of the input time series,
we test the NINO3.4 time series (Figure 1a), seasonal variance (Figure 1b), and the PDF of both warm
and cold events (Figure 1c,d). Overall simulation of individual events is quite good; with the exception
of some extremely large events, the model is able to correctly reproduce the magnitude of the NINO3.4
anomaly extremely well. (Note that the full 20th century time series is not shown in Figure 1 due to space
constraints). The simulation of seasonal variance is good as well: there is a slight underprediction of variance
in the fall (season 4 in Figure 1b), but the CCSM4 input value is well within the simulated interquartile
range.

The magnitudes of El Niño and La Niña events show a large degree of scatter in the simulated values. In
Figure 1c,d the red line shows the ensemble-mean PDF for both, with the black boxes representing simulated
values; the space between outliers is large compared with the probability values from the 20th century en-
semble. Consistent with the time series results in Figure 1a, there seems to be increased error in representing
very large El Niño and La Niña events. However, there is a tendency towards overestimation of the likelihood
of large events; the red line in Figure 1c,d falls below the median of the simulated distributions for both El
Niño and La Niña for anomalies larger than ≈ 2.5◦C. However, the overall performance is reasonable; we
therefore have reasonable confidence in the results of simulated statistics for the RCP ensembles. A summary
of the simulated RCP statistics is shown in Figure 2.

The magnitudes of El Niño and La Niña events are shown for the 21st century ensembles in the top row
of Figure 2. Changes to the El Niño PDF are minimal even in the higher RCPs, as shown by the similarity
of the 20th century (solid line) and 21st century (boxplot) distributions. There appears to be a tendency
towards weaker El Niños, but the effect seems to be relatively small. La Niñas, in contrast, experience a more
pronounced shift: the PDF narrows in the RCP ensembles relative to the 20th century, and the frequency
of strong La Niñas decreases dramatically.

Persistence statistics are shown separately in Figure 2 for El Niño (panels d-f) and La Niña (panels g-i).
For both phases, long (multi-year) events become less common at high CO2, although the simulated values in
Figure 2 show that the interquartile range brackets the 20th century PDF for the majority of event lengths.
The exceptions are long (≥ 7 season) El Niño events and short (≤ 4 seasons) La Niña events in RCP4.5 and
8.5.

The question of event persistence is extremely important for resource management applications, including
the aforementioned Southwestern US water management. This has led to a high degree of interest in multi-
year El Niño and La Niña events (Trenberth and Hoar , 1996; Rajagopalan et al., 1997). Here we revisit the
question, calculating the return period of 5-year El Niño and La Niña events for all of the simulated time
series. Calculations are performed using the transition probabilities determined from the simulated NINO3.4
index:
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Figure 1: Model validation for the 20th century CCSM4 ensemble. a) NINO3.4 SST time series. b) Seasonal
NINO3.4 variance. c) El Niño PDF. d) La Niña PDF. In all panels, the 20th century ensemble is shown as
the red solid line (red circles in panel b), simulated values boxplotted in black.
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Figure 2: El Niño/La Niña statistics for the 21st century ensembles, simulated using the Markov GLM. Solid
lines indicate the PDF for the 20th century, with red and blue indicating El Niño and La Niña, respectively.
Event magnitudes appear in panels a-c; El Niño persistence in d-f; and La Niña persistence in g-i.
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R5yr = p−N (3)

where p represents the (El Niño - El Niño) or (La Niña - La Niña) transition probability and N = (4
seasons/year) x (5 years) = 20. The results are shown in Table 2: the 90% confidence intervals for 5-year
return periods overlap between all ensembles.

Table 2: Return periods for 5-year El Niño and La Niña events.

Ensemble 10%, EN Median, EN 90%, EN 10%, LN Median, LN 90%, LN
20th c. 1,078 3,325 41,337 3,905 7,718 17,388

RCP 4.5 6,041 20,872 104,388 827 5,449 21,938
RCP 8.5 9,504 34,872 155,864 12,870 55,475 342,005

5 Best ENSO Predictors

Figure 3: Lag-correlation maps with NINO3.4 SST, lag 3 months. a) SST, b) thermocline depth, c) zonal
wind stress, d) submonthly zonal wind stress variance. Note that panel d uses a different color scale from
panels a-c, for clarity. Black boxes indicate the positions of the averaging regions used to generate the Markov
GLM predictors, which are labeled according to the naming conventions in Table 3. Note that panel d uses
a different color scale than panels a-c, owing to the much smaller correlations with wind stress variance.

The next question is whether the most important ENSO covariates change with CO2. As noted in Section
3, the lagged system state and lagged NINO3.4 SST are included in the model (Table 3). Also included are



Appendix E 238

box-averaged values for SST, thermocline depth, zonal wind stress and zonal wind stress variance at zero lag.
The averaging regions for predictors are chosen to maximize the correlation of the time series with NINO3.4
SST, which is shown in Figure 3. This allows for the inclusion of both surface-driven and subsurface-driven
dynamics in the model; both are thought to be active in the real world, and their relative importance may
change under global warming (Fedorov and Philander , 2000; Guilyardi , 2006).

In thermocline depth, averages are taken over: the Indian Ocean, the eastern Pacific, and the ‘Rossby
wave North’ and ‘Rossby wave South’ regions (Table 3). The eastern Pacific, of course, is one of the primary
regions active in ENSO variability (Zebiak and Cane, 1987). The Rossby wave pathway regions are chosen
as their names imply: previous studies (Vimont et al., 2003; Alexander et al., 2002, 2010) have shown the
importance of these locations for seasonally driven Rossby waves. In the CCSM3.5, Stevenson et al. (2011a)
showed that these pathways indeed play an active role in the generation of El Niño/La Niña events.

The zonal wind stress predictors chosen are averaged over the central equatorial Pacific, over the Indian
Ocean and over the north central Pacific. The Indian Ocean shows a strong negative correlation between
zonal wind stress and NINO3.4 SST (Figure 3c): this is consistent with the eastward (westward) movement
of the convective center in the western Pacific warm pool during El Niño (La Niña). In the central equatorial
Pacific, the high correlation is created by the Bjerknes (1969) feedback, where weaker trade winds are
associated with slackening zonal SST gradients and therefore the development of El NIño events. Finally,
the connection with wind stress in the subtropical central Pacific is important since this is what sets the
Sverdrup transport in/out of the tropics. Changes in mean Sverdrup transport, in turn, lead to shifts in
mean ocean heat content which drive the ‘recharge oscillator’-type ENSO (Jin, 1997).

Table 3: Set of best predictors for the CCSM4 ensembles. Numbers indicate the value of regression coefficients
for each ensemble/variable combination.

Predictor 20th c. RCP 4.5 RCP 8.5
Lag-1 state -0.119 -0.133 -0.117
Lag-2 state 0.587 0.588 0.527
Lag-3 state -0.227 -0.256 -0.165
Lag-1 value 0.114 0.149 0.108

RW path Z (N) -8.99 ×10−5 -1.03 ×10−4 -6.58 ×10−5

RW path Z (S) 9.24×10−5 1.48 ×10−4 4.83 ×10−5

Ind. Ocn. Z 1.12×10−4 4.84 ×10−5 2.86 ×10−4

E. Pac. Z 2.06×104 6.59×10−5 3.49 ×10−4

Mean Taux 3.90 4.96 3.34
Ind. Ocn. Taux -0.208 -0.899
N. Pac. Taux 0.0826

WPWP Taux var. -1.86 -1.55 -1.37
Ind. Ocn. Taux var -0.325 -0.496

Sin 1.270e-01 0.105
Cos -1.532e-01 -0.0706 -0.0817

After the predictors were input into the model, the ‘best’ predictor set for each CCSM4 ensemble was
chosen according to a stepwise regression which minimizes the BIC criterion (Sakamoto et al., 1986). The
model was initialized with NINO3.4 values and system states for the past 4 seasons, but the value of NINO3.4
does not appear in the best predictor set for any ensemble at lags greater than 1. The system state is more
important, being retained for the previous 3 seasons. The complete set of best predictors for all ensembles
is shown in Table 3.
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The set of predictors which minimize BIC does not generally differ greatly between ensembles, although
there does appear to be some tendency towards wind stress becoming less important with higher CO2 (based
on the absence of the Indian Ocean and North Pacific τx in RCP 4.5 and 8.5). RCP 8.5 is particularly striking,
as the mean zonal wind stress and the warm pool variance are the only wind predictors appearing in the
best-fit variable set. The off-equatorial wind appears only for the 20th century; the decreased importance
of the subtropical wind stress may reflect a shift away from ‘remotely influenced’ ENSO dynamics. Another
possibility is that anomalies in wind stress variance become less effective at triggering El Niño events as
CO2 increases. This has been examined in the CCSM3.5 and CCSM4 (Stevenson et al., 2011a), and the
high-frequency component of wind variance does seem to decrease with CO2.

The decreased importance of wind stress and wind stress variance in the western Pacific and Indian
Oceans may possibly relate to the position of the Walker cell. Convection migrates eastward with CO2 as
the mean equatorial trades weaken (Stevenson et al., 2011b), which is a robust feature of IPCC-class models
(Collins et al., 2010). The dynamical connection between these factors, however, remains unclear and is a
subject more properly left for future investigations.

Some conclusions may be drawn from the magnitudes of the regression coefficients in Table 3: for example,
the seasonal cycle becomes less important in determining El Niño/La Niña magnitude with CO2. This is
consistent with the overall weakening of the SST seasonal cycle identified by Stevenson et al. (2011b), which
has been previously linked to the amplitude of El Niño events (Timmermann et al., 2004). If a mechanism
related to seasonally forced Rossby waves is a dominant factor in model ENSO dynamics (i.e. Stevenson
et al. (2011a)), then this would explain the weaker regression slope in the RCP ensembles. However, the
thermocline depth regression coefficients themselves do not change monotonically with CO2, suggesting that
the situation may be more complex.

6 Summary and Conclusions

This work has both documented the changes to ENSO event statistics under climate change in the CCSM4,
and demonstrated the use of the combined Markov chain/generalized linear model as a simulation technique
for increasing effective ensemble size. Validation results for the 20th century simulations from the CCSM4
show that the model performs well at simulating the NINO3.4 time series, in terms of both event simulation
and replication of the seasonal variance. The overall PDF of El Niño and La Niña events is likewise reproduced
relatively well.

The sets of best predictors using the Markov GLM are remarkably similar between ensembles. The value
of NINO3.4 SST does not appear to be important as a predictor at lags greater than 1 season, although the
state of the system (El Niño/neutral/La Niña) does remain important for up to three seasons. The wind
stress and its variance appear in the set of best predictors for the 20th century, but become progressively
less important as CO2 increases. Some of this may be related to the eastward migration of the Pacific
Walker circulation; some may relate to changes in coupling with the Indian Ocean. Likewise, the seasonal
cycle becomes less important as a predictor at high CO2, and is known to weaken in the RCP ensembles
(Stevenson et al., 2011b). This may become important for seasonally forced wave propagation.

ENSO event magnitudes show a greater change during the La Niña phase; strong La Niña events become
much less common at high CO2. The magnitudes of El Niño events show a PDF which remains more or less
stable with CO2. However, the persistence of both warm and cold events drops off dramatically in the RCP
ensembles; this is likely responsible for much of the weakening of ENSO amplitude seen in previous work on
these ensembles.

The implications of this work for changes in the return period of 5-year events are somewhat unclear.
The return period increases with CO2, but large internal variability leads to a 90% confidence interval on
the return period which is indistinguishable between ensembles. We conclude that long El Niño/La Niña
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events should indeed become more rare as CO2 increases, but that it will be nearly impossible to distinguish
the changes based on observing ENSO evolution during the 21st century.
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Abstract

Projections of future climate change depend upon scenarios of future anthropogenic greenhouse 

gas emissions. In preparation for its Fifth Assessment Report, the Intergovernmental Panel on 

Climate Change developed a new approach to the generation of emissions scenarios, called 

‘Representative Concentration Pathways’ (RCPs). The RCPs were designed to provide a range of 

emissions outcomes consistent with a particular radiative imbalance. However for the ‘baseline’ 

simulations used to generate the RCPs, the older scenario methodologies were often used as a 

starting point, meaning that ‘built in’ to the RCPs are some of the same implicit assumptions 

found in earlier emissions scenarios. Although energy intensity has dropped dramatically over 

2006-2010, the RCPs’ predicted decreases in carbon intensity surpass the SRES scenarios for 

near-term and long-term projections alike. Addressing the carbon emissions challenge may thus 

require more aggressive policy action than is currently being projected by the IPCC.
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1. Introduction

 The Intergovernmental Panel on Climate Change (IPCC) assesses the science, impacts and 

mitigation of climate change in periodic “Assessment Reports,” the most recent of which is the 

Fourth Assessment Report, or AR4 (Pachauri and Reisinger, 2007). The results put out by the 

IPCC are unique in that they are formally approved by participating governments, and thus have 

an authoritative status in international policymaking.  A central element of the IPCC is the 

construction of emissions scenarios for projections of future climate changes and associated 

impacts: these scenarios are then used for the evaluation of various mitigation alternatives. The 

generation of such scenarios requires modeling the behavior of social, economic, technological 

and political systems (Fisher et al., 2007; Schneider, 2001).

 Until recently, the state of the art in emissions scenarios was the set of projections 

described in the 2000 ‘Special Report on Emissions Scenarios’, or SRES (Nakicenovic, 2000). 

The SRES were designed to represent a very broad  range of possible future emission paths, 

taking into account changes in land use, energy consumption and production, and a number of 

other factors. SRES scenarios were used in the Third and Fourth IPCC Assessment Reports, and 

these scenarios currently inform most climate projections found in the scientific literature.

 The IPCC has altered their approach to scenario construction for the Fifth Assessment 

Report (AR5; Moss et al. (2010)). Instead of working ‘forward’ from economic, social, and 
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technological assumptions to generate scenarios, a ‘backward’ approach is used: radiative forcing 

is specified, then scenarios consistent with that forcing profile are created. This allows multiple 

sets of policy assumptions to be put forward, and in principle should lead to greater flexibility in 

the construction of scenarios for future emissions. However, in practice we find that significant 

technological advances are built into the baseline RCP plans, just as was the case for the SRES 

scenarios. This review discusses the spontaneous technological advance – and commensurate 

decarbonization – built into the RCPs.

2. Scenario/Pathway Development 

2.1 SRES

 The AR4 SRES scenarios are divided into four major groups, hereafter referred to as 

‘families’, which differ in their philosophies regarding the future rates of population and 

economic growth, as well as in their energy usage predictions. The SRES families are referred to 

by a letter and a number designation, and are summarized in Table 1. Within each family, 

subgroupings of scenarios were constructed based on differing assumptions (e.g. use of fossil 

fuels vs. nuclear energy, etc.) in order to span as wide a range of expected futures as possible. 

After the scenarios were completed, the associated inputs (land use changes, aerosol and GHG 

emissions, etc.) were used as input forcings for a variety of coupled climate models, to yield 

climate projections through the 21st century.
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Family Economic Growth Population 
Growth

Technological 
Development

A1 rapid peaks in mid-century, 
then declines

rapid introduction of 
new, efficient 
technologies

A2 fragmented, slow continuous slow 
increase

B1 transition to service/
information economy

same as A1 clean, resource-driven

B2 intermediate continuous increase 
(slower than A2)

diverse, slower 
development

0

Table 1: SRES families and associated patterns of economic, population, and technological 

growth.

 The SRES B families are generally known as being ‘optimistic’ estimates of future growth 

(Nakicenovic, 2000). In contrast, the A families, particularly A1, are typically used in the 

literature as examples of ‘business as usual’ growth (e.g., Schneider (2001); Stroeve et al. 

(2007)). However, the past 10 years have surpassed the A1B scenarios in greenhouse gas 

emissions. Demographic trends appear relatively well represented in the SRES (van Vuuren and 

O’Neill, 2006), which indicates that the SRES underestimates have a different source: energy use 

and associated carbon emissions are constant or increasing in both the developed and developing 

world (Raupach et al., 2007). Generally speaking, the more aggressive climate stabilization 

pathways (RCPs 2.6 and 4.5) are most similar to the SRES B families, and the less stringent 

pathways (RCPs 6.0 and 8.5) more closely resemble SRES A groups (Section 2.2).
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2.2 RCP Development

 The RCPs specify a radiative imbalance at which the atmosphere will stabilize, and use that 

information to determine social, technological and economic factors consistent with that 

imbalance. The RCPs are designed to provide ‘two-way’ communication between physical 

scientists and decision-oriented researchers; in particular, the impacts, assessment and 

vulnerability (IAV) and integrated assessment and modeling (IAM) communities. In the words of 

Moss et al. (2008), “...this parallel approach should provide better integration, consistency, and 

consideration of feedbacks, and more time to assess impacts and responses”.

 Figure 1 provides an overview of the use of the RCPs in the IPCC AR5 analysis. First, the 

climate modeling community takes the specified radiative forcing in the RCP baseline 

simulations to generate profiles of expected changes to the climate system over the appropriate 

time horizon. Next, the IAM community uses a variety of policy, economic and other 

assumptions to generate a suite of new scenarios based around each RCP. These scenarios may 

then be used by the IAV researchers to find the best policy options on local and regional scales.
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Figure 1: Figure 1 from Moss et !al. (2008), showing a schematic of (a) ‘sequential’ (linear) and 

(b) ‘parallel’ scenario development processes. 

 Moss et al. (2008) discuss four primary RCP candidates, constructed with four different 

integrated assessment models, which were selected from the peer-reviewed literature to span a 

range of potential climate outcomes. The RCPs were each tested with multiple models to ensure 

replicability (Weyant et al. 2009) The models’ general approach is to use representations of the 

economy, climate policies, and the agricultural sector combined with a simplified climate system 

model to yield an optimal emissions pathway to achieve the desired stabilization level. Each 

pathway is designated by the level of radiation above the present value which will be absorbed 

by the atmosphere at steady state: pathways are summarized in Table 2.
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Table 2: RCPs recommended for use in AR5. Modeling groups are: the Asia-Pacific Integrated 

Model (AIM), the Model for Energy Supply Strategy Alternatives and their General 

Environmental Impact (MESSAGE), the Mini-Climate Assessment Model (MiniCAM), and the 

Integrated Model to Assess the Global Environment (IMAGE).

 

Name Forcing (W/m2) CO2 level Modeling group Country/region

RCP8.5 8.5 ≥1370 MESSAGE Austria

RCP6 6.0 850 AIM Japan

RCP4.5 4.5 650 MiniCAM USA

RCP2.6 3.0 490 IMAGE Netherlands

• RCP2.6: IMAGE

 RCP2.6 (van Vuuren et al., 2007; Van Vuuren et al., 2006) is the most stringent pathway. 

 The baseline emissions used in RCP2.6 were specified using the SRES B2 scenarios 

 (Weyant et al., 2009), as envisioned for integrated model applications by van Vuuren et 

 al. (2007) who modified the demographic assumptions to better fit the observed trends 

 from 2000-2010. The input baseline emissions are used by the climate policy model to 

 derive an emissions pathway leading to climate stabilization (van Vuuren et al., 2007; 

 Weyant et al., 2009).
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"

Figure 2: Figure 5 from Moss et al. (2010). MESSAGE is shown in gray, AIM in blue, GCAM/

MiniCAM in pink and IMAGE in green. (a) Radiative forcing, W/m2. (b) CO2 emissions in 

gigatons. Bold curves indicate the RCP baseline simulations: replicates are shown as thin lines.

 Heavy emissions cuts are required by RCP2.6; as seen in Figure 2b (green curve), the 

 pathway actually requires negative emissions by 2100. Emissions cuts are applied 

 optimally across 17 world regions, with non-CO2 gases priced according to their global 

 warming potentials. Notably, even with such steep cuts the RCP2.6 pathway still 

 overshoots the target before declining to the correct forcing level, with peak radiative 

 forcing near 2020.

• RCP4.5: GCAM
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 RCP4.5 is an intermediate emissions pathway, derived based on simulations with the 

 GCAM (previously MiniCAM) model. Global emissions peak later in RCP4.5 than in 

 RCP2.6, with a maximum near 2040 (Figure 2, pink lines). 

 The RCP4.5 pathway is derived from the ‘Level 3’ stabilization scenario of Clarke et al. 

 (2007), developed independently by the MiniCAM group. Population projections came 

 from the UN database, and future energy use is predicted to shift gradually from fossil 

 fuels to renewables. Although the reference scenario for RCP4.5 is not derived directly 

 from SRES, technological improvements yield similar rates of efficiency improvement: 

 each dollar of 2100 US GDP is produced with 25% as much energy as the equivalent 

 in 2000 dollars (Clarke et al., 2007). Also interesting is that the stabilization goals 

 targeted by RCP4.5 were achieved in the model by adopting so-called ‘idealized 

 emissions reduction methods’, which assume  that reductions take place wherever and 

 whenever possible, using the most cost-effective GHG available (Clarke et al., 2007).

• RCP6.0: AIM

 RCP6.0 is the second intermediate emissions pathway. Like RCP4.5, RCP6.0 is a 

 ‘stabilization without overshoot’ situation, which eventually stabilizes at a concentration of 

 about 850ppm CO2. The model used to develop this pathway is AIM, which models the 

 economy based on its division into 13 economic sectors. The AIM team developed their 

 scenarios independently (Fujino et al., 2006), using energy statistics from the International 

 Energy Association.
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• RCP8.5: MESSAGE

 RCP8.5 is the highest forcing pathway, with emissions continuing to trend upwards past 

 2100. The development of RCP8.5 (Rao and Riahi, 2006; Riahi et al., 2007) used baseline 

 emission scenarios derived from the SRES A2 family. Riahi et al. (2007) describes 

 revisions to the A2 used in RCP8.5: population estimates were revised downwards for 

 better agreement with UN projections, and slow economic growth assumed to delay the 

 spread of energy-efficient technologies. Most fuel-use assumptions are carried over from 

 the A2, and used as input to the agriculture, forest and energy models.

3. Decarbonization of Economic Activity Via Reductions in Carbon and 

Energy Intensities

 The widespread adoption of less carbon-intensive energy technologies is fundamental to all 

stabilization scenarios that have positive rates of economic growth (Hibbard et al., 2007; Hoffert 

et al., 1998, 2002). In the literature this is referred to as the decarbonization of the economy: the 

rate at which the carbon emission per unit of gross domestic product decreases with time. The 

decarbonization rate is the product of two quantities from the Kaya Identity (the other two are 

per capita wealth and population): carbon intensity (CI) and energy intensity (EI) as a function of 

time. CI is a measure of the carbon emission required per unit of energy generated, while EI 

measures the amount of energy required to produce a unit of GDP. Reductions in both CI and EI 

will be required to achieve the necessary levels of decarbonization described in all four RCPs.
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 Estimates of carbon intensity were made by Nakicenovic et al. (1996) as part of the AR4; 

those authors found that historically, CI had decreased by about 0.3%/year. This, however, 

appears to be substantially slower than the projected decreases in the Third and Fourth IPCC 

assessment reports, which are closer to 0.6-0.9%/year (Green and Lightfoot, 2002). The upper 

limit on EI decline was calculated by Lightfoot and Green (2001), who found that theoretically a 

1.1% decline would be achievable over the 21st century. 

 Pielke et al. (2008) look into the projected decarbonization rates generated from AR4 data. 

Using a ‘frozen technology’ baseline simulation, they show that the decarbonization in the AR4 

simulations relies on ‘automatic’ efficiency improvements which are inconsistent with advances 

in energy efficiency to date. In fact, those built-in improvements account for the vast majority of 

CO2 emissions reductions to 2100 (see Figure 3). Are the same assumptions built into AR5? This 

is a bit more difficult to evaluate in the RCPs than the SRES scenarios, since the RCPs were 

designed to provide a degree of autonomy between the emissions and climate warming 

projections for AR5.
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Figure 3: Rates of technological decarbonization in the IPCC SRES scenarios as compared with 

the observed rate. This figure is modeled after Figure 2 from Pielke et al. (2008).

 A ballpark estimate of the required CI and EI reductions can be made using the baseline 

simulations for the RCPs. Scenarios consistent with the appropriate radiative forcing targets may 

be expected to have comparable CI and EI values. We have obtained data for the IIASA A2r 

simulation1, which is the simulation upon which the RCP8.5 was based. For RCP4.5, we have 
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used the GCAM baseline scenario from which the RCP was derived2. At the time of this writing, 

online data for RCP2.6 and 6.0 is not available. As a best estimate, we therefore use data taken 

from the GCAM ‘replicates’ of the RCP2.6 and 6.0 baseline scenarios.

 

 Changes in carbon and energy intensities are calculated over the periods 2000-2010 and 

2010-2100 for the SRES. The former (green circles in Figure 3) is intended to provide a direct 

comparison to observations, and is analogous to the calculation in Pielke Jr. et al. (2008). 

Calculations for the RCPs cover 2005-2020 (black triangles) and 2020-2100 (blue squares), to 

give a sense of the sustained improvements which will be required over the course of the 21st 

century to achieve stabilization targets. Comparison of the SRES and RCP results leads 

immediately to the conclusion that required improvements in the baseline scenarios are at least as 

ambitious as their predecessors. RCP2.6 in particular requires aggressive reductions in carbon 

intensity out to 2100, up to 7-8x larger than the other scenarios.

 The logical counter-argument to the analysis in Figure 3 is that the construction of the 

RCPs does not assume a particular evolution of GDP, and thus the decarbonization rate might 

change with the use of a different scenario consistent with that radiative forcing pathway. 

Socioeconomic conditions could align in multiple ways to produce the same emissions trajectory. 

However, very high decarbonization rates will still be required to meet the goals of all four 

RCPs. As a comparison with the RCP baseline scenarios, we use the GDP, CO2 emissions, and 

energy consumption projections for 2010-2030 from the U.S. Energy Information 
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Administration’s International Energy Outlook for 2011 (Energy Information Administration, 

2011). These numbers (the ‘IEO Reference case’3) are derived independently from the RCP 

calculations, using the EIA’s World Energy Projections Plus (WEPS+) model (Energy 

Information Administration, 2011). WEPS+ is a system of sectoral energy models which derives 

energy consumption projections given GDP growth and fuel price as input: the results can thus 

serve as an independent comparison with the RCP baselines.

Figure 4: (a) Figure 3.7 from Weyant et al. (2009), showing the contribution to emissions 

reductions by fuel type for RCP2.6. (b) Figure 4.11 from Clarke et al. (2007), showing projected 

global energy emissions by fuel type for RCP4.5. Values shown are the differences between the 

RCP4.5 pathway and the GCAM ‘reference’ scenario. (c) Figure from the IPCC Special Report 

on Carbon Capture & Storage, showing energy use by fuel type for RCP8.5.
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 Results from the IEO projections are shown as the red diamonds in Figure 3: overall 

energy intensity improvements are substantial, with projected 2005-2020 reductions greater than 

in any of the RCPs. Much of this reduction is driven by a switch to renewables, motivated by 

rising world oil prices. Notably, however, the reduction in carbon intensity is minimal: the annual 

reduction is 0.3%/year, comparable to RCP6 and RCP8.5. Meeting the goals of the more 

stringent RCPs will require not only maintaining the recent (2006-2008) EI reduction rate, but 

also aggressive measures to decrease the CO2 emissions associated with energy production.

 3.1 Energy Policy in the RCPs

 Why are the reductions in carbon and energy intensities so much higher in the RCPs than 

the EIA projections? The answer likely lies in a combination of factors. One consideration is 

energy efficiency, which is expected to play a major role in future climate mitigation efforts. In 

fact, van Vuuren et al. (2007) describe energy efficiency improvements in the RCP 2.6 as one of 

the largest sources of uncertainty in future CO2 projections. Rates for the 21st century overall 

range from 0.8%/year (western Europe) to 1.8%/year (India): van Vuuren et al. (2007) speculate 

that the action of climate policies could increase those numbers to 1.0-2.1%/year. On the other 

end of the RCP spectrum, MESSAGE graphics developed by Riahi et al. (2007) for the 670 ppm 

CO2 RCP8.5 simulations show efficiency measures making up roughly 15-20% of total 

greenhouse gas reductions, depending on the choice of baseline scenario4. Over the 2005-2100 

period, this implies an annual improvement of 0.10-0.21%/year. 
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 A full review of the energy literature is beyond the scope of this analysis. However, some 

impressions may be gained from Figure 4, which shows the proportion of energy sources in use 

in each RCP. The growth in renewable and nuclear energy use is substantial in all RCPs, as is the 

increase in use of carbon capture and sequestration techniques (CCS). Deployment of CCS in 

particular on a large scale may be problematic, as the technology is currently quite immature 

(Litynski et al. 2008, Hawkins et al. 2009). Rates of renewable development may also require 

international cooperation to maintain at sufficient levels (refs); this may potentially be achievable 

in practice, but certainly will require concerted effort by governments and should not be regarded 

as ‘automatic’.

 

4. Conclusions

 A comparison of the carbon and energy intensity reductions in the RCP baseline scenarios 

for 2005-2100 shows that decarbonization rates are similar to the results from the SRES, and 

when averaged over the entire 21st century rates are substantially higher. This implies that we 

may still be skewing 21st century climate projections using overly optimistic predictions of 

mitigation efforts; a comparison with independent projections from the International Energy 

Outlook shows much slower projected decreases, particularly in carbon intensity.

 The projected 21st century changes to the various energy sources included in the RCPs are 

explored qualitatively using the available literature: improvements to the efficiency of end-user 

consumption is a significant effect in all projections The RCPs overall find that efficiency must 
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improve by up to 0.2%/year, with the net impact being a reduction of 10-20% in GHG emissions. 

However, achieving this result in the real world requires carefully coordinated efforts on the 

national and international levels to reach people in all sectors of society. Carbon and energy 

intensity improvements sufficient to meet RCP targets are therefore not a ‘sure thing’.
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