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Abstract

In this thesis, I will motivate the use of a broadband Wilkinson junction in a plasma haloscope,
a proposed apparatus sensitive to axionic dark matter [9, 11]. I will then review the basics of
Wilkinson junctions solving the ideal scattering values and scattering parameters for a single-
stage Wilkinson junction as an example. With these in hand, I will then show two common ways
of extending the usable bandwidth of the device. The last method discussed for expanding the
bandwidth of the Wilkinson junction is based on the same topology used by and diving more
fully into a possible scheme to modify a current design employed by Elsbury et al. in a similar
frequency and noise required application [4]. Finally, I describe the analysis, construction, and
testing of a lower-frequency Wilkinson junction device as a proof of concept and show that the
effective bandwidth has increased while not increasing the space required on the chip.
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1 Motivation for Axions

There is a well-known problem: there is more mass in the universe than can be explained simply
by the observed matter. This extra mass, or dark matter, is a significant gap in our understanding
of the universe. Another problem in particle physics is known as the strong-CP problem. In this
problem, it is noted that our current understanding of physics with the standard model requires an
implausible fine-tuning of parameters to explain why the combined charge parity CP symmetry
is preserved for the strong nuclear force but is broken in the weak sector. This is where the axion
comes in. Initially motivated by solving the strong-CP problem, Peccei and Quinn proposed an
extension to the standard model incorporating an anomalous spontaneously broken U(1) sym-
metry [12]. Weinberg and Wilczek later showed that this broken U(1) symmetry would create a
new light spin-0 particle, now called the axion [18, 17] This exciting insight was advanced again
by Preskill, Wise, and Wilczek, showing that if the axions are produced early in the lifespan of the
universe, they could also be abundant enough and minimally interacting enough to be consistent
with properties of cold dark matter [1, 15].

The first problem with proving (or falsifying) the existence of axions is that current theories do
not tightly constrain the particle’s rest mass. Instead, astrophysical observations and additional
hypotheses bound it to a range of possible masses. The mass appears to be on the order of 1 µeV≲
mαc

2 ≲ 1000 µeV [7, 6]. Second, they are extremely weakly interacting light particles, so much
so that the axion is commonly referred to as the “invisible axion.” Nevertheless, the axion would
couple to electromagnetism (“photons.”), where the coupling takes the form aE⃗ · B⃗, with a, E⃗, B⃗
the axion, electric, and magnetic field strengths, respectively.

These two aspects of axion physics led to a unique detector concept called a Haloscope, which
consists of a tunable microwave cavity cooled to ultralow temperatures and embedded in a large,
uniform, and static magnetic field. The static magnetic field causes a resonant conversion of the
axion field into a spatially uniform (within the cavity) electric field oscillating at ωa = mac

2/ℏ,
the axion’s Compton frequency. [16]. If the cavity is near-resonant with ωa, the axions are con-
verted into a narrowband microwave signal that can just barely be detected with quantum-limited
amplification methods above a background of quantum fluctuations and residual thermal noise.

The signal power is proportional to the overlap of the electric field of the cavity mode E⃗cav(r⃗)

with the spatially uniform electric field generated by the magnetic field and the axion field E⃗a as
P ∝

∫
V
dr⃗ E⃗cav(r⃗) · E⃗a, with V the cavity volume. Note that the integral would be zero for many

of the resonant modes of a right circular cylinder. Only the TM010 mode has substantial coupling.

Furthermore, this expression shows the unfavorable scaling of the axion signal power with in-
creasing frequency. Doubling the frequency reduces the cavity mode volume and the signal power
by a factor of eight as higher frequency ranges are searched. From new research by Buschmann,
the most plausible frequency for the axion community to scan is around 15 GHz [2]. This high fre-
quency makes it difficult for traditional cavity haloscopes (which have had their greatest success
around 1 GHz) to reach the sensitivity needed to detect an axion signal [3].
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1.1 Plasma Haloscope

The plasma haloscope is a concept that overcomes this unfavorable scaling by breaking the re-
lationship between resonance frequency and cavity volume. A plasma haloscope works off the
property that photons acquire an effective mass inside a plasma. This property does not require a
natural plasma but can instead be based upon an effective plasma-like dispersion relation created
by a wire metamaterial (or photonic bandgap material) [13]. Looking at Fig. 1, we can see a simple
square lattice with spacing a. It is easy to imagine that the lattice will resonate at a specific fre-
quency, and when we imagine an infinite square lattice, it can be solved analytically. Eqn. 1 from
Pendry et al. work with Low-frequency plasmons in thin-wire structures shows that the frequency
scales up approximately with the inverse of the lattice spacing [13]. In Eqn. 1, it is imagined that
the wires are infinite length with a radius r and spacing a. It is assumed that c0 is the velocity
of light in free space, neff is the effective electron density within the lattice, and meff is the new
effective mass of the electrons from being in the plasma.

ω2
p =

neffe
2

ϵ0meff

=
2πc20

a2 ln(a/r)
(1)

Equation 1: Plasma frequency, ωp, of a square lattice of conductive material with a spacing con-
stant a [13].

With a plasma frequency, Maxwell’s equations for axions can be solved by assuming an electric
field in a linear media with a dielectric constant ϵ. Lawson et al. show that the expected field
becomes Eqn. 2.

E⃗ = −gαγB⃗ea

ϵ
= −gαγB⃗ea

(
1−

ω2
p

ω2
α − ıωαΓ

)−1

(2)

Equation 2: Expected electric field due to a coupled axion in an infinite thin rodded metamaterial.
Found by approximating the material as a linear dielectric and using the Drude model to find the
cyclotron frequency [9].

In Eqn. 2, Lawson has definedωα as the weakly oscillating axion field, gαγ as the coupling constant
of the axion, B⃗e as the applied magnetic field and, Γ as the small damping rate that sets the lifetime
of the plasmon.

This relation shows us that as the plasma haloscope approaches the same frequency of the axion,
we will have a vanishingly small denominator causing a spike in the expected electric field along
with the power out. We also see that the electric field proportionally increases as the magnetic
field increases. This motivates the tunable plasma haloscope within a strong magnetic field.
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Figure 1: A simple diagram of a plasma haloscope. In this image, a boundary of conducting walls
is shown by the solid-lined, rectangular box surrounding the lattice of ports and wires. The wires
creating the metamaterial for the plasma haloscope are depicted as black circles in a lattice with a
spacing constant a. The antennae are depicted in a blue sub-lattice which could consist of simple
monopole antennae.

From Fig. 1, we see a finite lattice formed by the black dots equally spaced and representing a po-
tential version of a plasma haloscope. We are then considering the limit of the plasma haloscope
when we have an approximately infinite metamaterial. In this limit, we will need multiple anten-
nae to avoid breaking discrete translational symmetry, which has the potential to hybridize the
mode with strong axion coupling with the many uncoupled modes yielding a vanishingly effec-
tive coupling for any particular mode. The multiple antennae may also be necessary to improve
the coupling of the haloscope to the amplification of the output power [11]. We then propose a
binary tree model that reduces the number of ports by the power of the number of input ports of
each combiner. This is demonstrated in Fig. 2.
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Figure 2: Simple binary tree showing the reduction of eight input ports to a single output port for
amplification. Antennae that couple with the cavity are shown in orange, power combiners are
shown in black, blue represents transmission lines connecting power combiners, and layers are
separated by gray dashed lines.

We are interested in the amount of Wilkinson junctions that are needed for the final plasma
haloscope, we can simply look at the rows of the binary tree and divide the number of ports per
row by the number of ports of the Wilkinson junction.

S(n) =

logj(n)∑
i=1

ji

j
=

n− 1

j − 1
(3)

Equation 3: Geometric sum showing the relation between the number of ports a power combiner
has, j, and the number of ports we are trying to match for input, n.

In Eqn. 3, we have set j to be the number of input ports and n to be the number of antennae in
the plasma haloscope. In this equation, n is a power of j. We constrain it so that every combiner
contains the same number of ports. Setting j = 2, we can look at three port combiners, two input
ports, and one output summing the values in the binary tree. This relatively common topology
is related to a common three-port Wilkinson junction. A three-port combiner, of course, is not a
design constraint on the actual haloscope but just a method to obtain the approximate order of
magnitude for the number of combiners that will be needed within the binary tree. The number of
levels of the binary tree is vital because the more components the wave must travel through, the
more potential losses there are in the already weak signal. Using an arbitrary but reasonable lattice
size of a 17 × 17 square plasma haloscope will have 289 individual wires forming the haloscope
and a 16× 16 lattice of ports connecting to the plasma haloscope, meaning we will have to have
a binary tree of 255 Wilkinson junctions. This scale is a reasonable approximation for the scale
of a lattice seeing as a copper prototype with a 16 × 16 wire array has been built at Stockholm
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University[8], and a 10 × 10 wire array has been built by Karl Van Bibbers Group at Berkley
[11]. Due to this array scaling in size rapidly, we are interested in on-chip solutions for Wilkinson
junctions focusing primarily on bandwidth and size on the chip.

2 Wilkinson Junction Introduction

Wilkinson Junctions are one of the simplest power combiner and splitter topologies and have
been an essential tool in the pocket of RF(Radio Frequency) engineering since the 1960s when
Ernehest J Wilkinson bridged the ports on a T-splitter using a resistor. This simple modification
to a 3-port T-splitter gives us the ability to have isolation between the symmetric ports [19].

Traditionally Wilkinson junctions have been used to split low-power signals either equally among
amplifiers or unequally for measurements. They are very effective in this use. However, for our
case, we are interested in combining in-phase signals to reduce the necessity for multiple cryo-
genic transmission lines to connect to a superconducting amplification setup. This would reduce
the complexity of the overall design of the amplification setup for a plasma haloscope while main-
taining the signal of the haloscope. Because of this, the goal of this section is to act as an introduc-
tion to equal split Wilkinson junctions and suggest potential parameters for a Wilkinson junction
binary tree with a plasma haloscope.

In this section, we will start by looking through the derivation of ideal components for the orig-
inal single-stage Wilkinson junction and the properties that make up an equal-split Wilkinson
junction [19]. With these solutions in hand, we will then show a method using ABCD parameters
extended to allow parallel components and allow us to solve for a three-port topology [10]. With
the scattering parameters in hand, we can then discuss the bandwidth of the device as well as the
common multistage solution to extend the usable bandwidth for the device. We then will show
that placing a quarter-wave transformer on port-1 will result in a larger bandwidth. However,
we then can detune the parameters allowing us to extend the bandwidth once more. With the
detuned parameters, we can test the theory experimentally and show that this is a valid method
for extending the usable bandwidth while maintaining an equal amount of space on the chip.
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2.1 Ideal Single Stage Wilkinson Junction

Figure 3: Microstrip diagram of a single stage Wilkinson junction. This three-port combiner con-
sists of input ports 2 and 3 and output at port-1.

The simplest form of a Wilkinson junction is performed using two quarter-wave transformers and
a resistor. This is shown in Fig. 3. In this figure, we can see that there are only three components:
two quarter wave transformers and a resistor. By defining the ideal natural frequency of the
device and the impedance of the ports, we can solve for a power combiner and splitter that work
as intended only at one frequency. The Wilkinson junction is desirable over a resistive splitter,
especially in applications where we want low loss because of the higher isolation that comes from
the resistor bridging the two-quarter wave resonators.

In Fig. 3, we can observe there are two paths from port-2 to port-3. In the simple case assuming
that the resistor adds no phase delay while a wave passes through it from port-2 to port-3, we
then also have the situation where a wave passes from port-2 to port-3 through two quarter-wave
transformers. At this one wavelength, the two methods of traveling from port-2 to port-3 result
in the destructive combination of two equal waves 180 degrees out of phase from each other. This
leads to the isolation working at one frequency, causing the zero for S23 and S32.

It is beneficial for our understanding of the chosen component values for a Wilkinson junction to
look at the desired characteristics of the device. Because this is a three-port microwave object, we
cannot maintain a lossless, reciprocal, and matched device. Instead, we choose to make a device
that is reciprocal and matched, letting us designate it as a power splitter and combiner. First, a
matched input of the ports and the Wilkinson junction determines that we have zero reflection
at the ports on the natural frequency. Second, Wilkinson junctions have reciprocity. By looking
at Fig. 3 a physical symmetry argument we can be made where in S12 = S13, S32 = S23, and
S22 = S33. By exploiting the reciprocal nature, we can also say that S12 = S21 and S13 = S31.
These two constraints have already done a great service in solving the scattering matrix of an

6



ideal Wilkinson junction.S11 S12 S13

S21 S22 S23

S31 S32 S33

 =

 0 S12 S12

S12 0 S23

S12 S23 0

 =
−ı√
2

0 1 1
1 0 0
1 0 0

 (4)

Equation 4: Standard scattering parameter matrix shown on the left is then reduced using reci-
procity. On the right is the ideal scattering parameter matrix for a power combiner.

From Eqn. 4, we can define a few more simple positions for an ideal Wilkinson junction, such
as seen in the last matrix of the above equation. We desire complete isolation at the natural
frequency of the Wilkinson junction. Therefore, in the ideal case, we will have S23 = 0 because
this means that no power is transferred to port-3 from port-2 and vice versa. We also desire
an equal split Wilkinson junction, which will lead to half the power transmitted through each
input port. This means we will have the scattering parameters S12 = −3 dB, corresponding to
half-power transmission.
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(a)

(b)

Figure 4: Even and odd mode analysis modified diagrams from Pozar Microwave Engineering
[14]. Even mode analysis is shown in (a) odd mode analysis is shown in (b). The expected virtual
ground and a virtual open circuit are shown in blue. To solve for the scattering parameters, we
have broken port-1 into two resistors that, in parallel, have the same characteristic impedance as
shown in orange.

To solve for the parameters of the Wilkinson junction, we have two different cases where the
voltage input to both ports is the same, even mode analysis, and when the voltage input to both
ports is 180 degrees out of phase, odd mode analysis. These two cases are shown in Fig. 4a and
Fig. 4b. For even mode analysis, there is no potential difference across the resistor, and therefore, it
acts as an open circuit as depicted in Fig. 4a. The same argument can be made when talking about
how the even modes act at port-1 until the power can go to the ground. These open circuit points
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are depicted by blue circles in the circuit diagram. We can then solve the voltage at each of the
points of the even mode analysis using the equation for transmission line impedance. From Pozar,
we can calculate the apparent resistance, shown in Eqn. 5. We start with 2Z0 as the load resistance
and the resistance of the transformer as defined in the circuit. We can see that it reduces to the
characteristic impedance of the ports showing a matched impedance value. Within Eqn. 5, we
can see that we can reach the desired characteristic impedance for the quarter wave transformer
by setting the resistance of the transformer to

√
2Z0.

Zin =
Z2

1

2Z0

=
(
√
2Z0)

2

2Z0

= Z0 (5)

We can then simply find the voltage of the even mode at port-2 by simply using a voltage divider
circuit with equal impedance. We will have half the voltage at port V2e = Vin/2. This is also the
same voltage as at port-3 due to symmetry. We will follow the convention denoting the voltage
at a port for an even mode with Vje and the voltage at a port for an odd mode port with Vjo where
j is the port being probed in both modes. Because of the phase delay across the transmission
line, we will acquire an imaginary term for the voltage at port-1 which is reduced by the apparent
resistance to V1e = −ı/

√
2.

For odd mode analysis, we have two out-of-phase waves resulting in virtual grounds shown in
Fig. 4b depicted in blue. As we can see on the right-hand side, this virtual ground appears at port-
1, which means we can easily declare V1o = 0. Solving for V2o, we can simplify the above circuit as
a voltage divider between the two resistors for the port and isolation V2o = (VinZ0)/(R/2+Z0) by
setting the resistance to twice the characteristic impedance this reduces to half the input voltage.
Finally, we can solve for overall voltages by adding the even and odd mode voltages. From even
and odd mode analysis, we solve independently for the ideal values.

We can rather simply translate the microstrip definition of a Wilkinson junction to a lumped
element model by representing the quarter-wave transformers as lossless π-networks consisting
of two capacitors going to ground bridged by an inductor. Using Pozar[14] we can convert the
desired frequency response using Eqn. 6 to find appropriate values for the capacitors and inductor
in the π-network.

C =
1

Zω

L = Z2C =
Z

ω

(6)

Equation 6: Conversion of microstrip transmission line to a π-network [14].

This π-network simplification can be quickly used to simplify the circuit diagram as Fig. 5. This is
important to our design because, at lower frequencies, it becomes practically infeasible. For exam-
ple, if we desire to combine in the 10 MHz range, we would look for a quarter-wave transformer
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approximately 7.5 meters long. This approximation is simply made by dividing the wavelength
by four. However, it does illustrate at low frequencies; we need these devices to be significantly
smaller. Thankfully we will see that with a lumped element model, we will have a rather small
final circuit. For higher frequencies, it is common to transition to microstrip architecture in the
GHz range due to the simplicity of the layout and size reduction, with anything over 10 GHz
requiring on the order of millimeters of length for the device, which for many applications, is
acceptable.

Figure 5: Single-stage lumped element Wilkinson junction circuit diagram.

In the above figure, there is only one other simplification that has been made, which is to differ-
entiate the capacitors into two different values where C0 is simply 2C1.

To solve for the scattering parameters over a broader range of frequencies rather than at a single
idealized frequency where there is no reflection, we will use ABCD matrices. Transmission terms
can then be solved using an extension of the ABCD matrix for parallel circuits. Because ABCD
matrices are only valid for two port circuit topologies, they are first extended to solve for the
parallel structure as solved by Levine.

ABCD =

(A1B2+B1A2

B1B2

B1B2

B1+B2

C D1B2+B1D2

B1+B2

)
(7)

Equation 7: Equation showing the simplification of two parallel components combining to one
ABCD Matrix [10]

C =
1

B1 +B2

(D1A2 +D2A1 +B1C1 +B2C2 +B1C2 +B2C1 − A1D1 − A2D2) (8)

Equation 8: Paired equation for Eqn. 7 [10]
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Using Eqn. 7 and Eqn. 8, we can find the solution to the power traveling from each of the ports
reducing the network appropriately with a resistor.

Figure 6: Single-stage Wilkinson junction analytical normalized solution of relevant scattering
parameters. A clear natural frequency is observed at 1.0 where five of the relevant scattering
parameters become zero and S12, S13, S21, S31 are reduced to half the power, −3 dB.

We can use the method outlined by Levine to find the solution to the Wilkinson junction scattering
parameters as depicted in Fig. 6. From this graph, we can see that there is a limited bandwidth
over which a combiner will be effective. Thanks to the steep drop-off values, the total usable
bandwidth of the Wilkinson junction is limited[10].

3 Extending Bandwidth

Depending on our desired applications, several different methods for expanding the bandwidth
exist. The three most common methods for expanding the bandwidth for a Wilkinson junction
are creating a multistage combiner, changing the isolation resistance, and adding a quarter-wave
transformer. The most effective for large bandwidths is a multistage Wilkinson junction where the
more stages added to the combiner, traditionally the larger the Wilkinson junction’s bandwidth.
The next common method is to adjust the apparent resistance of the Wilkinson junction isolation
resistor. This is done using different filtering circuits, such as replacing the lone resistor with an
RLC circuit. This works well for designing to remove specific frequencies [5]. The issue with this
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design is that it has not only added complexity but, more importantly, added five extra components
to the chip, therefore, increasing the minimum size required. Finally, the most common way to
increase the bandwidth because of its simplicity is simply adding a quarter-wave transformer to
port-1 of the combiner. This results in matching the impedances between the output port and the
symmetrical quarter-wave transformers.

3.1 Multistage Wilkinson Junction

Figure 7: Multistage Wilkinson junction circuit diagram.

Pictured in Fig. 7 is the most common method for expanding the bandwidth at each stage of the
Wilkinson junction consisting of one quarter-wave transformer for each branch of the Wilkinson
junction and one more resistor. There is no direct solution for detuning this. However, there
are several common methods for finding an optimal solution. There is a common solution for
a single-frequency dual-band Wilkinson power splitter where R0 = 40 Ω and R2 = 125 Ω we
then set Z1 = 100 Ω and Z2 = Z1/

√
2. This is shown for a 15 MHz circuit in Fig. 8. Comparing

the relative bandwidths from the Fig. 6, we can immediately see a larger bandwidth, but also
of note is that the multistage simulation, along with the actual circuits on the higher frequency
side, agrees with the normalized analytical solution and the lower frequency sections disagree.
This is because the analytical solution has a mirroring effect that does not occur in either the
simulations or experimentally. This is because of the process of normalizing the frequency rather
than a limitation in solving for the bandwidth using ABCD matrices.
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Figure 8: Multistage simulation of relevant scattering parameters. A clear natural frequency is
observed at 15MHz where five of the relevant scattering parameters become zero and S12, S13,
S21, S31 are reduced to half the power, −3 dB. The upper bound of the natural frequency is located
at 16.9 MHz, shown by the dashed gray line.

This solution is for the ideal multistage Wilkinson junction with a single natural frequency. It is
a prevalent method to detune the natural frequencies, trading isolation for the bandwidth of the
device.
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3.2 LeadingQuarter-wave Wilkinson Junction

Figure 9: Leading quarter-wave Wilkinson junction circuit diagram.

For the simplest method to increase the Wilkinson combiners bandwidth, we can add a charac-
teristic impedance quarter-wave transformer at the output port. This will reduce the number of
reflections at the ports. In Fig. 10, we can see that there is a larger bandwidth than the single-stage
Wilkinson junction with a minimal amount of work and a minimal amount of added space on the
chip.

This design is also used by Elsbury in Broadband Lumped-Element Integrated N -Way Power Di-
viders for Voltage Standards for a programmable Josephson voltage standard [4]. This is a similar
application we would desire for the final use of the Wilkinson junction, giving us confidence that
the device would be manufactured. It is also the same magnitude as the frequency of interest for
the proposed Haloscope design, having been designed for 20 GHz rather than the 15.7 GHz where
the axion is suspected to be located [2].
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Figure 10: Leading quarter-wave Wilkinson junction with a matched quarter-wave transformer.
This shows a moderate improvement on the single-stage Wilkinson junctions scattering parame-
ters as shown in Fig. 6 with minimal work.

The goal is now to detune the Wilkinson junction’s natural frequency. This is done by numer-
ical optimization. Unfortunately, when using the simplex method or other standard methods, a
bounding problem arises where natural frequencies are found, creating deep spikes rather than a
desired flat curve. In the perfect case for the Wilkinson junction, we would see a horizontal line at
the half power line, −3 dB, and all other scattering parameters at −∞ dB for as long as possible.
Because we are interested in testing the optimization method, we have chosen a challenging but
achievable −15 dB isolation as our goal.

The numerical optimization follows a simple procedure where we iteratively separate the relative
frequencies of the quarter-wave transformers until a peak is formed at the central frequency. We
can change the impedances of the quarter-wave transformers and resistors.
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Figure 11: Detuned Wilkinson junction analytical solution created using the ABCD scattering
matrix analytical solution and numerical optimization. From the above, we can see that there are
two natural frequencies, neither of which will go to the infinite isolation seen in Fig. 6 or Fig. 8.

Repeating this numerical optimization can find a testable set of parameters. These values come
to the quarter-wave impedances being changed to 98.15% and 99.00% of their initial values from
the design with one natural frequency. We then find the relative frequencies of the two sets of
quarter-wave transformers and a potential solution at 116.53% and 123.20% of their initial values.
Finally, we see a satisfying answer when the resistor is 92% of the original value. This provides
the plot Fig. 11.

4 Testing and Concept Validation

With the values found for the detuned Wilkinson junction in the previous section, we can finish
our design by using Microwave Office from AWR to simulate the circuit at a frequency of interest.
We now must determine how to design for a frequency of interest. Due to the added difficul-
ties with superconducting circuits and higher-frequency devices, we decided to scale down from
Buschmann’s identified frequency of 15.7 GHz to 15 MHz. This scaling down allows for the con-
struction of room-temperature components and commercial solutions for inductors, capacitors,
and resistors. To test this concept, we will compare a detuned leading quarter-wave transformer
Wilkinson junction and a traditionally calculated leading quarter-wave transformer Wilkinson
junction.
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Figure 12: Detuned Wilkinson junction surface mount PCB. This is a 15 MHz-centered exper-
imental validation of detuning the different parts of the Wilkinson junction to increase usable
bandwidth.

The final circuit of the detuned Wilkinson junction is shown in Fig. 12 where all inductors, capac-
itors, and resistors are readily commercially available. The low frequency also allowed us to use
Fr4 for the PCB substrate.

Figure 13: Leading Wilkinson junction simulation plotted against experimental data scatter plot-
ted. We see a strong correlation between the simulated and experimental data. This shows that
the experimental data has an approximate bandwidth of 6 MHz.

In Fig. 13, We can see that the simulated and experimental data both go to a single natural fre-
quency with the required −15 dB isolation going from 10.8 MHz to 16.8 MHz for the physical
device. This was a confirmatory test that our simulations worked appropriately and had a solid
background analytically.
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Compared to Fig. 14, we can see that the data is flatter than the traditionally calculated Wilkinson
junction at the chosen isolation.

Figure 14: Detuned Wilkinson junction simulation plotted against the analytical solution. The
experimental data show a stronger correlation with the natural frequencies than was predicted
using AWR. A large bandwidth of approximately 10 MHz was measured for the device.

With the detuned Wilkinson junction, we can see a large bandwidth starting at 10.9 MHz and
going to 20.9 MHz. We also see an expected weaker amount of isolation than the simulated data,
for which further analysis will be required to adjust the design properly. We see a defined natural
frequency for S22 in both the experimental data and simulated solution. We also see that the
observed and simulated data offset each other at the current moment. It is unclear what is the
most significant cause of the mismatched data. We believe that most of the differences are due to
surface mount component tolerances requiring further testing and manufacturing to confirm.

5 Conclusion

In this thesis, we have motivated the potential need for Wilkinson junctions in designing a plasma
haloscope and reviewed the primary literature on Wilkinson junctions. We then tested the po-
tential of detuning the Wilkinson junction, which showed promising results in increasing the
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potential bandwidth while maintaining the same circuit and manufacturing complexity. In this
first iteration, we have demonstrated a substantial improvement of approximately 66% on the
original design. The detuned leading quarter-wave transformer offers a promising start. How-
ever, the multistage device simulated is still expected to have a higher usable bandwidth. It is left
to future consideration to determine if the added complexity on the chip and on-chip size or the
bandwidth is of more importance for the correct function of a plasma haloscope.

The future work on Wilkinson junctions includes making a higher frequency model centered at
Buschmann’s identified frequency of interest, 15.7 GHz. If this test is passed, a large binary tree
of Wilkinson junctions can be constructed and characterized. With this circuit, we can compare
the losses of a traditionally designed Wilkinson junction tree and the detuned model.
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