
Honors Thesis

Department of Mathematics

University of Colorado Boulder

April 2, 2024

Numerical methods for a PDE system

modeling tumor angiogenesis

Graham Mauer

Thesis Advisor: Dr. Padi Fuster Aguilera, Department of Mathematics

Outside Reader: Dr. Eduardo Corona, Department of Applied Mathematics

Honors Council Representative: Dr. Magdalena Czubak, Department of Mathematics

Abstract

This thesis is centered on the foundation needed for performing numerical simulations of a partial

differential system (PDE) of reaction-diffusion equations modeling tumor growth in two dimen-

sions. It includes the derivation of a particular PDE system modeling chemotaxis with a generalized

logistic growth of the cell population density, and original results on the one-dimensional case. In

particular, we show the effect of the generalized logistic growth on the population density of the

organism. The second part of this thesis lays down the foundation needed to extend the numerical

simulations to a two-dimensional Euclidean framework, confirming the accuracy of results through

various numerical and analytical methods. The results of this work may pave the way to a deeper

understanding of tumor angiogenesis over curved organ surfaces.

TABLE OF CONTENTS

Chapter 1: Introduction to the Biological Problem . 1

Chapter 2: Derivation of the Model . 3

2.1 Derivation of the Model . 3

2.2 Transforming the 1D Model . 5

2.3 Non-dimensionalizing the Model . 5

2.4 Numerical Strategy . 6

Chapter 3: Generalized Logistic Growth in 1D . 8

3.1 Numerical Simulations . 10

3.2 Conclusion and Future Steps . 12

Chapter 4: 1D Advection-Diffusion . 13

4.1 Choosing a Finite Difference Scheme . 14

4.1.1 Introduction to Finite Differences . 15

4.1.2 Finite Difference Methods for Hyperbolic and Parabolic PDEs 18

4.2 Solving with Linear Algebra Methods . 23

4.2.1 Developing the Time Advancement Matrix 23

4.3 Implementing Boundary Conditions . 25

4.4 Checking Validity of Numerical Solutions . 29

i

4.5 Numerical Solution to the 1D Non-homogeneous Advection Diffusion Equation
with Dirichlet Boundary Conditions . 35

Chapter 5: 2D Advection-Diffusion . 37

5.1 Adapting 1D Methods to 2D . 37

5.2 Solving with Linear Algebra Methods . 39

5.2.1 Examining Structure of Finite Difference Matrices 40

5.2.2 Introduction to Kronecker Products . 41

5.3 Implementing Boundary Conditions . 43

5.4 Checking Validity of Numerical Solutions . 46

5.5 Conclusion and Extensions to 2D Diffusive Burgers’ Equation 48

Chapter 6: 2D Diffusive Burgers’ Equation . 49

6.1 Introduction . 49

6.2 1D Diffusive Burgers’ Equation . 50

6.3 Solving with Linear Algebra Methods . 52

6.4 Extending to 2D Domain . 53

Chapter 7: Summary and Future Work . 55

References . 57

Appendix . 57

ii

CHAPTER 1

INTRODUCTION TO THE BIOLOGICAL PROBLEM

Organisms respond to stimuli to survive, for example animals foraging for food or sperm finding

eggs during fertilization. The movement of organisms in response to a chemical stimuli is called

chemotaxis [1], stemming from the Greek root -taxis meaning movement. Specifically, it involves

the directed movement of cells or organisms in response to chemical gradients or signals in their

environment. Chemotaxis is ubiquitous throughout biology and ecology, appearing across both

macro and micro scales, such as bee pollination [2] or bacterium finding food [3].

Chemotaxis is the driving mechanism behind tumor angiogenesis [4], where tumors hijack ex-

istent nearby blood vessels in order to secure nutrients needed to grow. During tumor angiogene-

sis, the tumor releases a specific chemical, tumor angiogenesis factor (TAF), into the bloodstream.

Then, molecular signals induce neighboring blood vessel cells to form new vascular pathways,

ensuring the flow of essential nutrients and oxygen to the expanding tumor [5]. This influx of

nutrients is necessary for the tumor to grow larger than two to three millimeters [6]. See figure 1.1.

When endothelial cells, which make up the blood vessel walls, sense the TAF, they react ac-

cording to the Weber-Fechner law [7], which states that the sensitivity of the endothelial cells to

TAF is of logarithmic order. This ensures that even with a high concentration of TAF, the en-

dothelial cells can determine the direction of the TAF gradient. In addition, we assume that the

movement timescale of TAF in the cellular matrix and the lifespan of endothelial cells are compa-

rable [8], i.e., endothelial cells can reproduce at comparable timescale to their relocation. Thus,

we include logistic growth for the population density, which results in the species converging to

the carrying capacity determined by the local environment.

Such cellular behavior is represented by a class of partial differential equations (PDEs) called

reaction-diffusion equations and can be extended to model other events, such as rumor propaga-

tion [9], wealth concentration [10], and the spread of disease. Working with reaction-diffusion

1

Figure 1.1: Tumors (blue) release TAF (purple) into the cellular matrix and blood vessels (red)
create new pathways to the TAF source.

equations modeling chemotaxis could open up new avenues of approach in these different fields.

A PDE model for chemotaxis was first developed by Patlak [11] in the 1950’s and refined

by Keller and Segel in the 1970’s [12]. In the last 30 years, many variations of the Keller-Segel

model have been examined which highlight the importance of chemotaxis in biology and medicine.

However, the volume of literature considerably shrinks for this particular model, especially with

assumptions such as logarithmic sensitivity and logistic growth for the endothelial cells. The one-

dimensional case has been studied both analytically and numerically by Fuster in [13], but to our

knowledge no literature has been published examining numerical solutions to this system in the

case of the generalized logistic growth in one or higher dimensions. This thesis covers the author’s

original results on the characterization of the generalized logistic growth of the population density

in the 1D case, as well as developing numerical machinery to extend these results to 2D Euclidean

spaces.

2

CHAPTER 2

DERIVATION OF THE MODEL

Chemotaxis can be described by a reaction-diffusion model. A general reaction-diffusion frame-

work includes diffusion, which causes the spread of the organism from higher density areas to

lower density areas, and some reaction from the organism to, i.e., a certain chemical.

2.1 Derivation of the Model

Here, û and ĉ are scalar functions representing the population density of the blood vessel cells and

the concentration of the secreted TAF chemical, respectively. The time evolution of the population

density of endothelial cells, û, is based on a conservation over an infinitesimal unit volume, Ω. We

expect the number of cells in the volume to only change by the flux of cells out, Φ, through the

boundary of the volume, BΩ, and the spontaneous birth or death of cells within Ω, modeled by

fpû, ĉq. Thus, a conservation law arises:

B

Bt

ż

Ω

ûpx, tqdx “ ´

ż

BΩ

Φ ¨ n̂ dS `

ż

Ω

fpû, ĉq. (2.1)

The flux, Φ through the boundary BΩ, includes both diffusive and chemotactic fluxes through

the boundary: Φ “ Φdiff ` Φchemo. Φdiff obeys Fick’s Law, which states a substance will diffuse

proportionally to the gradient of its concentration, Φdiff “ ´∇Dû with D P R`. Φchemo is the flux

from chemotaxis, Φchemo “ χpû, ĉq∇ĉ where χ is a function describing how û is transported in

respect to the gradient of the chemical concentration. Then (2.1) becomes:

B

Bt

ż

Ω

ûpx, tqdx “ ´

ż

BΩ

p´∇Dû ` χpû, ĉq∇ĉq ¨ n̂ dS `

ż

Ω

fpû, ĉqdx. (2.2)

3

Applying the Divergence Theorem and passing the time derivative into the integral on the left hand

side, we obtain

ż

Ω

B

Bt
ûpx, tqdx “ ´

ż

Ω

p∇ ¨ p´D∇û ` χpû, ĉq∇ĉq ` fpû, ĉqqdx. (2.3)

We now obtain the PDE describing the evolution of the organism population

B

Bt
ûpx, tq “ D∆û ´ ∇ ¨ pχpû, ĉq∇ĉq ` fpû, ĉq. (2.4)

Similarly, for the chemical concentration, ĉ, we obtain

B

Bt

ż

Ω

ĉpx, tqdx “ ´

ż

BΩ

Ψ ¨ n̂ dS `

ż

Ω

gpû, ĉqdx. (2.5)

Here, Ψ “ Ψdiff “ ´∇εĉ is the flux of ĉ through the boundary due to diffusion. Moreover, gpû, ĉq

describes the creation or destruction of the chemical in Ω. We now can write the whole system as

B

Bt
û “ ´∇ ¨ p´D∇û ` χpû, ĉq∇ĉq ` fpû, ĉq,

B

Bt
ĉ “ ´∇ ¨ p´ε∇ûq ` gpû, ĉq.

(2.6)

In this thesis we examine a particular version of (2.6) with logarithmic chemotactic sensitivity and

generalized logistic growth for the chemical concentration. More specifically:

χpû, ĉq “ χ
û

ĉ
, fpû, ĉq “ κ1û

„

1 ´

ˆ

û

κ2

˙αȷ

, gpû, ĉq “ ´µûĉ ´ σĉ. (2.7)

Above, κ1, κ2, α P R` and χ, µ, σ P R. χ ą 0 describes an attractive system and χ ă 0 describes

a repulsive system. |χ| is a measure of the strength of the chemotactic sensitivity. This choice of

parameters in (2.7) leads to logarithmic sensitivity as χ û
ĉ

“ χû∇ ln ĉ. We choose gpû, ĉq such that

it has an interaction term between û and ĉ, as well as including the decay of ĉ. This choice of (2.7)

leads to possible analytical and numerical difficulties as if ĉ is small, | ln ĉ| is large. For this reason,

4

we use a Hopf-Cole transformation to avoid possible singularities. Notice that the usual logistic

growth is when α “ 1, and we define generalized logistic growth to be when α P R`.

2.2 Transforming the 1D Model

We transform the model to remove the aforementioned singularities caused by the logarithmic

term. We apply the transformations, with the last transformation being the Hopf-Cole transforma-

tion. We also drop the ‘hat’ notation on û and ĉ in favor of u and c for transformed variables:

c “ eσtĉ, u “
û

κ2

, v “
∇c

c
. (2.8)

The system becomes

B

Bt
u “ ´χ∇ ¨ puvq ` D∆u ` κ1κ2up1 ´ uα

q,

B

Bt
v “ ´∇pµκ2u ´ ε|v|

2
q.

(2.9)

Notice that the second equation is in fact a vectorial equation, given that now v represents the pro-

portional rate of change of the chemical concentration. In the next section, do the non-dimensional

analysis of these equations in 1D scalar case, but one can obtain in a similar manner the non-

dimensional equations on higher dimensions.

2.3 Non-dimensionalizing the Model

Non-dimensionalizing a model allows for the representation of the system in a way not dictated

by units, which can reveal scales intrinsic to the system. The first step is to examine the units of

each term in (2.9). M , L, and T correspond to mass, length, and time respectively and α is a

non-dimensional constant. Let

rûs “
M

L
, rus “

M

L
, rĉs “

M

L
, rµs “

L

MT
, rσs “

1

T
,

5

rDs “
L2

T
, rεs “

L2

T
, rχs “

L2

T
, rκ1s “

1

T
, rκ2s “

M

L
.

Using the rescalings

t Ñ
χµκ2

D
t, x Ñ

?
χµκ2

D
x, v Ñ signpχq

c

χ

µκ2

v,

we obtain
B

Bt
u “ ´∇ ¨ puvq ` ∆u ` rup1 ´ uα

q,

B

Bt
v “ ´∇

ˆ

u ´
ε

χ
|v|

2

˙

`
ε

D
∆v.

(2.10)

Above, r “ κ1D
χµκ2

. We also make the assumption that χ “ D “ 1 and ε ! 1 [14]. This non-

dimensionalized form will allow us to use a combination of finite difference methods to evolve this

system through time in 1D.

2.4 Numerical Strategy

Throughout this thesis we will use finite difference methods to build a model for solving equations

(2.10). Finite differences are a method of approximating the derivatives of a function and are fur-

ther explained in section 4.1. The goal of this thesis is to build the numerical simulation framework

for a particular coupled non-linear system of PDEs, establishing a strong foundation for future nu-

merical work on (2.10) in 2D. The foundation we construct here can then be easily extended to

add both the chemotaxis flux and the evolution of the chemical concentration. As (2.10) is a

hyperbolic-parabolic model when χµ ą 0, we begin with the simplest case: numerical solutions

of the 1D advection-diffusion equation. We then extend our results to the 2D advection-diffusion

equation.

One challenge in the 2D model lies in the numerical implementation of the ∇ ¨ puvq term in

(2.9). Here v is a vector and we expand ∇ ¨ puvq as

∇ ¨ puvq “ u∇ ¨ v ` v ¨ ∇u.

6

Then we can write the population density equation of (2.9) as

ut “ D∆u ` v ¨ ∇u ` ηpu∇ ¨ v, um, ...q. (2.11)

Notice that in (2.9), we have ut “ hpv,∇v, u,∇u, uv, ...q. A suitable first step towards building

the numerical model for (2.9) and to understand the intrinsic challenges for an advection-diffusion

model is to assume that v “ ud⃗ where d⃗ is a fixed direction, so the arrangement of the rate of

change of the chemical concentration depends directly on a particular arrangement of the popula-

tion density in space.

This allows us to both think on a possible biological model in which, for example, the organism

could produce the chemical itself according to their space arrangement (such that the layout of the

physical space plays a role in the growth rate of the chemical itself), and at the same time under-

stand a conservation form set up such in the case of the dissipative Burgers’ equation explained in

section 6.

We would like to notice that even if the conservative model presented in this thesis is not the

same as the tumor angiogenesis model, it allows us to layout the foundations to numerical simu-

lations to conservation laws with the hope to implement similar conservation laws for the tumor

angiogenesis model. Moreover, we are hoping that this set up also illuminates space-dependent

models, such as curvature dependent chemotaxis models.

7

CHAPTER 3

GENERALIZED LOGISTIC GROWTH IN 1D

Before moving to the 2D set up, we build numerical methods for a 1D domain and examine the

behavior of the system over a simpler domain. Particularly, we look to investigate the effect that

α, the exponent in the generalized logistic growth term, up1 ´ uαq, has on the rate that the solu-

tion reaches a steady state. A steady state is when limtÑ8 Btu “ 0 and represents the solution

converging to a final, unchanging, equilibrium. In our 1D chemotaxis model, this represents the

endothelial cell density growing to the carrying capacity and the gradient of the TAF approaching

0, i.e., the TAF concentration reaching a constant state. In this chapter we examine (2.10) with a

particular set of boundary conditions. Note the change in notation, Bx is used to denote a partial

derivative with respect to space.

Bxu|xPBΩ “ 0

v|xPBΩ “ 0

(3.1)

Above, two different types of boundary conditions are used. The first is a Neumann boundary

condition where the directional derivative in the normal direction is specified on the boundary.

The second is a Dirichlet boundary condition where the value of the function is prescribed on the

boundary. Note that as v “ cx
c

“ 0, this implies that cx “ 0 on the boundary, thus these boundary

conditions are really Neumann for both the endothelial cells and secreted TAF chemical. We want

to note that in [13], it is required that the initial conditions to be upt “ 0q ě 0 over the entire

domain. Moreover, the population density equation satisfies a maximum principle which assures

the density for it to be positive at all times. This is biologically relevant as negative population

densities are nonphysical.

In the case where the logistic growth of the population is absent and using these same boundary

conditions, it is known that the steady state of the solution converges to the initial average of the

population density [15]. In [13], it is shown that with the inclusion of the logistic growth to the

8

population, the system will eventually converge to the carrying capacity of the system. This chapter

focuses on the effect of the generalized logistic growth, and in particular, that of the exponent α on

the time the solution takes to reach the carrying capacity.

Figure 3.1: Time evolution of chemical and population densities from (2.10) with α “ 1.

At a certain finite time both u and v flatten out due to the diffusion in the system. Because

of this, we conduct a heuristic approach comparing the solution of u in (2.10) with that of the

generalized logistic ordinary differential equation (ODE)

Btu “ rup1 ´ uα
q. (3.2)

Equation (3.2) is a separable ODE and with a general solution

uptq “
C

1
α ert

p1 ` Ceαrtq
1
α

.

Here, C P R and r is the non-dimensionalized rate constant from section 2.3. We want to find C

such that this general solution describes the growth of a population from some initial density u0.

For up0q “ u0 we get

C “
uα
0

1 ´ uα
0

.

9

Figure 3.2: (3.3) for different values of α for t P r0, 5s.

Giving the specific solution to this ODE

uptq “
u0e

rt

p1 ´ uα
0 ` uα

0 e
αrtq

1
α

. (3.3)

Figure 3.2 shows various solutions for different values of α. Notice that varying α changes the

rate at which the population reaches the carrying capacity. Also notice that if the initial population

is greater than the environmental carrying capacity the population decreases, which is a natural

behavior for logistic equations.

3.1 Numerical Simulations

We use an explicit finite difference scheme with second order spatial derivatives and first order

temporal derivatives to solve the transformed and non-dimensionalized system numerically in 1D.

With Neumann boundary conditions we make sure to utilize ‘ghost points’ at either end of our

interval to facilitate the enforcement of the prescribed derivatives at the boundary.

We solve the equation over the spatial domain x P r0, 1s and the temporal domain t P r0, T s,

where T is a designated stopping time for the system. We choose the spatial and temporal meshes

10

of ∆t “
p∆xq2

2
and ∆x ă

a

ε
10

respectively. The spatial mesh is chosen to ensure the resolution

of all diffusive timescales and the temporal mesh is chosen to be identical to the bound for the

heat equation when solved with the same finite difference methods due to the diffusive dominance

of this system. Choosing a second order method for the diffusion serves to minimize the effects

of numerical diffusivity, which is when the numerical method introduces artificial smoothing at

discontinuities or sharp gradients which may not accurately represent the physical diffusion pro-

cess. By minimizing numerical diffusion, we ensure the actual diffusion of the PDE system is

adequately represented. A more in depth explanation of the numerical methods used is available

in chapter 4.1 and beyond.

Figure 3.3: Comparing numerical simulations for α “ 0.2, 3.0, and 7.5 respectively

For small values of α, we find that u quickly diffuses, then it grows similarly to the ODE as it

converges to the steady state solution. Conversely, with α Á 3, u grows logistically faster than it

can diffuse outwards. For initial conditions that have sufficient variation over the domain, u grows

very asymmetrically towards the carrying capacity. See figure 3.4.

A large challenge with this approach is determining at what rate and time u approaches the

carrying capacity. One method is taking the 2-norm between u and the carrying capacity within a

tolerance εcc. We also use this method to determine if the solution diffuses to the initial average

11

Figure 3.4: α “ 10, note how u approaches the carrying capacity at different times and never
fully diffuses before logistic growth sets in. The x and y axis labels are ‘x’ and ‘Concentration’,
respectively.

by taking the 2-norm between u and the initial average with a tolerance εavg. Both norms were

evaluated at each timestep throughout the evolution. The first and last time each was reached was

recorded. This was especially useful to quantify that time that the solution stayed at the initial

average before the logistic growth took over.

3.2 Conclusion and Future Steps

After systematically varying the value of α, we found that the behavior of the system changes

drastically when adjusted. The challenges we encountered in quantifying the convergence of the

system to the carrying capacity and initial average show the complexity of the system’s dynamics

and the need for more investigation through numerical and analytical methods.

Future steps in this investigation include extending the analysis of the system and quantifying

the current heuristic understanding of how the solutions bifurcate in relation to the α parameter.

Also, investigating the system under a larger variety of initial conditions and ratios between the

diffusion and growth rates could lead to the discovery of new relationships with the α parameter.

12

CHAPTER 4

1D ADVECTION-DIFFUSION

The goal of this thesis is to build numerical solvers based on finite difference discretizations for

PDE models of chemotaxis. We implement numerical methods for simpler PDE models in 1D and

2D Euclidean space with aims to transfer them to the actual model, equation (2.10), over curved

surfaces.

The general expression for the second order linear and quasilinear PDEs we are studying in

this thesis is:

A
B2u

Bx2
` B

B2u

BxBt
` C

B2u

Bt2
` D

Bu

Bx
` E

Bu

Bt
` Fu “ G. (4.1)

Where A,B,C,D,E, F , and G are functions of x and t and A,B, and C are not simultaneously

0. Moreover, we classify various PDEs into three categories based on the relationship between A,

B, and C [16]. We define the discriminant, ∆, for the PDE as

∆ “ det

»

—

–

B 2A

2C B

fi

ffi

fl

“ B2
´ 4AC. (4.2)

If ∆ ą 0, the PDE is hyperbolic; if ∆ “ 0 the PDE is parabolic; and if ∆ ă 0 the PDE is elliptic.

The three PDE types: hyperbolic, parabolic, and elliptic have archetypal examples: the wave, heat,

and Poisson equations, respectively. We examine the 1D wave equation,

B2u

Bt2
´ α2B2u

Bx2
“ 0,

where α P R` and represents the velocity of the wave. We can factor the wave equation:

B2u

Bt2
´ α2B2u

Bx2
“

ˆ

Bu

Bt
´ α

Bu

Bx

˙ ˆ

Bu

Bt
` α

Bu

Bx

˙

“ 0, (4.3)

13

resulting in two advection equations. The 1D advection equation,

ut “ ´αux, (4.4)

details a packet that moves, or advects, in the `x̂ direction at a constant velocity α while preserving

the shape of the packet. The direction would be reversed for α ă 0. The t and x subscripts

denote temporal and spatial partial derivatives, respectively. This is a good building block to begin

with. From here, it is possible to add modifications to the equation until it represents the desired

chemotactic behavior. We begin by adding a diffusive term,

ut “ ´αux ` βuxx, (4.5)

here α, β P R`. We can see that the advection diffusion equation falls under the definition outlined

in equation (4.1) with A “ ´β, D “ α, E “ 1, and B,C, F,G “ 0. This PDE is both second

order and linear; thus, it is a prime candidate for a finite difference approach.

The solution of this PDE combines both advective and diffusive behaviors. If the initial condi-

tions are a non-constant packet or envelope, this equation will smooth the initial conditions while

translating them in the x̂ direction.

4.1 Choosing a Finite Difference Scheme

A good strategy for finding the solution to this equation is by finite difference methods. We use

finite difference methods because they can provide flexibility with various boundary conditions,

analytical stability, and a relatively simple implementation.

To begin creating a finite difference scheme to solve this PDE, it is useful to examine several

different finite difference schemes for calculating the spatial and temporal derivatives. Choosing

a method has a large impact on stability of results and computational cost. Thus, we carefully

consider it.

14

4.1.1 Introduction to Finite Differences

Finite difference methods are a way for computers to numerically calculate derivatives without

having to compute limits. The derivative is defined as

f 1
pxq “ lim

hÑ0

fpx ` hq ´ fpxq

h
. (4.6)

Alternatively, finite differences are defined by the Taylor expansion of f at x, displaced by a small

distance h:

fpx ` hq “ fpxq ` h
f 1pxq

1!
` h2f

2pξq

2!
. (4.7)

Here, ξ P r0, hs and h2

2
f2pξq is an upper bound on the error of the Taylor expansion for f on r0, hs.

f 1
pxq “

fpx ` hq ´ fpxq

h
` h

f2pξq

2!
. (4.8)

The error above scales with h. Assuming that hf2pξq

2!
is small, the first derivative can be approxi-

mated

f 1
pxq «

fpx ` hq ´ fpxq

h
. (4.9)

Visually, this is very similar to the definition of the first derivative, which is a good sanity check.

The “order” of the approximation comes from the order of h in the error term in the Taylor expan-

sion in (4.8). Because this example has error that scales as h, it is a first order scheme. This is a

“forward difference” scheme because h is added to x, and then f is evaluated. We also define the

forward, backwards, and centered finite difference operators:

D`
h rf s “

fpx ` hq ´ fpxq

h
,

D´
h rf s “

fpxq ´ fpx ´ hq

h
,

DC
h rf s “

fpx ` hq ´ fpx ´ hq

2h
.

15

If h is subtracted, then a “backwards difference” is obtained and if h is both added and subtracted,

then the result is a “central difference”.

Central differences are higher order, but they are not suitable for all cases, as seen in the fol-

lowing sections. Higher order schemes are desirable, but as we see in later sections we must also

consider the stability and computational cost of the discretization scheme.

To apply finite difference methods to equations such as (4.5), we discretize the spatial domain

into n partitions which are equally spaced with a width of h. It is possible to use non-uniform

spacing, but that is unnecessary for this application. We discretize the time domain in a similar

manner up to N timesteps of length k. Using this spatial discretization, it is possible to use finite

a a ` h a ` 2h
x

a ` pn ´ 1qh a ` nh

Figure 4.1: Discretizing the spatial domain into n equally spaced partitions of length h.

differences to approximate the value of the derivative at each interval. To do this, we want some

way of evaluating this function at each discrete point in the spatial domain.

An introduction of new notation is in order. ∆x and ∆t now correspond to grid spacing in

spatial and temporal discretizations, respectively. We define individual spatial and temporal points

on our lattice as xj “ a ` j∆x and tk “ t0 ` k∆t. We also introduce a convention for vectors.

Bolded characters such as U represent a vector. When we index with a super-script like Uk or as

Uptkq, to represent the vector of samples at all the xj at time tk. Likewise, we define Uj “ Upxjq

to be the the vector of samples at the time tk at all spatial xj . To denote a specific point, we use the

unbolded Uk
j “ Upxj, tkq.

Ideally, we want to be able to represent this equation by applying a matrix, M, to the vector Uk

or by computing a matrix solve with M and Uk to time advance the equation to the next timestep.

This allows the utilization of efficient algorithms that take advantage of the structure of M in order

to increase the efficiency of the calculations and decrease runtime when compared to other methods

16

such as using a ‘for loop’ to iterate through both space and time.

Time Advancement and Implicit vs. Explicit Methods

All of the following methods mentioned involve the discretization of the temporal domain in much

of the same way as the spatial domain. For the entirety of this thesis, we will use a first order

explicit method to time advance, because it simplifies the analysis by avoiding having to solve a

system of equations at each timestep.

So far, we have discussed spatial discretization but we have not mentioned how to evolve the

equation forward in time. The easiest method of evolving an equation is to solve the equation in

space at a point or points in time, and then use those known values to calculate future values. This

is called an explicit method because all the values are explicitly known before the next values are

calculated. We can define this timestep advancement of Uk
j in terms of a function based on values

of Uk. One possible example is: Uk`1
j “ fpUk

j´1, U
k
j , U

k
j`1q, but the method could use points from

a larger portion of the domain or even previous timesteps.

The another option is an implicit method, where the values are not known and instead found

by solving a system of equations. Here, we can express the timestep advancement of Uk
j in terms

of a function based on values of Uk and Uk`1: Uk
j “ gpUk

j´1, U
k
j , U

k
j`1, U

k`1
j q, where we would

then algebraically or iteratively solve for Uk`1
j . Again, g is just one example of a possible scheme.

Implicit methods are generally more computationally expensive but they can provide additional

stability for stiff ODEs and most evolution PDEs. This allows us to take much larger timesteps

than with comparable explicit methods [17]. Because of the computational cost and stability trade-

offs between explicit and implicit methods, there exists a final category of Implicit-Explicit or

Semi-Implicit methods which apply a mix of both approaches to reach a desirable compromise.

We utilize an explicit first order Forward Euler scheme to move forward in time. With our new

notation:
Bu

Bt
«

Uk`1 ´ Uk

∆t
. (4.10)

Notice that this equation is a direct application of (4.9) but over time, not space. We can substitute

17

this into equation (4.5) and approximate the future timestep, Uk`1:

Uk`1
« Uk

` ∆tp´αux ` βuxxq. (4.11)

Now, all that is required are appropriate finite difference methods to represent ux and uxx.

4.1.2 Finite Difference Methods for Hyperbolic and Parabolic PDEs

Upwind Methods

Upwind methods are a stable (in one direction) first order method of evolving the advection equa-

tion by using a finite difference method. The finite difference implementation then takes the form:

Un`1
j ´ Un

j

∆t
“ ´α

Un
j ´ Un

j´1

∆x

Un`1
j “ Un

j ´ α
∆t

∆x

`

Un
j ´ Un

j´1

˘

.

(4.12)

The domain of dependence is a right triangle which can flip direction based on the sign of α, which

describes the direction of the fluid flow. For a positive α, the scheme produces a tree as in figure

4.2.

x

t

∆x

∆t

Figure 4.2: Domain of dependence for the upwind method.

18

Domain of Dependence

The domain of dependence refers to the region of the domain from which information is used to

update a solution at a particular point. Note that this is slightly different than the standard definition

than when dealing with analytical PDEs. Looking at a small section of a domain, we pick a point

and slowly move our system forward in time by single timestep increments. At each increment,

we trace the dependency of the point(s) in question based on equation (4.12), which produces a

tree-like structure that branches down in figure 4.2. Examining this structure can provide insights

into the stability of the chosen method. If we attempt to represent the spatial derivative with a

centered difference implementation:

f 1
pxq “

fpx ` ∆xq ´ fpx ´ ∆xq

2∆x
. (4.13)

Equation (4.13) appears reasonable, but an issue arises.

x

t

∆x

∆t

Figure 4.3: Domain of dependence for a first order central difference scheme for the advection
equation. Note that the slopes of the black and red lines are ˘α.

Figure 4.3 highlights an issue: there are two disconnected domains in the region of interest.

Moreover, no information is passed between neighboring partitions which leads to instability.

19

Stability of Finite Difference Methods

We have introduced the discrete domain of dependence with the figures above, but there is a con-

tinuous analogue that is important to discuss. We imagine a packet transported by the advection

equation. It does not diffuse and thus remains in a constant shape. On a position versus time plot,

we can pick a point on the packet and trace out the straight line that it travels through space and

time. This is a characteristic line. We also know that because there is no diffusion in the equation,

the value of the point does not change throughout time, so this characteristic remains constant.

When we solve this system numerically, we introduce both approximation errors in our finite

differences and roundoff errors when the computer system operates on the numbers. We expect,

and show in this chapter, that as we make a finer mesh in space our finite differences get more ac-

curate; but it is not obvious that these errors do not excessively compound and ruin the simulation.

This is further discussed in section 4.4, but we desire that for a small perturbation in the initial

conditions, ε, from the true solution that after a time, t, the magnitude of the difference between

the two solutions remains bounded by Lε, where L P R`. This ensures that if a small amount of

error is introduced, i.e., roundoff error, the solution remains close to the true solution.

We can combine this notion with the characteristic defined above. In figure 4.3, we examine

the black and red points separated by ∆x. If we take ∆x to be small enough, we should be able to

assume that the solution at the black and red characteristics we trace out should be remain close.

However, because the black and red structures are uncoupled, this is not necessarily the case which

leads to instability. Alternatively, we examine figure 4.2 and see that there is only one structure,

and that when the characteristics get arbitrarily close they remain close. The only remaining step

is to put a bound on ∆t that ensures stability.

Bounding Timesteps and the CFL Condition

We also take steps to determine the bounds for ∆t using the domain of dependence. For hyperbolic

behavior, we want any advective behavior to remain inside the domain of dependence, otherwise

information would be lost. Let the green triangle in figure 4.4 represent a packet of information

20

that is advecting rightwards. The blue and red arrows are two possible speeds the packet could

be moving, at speeds α1 for blue and α2 for red. The blue and red arrows are also examples of

possible characteristic lines the packet follows. If the packet moves at speed α2, it escapes the

domain of dependence and becomes unresolved. This can be seen because it moves more spatial

steps than timesteps, thus inevitably skipping over certain spatial steps. However, if the packet

moves at speed α1 or less, it will always remain inside the domain of dependence until it moves

past the point in question in the spatial domain. Through geometry, it can be seen this limit is

α1 ď ∆x
∆t

, which can then be rearranged in terms of ∆t as

∆t ď
∆x

α
. (4.14)

This is known as the Courant-Friedrichs-Lewy Condition, or CFL Condition. When we combine

x

t

∆x

∆t

α2

α1

Figure 4.4: Domain of dependence for the upwind method with travelling information packet.

our upwind scheme for the hyperbolic portion with the parabolic scheme we derive in the next

section, we will need to consider the CFL condition and the analogous ∆t restriction we find for

the parabolic scheme in 4.4 to make a heuristic bound on ∆t for the combined advection diffusion

equation.

21

Central Difference Formulation for Parabolic Equations

Next, we consider parabolic behavior and how to represent it with finite differences. In the be-

ginning of this chapter, we said that the archetypal parabolic problem was the heat, or diffusion

equation,
Bu

Bt
“ β

B2u

Bx2
. (4.15)

Equation (4.15) contains a second derivative which we have not yet found by finite difference

methods. Unlike the advection equation where we expect the solution to travel in only one direction

at at a time, the diffusion equation smears the solution in both directions along the spatial domain.

Thus, we want a central difference method so that both sides are taken into account. We start by

Taylor expanding both fpx ` hq and fpx ´ hq up to the fourth order.

fpx ` hq “ fpxq ` hf 1
pxq `

h2f2pxq

2
`

h3f3pxq

6
`

h4f p4qpξ`q

24

fpx ´ hq “ fpxq ´ hf 1
pxq `

h2f2pxq

2
´

h3f3pxq

6
`

h4f p4qpξ´q

24

ξ` and ξ´ are values on the domains r0, hs and r´h, 0s respectively. We define ξ P r´h, hs.

Adding the above two equations cancels the first and third order terms and then isolating the second

derivative:

fpx ` hq ` fpx ´ hq “ 2fpxq ` h2f2
pxq `

2h4f p4qpξq

24
,

f2
pxq “

fpx ` hq ´ 2fpxq ` fpx ´ hq

h2
`

h2f p4qpξq

12
,

f2
pxq «

fpx ` hq ´ 2fpxq ` fpx ´ hq

h2
.

Thus, we have found a central second order finite difference method for the second derivative. We

also take this opportunity to define another finite difference operator:

D2,C
h2 rf s “

fpx ` hq ´ 2fpxq ` fpx ´ hq

h2
.

22

We possess all the requisite pieces of the advection diffusion equation in finite difference form,

now we must assemble them in a way that is computationally efficient.

4.2 Solving with Linear Algebra Methods

4.2.1 Developing the Time Advancement Matrix

We want to solve equation (4.5) with methods from linear algebra because there exist faster algo-

rithms for computing the solution. In 1D, this is only marginally faster than a ‘for loop’, but in two

and higher dimensions, these methods greatly decrease computation time. Our goal is to express

each timestep as a matrix, M, operating on our solution vector, Uk:

Uk`1
“ MUk. (4.16)

Throughout this thesis, matrices are represented as upper case letters with the double bar on the

leading edge with the exception of the identity matrix which is represented by I . We can express

our initial PDE, equation (4.5), with the finite differences that we found in the previous section.

Using our first order upwind for advection and second order centered difference for diffusion as

well as Forward Euler for the time derivative we get:

Uk`1
j ´ Uk

j

∆t
“ ´α

˜

Uk
j ´ Uk

j´1

∆x

¸

` β

˜

Uk
j`1 ´ 2Uk

j ` Uk
j´1

∆x2

¸

. (4.17)

We solve for the next timestep:

Uk`1
j “ Uk

j ` ∆t

«

´α

˜

Uk
j ´ Uk

j´1

∆x

¸

` β

˜

Uk
j`1 ´ 2Uk

j ` Uk
j´1

∆x2

¸ff

. (4.18)

23

Define square N ˆ N matrices A and D, representing advection and diffusion respectively, as

A “
α

∆x

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 ¨ ¨ ¨

´1 1 0 0 0 ¨ ¨ ¨

0 ´1 1 0 0 ¨ ¨ ¨

0 0 ´1 1 0
. . .

0 0 0 ´1 1
. . .

...
...

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, D “
β

∆x2

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´2 1 0 0 0 ¨ ¨ ¨

1 ´2 1 0 0 ¨ ¨ ¨

0 1 ´2 1 0 ¨ ¨ ¨

0 0 1 ´2 1
. . .

0 0 0 1 ´2
. . .

...
...

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.19)

The structure of A and D comes directly from the indexing on the calculated finite differences.

Each row corresponds to a single entry in Uk. Traversing down the rows shows how the pattern

exhibited by the indices in equation (4.18), is applied to each entry in Uk. The diagonal structures

allows the products AUk and DUk to take into account only the neighboring values of each index.

The equation can be rewritten with the vector Uk instead of indices as:

Uk`1
“ Uk

` ∆t
“

´AUk
` DUk

‰

Uk`1
“ rI ` ∆t p´A ` DqsUk

Uk`1
“ MUk

(4.20)

Here, M is a tridiagonal matrix. At each step, we apply M to the solution vector Uk. The matrix is

of the following form, where m´1, m0, and m1 are non-zero values determined by the constants

β, α,∆x, and ∆t that are constant along diagonal and sub/super diagonals.

m´1 “ ∆t

ˆ

α

∆x
`

β

∆x2

˙

m0 “ 1 ` ∆t

ˆ

´α

∆x
´ 2

β

∆x2

˙

, m1 “ ∆t

ˆ

β

∆x2

˙

(4.21)

24

M “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

m0 m1 0 0 ¨ ¨ ¨ 0

m´1 m0 m1 0 ¨ ¨ ¨ 0

0 m´1 m0 m1 0

0 0 m´1 m0
. . . 0

...
... m1

0 0 0 0 m´1 m0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

4.3 Implementing Boundary Conditions

Until now, we have neglected boundary conditions. For simplicity, let us continue to constrict

our spatial domain to r0, 1s. Also define B as a time-independent vector with the same length as

Uk. With certain changes to the chosen scheme, B could be time-dependent but that is outside

the scope of this thesis. To implement the boundary value vector, we want to simply add it to the

right hand side. The boundary value vector is multiplied by a factor of ∆t because it is part of time

advancement.

Uk`1
“ MUk

` ∆tB (4.22)

We define l, lx, r, rx as the fixed values of Uk or the fixed derivative of Uk on the boundaries. The

three types of boundary conditions we will examine in this thesis are:

1. Dirichlet: Upx “ 0q “ l, Upx “ 1q “ r

2. Neumann: BxUpx “ 0q “ lx, BxUpx “ 1q “ rx

3. Periodic: Upx “ 0q “ Upx “ 1q, BxUpx “ 0q “ BxUpx “ 1q

As detailed in sections 4.3 and 4.3, by altering the size of Uk and M by adding or removing points

for Dirichlet or Neumann problems, we consider what the finite difference implementation should

be on the boundaries, and the values that are not found in M are resolved by the addition of B.

25

Dirichlet Boundaries

Beginning with Dirichlet conditions, we are looking for the solution to obtain specific boundary

values on the domain r0, 1s where l and r are the time-independent left and right boundary values.

For the boundary conditions:

Upx “ 0q “ l, Upx “ 1q “ r

Out of N points, only N ´ 2 are unknown because the boundaries are known at any given time.

Thus, we apply a size N ´2ˆN ´2 matrix to our solution to obtain the following timestep. Given

the previous M matrix where m´1, m0, and m1 are the diagonal elements, we then add wanted

boundary conditions we want after as a vector, BD “ ⟨B0, 0, ..., 0,Bn⟩. If the boundaries are set

to 0, then l “ 0 “ r then B is the 0-vector.

On the left boundary at x “ 0, the finite difference scheme for Uk
j includes values for both

advective and diffusive behavior from the left boundary due to the direction of advection moving

left-to-right. Conversely, Uk
pn´1qj only contains information concern diffusion because information

on the boundary will not advect to the left due to α ą 0.

MpN´2ˆN´2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

m0 m1 0 0 ¨ ¨ ¨ 0

m´1 m0 m1 0 ¨ ¨ ¨ 0

0 m´1 m0 m1 ¨ ¨ ¨ 0

0 0 m´1 m0
. . . 0

...
...

... m1

0 0 0 0 m´1 m0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, BD “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

`

β
∆x2 ` α

∆x

˘

l

0

...

...

0

β
∆x2 r

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Uk`1
“ MpN´2ˆN´2qU

k
` ∆tBD

26

Neumann Boundaries

For Neumann boundary conditions, we want the first derivative to have specific values on the

boundaries for the domain r0, 1s, lx and rx.

BxUpx “ 0q “ lx, BxUpx “ 1q “ rx

Similarly to the Dirichlet scheme, we want a boundary vector BN “ ⟨Bx,0, 0, ..., 0,Bx,n⟩.

x

Upxq

∆x´∆x 2∆x

Upxq

lx

Figure 4.5: Left hand boundary for Neumann boundary conditions. Blue: Upxq, red: extended lx.

In order to calculate the values of BN , we use a centered difference method. We want to know

Uk on r0, 1s, and using a centered difference for the derivative on the boundaries requires the

addition of the ghost points, extending the domain by ∆x on each side from r0, 1s to r´∆x, 1 `

∆xs. In order to evaluate the boundary at x “ 0 we need to find Uk
´j . Because the values of

the derivative of Uk at the boundary and Uk
j are known it is simple to calculate Uk

´j by using the

equation of a line in point-slope form.

Uk
j ´ Uk

´j “ lxp∆x ´ p´∆xqq

Uk
´j “ Uk

j ´ 2lx∆x

(4.23)

27

By the same process, the right boundary results in

Uk
pn`1qj “ Uk

pn´1qj ` 2rx∆x (4.24)

Above, Uk
j and Uk

pn´1qjq
are not constants, they are part of Uk, so they are represented in MpN`2ˆN`2q

where certain values are multiplied by two in the first and last rows. Conversely, the values ´2lx∆x

and 2rx∆x are constants that cannot be included in the matrix and are thus the components of the

boundary vector.

MpN`2ˆN`2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

m0 2 ˚ m1 0 0 ¨ ¨ ¨ 0

m´1 m0 m1 0 ¨ ¨ ¨ 0

0 m´1 m0 m1 0

0 0 m´1 m0
. . . 0

...
... m1

0 0 0 0 2 ˚ m´1 m0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, BN “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´2lx∆x

0

...

...

0

2rx∆x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Uk`1
“ MpN`2ˆN`2qU

k
` ∆tBN

However, an issue arises when solving the advection diffusion equation using Neumann boundary

conditions. The PDE does not have a unique solution. Let wpx, tq be a solution to equation (4.5)

with Neumann boundary conditions. Then, wpx, tq ` C, where C P R is also a solution to (4.5).

This can be seen by substituting wpx, tq and wpx, tq ` C into (4.5) and noticing that C falls out.

Dirichlet boundary conditions do not encounter this problem because specifying the boundary fixes

C “ 0 forcing the solution to be unique.

One option to fix this issue is adjusting the boundary conditions from Neumann to Robin,

which combines Neumann and Dirichlet characteristics, i.e., Upx “ 0q ` BxUpx “ 0q “ l and

Upx “ 1q ` BxUpx “ 1q “ r. This fixes the boundary and forces a unique solution. For problems

28

modeling different physical phenomena, one may also put a constraint on the interior of the domain

which would also fix this issue.

Periodic Boundaries

For periodic boundary conditions, the solution on the boundaries should be equal.

Upx “ 0q “ Upx “ 1q

With a size pN ˆ Nq system, we adapt our M matrix as such with values in the corners such that

Upx “ 0q and Upx “ 1q both wrap around to the other side to create a cyclic matrix. This allows

for the Uk vector to wrap around the domain and pass information.

M “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

m0 m1 0 0 ¨ ¨ ¨ m´1

m´1 m0 m1 0 ¨ ¨ ¨ 0

0 m´1 m0 m1 0

0 0 m´1 m0
. . . 0

...
... m1

m1 0 0 0 m´1 m0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Uk`1
“ MUk

4.4 Checking Validity of Numerical Solutions

Picking an appropriate ∆t is important. Too large of a ∆t with an explicit scheme leads to ex-

ponential increases in errors as seen in the next section; too small of a ∆t is computationally

inefficient. Thus, it is necessary we choose a ∆t that is appropriately sized to ensure accuracy in

the solution and not waste computing time with too short a timestep.

29

Von Neumann Analysis

Von Neumann Stability Analysis (vNSA) is a tool to examine the stability of linear finite difference

schemes. Because the schemes we are examining are linear, linear combinations of solutions are

solutions as well. Just as how we can use Fourier Series to solve PDEs, we can use a Discrete

Fourier Series to evaluate the stability of these discrete finite difference operators that we derived.

All we must do is expand the errors produced by these discrete operators, and then plug them back

into the operator. In order for a scheme to be convergent, we expect that its error will decrease

over time as it converges. Thus, we have a simply criterion for convergence using vNSA. Let

εkx “ EptqeiKj be the error of the chosen finite difference method at time k and spatial point j.

Here we define the wavenumber to be K as we index in time by k. Then for the method to be

convergent it is necessary:
ˇ

ˇ

ˇ

ˇ

ˇ

εk`1
j

εkj

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1

ùñ

ˇ

ˇ

ˇ

ˇ

Epk ` 1q

Epkq

ˇ

ˇ

ˇ

ˇ

ď 1

(4.25)

Note that if the inequality in equation (4.25) was reversed such that
ˇ

ˇ

ˇ

Epk`1q

Epkq

ˇ

ˇ

ˇ
ě 1, Epkq would

grow unbounded and exponentially. We can apply vNSA to the second order central difference

formulation we found for the diffusion operator.

εk`1
j “ εkj `

β∆t

∆x2
pεkj`1 ´ 2εkj ` εkj´1q (4.26)

Using the definition of εkx from above:

εk`1
j “ Epk ` 1qeiKx, εkj “ EpkqeiKx, εkj`1 “ EpkqeiKpx`∆xq, εkj´1 “ EpkqeiKpx´∆xq

(4.27)

Substituting them into (4.26)

Epk ` 1qeiKx
“ EpkqeiKx

`
β∆t

∆x2
pEpkqeiKpx`∆xq

´ 2EpkqeiKx
` EpkqeiKpx´∆xq

q (4.28)

30

Now we solve for Epk`1q

Epkq
using Euler’s Identity:

Epk ` 1q

Epkq
“ 1 `

β∆t

∆x2
peiK∆x

´ 2 ` e´iK∆x
q

Epk ` 1q

Epkq
“ 1 `

β∆t

∆x2

„

´4 sin2

ˆ

K∆x

2

˙ȷ

We need
ˇ

ˇ

ˇ

Epk`1q

Epkq

ˇ

ˇ

ˇ
ď 1 and we know sin2 is bounded between 0 and 1.

ˇ

ˇ

ˇ

ˇ

´4
β∆t

∆x2

„

sin2

ˆ

K∆x

2

˙ȷ
ˇ

ˇ

ˇ

ˇ

ď 2

β∆t

∆x2

„

sin2

ˆ

K∆x

2

˙ȷ

ď
1

2

∆t ď
∆x2

2β
(4.29)

Thus, if we only implemented our second order central difference scheme for diffusion, in order

to guarantee the stability the timestep, ∆t, would need to be less than or equal to ∆x2

2β
. Anything

larger would be unstable.

Comparison to Elliptic Solution

The final class of PDEs that we examined at the beginning of this chapter are elliptic PDEs. The

simplest elliptic problem is Laplace’s equation. In 1D it is written as

B2u

Bx2
“ 0. (4.30)

Elliptic PDEs describe steady state behaviors and generally do not have time derivatives. Because

of this, they are most frequently applied to steady state phenomena like electrostatics, steady state

heat conduction, or structural mechanics. Although our advection diffusion equation is an evolu-

tion equation, we expect it to reach a steady state in the limit of large t. There are a few reasons for

this. First, our boundary conditions are constant; second, we have no time-dependent nonhomoge-

neous addition to our advection diffusion equation; and third, we expect our final PDE model of

31

chemotaxis to approach a steady state.

We want our advection diffusion equation to reach a steady state solution because then the time

derivative would vanish and reduce the dimension of the PDE to an ODE which is analytically

solvable. We can then solve a boundary value ODE with the matrices and boundary conditions that

we developed in sections 4.3. Because we can obtain an analytical solution to the ODE problem, we

can compare our numerical and analytical solution to establish if our numerical methods worked,

and to what accuracy they performed.

As t Ñ 8, the solution to the advection diffusion equation approaches a steady-state elliptic

solution:

ut “ 0 “ ´αux ` βuxx. (4.31)

As a result, it can be treated as an ODE and which has a known general solution,

upxq “ C1e
α
β
x

` C2, (4.32)

with C1, C2 P R. From the general solution, boundary conditions can be inputted and a solution to

the steady state problem found. For Dirichlet boundary conditions,

up0q “ l, up1q “ r. (4.33)

Here, l and r are the same time-independent constants as above. We can use these boundary

conditions to solve for the constants C1 and C2 in (4.32).

l “ C1e
α
β

p0q
` C2, r “ C1e

α
β

p1q
` C2

upxq “

˜

l ´
r ´ le

α
β

1 ´ e
α
β

¸

e
α
β
x

`
r ´ le

α
β

1 ´ e
α
β

(4.34)

Now, we need a way to check that the long time behavior of our numerical solution to (4.5) to

ensure it matches the analytical one. Because we are in the limit of ut “ 0, we want to strip our

32

system detailed in section 4.3 of any mention of time. We also add in functionality to solve the

non-homogeneous equation. The non-homogeneous portion of the equation is detailed below as

fpxq. We choose to implement a non-homogeneous term in the equation because it has physical

relevance. In PDE equations, a constant non-homogeneous term often represents a ‘source’ in

the system, i.e., a heat source for a heat equation, a driving force in the wave equation, or in the

chemotactic model an internal change in cellular population density by logistic growth.

We begin to discretize the non-homogeneous advection diffusion equation by the same methods

we used earlier in the chapter. We want to use the same finite difference methods as in the parabolic

case.

ut “ 0 “ ´αux ` βuxx ` fpxq

or

αux ´ βuxx ´ fpxq “ 0 (4.35)

This translates to the finite difference scheme

α

ˆ

U t
j ´ U t

j´1

∆x

˙

´ β

ˆ

U t
j`1 ´ 2U t

j ` U t
j´1

∆x2

˙

´ fpxjq “ 0 (4.36)

Now, we have a new tridiagonal matrix, ME, ‘E’ for elliptic, with subdiagonals mE,´1, mE,0, and

mE,1.

mE,´1 “
´α

∆x
´

β

∆x2
mE,0 “

α

∆x
` 2

β

∆x2
, mE,1 “

´β

∆x2
(4.37)

33

The subdiagonal structure closely resembles the ones from the non-elliptic problem above.

ME “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

mE,0 mE,1 0 0 ¨ ¨ ¨ 0

mE,´1 mE,0 mE,1 0 ¨ ¨ ¨ 0

0 mE,´1 mE,0 mE,1 0

0 0 mE,´1 mE,0
. . . 0

...
... mE,1

0 0 0 0 mE,´1 mE,0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.38)

We also define two vectors of length N : a boundary vector, B “ ⟨B0, 0, ..., 0,Bn⟩, and a solution

vector, S, where the jth element of S is the non-homogeneous portion, fpxjq. We hope to solve

the equation

MEU
k

` B “ S (4.39)

for Uk. After producing Uk, we compare the numerical solution to the analytical solution, such

as (4.34) in the homogeneous case, setting Si “ 0, or derive a new analytical solution for a non-

homogeneous problem. The same steps can be taken with Robin boundary conditions to correct

the non-uniqueness of Neumann boundary conditions as above.

In figure 4.6 we compute the log of the absolute error between the numerical and analytical

solution to the elliptic problem. Notice that as n, the number of spatial discretizations, increases

the accuracy of the numerical solution does as well, indicative of convergence. Additionally, the

error decreases proportional to h “ 1{n meaning that we have first order convergence. This is

expected because the upwind method that we use is first order. It is also the lowest order method

that we use because our second derivative discretization is second order. Thus, the error converges

as we expect. This is a good check to see that our finite difference methods are working correctly

and we can move on to solving the parabolic equation.

34

Figure 4.6: Error for the homogeneous elliptic problem with different spatial discretizations

4.5 Numerical Solution to the 1D Non-homogeneous Advection Diffusion Equation with

Dirichlet Boundary Conditions

We proceed to solve the 1D nonhomogeneous advection diffusion equation with Dirichlet boundary

conditions,

ut ` αux ´ βuxx ´ fpxq “ 0. (4.40)

We again choose to add the nonhomogeneous term for greater applicability. We also choose to only

include results for the Dirichlet problem with l “ 0.25 and r “ 0.75 for brevity. The methods are

much the same for the Robin or periodic case and can be implemented from the matrices described

earlier in this chapter.

Figure 4.7 shows snapshots of numerical solutions to a choice problem, ut ` ux ´ 1
2
uxx “ 1

2
x,

with Dirichlet boundary conditions. We see that as time progresses, the solution approaches a

steady state equilibrium as expected and also converges to an analytical solution as desired.

Overall, we made great progress in building a finite difference framework for chemotaxis in this

chapter. We developed a definition and some examples of finite difference methods, looked at the

35

Figure 4.7: Nine snapshots of the parabolic Dirichlet problem for the non-homogeneous advection
diffusion equation ut ` ux ´ 1

2
uxx “ 1

2
x. The left plot is the numerical solution in blue and the

analytical steady-state in orange. The right plot is the absolute error between the numerical and
analytical solutions. Note that the right plots have different scaling on the y axes.

convergence criterion for the various methods as well as pitfalls to avoid, and we implemented them

successfully to numerically solve a non-homogeneous advection diffusion equation with Dirichlet

boundary conditions. In the following chapter, we extend these methods to the 2D advection

diffusion equation and begin working in flat Euclidean space.

36

CHAPTER 5

2D ADVECTION-DIFFUSION

We now extend our 1D results to 2D. We continue to use the advection-diffusion equation, but now

we solve it in a domain comprised of three dimensions: x, y, and t.

ut “ ´α⃗ ¨ ∇u ` β∇2u

ut “ ´α⃗ ¨ ⟨ux, uy⟩ ` βpuxx ` uyyq

(5.1)

Here, α is now a vector with two positive entries α⃗ “ ⟨αx, αy⟩. Dotting α into ∇u is the same

as two advection equations: one in the x̂ direction, and the other in the ŷ direction both moving at

velocities αx and αy, respectively. ∇2 is the Laplacian operator with ∇2 “ divp∇uq “ uxx ` uyy.

We note that this is very similar to the previous chapter but now there are two dimensions of

diffusion. β is still a positive real constant. This equation is still both second order and linear so

we expect to be able to continue using finite difference methods.

5.1 Adapting 1D Methods to 2D

We can apply many of the same methods that we developed in 1D to a 2D spatial domain. Now,

we discretize in two spatial directions, x and y, creating equally spaced partitions of width ∆x and

∆y. For simplicity, we set ∆x “ ∆y, creating a regularly spaced grid. See figure 5.1.

We can also extend the same finite difference schemes to 2D. We restrict the values in α⃗ to

be positive, thus ensuring the advective direction is time-independent and always in the x̂ and ŷ

directions. Thus, it is possible to apply the upwind scheme in much the same way as before, only

this time in two dimensions. The subscript on α denotes the basis component of the advection

direction. We also introduce an extended notation for indexing in two dimensions. j is the index

37

x

y

∆x

∆x

Figure 5.1: Discretizing the 2D spatial domain.

in the x-direction and i the y-direction.

α⃗ ¨ ∇u “
αx

∆x

`

Uk
j,i ´ Uk

j´1,i

˘

`
αy

∆x

`

Uk
j,i ´ Uk

j,i´1

˘

(5.2)

Much the same can be done with diffusion. Notice how the diffusion operator reduces to the

addition of two 1D cases, one for each coordinate direction. This gives us a finite difference

scheme widely known as a 5-point stencil for the 2D Laplacian:

β∇2u “
β

∆x2

`

Uk
j´1,i ´ 2Uk

j,i ` Uk
j`1,i

˘

`
β

∆x2

`

Uk
j,i´1 ´ 2Uk

j,i ` Uk
j,i`1

˘

. (5.3)

In the same way as in section 4.2.1, we apply Forward Euler for the temporal derivative as before

and we obtain an expression for the full 2D finite difference formulation

Uk`1
j,i ´ Uk

j,i

∆t
“ ´

αx

∆x

`

Uk
j,i ´ Uk

j´1,i

˘

´
αy

∆x

`

Uk
j,i ´ Uk

j,i´1

˘

`

`
β

∆x2

`

Uk
j´1,i ` Uk

j,i´1 ` Uk
j`1,i ` Uk

j,i`1 ´ 4Uk
j,i

˘

(5.4)

The last step is to propagate this equation forward in time similarly to the 1D case with matrix-

38

vector operations.

5.2 Solving with Linear Algebra Methods

Solving the advection-diffusion equation in 2D is more difficult than in 1D for many reasons:

1. There are now derivatives in multiple spatial directions.

2. Uk is now a 2D array that contains the solution information. This is harder to deal with

because it must be unpacked by rows or columns, operated upon, then repacked into the 2D

array.

3. Boundary conditions and derivatives now possibly rely on different directions, which need

to be represented in the unpacked array.

The solution Uk evaluated on an N ˆ N grid of equally spaced points in the x and y-directions

over the unit square, r0, 1s ˆ r0, 1s, is defined as follows by labeling each point in the domain.

Uk
“

»

—

—

—

—

—

—

—

–

U1,1 U1,2 ¨ ¨ ¨ U1,N

U2,1 U2,2 U2,N

...

UN,1 UN,2 ¨ ¨ ¨ UN,N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We want to apply something similar to our 1D derivative matrix M “ rI ´ pD ´ Aqs from section

4.2 to each row of Uk in the x-direction and each column of Uk in the y-direction. As in the

previous chapter, D remains the diffusion matrix and A remains the advection matrix. In order to

do this, we want to be able to unpack the size pN ˆ Nq Uk into a vector of size p1 ˆ N2q by

concatenating the rows. Finally, we then want to apply some new M2D, now size N2 ˆN2, in order

to find Uk`1.

Uk
Row “

„

U1,1 U1,2 ¨ ¨ ¨ U1,N U2,1 ¨ ¨ ¨ U2,N ¨ ¨ ¨ UN,1 ¨ ¨ ¨ UN,N

ȷ

(5.5)

39

5.2.1 Examining Structure of Finite Difference Matrices

After unpacking Uk, we need to apply the derivative matrices in the x and y directions on the

unpacking. This is a nontrivial task. First, we examine exactly how the different elements of Uk

combine when calculating Uk`1. For a small domain with indexed boundary values L, B, R, and

T for left, bottom, right, and top; as well as corners, C, we examine the finite difference scheme

for the central value in the domain.

»

—

—

—

—

—

—

—

—

—

—

—

–

C T1 T2 T3 C

L3 U1,1 U1,2 U1,3 R3

L2 U2,1 U2,2 U2,3 R2

L1 U3,1 U3,2 U3,3 R1

C B1 B2 B3 C

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Uk`1
2,2 “ Uk

2,2 `
β∆t

∆x2

“

´4Uk
2,2 ` Uk

2,3 ` Uk
3,2 ` Uk

2,1 ` Uk
1,2

‰

´

´
αx∆t

∆x

`

Uk
2,2 ´ Uk

2,1

˘

´
αy∆t

∆x

`

Uk
2,2 ´ Uk

3,2

˘

(5.6)

We want to be able to construct the A and D matrices to apply diffusion and advection op-

erations onto Uk as in equation (4.19), only this time both will be size N2 ˆ N2 to capture the

2D behavior. We also define A2D and D2D to differentiate between these 1D and 2D advection

and diffusion matrices. We introduce block matrices for this task to provide a visual indication

of where an unpacked Uk
Row corresponds to the entries. This makes it easier when investigating

where certain rows of a packed Uk correspond to regions of these block matrices. We also gener-

alize equation (5.6) to a larger domain to better see the patterns formed in the following matrices.

As in the 1D case, we delay looking at boundary conditions until later in this chapter.

40

A2D “ Ax ` Ay

“
αx∆t

∆x

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0 0 0 0
´1 1 0 0 0 0 0 0 0
0 ´1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 ´1 1 0 0 0 0
0 0 0 0 ´1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 ´1 1 0
0 0 0 0 0 0 0 ´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`
αy∆t

∆x

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 ´1 0 0 0 0 0
0 1 0 0 ´1 0 0 0 0
0 0 1 0 0 ´1 0 0 0
0 0 0 1 0 0 ´1 0 0
0 0 0 0 1 0 0 ´1 0
0 0 0 0 0 1 0 0 ´1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.7)

D2D “
β∆t

∆x2

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´4 1 0 1 0 0 0 0 0
1 ´4 1 0 1 0 0 0 0
0 1 ´4 0 0 1 0 0 0
1 0 0 ´4 1 0 1 0 0
0 1 0 1 ´4 1 0 1 0
0 0 1 0 1 ´4 0 0 1
0 0 0 1 0 0 ´4 1 0
0 0 0 0 1 0 1 ´4 1
0 0 0 0 0 1 0 1 ´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.8)

The diagonal structures in the results form an interesting pattern that comes from applying the

derivative operators in each direction. We now introduce a natural algebraic tool to encode this

using tensor products of matrices which we introduce and define in the next section.

5.2.2 Introduction to Kronecker Products

Given matrices A P Rn1,m1 and B P Rn2,m2 , the Kronecker product matrix C “ A b B P RNˆM is

defined entrywise as Cpi, jq “ Api1, j1qBpi2, j2q, with i “ n2pi1 ´ 1q ` i2 and m2pj1 ´ 1q ` j2,

with N “ n1n2,M “ m1m2.

We provide an example to show how the above algorithm for forming these tensor product

matrices results in the patterns that we are looking for in A2D and D2D. Let

A “

»

–

´2 1 0
1 ´2 1
0 1 ´2

fi

fl , B “

»

–

1 0 0
0 1 0
0 0 1

fi

fl

41

Using the above definition of the Kronecker product, we compute A b B:

A b B “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´2 ˚ 1 ´2 ˚ 0 ´2 ˚ 0 1 ˚ 1 1 ˚ 0 1 ˚ 0 0 ˚ 1 0 ˚ 0 0 ˚ 0
´2 ˚ 0 ´2 ˚ 1 ´2 ˚ 0 1 ˚ 0 1 ˚ 1 1 ˚ 0 0 ˚ 0 0 ˚ 1 0 ˚ 0
´2 ˚ 0 ´2 ˚ 0 ´2 ˚ 1 1 ˚ 0 1 ˚ 0 1 ˚ 1 0 ˚ 0 0 ˚ 0 0 ˚ 1
1 ˚ 1 1 ˚ 0 1 ˚ 0 ´2 ˚ 1 ´2 ˚ 0 ´2 ˚ 0 1 ˚ 1 1 ˚ 0 1 ˚ 0
1 ˚ 0 1 ˚ 1 1 ˚ 0 ´2 ˚ 0 ´2 ˚ 1 ´2 ˚ 0 1 ˚ 0 1 ˚ 1 1 ˚ 0
1 ˚ 0 1 ˚ 0 1 ˚ 1 ´2 ˚ 0 ´2 ˚ 0 ´2 ˚ 1 1 ˚ 0 1 ˚ 0 1 ˚ 1
0 ˚ 1 0 ˚ 0 0 ˚ 0 1 ˚ 1 1 ˚ 0 1 ˚ 0 ´2 ˚ 1 ´2 ˚ 0 ´2 ˚ 0
0 ˚ 0 0 ˚ 1 0 ˚ 0 1 ˚ 0 1 ˚ 1 1 ˚ 0 ´2 ˚ 0 ´2 ˚ 1 ´2 ˚ 0
0 ˚ 0 0 ˚ 0 0 ˚ 1 1 ˚ 0 1 ˚ 0 1 ˚ 1 ´2 ˚ 0 ´2 ˚ 0 ´2 ˚ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´2 0 0 1 0 0 0 0 0
0 ´2 0 0 1 0 0 0 0
0 0 ´2 0 0 1 0 0 0
1 0 0 ´2 0 0 1 0 0
0 1 0 0 ´2 0 0 1 0
0 0 1 0 0 ´2 0 0 1
0 0 0 1 0 0 ´2 0 0
0 0 0 0 1 0 0 ´2 0
0 0 0 0 0 1 0 0 ´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We also note that adding A b B ` B b A results in

A b B ` B b A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´4 1 0 1 0 0 0 0 0
1 ´4 1 0 1 0 0 0 0
0 1 ´4 0 0 1 0 0 0
1 0 0 ´4 1 0 1 0 0
0 1 0 1 ´4 1 0 1 0
0 0 1 0 1 ´4 0 0 1
0 0 0 1 0 0 ´4 1 0
0 0 0 0 1 0 1 ´4 1
0 0 0 0 0 1 0 1 ´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Which is the same as D2D from equation (5.8) up to a constant factor. This operation is called the

Kronecker sum, denoted as A ‘ B “ A b I ` I b B. Here, it corresponds to applying the second

derivative operators on each direction, then adding them. There are many well-known properties

of this sum relating the eigenvalues and solution of linear systems for A ‘ B to those of A and B.

The same is true with A2D from equation (5.7) although a slight adjustment must be made

because we assume αx ‰ αy so A2D “ Ax ‘ Ay “ Ax b I ` I b Ay in order to correctly implement

42

the direction of advection. These results show that we can write the time advancement of Uk
Row

again with a linear algebra framework by using Kronecker sums.

Uk`1
Row “ rI ` ∆t rpD ‘ Dq ´ pAx ‘ AyqssUk

Row (5.9)

We rewrite the equation above with M2D, the 2D time advancement matrix of size (n2 ˆ n2):

Uk`1
Row “ M2DU

k
Row (5.10)

5.3 Implementing Boundary Conditions

As in the previous section, we have neglected to consider boundary conditions until now. Let us

go back to the domain from above using Dirichlet boundary conditions. Before we begin, we need

to consider how our domain changes. Similar to the 1D case, we now know the values of Uk
Row on

the boundaries so our M2D matrix can be reduced from size n2 ˆn2 to pn´ 2q2 ˆ pn´ 2q2. We call

this new matrix M2D,D, representing a 2D matrix with Dirichlet boundary conditions. We define

our boundaries as we did in the last section:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

C T1 T2 T3 C

L3 U1,1 U1,2 U1,3 R3

L2 U2,1 U2,2 U2,3 R2

L1 U3,1 U3,2 U3,3 R1

C B1 B2 B3 C

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and this time examine the formulas for a corner, U1,1, and an edge, U1,2. We begin with U1,1.

43

Uk`1
1,1 “ Uk

1,1 `
β∆t

∆x2

“

´4Uk
1,1 ` Uk

1,2 ` Uk
2,1 ` L3 ` T1

‰

´

´
αx

∆x

`

Uk
1,1 ´ L3

˘

´
αy

∆x

`

Uk
1,1 ´ Uk

2,1

˘

We can remove any parts not dependent on U :

Uk`1
1,1 “ Uk

1,1 `
β∆k

∆x2

“

´4Uk
1,1 ` Uk

1,2 ` Uk
2,1

‰

`
αx

∆x

`

Uk
1,1

˘

`
αy

∆x

`

Uk
1,1 ´ Uk

2,1

˘

`

`
β∆t

∆x2
pL3 ` T1q `

αx

∆x
pL3q

(5.11)

Which as before leaves us with a term that is expressed in M2D as well as terms that will be

expressed with a vector containing boundary conditions. Continuing with U1,2:

U t`∆t
1,2 “ U t

1,2 `
β∆t

∆x2

“

´4U t
1,2 ` U t

1,1 ` U t
2,2 ` U t

1,3

‰

`
αx

∆x

`

U t
1,2 ´ U t

1,1

˘

`
αy

∆x

`

U t
1,2 ´ U t

2,2

˘

`

`
β∆t

∆x2
pT1q

(5.12)

Due to our adoption of Dirichlet boundary conditions, we shrink the size of M2D from n2 ˆ n2

to pn ´ 2q2 ˆ pn ´ 2q2. The reason for this is the same as last section when we reduced M from

nˆ n to pn´ 2q ˆ pn´ 2q. When we specify the boundary conditions, we no longer need to solve

for the boundaries and thus we can cut them out of our matrices, saving computing power. For the

1D case this has a marginal effect, reducing the size of M by a factor of n. For M2D, however, this

reduces the size of M2D by a factor of n3.

Again, we are left with a term that can be expressed with the matrix M2D and an additional

boundary term, B2D,D. The ‘D’ specifies Dirichlet. In fact, every term on the boundary of the

domain has boundary values associated with it. The interior terms do not require information

about the boundaries and thus do not need adjustment with a boundary term. Finally, we can

44

express the complete time advancement with boundary conditions as:

Uk`1
Row “ M2DU

k
Row ` B2D,D,Row (5.13)

B2D,D,Row is the unpacked boundary vector that in unpacked in the same manner as Uk
Row. We

use an example with n “ 10 to show how M2D,D and B2D are constructed. Figures 5.3 and 5.2

showcase the structure of M2D and B2D, before unpacking it, respectively. In figure 5.2, notice as

Figure 5.2: Structure of boundary conditions for a ∆x “ 0.1 or n “ 10 domain.

the boundary conditions are Dirichlet, n “ 10 Ñ n “ 8 as the edges are known. The values on the

boundaries change as the boundary values are now spatially dependent functions. Finally, the cor-

ners are larger in magnitude than their surroundings because, as in equation (5.11), there are more

boundary terms to computer corner terms than edge terms. B2D,D is unpacked by concatenating

its rows so that it is length pn ´ 2q2 or in this case, length 64. After unpacking, it can be applied

to M2D in figure 5.3. Notice the dimensions are 82 ˆ 82 “ 64 ˆ 64 with the repeating structure.

When the unpacked B2D,D,Row is applied, each of the original rows interacts with the correspond-

45

Figure 5.3: Structure of the matrix structure for the same problem as figure 5.2.

ing chunk on the diagonal. The terms in M2D are Kronecker sums of tridiagonal matrices, which

results in a nˆn block tridiagonal matrix, where each diagonal block is itself tridiagonal, and each

superdiagonal and infradiagonal term is also diagonal. This sparse structure is well known for the

5 point Laplacian stencil and this discretization of the advective term shares the same entries. The

same methods as in section 4.3 can be used to apply Robin boundary conditions.

5.4 Checking Validity of Numerical Solutions

We can use the same method as section 4.4 where we check that our finite difference scheme

approximates the steady state large t limit of the PDE, but this time we are working with the 2D

elliptic problem:

0 “ ´pαxux ` αyuyq ` βpuxx ` uyyq. (5.14)

46

Figure 5.4: Analytical solution to the 2D elliptic problem.

We still assume this to be defined over the unit square to simplify calculations. We can use separa-

tion of variables to obtain the general solution for u.

upx, yq “ pC1 ` C2e
αx
β

x
qpC3 ` C4e

αy
β

y
q (5.15)

Where C1, C2, C3, C4 P R. Figure 5.4 is an example of such a solution. In this case, we use

boundary conditions that are smooth across the boundary of the domain to avoid any discontinuities

in the analytical solution. This is not strictly necessary, but makes the task much easier. Figure

5.4 is an example of smooth boundaries and the resulting well-behaved analytical solution. Each

boundary in figure 5.4 is an exponential curve described by equation (5.15). The particular example

in figure 5.4 is α⃗ “

〈
1?
2
, 1?

2

〉
and β “ 0.5.

We begin by examining our numerical solution to the elliptic problem to confirm that our

47

Figure 5.5: Numerical solution to the 2D elliptic Dirichlet problem with n “ 40. The right plot
has a log scale on the z-axis.

M2D,D and B2D,D are constructed correctly for the Dirichlet boundary conditions. Figure 5.5 shows

the numerical solution to the 2D elliptic Dirichlet problem. On the left, the orange sheet is the

analytical solution and the blue sheet is the numerical solution to the elliptic problem. The right

plot showcases the logarithm of the absolute error between the two.

5.5 Conclusion and Extensions to 2D Diffusive Burgers’ Equation

In this chapter we extended our 1D results to the 2D unit square. In doing so, we introduced new

notation and most importantly new linear algebra operations that allowed us to compute derivatives

in multiple directions over the domain. This chapter finishes the portion of this thesis where we

consider purely linear PDEs and now we move on to our next building block, the diffusive Burgers’

equation, our final step in producing a numerical framework for chemotaxis.

48

CHAPTER 6

2D DIFFUSIVE BURGERS’ EQUATION

6.1 Introduction

Burgers’ equation is a nonlinear PDE that exhibits advective behavior. It can be derived from the

Navier-Stokes equations and is often used to model shocks in fluids. Solutions to Burgers’ equation

often exhibit discontinuities which come from its non-linearity. Discontinuities are difficult to

model so we introduce a diffusive term to smooth the solution. The diffusive version is aptly

named the diffusive Burgers’ equation and it is a second order non-linear PDE. Depending on the

magnitude of the diffusion term, solutions to diffusive Burgers’ can look very similar to solutions of

Burgers’ equation with shock-like near discontinuities or if the diffusion parameter is very large,

the solutions may behave more like the advection diffusion equations we have previously dealt

with.

The diffusive Burgers’ equation is similar to the advection diffusion equation we have cov-

ered in the previous chapters but it is also closely related to our transformed, non-dimensionalized

model (2.10) from section 2.3. This makes it an appropriate final step in this thesis for establish-

ing a framework for numerically modeling chemotaxis in two dimensional space. The Diffusive

Burgers’ equation is written

ut “ ´α∇ ¨

ˆ

1

2
u2

˙

` β∆u. (6.1)

In this chapter, we examine numerical solutions to the diffusive Burgers’ equation in 1D before

extending them–like we did with the advection diffusion equation–to 2D.

49

6.2 1D Diffusive Burgers’ Equation

We start by looking at finite difference methods to solve diffusive Burgers’ equation in 1D. From

here, we will continue to generalize our methods to 2D. Notice in 1D:

´α∇ ¨

ˆ

1

2
u2

˙

“ ´αuux

There are two immediate options for how we could formulate this with finite differences depending

on how we evaluate ´α∇ ¨
`

1
2
u2

˘

. If we think of it as ´αuux, we find:

ut`1
j ´ U t

j

∆t
“ ´αU t

j

U t
j ´ U t

j´1

∆x
` β

U t
j´1 ´ 2U t

j ` U t
j`1

∆x2
. (6.2)

If we express it as F puqx, where F “ 1{2u2, it takes the form:

U t`1
j ´ U t

j

∆t
“ ´

α

2

`

U t
j

˘2
´

`

U t
j´1

˘2

∆x
` β

U t
j´1 ´ 2U t

j ` U t
j`1

∆x2
. (6.3)

We take a moment to introduce conservation laws. Conservation laws, such as those gov-

erning mass, momentum, and energy, are fundamental principles in physics. Numerical methods

that accurately preserve these conservation laws ensure that important physical quantities remain

consistent over time in the discrete solution, reflecting the behavior of the physical system.

When a numerical method fails to conserve these quantities, it may introduce artificial effects

or errors into the solution, leading to non-physical behavior. For example, if a numerical method

does not conserve mass when simulating fluid-flow, it may lead to nonphysical mass accumulation

or depletion in certain regions.

50

Many PDEs are derived from conservation laws. We derived the chemotaxis model from a

conservation law in chapter 2. For a method to be conservative, the total value of u over an interval

can only change due to flux through the interval boundaries. Over the interval rL,Rs and for some

function Φ representing the flux through the boundaries, a conservative equation must be able to

be written in the form:

ż R

L

upx, t ` ∆tqdx “

ż R

L

upx, tqdx `

ż t`∆t

t

ΦpL, tqdt ´

ż t`∆t

t

ΦpR, tqdt

This extends to a discretization of an interval where R “ L ` ∆x and thus is also applicable to

numerical solutions.

The second method is the conservative form of Burgers’ equation [18]. Continuing with the

second method:

U t`1
j “ U t

j ´
α∆t

2∆x

”

`

U t
j

˘2
´

`

U t
j´1

˘2
ı

`
β∆t

∆x2
pU t

j´1 ´ 2U t
j ` U t

j`1q. (6.4)

This is an acceptable way to deal with diffusive Burgers’ equation when we keep the advection

direction constant, but this method will fail if the direction of advection changes. In section 4.1.2,

we determined that upwind methods for solving the advection equation only worked for direction

of fluid flow. Our model for chemotaxis does not assume constant direction advection and using

this finite difference scheme would not work. In order to fix this, we introduce another method for

solving Burgers’ equation for a general advection direction: the Lax-Wendroff scheme [19]. This

51

method is a well known and standard method of solution to the diffusive Burgers’ equation.

U t`∆t
“ U t

´
∆t

2∆x

“

F pU t
j`1q ´ F pU t

j´1q
‰

`

`
∆t2

2∆x2

“

Aj`1{2pF pU t
j`1q ´ F pU t

j qq ´ Aj´1{2pF pU t
j q ´ F pU t

j´1qq
‰

(6.5)

Here, Aj˘1{2 “ 1
2

`

U t
j ` U t

j˘1

˘

. F puq “ 1
2
u2 as above. We can add the diffusive aspect of the

equation to complete our Finite Difference scheme for diffusive Burgers’ as:

U t`∆t
“ U t

´
∆t

2∆x

“

F pU t
j`1q ´ F pU t

j´1q
‰

`

`
∆t2

2∆x2

“

Aj`1{2pF pU t
j`1q ´ F pU t

j qq ´ Aj´1{2pF pU t
j q ´ F pU t

j´1qq
‰

`

`
β∆t

∆x2

`

U t
j´1 ´ 2U t

j ` U t
j`1

˘

.

(6.6)

We now have a 1D finite difference method for the diffusive Burgers’ equation that uses two vec-

tors, Uk and F pUkq to evolve the solution. We clarify our definition of F pUkq to be F : Rm Ñ Rm

such that F pUkq “
〈
F pUk

1 q, F pUk
2 q, ..., F pUk

nq
〉
. This allows us to element-wise operate on our

solution vector Uk.

6.3 Solving with Linear Algebra Methods

Again, we would like to represent this as a matrix equation. However, due to the nonlinear F pUkq

and time dependent Apt,Ukq, we will have to compute time dependent matrices at each time step.

Below, we make use of the fact that when a diagonal matrix multiplies a dense matrix, the rows of

the dense matrix are multiplied by the corresponding diagonal entry in the diagonal matrix when

computing the ∆t2 term from equation (6.6). When the values of a matrix are dependent on Uk at

a particular timestep, k, the matrix is represented with a superscript k. For example Γk is a matrix,

52

Γ that depends on Uk at a time k. At each timestep, we must recalculate Γk, or any other time

dependent matrix.

Uk`1
“ ∆t

“

´Γk
` ∆tpΩk

`Λk
` ´ Ωk

´Λk
´q

‰

` rI ` ∆tDsUk
` Bk (6.7)

Here, I and D are the identity and diffusion matrices used for the advection-diffusion equation. bt

is a boundary vector as before but now has time dependencies due to the time dependencies of the

matrix element. We include the definitions of in Γk, Ωk
´, Ωk

`, Λk
`, and Λk

´ in the appendix. Bk is

computed the same way as in section 4.3, but in this case the terms are more complicated. We go

through each term in equation (6.7) and evaluate where the boundaries are not represented by the

matrices. Then, we sum up the contribution in each term. The process differs between different

boundary conditions.

6.4 Extending to 2D Domain

2D diffusive Burgers’ equation is similar to the 1D case.

ut “ ´α∇ ¨ F puq ` β∆u

“ ´α

ˆ

B

Bx
`

B

By

˙

F puq ` β

ˆ

B2

Bx2
`

B2

By2

˙

u

(6.8)

Similarly to the linear advection-diffusion case, we make use of Kronecker products to compute a

n2ˆn2 formulation for U over the domain. We expand each of the matrices derived in the previous

section in terms of the familiar Kronecker product. We then express the result in a simpler form

53

using Kronecker sums, as defined in section 5.2.2

Γk
Ñ Γk

‘ Γk,

Ωk
`Λk

` Ñ Ωk
`Λk

` ‘ Ωk
`Λk

`,

Ωk
´Λk

´ Ñ Ωk
´Λk

´ ‘ Ωk
´Λk

´,

D Ñ D ‘ D.

(6.9)

We reintroduce the ‘Row’ subscript that we used in section 5.2 to again represent the square do-

main unpacked by rows as detailed in equation (5.5). We also include Bk
Row representing the 2D

boundary conditions unpacked in the same manner. We use the same methods as in the 2D ad-

vection diffusion equation to extend the 1D results in equation (6.7): expand the equation and

substitute the results of (6.9) into (6.7),

Uk`1
Row “∆t

“

Γk
‘ Γk

‰

` ∆t2
“

Ωk
`Λk

` ‘ Ωk
`Λk

`

‰

´ ∆t2
“

Ωk
´Λk

´ ‘ Ωk
´Λk

´

‰

`

` rI ` ∆t pD ‘ DqsUk
Row ` Bk

Row.

(6.10)

Evolving equation (6.10) is considerably more computationally expensive than evolving the 2D

advection diffusion equation. This is due to the time dependent matrices that must be computed at

each time step. In addition, the boundary vector will change as well due to the inherent coupling

with the matrices.

54

CHAPTER 7

SUMMARY AND FUTURE WORK

We began by exploring the implications of accuracy, stability, and convergence while developing

finite difference methods for the 1D advection-diffusion equation. Extending our approach to a

2D Euclidean space, we devised methods for evolving the 2D advection-diffusion equation using

linear algebraic techniques. Subsequently, we established a framework for numerically solving

the diffusive Burgers’ equation across a 2D square domain. Our model lays the foundations to

numerical simulations to conservation laws with the hope to implement similar conservation laws

for the tumor angiogenesis model.

The continued refinement of our model hinges on further analyzing the behavior of the term

∇¨puvq. A deeper analytical grasp of this term will enable us to refine the methods developed in this

thesis for application in the tumor angiogenesis model. Additionally, we intend to explore the 1D

system under a broader range of initial conditions and diffusion-to-growth rate ratios, potentially

uncovering new relationships within the 1D model, particularly with respect to the parameter α on

the solutions of the model. Finally, we desire to extend our results to curved, 2D surfaces to better

approximate organ surfaces.

55

REFERENCES

[1] J. Adler, “Chemotaxis in bacteria,” Science, vol. 153, no. 3737, pp. 708–716, 1966.

[2] K. E. Yong, “A mathematical model of the interactions between pollinators and their effects
on pollination of almonds,” University of Iowa, 2012.

[3] J. D. Murray, Mathematical Biology I. An Introduction (Interdisciplinary Applied Mathe-
matics), 3rd ed. New York: Springer, 2002, vol. 17.

[4] M. A. J. Chaplain and A. M. Stuart, “A model mechanism for the chemotactic response of
endothelial cells to tumour angiogenesis factor,” Math. Med. Biol., vol. 10, no. 3, pp. 149–
168, 1993.

[5] A. Ruddell, A. Croft, K. Kelly-Spratt, M. Furuya, and C. Kemp, “Tumors induce coordinate
growth of artery, vein, and lymphatic vessel triads,” vol. 354, May 2014.

[6] P. Carmeliet, “Angiogenesis in health and disease,” Nat Med., 2003.

[7] M. D. Lazova, T. Ahmed, D. Bellomo, and T. S. Shimizu, “Response rescaling in bacterial
chemotaxis,” Proceedings of the National Academy of Sciences, 2011.

[8] D. A. H. II et al., “Biologically-based mathematical modeling of tumor vasculature and
angiogenesis via time-resolved imaging data,” Cancers, 2021.

[9] H. Zhao and L. Zhu, “Dynamic analysis of a reaction-diffusion rumor propagation model,”
International Journal of Bifurcation and Chaos, Volume 26, Issue 6, id. 1650101-52, 2016.

[10] A. Hasan, N. Rodriguez, and L. Wong, “Transport and concentration of wealth: Modeling
an amenities-based-theory,” Chaos, vol. 30, no. 5, 2020.

[11] C. S. Patlak, “Random walk with persistence and external bias,” Bulletin of Mathematical
Biophysics, 1953.

[12] E. F. Keller and L. A. Segel, “Model for chemotaxis,” Journal of theoretical biology, vol. 30,
no. 2, pp. 225–234, 1971.

[13] P. Fuster Aguilera, “Qualitative analysis of a pde model for chemotaxis with logarithmic
sensitivity and logistic growth,” Department of mathematics, Tulane University., 2021.

[14] B. Sleeman and H. Levine, “Partial differential equations of chemotaxis and angiogenesis,”
Mathematical methods in the applied sciences, vol. 24, no. 6, pp. 405–426, 2001.

56

[15] T. Li, R. Pan, and K. Zhao, “Global dynamics of a hyper- bolic parabolic model arising from
chemotaxis,” SIAM Journal on Applied Mathematics, 2012.

[16] W. Strauss, Partial Differential Equations: An Introduction. Wiley, 2007.

[17] R. Burden and J. Faires, Numerical Analysis. Cengage, 2011.

[18] R. J. LeVeque, Numerical methods for conservation laws. Springer, 1992, vol. 214.

[19] P. Lax and B. Wendroff, “Systems of conservation laws,” Los Alamos National Laboratory,
1959.

57

Appendices

58

Matrices for 1D Diffusive Burgers’ Equation

Γk
“

1

2∆x

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 F pUk
2 q 0 0 ¨ ¨ ¨ 0

´F pUk
1 q 0 F pUk

3 q 0 ¨ ¨ ¨ 0

0 ´F pUk
2 q 0 F pUk

4 q 0

0 0 ´F pUk
3 q 0

. . . 0

...
... F pUk

nq

0 0 0 0 ´F pUk
n´1q 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Λk
` “

1

2∆x2

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´F pUk
1 q F pUk

2 q 0 0 ¨ ¨ ¨ 0

0 ´F pUk
2 q F pUk

3 q 0 ¨ ¨ ¨ 0

0 0 ´F pUk
3 q F pUk

4 q 0

0 0 0 ´F pUk
4 q

. . . 0

...
... F pUk

nq

0 0 0 0 0 ´F pUk
nq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Λk
´ “

1

2∆x2

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

F pUk
1 q 0 0 0 ¨ ¨ ¨ 0

´F pUk
1 q F pUk

2 q 0 0 ¨ ¨ ¨ 0

0 ´F pUk
2 q F pUk

3 q 0 0

0 0 ´F pUk
3 q F pUk

4 q
. . . 0

...
... 0

0 0 0 0 ´F pUk
n´1q F pUk

nq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

59

Ωk
` “

1

2
diag

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 0 0 ¨ ¨ ¨ 0

0 1 1 0 ¨ ¨ ¨ 0

0 0 1 1 0

0 0 0 1
. . . 0

...
... 1

0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Uk
¨

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

1

1

1

...

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Ωk
´ “

1

2
diag

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 ¨ ¨ ¨ 0

1 1 0 0 ¨ ¨ ¨ 0

0 1 1 0 0

0 0 1 1
. . . 0

...
... 0

0 0 0 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Uk
¨

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

1

1

1

...

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

60

Acknowledgements

I’d like to sincerely thank Dr. Padi Fuster and Dr. Eduardo Corona for their invaluable support over

the past years as I have been working on this project. Their guidance and mentorship enabled me

to tackle this problem. I’d also like to thank Dr. James Rickards for his mentorship over the past

three years and give a shout out for him being responsible for an astounding 30% of my collegiate

mathematics education. In a similar vein, I’d like to thank Zach Jordan for his friendship over the

past four years and many classes. Finally, I’d like to thank my friends and family for their support

and encouragement through the many tough moments, I couldn’t have done it without y’all.

61

	Title Page
	Table of Contents
	Introduction to the Biological Problem
	Derivation of the Model
	Derivation of the Model
	Transforming the 1D Model
	Non-dimensionalizing the Model
	Numerical Strategy

	Generalized Logistic Growth in 1D
	Numerical Simulations
	Conclusion and Future Steps

	1D Advection-Diffusion
	Choosing a Finite Difference Scheme
	Introduction to Finite Differences
	Finite Difference Methods for Hyperbolic and Parabolic PDEs

	Solving with Linear Algebra Methods
	Developing the Time Advancement Matrix

	Implementing Boundary Conditions
	Checking Validity of Numerical Solutions
	Numerical Solution to the 1D Non-homogeneous Advection Diffusion Equation with Dirichlet Boundary Conditions

	2D Advection-Diffusion
	Adapting 1D Methods to 2D
	Solving with Linear Algebra Methods
	Examining Structure of Finite Difference Matrices
	Introduction to Kronecker Products

	Implementing Boundary Conditions
	Checking Validity of Numerical Solutions
	Conclusion and Extensions to 2D Diffusive Burgers' Equation

	2D Diffusive Burgers' Equation
	Introduction
	1D Diffusive Burgers' Equation
	Solving with Linear Algebra Methods
	Extending to 2D Domain

	Summary and Future Work
	References
	Appendix

