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Abstract

In this paper we present a number of techniques for supporting distributed applications that span many nodes
across national or international networks. We focus particular attention on issues concerning scalability and admin-
istrative decentralization. Our experiences derive in large part from prototypes we have built in the context of
research into resource discovery. However, many of these experiences are applicable to supporting any wide area
distributed application. The techniques covered relate to fault tolerance, administrative decentralization, scalability,
organization, controlling the spread of distributed operations, and user interface issues.
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1. Introduction

Supporting wide area distributed applications is difficult. Because they may span national or international net-
works, such applications face a number of problems beyond the problems faced by locally distributed systems. For
example, operations can experience additional failure modes stemming from the added complexity of wide area net-
works, and from inconsistent implementations of component subsystems, Scalability can also become a problem,
for operations whose scope spans many nodes. Administrative decentralization introduces a number of other prob-
lems, including security concerns and difficulty of reaching consensus about how the system will operate. And, if
the system provides access to a large number or variety of resources, providing an effective system organization
becomes difficult. Clearly, a number of other problems exist as well.

In this paper we consider techniques for supporting wide area distributed applications in dealing with such prob-
lems. These techniques were developed for experimental prototypes we have built over the past five years on a
number of projects concerning heterogeneity [Bershad et al. 1987, Schwartz, Zahorjan & Notkin 1987] and
resource discovery [Schwartz 1989, Schwartz 1990, Schwartz et al. 1991a, Schwartz & Tsirigotis 1991, Schwartz
et al. 1991b]. While our experiences derive in large part from resource discovery projects, we believe many of
these experiences are of general applicability, for two reasons. First, as a system becomes increasingly large and
administratively decentralized, the resource discovery problem often arises in one form or another. Second, a
number of our experiences pertain to building and deploying software systems that are complex because they are
large and decentralized, independent of what those systems actually do. These issues arise in any system that has
similar characteristics.

Many of the issues discussed here are not specific to any particular level of system support, such as an operating
system. They might just as well be found in a network service, distributed programming environment, or subroutine
package. The essential point is that they concern techniques for supporting wide area distributed applications. In
this sense, the issues we address pertain to a generalized interpretation of the function of an application support
mechanism. This interpretation is reflected, for example, in the Summer 1990 name change of the IEEE Technical
Committee on Operating Systems to include "Application Support Environments" in its name.

In this paper we focus on issues specific to wide area distributed applications. Issues in the design and imple-
mentation of computer systems have been discussed in a general context by Lampson [Lampson 1983], and in the
specific context of locally distributed systems by Black [Black 1985].

The remainder of this paper is organized as follows. In Section 2 we overview the experimental prototypes upon
which the experiences in this paper are based. In Section 3 we present the techniques derived from our prototype
experiences. The techniques we cover relate to fault tolerance, administrative decentralization, scalability, organi-
zation, controlling the spread of distributed operations, and user interface issues. In Section 4 we offer our conclu-
sions.

2. Overview of Experimental Prototypes

In this section we overview the scale, distribution, and basic workings of the wide area distributed systems and
applications upon which the experiences in this paper are based. The techniques used in each system or application
will be considered in more detail in the remaining sections of this paper. A further overview of these and related
projects is available in [Schwartz 1991].

Internet "White Pages"

The first application upon which the techniques in this paper are based is an Internet "white pages" directory tool
called "netfind" that we developed, deployed, and measured extensively [Schwartz & Tsirigotis 1991]. Given the
name of a user and a rough description of where the user works (e.g., the company name or city), netfind attempts to
locate telephone and electronic mailbox information about that user. Netfind uses a number of existing protocols
and highly decentralized sources of relatively unstructured information, allowing it to succeed in the presence of
failures or partial remote protocol support. The scope of the directory is significantly larger than other existing
Internet directory services, which require that users register with an administratively centralized service (as with the
SRI Network Information Center WHOIS service [Harrenstien, Stahl & Feinler 1985]), or that special servers be run
at many sites around the Internet (as with the CCITT X.500 standard [CCITT 1988]). Moreover, because netfind
probes the (highly decentralized) machines on which users do their daily computing, it is able to locate very timely
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information about users. Netfind is in active use by researchers at approximately 50 institutions worldwide, and is
being developed further commercially.

The approach taken in the design of netfind was originally motivated by practical concerns with providing a
facility that could locate a usefully large number of users. To satisfy this goal, the design favored existing informa-
tion sources that were difficult to use because of the scale of their distribution (the global collection of user’s works-
tations). Addressing these difficulties led to a number of generalizable techniques, particularly because the tool’s
usefulness led it to receive a significant level of use.

Most of the techniques in this paper were derived from experiences with netfind, because it uses a number of
unusual mechanisms for dealing with large scale and administrative decentralization, and because to date it has
received the most widespread use and measurement attention of our experimental prototype efforts. Because of this,
we now briefly describe the mechanism used by netfind.

We begin with a database of "seed" data, which provides hints of potential machines to probe when a search is
requested. This database is built by gathering information from the headers of USENET [Quarterman & Hoskins
1986] news messages over time. These headers typically list the user name, organization name, city, and electronic
mailbox for users who post messages. When a search is requested, the seed database is consulted to locate the
names of a number of machines associated with institution keywords specified in the search request. Requests use
the format "UserString InstString [InsiString ...]", where UserString identifies the user (typically by last name), and
the conjunction of one or more InstStrings identify the institution where the user works. For example, a search
could be requested for "schwartz university colorado” or "schwartz boulder”.

If the machines found in the seed database fall within more than three naming domains (an example of one
domain being "colorado.edu™), the user is asked to select at most three domains to search., The Domain Naming
System [Mockapetris 1987] is then contacted, to locate authoritative name server hosts for each of these domains.
The idea is that these hosts are often central administrative machines, with accounts and/or mail forwarding infor-
mation for many users at a site. Each of these machines is then queried using the Simple Mail Transfer Protocol
(SMTP) [Postel 1982], in an attempt to find mail forwarding information about the specified user. If such informa-
tion is found, the located machines are then probed using the "finger" protocol [Zimmerman 1990], to reveal more
detailed information about the person being sought. The results from finger searches can sometimes yield other
machines to search as well. Moreover, a number of mechanisms are provided to allow searches to proceed when
some of the protocols are not supported on remote hosts. Ten lightweight threads are used to allow sets of
DNS/SMTP/finger lookup sequences to proceed in parallel, to increase resilience to host and network failures.

The netfind architecture has a number of implications, which we will discuss throughout the paper.

Internet Resource Mapping/Discovery Project

A second project that fed into the experience base for the current paper is an effort to support resource discovery
in decentralized environments of such scale that the resource space cannot be completely organized. That project
focuses on mechanisms that support incremental organization of the resources, based on the efforts of widely distri-
buted individuals, and a range of different information sources of varying degrees of quality. Our approach to this
problem has two parts. The first part is to use mechanisms that "tap into" existing network protocols and informa-
tion sources to provide an immediately useful tool, in a manner similar to the approach taken by netfind. The
second part involves mechanisms that allow users to superimpose additional organization on the resource space in
an incremental fashion. As a concrete test case, we are developing a prototype that focuses on public Internet
archive sites accessible via the "anonymous” File Transfer Protocol [Postel & Reynolds 1985]. This is an interest-
ing test case, because it encompasses thousands of administratively decentralized sites containing a large collection
of resources of considerable practical value.

The part of this effort associated with tapping into existing infrastructure is now complete [Schwartz et al.
1991b]. In this prototype, three levels of information quality are supported. At the highest level, resources are
described using archive-site-resident databases, with individual resources described according to their conceptual
roles. Below that, per-user and per-user-site caches are maintained, to record resources that have been found by
individual users during their explorations. At the lowest level, the system scans USENET electronic bulletin board
articles using a simple set of heuristics to recognize announcements about public archive sites, to provide a simple
keyword-based index of resources throughout the Internet. We are currently implementing a mechanism to allow
any individual or group of users who share common interests to build a structure (called a view) that superimposes
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organization on the resource space according to their particular biases and interests.

Network Visualization Project

The third project related to the experiences in this paper involves using aggressive resource discovery techniques
to support visualization of characteristics of large internets, such as topology, congestion, routing, and protocol
usage [Schwartz et al. 1991a]. As with netfind and the anonymous FTP prototype, we use a number of protocols
and information sources, to support discovery in the absence of global agreement on any one protocol or informa-
tion source. For the visualization project, however, we are using a much more extensive collection of protocols and
information sources, including the Address Resolution Protocol [Plummer 1982], the Internet Control Message Pro-
tocol [Postel 1981], the Simple Network Management Protocol [Case et al. 1989], and a dozen others. Essentially,
this project is exploring the extent to which one can integrate a heterogeneous, administratively decentralized net-
work by using resource discovery techniques.

‘We have built a prototype implementation that can collect network information using a small number of network
protocols, and that allows a user to retrieve and display this information graphically.

3. Techniques Derived from Prototype Experiences

We divide the techniques we have developed to support wide area distributed applications into six parts. We
begin by discussing techniques for improving fault tolerance, and then techniques for accommodating administrative
decentralization. After that we consider issues in scalability from the perspective of the operational semantics per-
ceived by users. We then consider techniques for organizing a resource space understandably. Next, we discuss
techniques for controlling the spread of distributed operations. Finally, we discuss user interface techniques.

3.1. Fault Tolerance

Wide area distributed applications can fail in a number of ways. Like locally distributed applications, they may
experience host failures, network failures, and software errors. However, because of the scale of the environment,
these errors may occur in more situations, and in more complex combinations. Moreover, in addition to these
failure modes, wide area distributed applications can fail because of heterogeneous administration. For example,
remote nodes may run different subsets of protocols, and may support different information sources.

In this section we consider ways to improve a wide area distributed application’s tolerance to host and network
failures. We consider issues raised by decentralized administration in Section 3.2.

Support Redundancy Through Moderate Parallel Probabilistic Access

The primary means of improving fault tolerance in a distributed environment is through redundancy, for exam-
ple by running multiple servers on independent nodes, and providing redundant network paths to these nodes. To
support this redundancy, there must be some means of managing the information sources and choosing between
them. Traditionally this has been accomplished by using a globally agreed upon replication scheme, such as voting
[Gifford 1979] or primary copy [Oki & Liskov 1988]. As an environment becomes larger and more decentralized,
however, reaching global agreement becomes difficult.

An alternative means of supporting redundancy is to use parallel probabilistic access to remote operations.
Rather than relying on a controlled selection of remote servers, one can invoke a moderate number of redundant
remote operations in parallel, and then choose among their results. Our experience here derives from netfind’s use
of parallel remote SMTP and finger probes to find users. By using such probes, netfind achieves high availability
without requiring any agreement on a replication strategy.

This is an interesting technique, because it suggests a use for parallelism other than the usual reason of speeding
up computationally intensive processing. Because of the inherent latency of long distance communication, wide
area distributed applications may have difficulty realizing parallel speedups. In such a case, parallelism may be
more appropriately applied to improving fault tolerance, and reducing the variance for response time. We
discovered this point when we first added parallel threads to netfind. We found that response time improved only
slightly when changing from 1 to 30 threads: successful search times decreased from approximately 11 to 10
seconds on average, and unsuccessful search decreased from 38 to 31 seconds. This result was somewhat surpris-
ing, given that SMTP and finger queries each take several seconds to complete. The main advantage of parallelism
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turned out to be decreasing the response time for the case where a machine being probed is unavailable, since it
takes a fairly long time for connection attempts to time out in the singly-threaded case. In the multi-threaded case,
the connection timeout is not perceived by the user.

Given that parallelism was primarily useful for increasing fault tolerance, we observed that a small number of
threads would likely achieve the desired effect. We found that reducing the number of concurrent threads from 30
to 10 increased the response time by an imperceptibly small amount, but reduced Internet loading substantially.

Of course, one must be careful to control the spread of distributed operations when using this technique. We
consider this issue in Section 3.5.

Minimize Points of Failure by Coalescing and Localizing Slowly Changing Information

Another way to increase the fault tolerance of a wide area distributed application is to decrease its dependence
on remote information sources. This can be achieved by coalescing slowly changing application information, so
that much of it can be replicated and therefore available locally. In the case of netfind, for example, the entire seed
database requires only 1.4 megabytes of disk space (plus another 2.2 megabytes for the inverted index), and this
database is used only for slowly changing hints. Because of these characteristics, it is quite feasible to replicate the
seed database at all client sites.

By localizing the seed database, netfind determines a good deal of information about the region of domain names
to probe in response to a search request (i.e., the position in the domain tree plus a number of hosts at that domain)
before accessing any remote information sources. Therefore, unlike hierarchical white pages services (like X.500),
netfind does not depend on the proper functioning of a sequence of white pages servers. Of course, it still relies on
correct service from the underlying hierarchies of domain servers and gateways, but we do not add to this complex-
ity with an additional hierarchy of higher level servers.

This technique is also used in the Domain Naming System, since each domain server caches the location of the
(small number of) root servers. That use of the technique is less significant, since the DNS only localizes the infor-
mation for one node in the tree.

Besides the improvement in fault tolerance attained through this technique, the application may also exhibit
better performance, since it does not consult remote servers, and it avoids incurring network overhead. The chal-
lenge in applying this technique is to achieve a balance between the scalability problems of maintaining too much
information locally vs. the fault tolerance problems of relying on too much remote information.

3.2. Accommodating Administrative Decentralization

Locally distributed applications typically assume that a site administrator can simply install a server on a set of
machines, with the servers communicating using some specific network protocol and information format. In con-
trast, in a wide area distributed environment there is no single source of authority, and it may be difficult to reach a
level of agreement sufficient to deploy a wide area distributed application in this fashion. In this section we con-
sider techniques for supporting distributed applications that reduce the required level of agreement.

Accommodate Heterogeneity by Supporting Independent Protocol Subsets

As a prelude to the techniques we discuss in this subsection, we begin with a brief discussion of the X.500 direc-
tory service, as an example of a wide area distributed application that requires a substantial level of agreement.
X.500 is actually a conglomerate specification, with components defining the model (X.501), authentication frame-
work (X.509), abstract service definition (X.511), procedures for distributed operation (X.518), protocol (X.519),
selected attribute types (X.520), and selected object classes (X.521). In order to deploy a server that exports direc-
tory information, a system administrator must (a) agree with the architectural principles that went into forming the
standard, (b) provide the administrative and computational resources to support the large body of software that is
needed to implement the standard [Rose & Schoffstall 1989], and (c) decide what to do about problems that have
not yet been resolved in the standard [Kemezis 1987].

Netfind takes a more loosely coupled approach. Instead of requiring a coordinated set of servers that each sup-
port a highly structured body of information, netfind can often provide directory service even if a remote site does
not support all of the protocols it uses, or if some steps in the protocol sequence fail. For example, if remote finger
service is not supported, mail forwarding information may sometimes still be found. Or, if no mail forwarding



-5.-

information is found, netfind attempts to finger some of the machines matched from the seed database. Similarly,
netfind can proceed without information about authoritative name servers.

Netfind’s tolerance of partial remote protocol support allows it to locate information about a large proportion of
Internet users. Measurements indicate that the scope of the directory is upwards of 1,147,000 users in 1,929 sites
[Schwartz. & Tsirigotis 1991]. This scope is significantly larger than other existing Internet directory services,
including the current X.500 pilot prototype.

This technique is similar to using multiple independent implementations of a function to increase reliability in
the presence of unexpected situations [Siewiorek & Swarz 1982]. It also bears some relation to systems in which a
client and server negotiate at run time to determine the communication protocol [Bershad et al. 1987, Postel & Rey-
nolds 1983]. However, run time negotiation requires agreement on a negotiation protocol. Moreover, using
independent protocol subsets accommodates the case where multiple servers must be contacted, each of which may
support a different protocol, but some of which do not support a negotiation mechanism. Moreover, avoiding a
negotiation step may simplify the computation and therefore increase its robustness.

In general, this independent protocol subset technique is a powerful means of extending the "reach” of applica-
tions whose usefulness is proportional to the number of sites on which servers are running.

Do Not Rely on Exact Behavior From Independent System Components

As a system becomes increasingly large and administratively decentralized, there will often be independently
implemented components intended to provide the same function (e.g., NFS servers implemented by different ven-
dors). Even when a standard exists, there are often differences in the exported interfaces, either due to implementa-
tion errors or to different interpretations applied to situations that were not clearly specified in the standard. A use-
ful technique to apply in this situation is to avoid assuming exact behavior from independent system components.

As an example, the specification for finger and SMTP both leave open the precise format for responses to
queries. In some cases we tried to make netfind parse the results of these queries (e.g., for finding other machines to
search by fingering a particular machine without specifying a user name). In these cases we found it necessary to
add code to handle several common response formats. We did this only when the responses were to be used as
hints, so that our results would be only performance degraded, rather than rendered incorrect. We avoided parsing
the responses from queries in other situations (such as the results of fingering a user at a machine), to render the tool
flexible to as many finger response formats as possible.

This technique assumes increased importance in an environment that contains many subsystems that need to
remain operational in the presence of partial failures. For instance, the AT&T network crash of January 1990 was
caused by an error that spread among network switches that were supposed to be autonomous, but which in fact
assumed that other switches would only send well formed inputs. In response to a certain type of network message,
each switch entered an incorrect state and further distributed the message, effectively disabling a large part of the
network for nine hours [Fitzgerald 1990].

Use Information in its Naturally Decentralized State

While it is often easier to support centralized or moderately decentralized pools of information, doing so has its
costs if information is naturally highly decentralized. These costs include keeping the data consistent with the
"native" data; maintaining the completeness of the database (for example by a manual administrative procedure that
periodically checks for missing entries); and the problem that authority over the correctness and completeness of the
data is transferred away from the native data,

As an example, consider the mechanism used by X.500 to support a directory. In X.500, each participating site
runs a server that maintains directory information about that site. It is the responsibility of each site administrator or
end user to keep the information up to date. Hence, while the overall directory is decentralized (in the sense that the
operation of individual sites is decoupled), the information about users is centralized into a pool per site. In con-
trast, netfind treats each user’s information as a separate, decentralized entity, locating information about users on
their workstations. Because of this, netfind will often locate more timely information about users, and can locate
more users than the current X.500 pilot (since X.500 depends upon sites registering users). With netfind, users and
site administrators need neither register information with an auxiliary database, nor remember to update this data-
base when the information changes.
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On a related note, the initial implementation of netfind used a seed database that saved user names and electronic
mail addresses, in addition to the host names and organization names the current version saves. This information
was then presented to the user in the case where the person being sought has posted a USENET message at some
time in the past. We eventually removed this mechanism, partly to reduce the seed database size. More impor-
tantly, netfind now treats the seed database simply as hint information, and accesses user information from its natur-
ally decentralized location.

Using information where it naturally resides is a technique carried forward from our earlier Heterogeneous
Name Service work [Schwartz, Zahorjan & Notkin 1987]. However, netfind uses much more decentralized infor-
mation than the HNS did. The HNS was essentially a framework for supporting users in specifying the semantic
operations needed to incorporate new auxiliary database-style name services into a global name service. Moreover,
the HNS was used for mapping named objects to data about those objects (such as the network address of a host),
rather than for discovering resources.

Broaden Perspective by Decentralizing the Effort to Build Information Components

Related to using information where it naturally resides is the issue of how information components that comprise
an application are compiled. In the case of a directory service, for example, one choice is to build a directory of
resources through the use of a central curator who controls the information quality, and imposes a uniform organiza-
tion on the information. The disadvantage of this mechanism is that the organization will reflect a single person’s
perspective.

Alternatively, one could use contributions from a range of decentralized individuals. Doing so will increase the
breadth of perspective of the information, but could lower the information quality, or muddle the clarity of organiza-
tion. However, if the information is of sufficiently focused context (see Section 3.4) and is used only as a hint,
breadth can be increased appreciably without an important sacrifice in information quality.

As an example, the netfind seed database is built through decentralized contributions in a narrow context: it con-
tains {institution name, host name} pairs generated by people who post messages. Many different institutional key-
words will lead to the same seed database records and Domain information, which usually makes it quite easy to
guess keywords that will succeed for any particular search. For example, to search for someone at the Mas-
sachusetts Institute of Technology, a user could specify the institution name using "mit" or "massachusetts institute
of technology”; or they could specify the location, using "ma", "mass”, "massachusetts", "cambridge", "boston", or
"lexington"; or they could specify a particular laboratory, using "lcs", "laboratory for computer science", "lab for

computer science”, "ai”, "artificial intelligence lab", "artificial intelligence laboratory”, "lincoln laboratory", "media

lab”, and many other laboratories; or they may specify machine names, such as "allspice”, "theory” or "expo”. In
cach case above, a subset or combination of keys could be specified as well (e.g., "mit media").

On the other hand, the seed database contains some spurious information because of the decentralized nature of
contributions. For example, the machine isis.berkeley.edu shows up under the domain "stanford" because a user
posted a message with the organization line "working at stanford this week". Nonetheless, it is quite easy for users
to ignore the small number of spurious domains in a list, and make effective use of the tool. Moreover, since the
information from the seed database is used only as hints to locate people, this technique will simply increase net-
work load by a small amount if an inappropriate domain is used from the seed database.

3.3. Scalability of Operational Semantics

A common means of enhancing scalability is to relax the semantics of operations. For example, the Grapevine
name service used so-called convergent consistency semantics, which permitted replicated updates to be applied
non-atomically [Birrell et al. 1982]. Of course, relaxing semantics may cause users to see unexpected behavior,
such as mail messages not being delivered to some recipients of a recently updated mailing list [Schroeder, Birrell &
Needham 1984].

This design tradeoff acknowledges the fact that it is difficult to provide guaranteed consistency/transparency
semantics in a scalable way. In the current section we argue further that providing guaranteed semantics of this
nature is actually the wrong approach in a large environment. David Clark made a related point when he argued
against the use of transparency for large scale systems. He pointed out that it is difficult to mask failures in such
systems, and that such failures may surprise users who expect full transparency [Clark 1988].



-7-

This argument becomes more compelling as the environment becomes larger, more administratively decentral-
ized, and more dynamically changing. A wide area distributed application in such an environment may span many
network links and intermediary gateways, operating under the control of a number of different administrative poli-
cies, grades of service, and support for various protocols. This type of environment offers a complex range of
failure modes, from hosts and links being unavailable, to denial of service at various points throughout the network.

The traditional approach to this problem is to agree on a set of global standards, and to specify a controlled repli-
cation scheme. However, systems that require all components to fit into such an agreed-upon scheme may fail in the
presence of components that do not have a complete and correct protocol implementation.

Use Approximate Solutions With User Discernible Failure Symptoms

Rather than trying to provide guaranteed semantics, we believe it is more appropriate to use approximate solu-
tions, with two characteristics. First, the user should be made explicitly aware that operations are not guaranteed to
work. Second, it should be clear when an operation fails. Providing a usable application then becomes a matter of
making operations succeed most of the time and making the failures discernible, rather than handling all possible
failure modes.

As an example, netfind does not guarantee that it can find any user’s electronic mail address, or even that it can
find any user who is on the Internet. Rather, it simply promises to make a "best attempt" search. Depending on the
search specified by the user, the information in the seed database, the information available through the various pro-
tocols used for searches, and failures that may occur in the Internet, netfind may fail to resolve some searches prop-
erly. Yet, it is able to succeed in a large number of cases, and most search attempts that succeed can be reproduced.
Furthermore, when a search fails, netfind attempts to clarify whether the failure reflects a transient host or network
failure, as opposed to the search not being able to locate the individual for other reasons (e.g., because the individual
is at an institution that does not permit inter-domain SMTP or finger probes).

One place where netfind does not make this distinction clear is when a user attempts to search for someone
whose domain is in the seed database, but that domain is not on the Internet (for example, a small company that has
mail forwarded via dialup links to an Internet site). We are currently modifying netfind to determine when this is
the case, and inform the user when it happens.

In contrast to the globally specified server organization and replication mechanisms used by X.500, netfind relies
on its ability to extract organizational information from the seed database and remote protocols, and on the use of
multiple concurrent remote probes to provide fault tolerance. These mechanisms provide only approximate func-
tionality, yet provide more reliable behavior than X.500 currently provides. And because users are explicitly aware
that searches may fail, they are prepared to take other steps if a search does fail (e.g., using different search keys, or
trying the search later). In contrast, because X.500 attempts to provide guaranteed success semantics, it has been
our experience that users encountering failures give up on their searches.

3.4. Organizing a Resource Space Understandably

As the space encompassed by a distributed application grows, it becomes increasingly important to support
operations without forcing users to understand the full organization of the space. Doing so can improve user
friendliness, and can also allow the resource space to be reorganized and searched more flexibly.

Database designers have recognized the importance of shielding users from organizational complexity for some
time, and have successfully addressed the problem for certain types of applications by separating logical from physi-
cal organization. Unfortunately, it may be infeasible to use a database system for supporting resource discovery in a
large scale, administratively decentralized environment. First, in many cases information about resources may
already exist in some form. Often, this information is in a simple format (e.g., user records in the UNIX! /etc/passwd
file), and automatically converting this information to a highly structured format is difficult. Second, even in cases
where one can convert to a structured format, it may be difficult to reach agreement across administrative boun-
daries about the proper structure of the data. Third, to date database systems have focused primarily on problems of
scale in data volume, rather than in scope of decentralization. A different set of techniques is required to support a
wide area distributed database than a database that holds a large volume of information in a centralized

1 UNIX is a trademark of AT&T Bell Laboratories.
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environment. Finally, database systems typically assume strong consistency semantics. As discussed in Section
3.3, these semantics may be stronger (and more expensive) than are needed in many distributed applications.

Because of these difficulties, distributed systems designers typically do not use database systems to support
information needs for systems facilities, such as name and file services. To date these systems have all achieved
scalability through the use of hierarchy [Lampson 1987]. However, the use of hierarchy has problems with support-
ing meaningful and flexible organization.

Use Hierarchy for Delegation, Augmented with Flexible Contextual Grouping Mechanisms

As a hierarchy grows to contain an increasingly wide variety of resources, searching for resources becomes
difficult because users must understand how the (increasingly deeply) nested components are arranged. Moreover, a
hierarchically organized resource space tends to become convoluted and inconsistent as new types of resource infor-
mation are  encoded into  the  hierarchy. For  example, the UNIx file  name
{usersifaculty/schwartz/pdp/montelasynchlinit.o contains (from left to right) information about the file’s disk loca-
tion, creator’s role, creator, research project, research subproject, algorithm variant, contents (init = "initialization
routines”), and file type (.0 = "object code").2 Reorganizing such a hierarchy is time consuming and not easily
accommodated, once a user base has been established. Finally, a hierarchy is inflexible. For example, in searching
for people having technical expertise in three dimensional graphics algorithms, one person might prefer the resource
space to be organized as "/Computers/Graphics/3D/Experts”, while another might prefer an organization like
"{People/Interests/Technical/Graphics/3D".

We do not mean to imply that hierarchies are bad. Rather, we believe that hierarchies are appropriate for a cer-
tain class of problems, but that they do not adequately support resource discovery. We observe that the advantages
of hierarchical organization derive essentially from two characteristics. First, hierarchy supports scalability, by
allowing processing and storage to be delegated in arbitrarily many parts of the tree. Second, hierarchy supports
organization, because it allows related objects to be grouped together. A position in a hierarchy implies some con-
text, and hence a full hierarchical name has more meaning than the end component name. For example, source files
may be grouped together into one directory to reflect the fact that they all form a single program when compiled
together. The directory name adds meaning to the individual file names.

We observe that the scalability of a hierarchy derives from its support for delegation, while its organization
inflexibility derive from its limited means for contextual grouping. Below, we consider ways of avoiding the disad-
vantages of a hierarchy by augmenting it with other techniques for contextual grouping.

Avoid Imposing a Level-by-Level Structure on Searches

A hierarchical structure is often used for abstraction in user interfaces (e.g., presenting the abstraction of folders
containing files). While such abstraction is often helpful to the user who is not familiar with the possible choices in
a system, it is often an impediment to more experienced users. Experienced users usually prefer to directly select
operations and resources that they know exist, rather than searching for them in a level-by-level fashion.

One way to allow experienced users to select operations directly is through the use of search paths, as used by
the UNIX "csh" shell for naming executables, libraries, directories to move to, etc. Search paths work well if the set
of places where needed resources exist is small and known in advance. However, in resource discovery applications
these restrictions do not apply, and other techniques are needed.

Support Flat Searches of a Structured Resource Space Using Contextual Focus

To avoid imposing a level-by-level structure on searches, one can use information retrieval techniques to support
flat searches through a resource space, even if the space is large and structured. The challenge is to avoid the prob-
lems that information retricval systems typically suffer. When searching for a particular type of resource (such as
books about some topic), users of information retrieval systems typically find that their searches either match many
unwanted resources (because of lack of precision of the specified keyword combination) or miss wanted resources
(because of lack of recall of the specified keyword combination) [Salton 1986]. Choosing appropriate keyword
combinations becomes increasingly difficult as the size of the information space increases.

2 This example is a modified version of one given in [Greenspan & Smolensky 1983].
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These problems arise because the context of searches in information retrieval systems is typically very broad.
For example, in response to a search on the keyword "window", a broad context information retrieval system might
respond with some information related to houses, and other information related to computer graphics systems.

To avoid these problems, the context should somehow be narrowed. As an example, rather than forcing users to
manually traverse the resource space (which in the case of Internet users is the Domain Naming hierarchy), netfind
allows users to specify any of a number of different sets of keys to describe the institution where a user works. This
information is then used to select parts of the Domain Naming hierarchy that might be relevant to search, The user
is then presented with a brief list of these domains, and asked to prune the scope of the search to a small number of
sites. Therefore, the context of searches is very narrow: the user must only select terms that specify the name of an
institution, its location, or some other attribute (e.g., that it is an educational institution). This context augments the
hierarchical structure of the Domain Naming System, so that a level-by-level limitation is not imposed on what parts
of the space the user may specify.

If the scope of a resource discovery application is naturally focused, the context may simply be implicit. This is
the case in netfind, where the resources being searched for are users at institutions on the Internet. However, for a
more general resource discovery application (such as our Internet resource mapping/discovery project), the context
must be set in some explicit manner. For this purpose, a promising technique is the use of private views of the glo-
bal space, to allow users to superimpose added organization on a resource space. This is the intent of the mechan-
ism we are implementing for our Internet resource mapping/discovery project. As an example, a person interested
in graphics might build a view that organized the world according to PostScript, Tools, Window Systems, Images,
and Discussions, with pointers from each of these categories to directories on archive sites around the Internet.
Private naming spaces are the basis of a number of other systems as well, such as Tilde [Comer & Murtaugh 1986],
Prospero [Neuman 1989], and Plan 9 [Pike et al. 1990].

In addition to providing a conceptually unified space within which to search for resources, context can also pro-
vide a means to infer semantics that can limit the scope of distributed operations. For example, because searches
take place in the context of Internet mail naming, netfind can make use of Domain and SMTP information to prune
the set of machines probed, by using SMTP to request mail forwarding information about a user on an authoritative
name server for each domain, located by contacting the Domain Naming System. In this fashion, the set of
machines to search is reduced by one to two orders of magnitude in many cases.

Retain Context of Underlying Structured Space in the Results of Flat Searches

Another problem with information retrieval techniques as they have typically been applied is that they require
the user to specify precise keys in order to avoid receiving back a flood of responses. If instead the information is
categorized back into the structure of the resource space, it may be possible to abstract the information far enough
that the user can select among a relatively short list. In the case of netfind, the naming domains within which
matching host names fall are used to provide the user with a brief list to prune. A list of 20 domains can represent
hundreds of machines, allowing a user to prune the scope of the search easily. Information retrieval systems typi-
cally cannot support this technique, because the underlying space is unstructured. The only way to view informa-
tion is via flat, key-based searches.

On a related note, one problem with netfind’s use of this recategorization technique occurs in conjunction with
large domains. If the user specifies institution keys that match hosts in more than 36 domains,? he/she is asked to
reformulate a more precise search. The original motivation for this restriction was to prevent users from specifying
unreasonably broad searches (e.g., using only the key "university"). However, there are some institutions that use
so many subdomains that this technique does not work well. For example, if the user tries to search for someone at
Carnegie Mellon University using the current seed database, 58 different domains are matched. A stop-gap solution
would be to increase the maximum domain limit, but that does not really solve the conceptual problem. A better
solution would be to present the user with a one level abstracted list of matching domains, and then let the user
prune the list in stages. For example, abstracting the bottom level domains from the 58 CMU domains would yield
the second-level domain list consisting of cc.cmu.edu, cmu.edu, ¢s.cmu.edu, ece.cmu.edu, ri.cmu.edu, sei.cmu.edu,
and unige.ch.* The user could then select cs.cmu.edu and cc.cmu.edu, and be presented with a list of subdomains

3 The number 36 comes from the use of the 10 numbers and 26 letters for specifying domains to search.
4 The existence of unige.ch in this list happens because there is a domain called cmu.unige.ch, a point we consider in Section 3.2.
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under those domains. We are currently modifying netfind to do this.

Another reason to retain the context of an underlying structured space in the results of flat searches is so that
users may avail themselves of the structure in progressing to more detailed searches. For example, when using a flat
search mechanism to locate files in a large directory tree, it is often useful to move to the directory where a file has
been found, and examine what other files are in that directory. In contrast, there is no underlying structure in many
information retrieval systems.

3.5. Controlling the Spread of Distributed Operations

Distributed applications intended for use in wide area networks present the possibility of spawning processes at
many nodes distributed around the network. While doing so has powerful potential for supporting loosely coupled
cooperative applications [Kahn & Cerf 1988, Schwartz 1991], it poses some dangers as well. First, there is the
danger that such computations may spread uncontrollably, as in the case of the Internet Worm of November 1988
{Spafford 1989], the bug that lead to the AT&T network outage of January 1990 [Fitzgerald 1990], and a number of
other situations characterized by the Automatic Generation of Messages [Manber 1990]. Second, even if such com-
putations do not spread in an uncontrolled fashion, they may potentially generate a large amount of load on both the
network and the remote machines, without the user’s being aware that this is happening. This problem is particu-
larly important when users must pay for access to the network and remote resources, and when the computation may
span a wide area network.

Because of these problems and the increasing attention being given to security risks [National Research Council
1991], using worm-like techniques in distributed applications has acquired a negative image. It is our perspective
that the concept of a computational worm is inherently neither good nor bad; it is simply powerful. Indeed, such
computations originated in the research community {Shoch & Hupp 1982].

In this section we outline some techniques that, while simple, can reduce a number of the problems of uncon-
trolled spread of distributed operations. We offer these techniques simply as "hints" for addressing the problems.
Because of the dangers of releasing an errant worm computation on a wide area network, we suggest as an open
question the issue of whether a reasonable framework may be developed within which such computations can be
confidently implemented and widely deployed.

We note that our techniques differ from those developed by Manber for limiting "chain reactions” in networks
[Manber 1990]. Manber recommends that all messages be given identifiers, that messages generated by other mes-
sages retain the identifiers of the originating messages, and that hosts maintain a record of the outstanding messages
by identifier, and refuse to generate more messages automatically in response to a message that has already been
seen. While this system of limitations enforces a provable upper bound on the amount of messages that are gen-
erated, that upper bound is quite high for networks with a large number of links. Moreover, it requires a level of
global cooperation in message identification and recording that may be infeasible in wide area distributed applica-
tions.

Impose Redundant Limits

A general problem with complex systems is that it is difficult to predict the range of situations to which a system
will be subjected at run time. This problem is compounded by scale and heterogeneity, since the developer may not
test the application in all the environments within which it will eventually execute. A simple means of reducing the
risk of uncontrolled spread of a worm-like distributed computation is, therefore, to impose a number of redundant
limits on the computation. For example, in addition to limiting in the number of hosts that will be searched, netfind
limits the number of domains to be searched and the number of levels of indirection to use when acquiring new host
names to search. In addition, netfind incorporates a restriction that ensures that the same host is never searched
more than once. Because of these restrictions, even a user who leaves a search running in the background will
never cause an unlimited amount of network activity. Indeed, measurements indicate that the most expensive search
is well within an order of magnitude of the cost of the average search (700 packets vs. 137 packets, respectively).
Of course, additional limits could be imposed as well, most notably a time limit on the total length of a search. In
practice this turns out not to be important, since our measurements indicate that 90% of the time netfind is used
interactively, with users interrupting it if no information is located within a few minutes.
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Impose Position Independent Limits

Netfind’s task of limiting the uncontrolled spread of distributed operations is simplified by the fact that each
invocation of the program has a centralized point of control. Another technique can be introduced in systems for
which this is not the case. This technique is to impose limits that are detectable as having been exceeded from any
position in the network, and which can be enforced even if some nodes do not function properly in limiting the
spread of the computation. For example, rather than relying on the "firewall" effects of network gateways on limit-
ing the range beyond which an application should not spread (as Morris was said to have done in his Internet
‘Worm), the application could check at each step that it is executing on a node within a specified set of allowable
networks. Even if particular nodes incorrectly identify the networks on which they are located, the computation will
refuse to spread itself to nodes that do correctly identify themselves, and that fall beyond the specified limits. We
use this technique for limiting the range of probes in our network visualization project.

Provide a Checkpoint/Resume Mechanism for Communication Intensive, Wide Area Distributed Operations

If an application generates a large amount of network traffic across wide area distributed nodes, it may be pru-
dent to checkpoint the state of the operation periodically in such a fashion that the application can later be restarted
from the place it left off. Doing so can reduce wasted effort in the case of host or network failures, or in the case
where an operation is incorrectly implemented. As an example, to measure the scope of the directory provided by
netfind, we ran a measurement experiment in which we sought to execute the search protocol (Domain lookup,
SMTP probe, and finger probe) on a small number of machines in each naming domain found in the seed database.
As initially implemented, this experiment would proceed properly for several thousand entries into the database, and
then fail and crash due to a programming error. Because of the wide area distributed nature of this experiment,
debugging the problem could only reasonably be done if the problem could be repeated without each time probing
machines from the initial entries in the database. By implementing a checkpoint/resume mechanism, we were able
to reproduce the problem while probing only a handful of domains that had not been successfully probed before.
Note that all of the usual distributed debugging problems arise when debugging wide area distributed applications,
but that the scale and scope of these applications demands that extra precaution be taken to limit the consequences
of a bug on the global Internet.

Even if all of the information to be retrieved resides on one remote node, this problem can still be important.
For example, if a network failure occurs during an FTP file transfer, the user is forced to restart the entire transfer,
because FTP can only retrieve entire files. On the other hand, just because the operations performed by an applica-
tion span a wide area network does not mean that a checkpoint/resume mechanism is needed. For example, netfind
itself (as opposed to the netfind scope measurement experiment) does not use such a mechanism, even though there
is an obvious place where it could do so. Sometimes a user initiates a search that does not locate the desired user,
and then follows that search with a second search with a different set of keys. Unless the user consciously avoids
choosing the same naming domains to search when asked to choose at most three domains, the second search may
repeat some of the effort from the first search. This may particularly be true if the two searches are separated by
time, or if two different users at a site initiate the same search. Installing a shared cache would prevent this situa-
tion. Yet, the load generated by each search is fairly small (about 137 packets on average), and hence a
checkpoint/resume mechanism is not critical.

Limit the Load a User Can Inadvertently Generate

As mentioned at the beginning of this section, wide area distributed applications may potentially generate a large
amount of load on both the network and the remote sites without the user’s being aware that this is happening. To
prevent this problem, it is important to limit the load a user can inadvertently generate during a request, and to make
expensive operations "feel" expensive, by making them somewhat more difficult to specify. As an example, the ini-
tial version of netfind simply initiated parallel searches of each of the hosts matched in the seed database. The
expense of a search therefore depended on users’ being careful to specify searches using keys that would only
match a small number of sites. For example, rather than searching for "schwartz colorado”, a more efficient search
was specified by "schwartz university colorado boulder”. The former would search machines from many different
sites around Colorado, while the latter would search only a few machines. Yet, users are not likely to use the longer
form of the search if the shorter form seems to work as well, since the search mechanism is not evident (unless trace
output is enabled). We therefore added a mechanism to force users to select at most three naming domains to
search. Additionally, we added a mechanism so that if a search was to progress to a more expensive stage, the user



-12-

would be consulted about whether to do so. For example, if no information is found by probing machines located
by the Domain Naming System, the user is asked whether to proceed to the next stage, when individual machines
matched in the seed database are probed. These changes made the expense of searches reasonably match the per-
ceived ease of specifying a search.

This principle also underlies the way the U.S. telephone system forces users to prepend long distance calls
within their same area code with "1", so that they realize they are making a toll call.

A related point is in order here. If a user specifies a limit on the scope of a distributed operation, that limit
should be applied when distributing the operation, rather than letting the application run in an unlimited manner, and
then locally "pruning" the results that are returned. While this point may seem obvious, there are a number of direc-
tory services that limit scope in this "post pruning” manner, leading users to believe that the cost of operations is
more limited than it is.

3.6. User Interface Issues

In this section we consider user interface issues as they reflect the underlying abstractions of a distributed system
or application. As pointed out by Lampson, these abstractions will ideally mask irrelevant detail without hiding
power [Lampson 1983]. This is particularly difficult when an application spans a large, heterogeneous, administra-
tively decentralized environment.

Make an Appropriate "Partnership" Between User and System

Notwithstanding the many years of effort that have gone into building artificially intelligent systems, we believe
that some tasks are inherently better suited to a user than to a system, or vice versa. Systems can easily maintain a
large amount of state about a problem and access this state in complex ways, while users can easily use intuition to
guide them through unfamiliar territory. Systems that divide their tasks into an appropriate partnership between
user and system may be more successful than, for example, systems that expect users to remember many details or
perform repetitive tasks accurately, or systems that try to incorporate sophisticated inferencing ability. Making sys-
tems that can do such inferencing will probably become increasingly difficult as the universe of network accessible
resources becomes increasingly large, heterogeneous, and administratively decentralized.

Netfind is an example of an appropriate user/system partnership. The system deals with the details of accessing
the seed database and executing concurrent remote probing protocols, but makes almost no attempt to understand
the meaning of the information it retrieves. The user, in contrast, is in charge of making basic decisions about
which naming domains to search (based on an intuitive understanding of what the domains mean), and when to ter-
minate a search (because it has either completed successfully, or seems unlikely to do so0).

Provide Progress Indications for Operations with High Response Time Variance

Good response time is a key focus in many distributed systems and applications. Yet, it may not be possible to
provide uniformly good response time for some wide area distributed applications, because such applications may
experience many different queueing delays and failures, as well as large variations in the degree of distribution of
the resources that must be accessed. Unfortunately, high response time variance is perhaps even more annoying to
users than slow average response time.

An effective way to mediate this problem is to provide some type of trace output, so that users may observe the
progress of the application. For example, netfind supports a trace option that allows users to watch each thread exe-
cute Domain, SMTP, and finger lookups. Users report that this output is interesting, and makes the search time vari-
ance much less perceptible. Because of its popularity, we changed the default to be that this output was enabled.

4. Conclusions

In this paper we have presented a number of techniques for supporting distributed applications of national or
international scale. Such applications present particular difficulties, because of the scale and administrative decen-
tralization of the environments within which they run. Our approaches to these problems emphasize simplicity, for
example preferring a solution that usually functions well over a solution that uses deterministic algorithms that
require complex solutions to hide their failure modes.
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The techniques we presented are based on experiences with a number of projects. While our experiences derive
in large part from resource discovery projects, we believe much of our experience is of general applicability, both
because resource discovery is a key problem in large decentralized systems; and because our prototypes have had to
deal with issues that apply to many distributed applications, such as reliability, user interface clarity, and hetero-
geneity.

Our prototype experiences indicate that a powerful means of dealing with the many complexities of wide area
distributed environments is using an extremely loose style of integration. Rather than depending on any single pro-
tocol, information source, system organization, or style of specifying operations, our approach is always to accom-
modate multiple mechanisms in such a fashion that little agreement is needed to provide a coherent application.
While standards are helpful, we believe it is difficult to specify standards that are both globally adopted and techno-
logically current. Loose integration eases the task of building applications that must function in a wide area distri-
buted environment, and provides a means of deploying workable systems that can be improved and evolved as prob-
lems are uncovered from real usage experiences, rather than specified in full before any experiences are gained.
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