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ABSTRACT

The basic properties of waveguide modes propagating on a transversely
periodic array of lossy material are derived. Orthogonality between modes, the
excitation of modes by given sources, the dependence of the propagation constants
on field distributions and material parameters are investigated. Finally a set
of coupled-mode equations for longitudinally tapered waveguides of this kind are
obtained. These equations will provide the groundwork for the analysis of the

reflection of a low-frequency plane wave by a periodic array of tapered absorbers.



1. INTRODUCTION

Periodic arrays of pyramid-cone absorbers made from lossy dielectric
materials have been used for many years to line anechoic chambers employed
for interference-free measurement of electromagnetic fields (11,[2]. These
have performed well at microwave frequencies and above, but must be made
:uneconomically large in order to perform well below 100 MHz. Since FCC rules
for the measurement of electromagnetic interference (EMI) radiated by electronic
equipment specify the use of open-field test sites over a frequency range of
30-1000 MHz, it is of considerable interest to correlate such measurements (which
are susceptible to bad weather conditions and interference from ambient signals)
with ones made in anechoic or semi-anechoic chambers for these frequencies [3].
Ingeed, at the 30 MHz end of this range, different existing measurement chambers
have exhibited a wide variation in performance [4].

From a quantitative theoretical standpoint, only a few studies on the
reflection of waves by pyramid-cone absorbers have been made. At high frequencies
(cone dimensions large compared to a wavelength), a geometrical-optics [5] or
physical optics [6] analysis can be made, both of which predict the extremely small
reflection coefficients observed in practice. For arbitrary frequencies, an
analysis is presented in [28] based on perturbation theory for small values of
complex permittivity (not usually the case in these applications). Also for
arbitrary frequencies, a numerical method is proposed in [29] based on an integral
equation formulation. Though requiring large-scale computations, this approach
is capable of arbitrarily accurate results in principle. However, in practice it
is the Tow-frequency behavior which is of most interest, because precisely in this
range is the reflection from the absorber at its highest. For normaily incident

plane waves at two-dimensional wedges, an analysis of the problem was given by



Bucci and Franceschetti [5] who modelled the probiem in terms of a slowly
tapered equivalent waveguide which propagates only a single mode. Essentially
the same solution had been proposed a number of years earlier by Katsenelenbaum
[7], though no concrete results were given there.

Although it is indicated in [7] that the formulation can be generalized to
account for an obliquely incident planewave, there are a number of subtleties
‘fnvo]ved, especially when lossy media are present. In this report, we shall
develop Katsenelenbaum's work to present a complete formalism for treating the
scattering of electromagnetic waves by a transversely periodic array of lossy
absorbing structures. The array is to be considered as a slowly-tapered waveguide,
whose fields can be described by coupled-mode equations of the usual form.

ATthough much work has been devoted to the study of generai properties of
waveguides which are periodic along their axis of propagation [8]-[13], relatively
Tittle is known even about uniform waveguides which are transversely periodic.
:The case of periodically stacked dielectric slabs (the one-dimensionally periodic
case) has been studied in [14]-[17]. Two dimensional arrays of Tossless dielectric
rods are studied in [18] by a perturbation method and in [19] using a numerical
projection method. For lossless media, results analogous to those obtained in
[20] for Bloch waves in crystals can be used to derive the important properties
of such periodic waveguide arrays. When the array structure is lossy, only the
results of [21] (a further development of [22] and [23]) are available for the
general case, and these are inadequate for many purposes.

In this report, we will develop the orthogonality and symmetry properties
for the modes of Tossy waveguide arrays, derive equations for the excitation
coefficients of the modes by given sources, and obtain expressions for the
complex propagation constants of the modes (as well as their dependences on

certain parameters) in terms of integrals of their field distributions over
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a period cell. In the next to last section, coupled-mode equations describing
propagation along longitudinally tapered transversely periodic waveguides are
derived. These equations will form the basis for an analysis of plane-wave
reflection from a periodicarray of pyramid-cone absorbers which will be detailed

in a Tater report.



2. FORMULATION OF THE PROBLEM

Consider the two-dimensionally periodic array of inhomogeneous
magnetodielectric cylinders shown in FIg. 1. For simplicity, we assume that
the periodic Tattice is rectangular, so that the complex permeability u and
complex permittivity e, which are otherwise arbitrary functions of the transverse

.variables x and y, satisfy the relations

u(x + pa, y + gb) u(x,y)

(1)

e(x + pa, y + gb) e(x,y)

where p and q are arbitrary integers. The behavior of the material parameters

A

X +a, y

e and p over any period cell C: {xO £ X o

o gy £ Yo + b} is thus
infinitely replicated over the other cells of the lattice. For simplicity, we
also assume that no perfect conductors are present in the Tlattice, although we
could easily account for them by a minor modification of the subsequent analysis
(e.g., by taking the T1imit as the conductivity approaches infinity in a certain
portion of the period cell).

We seek the waveguide modes of this array. In other words, we seek source-

free solutions of Maxwell's equations of the form

€ (x,y)e IB?

. 2
¥ (x,y)e IB? @

E(x,y,z)

H(x,y,z)

as well as any relevant boundary conditions. When the longitudinal field

components €Z and %} are eliminated from Maxwell's equations,
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we arrive at [24]
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where the subscript "t" denotes the tranverse (xy) part of a vector or operator,
and 52 denotes the unit vector in the z-direction.
Now according to Bloch's theorem (see, e.g., [20] or [21]) such modes will

be such that -

Euy) = e ©FL(x,y)
(5)
#(x,y)
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[¢]
n

po g
——
x
<
N

where the functions ?E and ?H are periodic with the same periods as the material
constants (eqn. (1)) while Et = axkx + iyky is a given vector with real components
andva = axx + 5yy. Indeed, if such an array which is semi-infinite in the z-
direction (z > 0) is excited by an arbitrary wave in empty space (z < 0), the
incident wave can be broken down into a spectrum of incident plane waves, each
of which has a transverse variation of exp(-jEt . p). Each Bloch wave with a
given value of Etis thus a part of the response to an individual plane wave
excitation. We shall sometimes emphasize the dependence of the fields and propa-
gation constant on Et by writing E(x,y: Et), ¥(X,Vy; Et) and B(Et).

The set of modes for this structure, for reasonably physical behaviors of
u and €, is countably infinite and discrete [21] for any given Et' We denote

—

the fields and propagation constants of these modes by the index m: & Y

m’ m’ Bm'
As can be seen from egn. (4) and the boundary conditions, for any forward propa-
gating or attenuating mode (with Im(Bm) < 0, or Im(sm) =0 and Re(Bm) > 0) there

is a corresponding backward-going mode, with
Bom(Re) = =Bp(ky)s (k) = 2 (k)5 W (k) = -7 (k) (6)

We will denote forward-going modes by m > 0.
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We must at this point make an important assumption which is quite reasonable
from a physical standpoint, but which in any degree of generality is very
difficult to prove with mathematical rigor. This is that the modes form a

complete set.* More precisely for this case, suppose that a set of externally

applied electric and magnetic current sources J and M are present which have the

Bloch wavenumber Et:

- -\jkt'p_
J(x,y,z) = e Fy(x,y,2) (7)
- -jEt'a_
M(x,y,z) = e Fu(x:y,2)
where
Famx ¥ pasy +ab, 2) = Fj (x,y,2) (8)

Then the completeness assumption means that the resulting field has transverse

components which are representable as a sum of the waveguide modes:

- _ ‘* 'ijZ —
Et(xayaz) - L Cm e gmt(x"y)
m20
) (9)
- _ ¥ 'ijZ —
Ht(xayaz) - L Cm e %nt(x"y)
m20

At cross-sections z where J or M is not zero, the Cm are generally functions
of z. Using (6), eqn. (9) can be written in the form of a generalized trans-

mission Tine representation

*

In exceptional situations, so-called "adjoined" modes can arise in lossy
waveguides when two ordinary modes become degenerate [25] in such a way that N
defined in egn. (21) below becomes zero. The theory can be generalized to m
take account of this, but we will assume that these situations do not arise here.
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Et(x,y,z) = E V. (2) Eﬁt(x’y)

m>0
(10)
He(X,y,2) = E Zo 1(2) AL (x,y)
m>0
where
-jB, z JB, z
— m m
Vm(z) = Cm e + C-m e
(11)
-jB z JB _z
_ m- m
z1.(z) =¢C e e

and Zm is a "characteristic impedance" which is a constant for each mode, but is
otherwise arbitrary.

In order to make use of the completeness property, we require the orthogonality
property for modes on this structure. The derivation follows fairly standard lines
(e.g. [24]) although we will find that, in order to have boundary terms in the

transverse direction vanish, we must consider two fields given by

_ -8 (k. )z
I Et) o IPmKe
m (12)
_ -3, (k. )z
ma = m ot
H® = &ﬁ(kt) e
and
_ - -jB (-k.)z
Eb en(—kt) e t
(13)
b= =B (-ky)Z
H™ = %h(—kt) e

so that one of the fields corresponds to a Bloch wavenumber exactly opposite to

that of the other. Since (12) and (13) represent source-free solutions to Maxwell's
equations, we apply the Lorentz reciprocity theorem to them, on a volume whose
transverse cross-section is any period cell C, and which extends from Z; £z¢sg Z,,

for two different values of z, and Z,. Because of the quasi-periodicity
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conditions (5), and the fact that we have chosen the Bloch wavenumbers in (12)
and (13) opposite to each other, the surface integrals on the transverse sidewalls
(x = const and y = const) cancel out, and we are left only with integrals over the

z = const walls:

[ -3(8 (ko) + B (-K))z,
e X

-3(8 (R,) + sn(-it))zl']
- €

« | [‘€m<Et) x %, (-ky) - B (k) x T (K
C

Since z, and z, are arbitrary, we have

f [Em(ﬁt) x ¥ (-k,) - € (k) xfafm(Et)] +a,ds =0
¢ _ _ (14)
if g, (ky) + B (-k.) #0

Replacing n by -n and making use of (6), we can also express (14) in the form:

J' [E%('t) x Q;(-Et) + ‘E;(-Et) x Eﬁgﬁt)] . 5st =0

if gu(ky) - B, (k) # 0 (15)
Adding (or subtracting) £14) and (15) gives the simpler relation

j £ (k) x ¥ (-k) - ads=0

¢ (16)
s 2(k 2(-k
if g2(k.) # B2(-K,)

This is the mode orthogonality relation we desire. As usual, if there is
anm # n for which Bm = Bn’ we will assume that the corresponding mode fields have
been orthogonalized using the Gram-Schmidt procedure.

If the mode set is complete, we can explicitly evaluate the expansion

coefficients in (9) due to the sources of egn. (7). When the field components
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EZ and HZ are eliminated from the most general form of Maxwell's equations

with sources, we obtain [26]:

3 E J
- —L - 5uf ox3 -Lorlo LF . M x 3 +-iy (-2
9z Juu Ht X 3 Jw Vt[s Vi (Ht . az)] * M 3, * jwvt( € )
- (17)
(e juea, x B, -=— v [fv, - (A xE)]+3x 3+l (@E)
3z z t Ju "ty 't z t b4 Jw "thy

(compare egn. (4)). Note that (17) is valid even when ¢ and u are functions

of x, y, and z. Taking the dot product of the first equation of (17) with

ﬂ;(-Et) x EZ and integrating over C, doing a similar thing with a_ x Eﬁ(-Et)
and the second equation and performing some integrations by parts with the help

of (4) gives

[ E o (k) - 5 = e (R [B (R x -3
-4 j B, x W, (k) - 5,08 = jp_(-k,) f E (-K,) x i, - 3_ds
c

t
C
(18)
+ f i, - % (k) - 9 & (-k,)1ds
C
and
d - = = s (L = = -
Tdz j Enl=ke) x Hy - a,dS = g, ( k) f Ep x &, (=ky) - a,dS
C C
(19)
1 EIRRAC R RRE )
C
Subtracting (18) from (19), and using (9) and (14) gives, after some further
manipulation,
T C(k)-M. & (-F - 20
f 3B (R - M- T (-R)Ids (20)
C

d . - -jﬁn(Et)z = = — = —
= [gz +i8,(k)I0C,e ]L[ EalRe) = Ty oky)= B (k) (R - 3
(if there is a sm(Et) = - sn(-Et); for the corresponding C» t% and ¥ ): or

= 0 (if there is no Bn(ke) = = 8, (-k)).
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Now for any given Bn(-Et), only one of the choices in eqn. (20) can be
true, and that choice must be the same regardless of what J and M are. So
suppose that we take J = aes (x = x,)8(y - y,)8(z - z,), where 5e is some constant

vector, and M= 0. Then the left side of (20) is

8n(XO

. Y5 mk)s(z - zy)
and unless E%(-Et) is identically zero (a trivial case that we exclude), then
the second alternative in (20) is not allowed. This implies two things:
1) For every nontrivial mode solution { 8m(kt), &h(kt)’ ﬁm(kt)}
of this structure, there is a corresponding backward
propagating mode which has the opposite Bloch wavenumber
(-kt) and which we denote by {a_m(—kt), &:m(-kt), B_m(-kt)}, such
that Bm(Et) = - B_m(-Et). The further symmetries implied by (6) mean
that (at Teast in the absence of mode degeneration) we always
have Bm(-Et) = Bm(Et), even though in the absence of simplifying
conditions 1ike reflection symmetry or losslessness we cannot generally
L E (ot VAR - — = .
find m( kt) and &h( kt) in terms of Sm(kt) and &ﬁ(kt) in any
easy way. These fields must generally be constructed specifically
in each individual case.
2) The integral
[0 ok * (R - B Ry * (k)T - 3 e
C

= - [ LR x (R + Bk * B (kYD - 3 s
C
appearing in the first alternative in (20) is not zero. Takingm =n

in (14), and assuming Bm # 0 (a cutoff condition),we can write in

complement to (16):



N

= N (k)
which defines the norm Nm of the modes corresponding to tEt.

Evidently, Nm is an even function of Et'

Hence, egn. (20) for determining Cm can be written
d . = -ij(Et)z _ 1 < = AT C
[—d_Z- +J Bm(kt)] [Cm e = "2—[\'1——{-_‘(-—; JJ' 8_m( kt) M ,'({{_m( kt) dsS
mt’ C
which can be solved for Cm in the usual manner of the theory of ordinary

differential equations.

(22)
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3. PARAMETRIC DEPENDENCE OF THE
PROPAGATION CONSTANTS

In this section, we develop some expressions for the derivatives of g with
respect to a parameter of interest of our structure. These parameters include
w, Et’ and any parameter s upon which the medium parameters e and u depend.
These formulas are quite similar to analogous ones for ordinary waveguides, or

for longitudinally periodic waveguides [8], [9], [12], [20]. The derivations are

carried out in the Appendix; we merely quote the results here.

1) The derivative of Bm(Et) with respect to w is given by

awm_ J[a(m) Blfy) + Eoploky) - ST (R« (R T s (23)

2) If € and p depend on a parameter s which is independent of w, then

3B

s - 2N J[ En(ke) B (k) - 35 ® (k). M (-k,)1ds (24)

3) The derivatives of Bm with respect to the components of Et are

_ 3B 38
_ m = m
v B = a vy + a Y
k"™m X 3 X y aky
=L - - -z — - —
i § 55, DRy x Tp(ky) = T (Ry) x i (R,)Jde
B
(25)
= -—l j > (kK rYa -l - 7 " or (T
2N ! [ fn(Kg) M (k) € pl-ky) x ﬁ%(Kt)]tdS

where B is the boundary of C, and én is the unit outward normal

vector to B in the xy-plane.
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4 . COUPLED—MODE EQUATIONS
FOR TAPERED SECTIONS

We now permit € and u to be functions of z, so that at each cross-section z,
the mode fields %ﬁ, ‘E% and propagation constants Bm are also (parametrically)

functions of z. That is, these local normal modes are the modes which would exist

on a longitudinally uniform structure whose cross-section is the same as that of
fhe tapered structure at the given value of z. We have in mind a gentle taper
of the sort shown in Fig. 2. While the coupled-mode forma]isﬁ is in principle
exact for any taper, it is most suitable when the taper is fairly gentle, as we
shall see in future publications.

Within coupled-mode theory, we assume that a field (corresponding here to a
given value of Et) can be expanded as a sum of the local normal modes:

E(x,y,2) = Z An(z) & (X,y,2)

m20
(26)

Hi(x,y,2) = mZO AL(Z) & (%,y,2)

<

Note again the parametric dependence of £and ¥ on z, here displayed explicity.

If no impressed sources exist in the tapered region, we have from (17),

Ok, o= 1 1 = -
- 7 Jun Ht x a, o A [E Vi oo (Ht x az)]

v (27)
-ﬂ=jwaxz-LvElv (3, x E,) ]

3z 2 Rt i e by et 82 R

while for the local normal modes themselves, we again have egn. (4):

: = ey s - Lorlv s 3
By Epy = Juw K, x a4 T iw vl ¢ (g[mt X az)]
(28)

i8 T = iuca g - 1ol . (3 z
Iy Myt = Jwea, x &4 jw Vt[u V¢ (az x &)l
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In equation (27), dot multiplying by Nh(-kt) x a, and a, x &n(-kt)

respectively, and integrating over C as with egns. (18) ff., we get

3E )
t rva i 1 - - L4 - a —- 0 .
- S Bk - ads = s Ry | B (R < Ay -3, e
C c
and _
o o, i - 3
) J Enl-ky) x =57+ 3, 45 = 38, (k) J By * Wpltkg) - a,ds
C C

Now we substitute (26) into (29) and (30), and use orthogonality (14) after

subtracting (29) from (30):’

Anlz) + 3B ()R (2) = ) A (2)C (2]
220
where
8T, (k,) 3%, (k)
=1 2t T et -
Cog(D) = = | 7 (K - T (k) x—e 1.3 ds
o

Equations (31) are the analogs of the coupled-mode equations obtained in [27]
and [24] for nonuniform waveguides, and are the appropriate generalizations to
non-normally incident waves of the equations in [7]. |

As in [27] and [24], the coupling coefficients sz for By # B, can be
rewritten in a form explicitly dependent on 3e/3z and o8w/3z. The derivation

is given in the Appendix, with the result that:

(29)

(30)

(31)

(32)

Cne(2) = 2Nm(§m- By ) J [%§ Ez(Et) Ttk “%% ¥y (ke)e (ki )1ds

(8, # 8,)
Little can be said in the general case, apparently, about Cmg(z) when Bm =B .

It can only be calculated by use of (32).



_15_

5. CONCLUSION

In this report, we have outlined the general properties of the longitudi-
nally propagating Bloch waveguide ﬁodes of a transversely periodic Tossy array.
The derivation has been done for the most general case of two-dimensional
periodicity, but all of the properties apply to the case of one-dimensional
:periodicity when all structures and fields are independent of y. All integrals
with respect to y are eliminated in this case, while 3/3y is set equal to zero
in any operation in which it appears.

Thus, the framework has been set up for the study of oblique plane-wave
~reflection from a periodic array of tapered (pyramid-cone or wedge) absorbers,
generaiizing the approach of [7] and [5] from the case of normal incidence.

To address a specific geometry of absorber, we are still faced with the problem
of finding Eﬁv Eih and B, ~- at least for all the above-cutoff modes--and
evaluating the le, in order to be able to-solve egns. (31). This task can be
simplified if we are content with a iow-frequency approximation to the funda-
mental medes only. All these questions will be addressed at Tength in future

reports.
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APPENDIX

Derivation of the Formulas of Section 3

A.1l

Consider the fields

_ _ . -jB z

E? = E (k) e m

(A.1)

-jB 2z

=a _ == m
HY = &%(kt) e

which are source-free. Consider also the fields

b8 r oy SPn?y _ B8onTke) 8y By
EY = ga (Bpltky) e 7 ) = I +Jz 57 &_p(cky) e

(A.2)
I P T IO W
HY = 35 ( M pl-kge 7 ) = [—5= +Jz 5= W (k) ]e

which are not source-free, but by differentiating Maxwell's equations by w

must be supported by the sources

=b . agwf—:!‘—, _T ‘ijZ
J N e -m( kt)e

(A.3)

_ — B,z
W= g el 7 ket

Jw

Let us now apply Lorentz reciprocity [24] integrated over the volume whose

cross-section is a period cell C and which extends from z, to z, (as in the

derivation of (14)).

From the quasiperiodicity of (A.1) and (A.2), the transverse boundary

terms add to zero, while the remaining surface and volume integrals give,

after some cancellations and rearrangement,
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B 1 3 = (T (- W) = (kY. = (-K
el S A OO, v AT SRR
C

(A.4)
where Nm is defined by egn. (21). We have Teft open the possibility that

e and u may be functions of w.

‘A2

In an almost identical fashion, suppose that € and u depend upon a

parameter s, which is independent of w. Then instead of (A.4), we have

=N

o= 2 Bk B (k) - (k) T (-k,)1dS (A.5)
t t t m "t

3
s m -m as
C

Next, let us differentiate by a component (say kx) of Et’ rather than by

w or s. We have

3 €_ (-k,) el B z
=b _ -m' 't m - m
En = I fIzag Epltkidle
(A.6)
oW (-k,) 38 Bz
=b -m* 't m = m
el Iz g, Manltke)le
X X
and Eb, i® is source-free (k, does not explicitly affect the terms appearing

in Maxwell's equations). The quasiperiodicity of Eb, ﬁb, has, however, been

affected. Indeed, we now have that (cf. (5))

9 e'--m(-kt) = jx & (-k
akx

periodic function)

and similarly for 3 Eﬁm(-ﬁt)/akx . The Lorentz reciprocity theorem now gives
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2 = Eﬁ; §oxd, - [E,RY x TRy - B (k) < Ty(R)lde (A7)
B

where B is the boundary contour of C and 5n is the transverse outward unit

normal to B. A similar formula can be derived for the derivative with respect

to k., and we have:

y,
- 9B - OFp
i = 3% « * 3y 3k
y (A.8)

S f pa s [E(R) x m (k) - & (k) x 7 (K)1de
B

Now, as can be readily proven, the transverse divergence of the bracketed
vector in the integrand of (A.8) is zero. Use of the two-dimensional diver-

gence theorem thus results in

e T ar | DER) x TRy - k) < Bfplds (A9
C

which is our desired result.

A.4

Finally, let € and u .depend on z, put

_
m ot (A.10)

(which are source-free fields), and



3 €, (k) 3(z8,) 1 -38,2
=b _ . 4 —_ r [}
E” = az T J Tz & (kt)Je
i (A.11)
[ = - 1
s ¥ (k) 3(zg,) -jB,z
b _ S O 2 vl 2
= | 8z J Tz %&(ktn €
which must be supported by the sources
=b _ . 3g = ,= -jBSLZ
J° = jw 37 6£(kt) e
. (A.12)
_b o §.]:l. — - -JBZZ
M™ = juw 52 ”i(kt) e

We apply Lorentz reciprocity again to the same volume whose cross-section is the

period cell C, and make use of orthogonality (14). The final result is

op — _
- - =@ | rde R & (-k. )-2u R)% (-k
(Bm Bz)cml 8z <SSLm ZNm J 9z 62(kt) a-m( kt) 9z uk(kt) Nlm“ kt)]ds
C
(A.13)
where sz is given by :(32), .and
Sme = 1 1T By =By
_ (A.14)
= 0 if 8, %8,
When m = ¢, egn. (A.13) reduces to a special case of (A.5), but gives no
information about Cmm itself. When m # 2 , however, we get
- W € T KV-F (k) - T (k-
sz - 2N_(8_-8.) J [az &z(kt) 5-m( kt) 3z N@(kt) &’m( k )]dS
m''m "¢ C
(A.15)

which is an alternate form for eqn. (32).
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Figure 1: A transversely periodic waveguide.
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Figure 2: Tapered transversely periodic waveguide.



