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SUMMARY

Cortistatin A (CA) is a highly selective inhibitor of the
Mediator kinases CDK8 and CDK19. Using CA, we
now report a large-scale identification of Mediator ki-
nase substrates in human cells (HCT116). We identi-
fied over 16,000 quantified phosphosites including
78 high-confidence Mediator kinase targets within
64 proteins, including DNA-binding transcription fac-
tors and proteins associated with chromatin, DNA
repair, and RNA polymerase II. Although RNA-seq
data correlated with Mediator kinase targets, the
effects of CA on gene expression were limited and
distinct from CDK8 or CDK19 knockdown. Quanti-
tative proteome analyses, tracking around 7,000
proteins across six time points (0–24 hr), revealed
that CA selectively affected pathways implicated
in inflammation, growth, and metabolic regulation.
Contrary to expectations, increased turnover of
Mediator kinase targets was not generally observed.
Collectively, these data support Mediator kinases as
regulators of chromatin and RNA polymerase II activ-
ity and suggest their roles extend beyond transcrip-
tion to metabolism and DNA repair.

INTRODUCTION

An important first step in understanding the cellular function of

kinases is to identify the substrates that they modify. This first

step has remained a persistent challenge, in part because of

the difficulties in the development of highly potent and selective

kinase inhibitors. The human CDK8 kinase exists in a 600-kDa

complex known as the CDK8module, which consists of four pro-

teins (CDK8, CCNC, MED12, and MED13). The CDK8 module

associates with regulatory loci on a genome-wide scale (Kagey

et al., 2010; Pelish et al., 2015), and global targeting of the

CDK8 module appears to reflect its association with Mediator

(Allen and Taatjes, 2015). CDK19, a paralog of CDK8, emerged

in vertebrates and has high sequence similarity to CDK8,

including nearly identical cyclin binding and kinase domains.

Comparatively little is known about CDK19; however, it appears

to assemble into an analogous CDK19 module in human cells

(Daniels et al., 2013).

Based upon their association with Mediator—a global regu-

lator of RNA polymerase II (pol II) transcription—CDK8 or

CDK19 may broadly impact gene expression patterns; however,

physical knockdown of CDK8 or CDK19 protein levels had rela-

tively modest effects in HCT116 cells, with 2-fold or greater

changes in expression of several hundred genes (Donner et al.,

2010; Galbraith et al., 2013). Whereas knockdown studies do

not address the role of the kinase activity per se, these data sug-

gested limited roles for the Mediator kinases in transcriptional

regulation. In agreement, gene expression analyses with the

CDK8 ortholog in yeast, Srb10 (Holstege et al., 1998), revealed

that about 3% of genes were regulated by Srb10 kinase activity.

Similarly, limited effects on yeast transcription were observed

in vitro and in vivo upon selective inhibition of Srb10 (CDK8) ki-

nase activity using an analog-sensitive mutant (Liu et al., 2004).

Most genes affected by kinase-inactive mutant Srb10 (CDK8)

were involved in cellular response to nutrient stress (Holstege

et al., 1998).

The biological roles of human CDK8 and CDK19 remain poorly

understood, in part, because a more-comprehensive identifica-

tion of their substrates or the genes specifically regulated by their

activities has been lacking. Our recent studies with the natural

product, cortistatin A (CA), showed that CA is a potent and highly

selective inhibitor of the Mediator kinases CDK8 and CDK19

(Pelish et al., 2015). CA binds the CDK8-CCNC dimer with sub-

nanomolar affinity (Kd = 195 pM) and two distinct kinome

profiling assays, which collectively probed approximately 400 ki-

nases, ultimately confirmed only CDK8 and CDK19 as targets of

CA, even with analyses completed at 100 times the measured

half-maximum inhibitory concentration (IC50) for CDK8 (Pelish

et al., 2015). Given these and other data showing the unusual

selectivity of CA, we could begin to probe the cellular function

and targets of CDK8 and CDK19.

Here, we report the large-scale identification of Mediator ki-

nase (CDK8 and CDK19) substrates in human cells, using stable
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isotope labeling of amino acids in cell culture (SILAC)-based

phosphoproteomics. We couple these results with global anal-

ysis of gene expression changes (RNA sequencing [RNA-seq])

that result from targeted inhibition of Mediator kinase activity.

Furthermore, we assess potential Mediator kinase effects on

protein turnover using quantitative proteomic analyses across

six time points spanning 24 hr of Mediator kinase inhibition.

HCT116 cells were chosen for this study for several reasons.

First, although CA potently inhibits Mediator kinase activity in

HCT116 cells (Pelish et al., 2015), proliferation is not affected.

This eliminated potential confounding effects, such as induction

of cell-cycle arrest or death, which could have complicated our

analyses. Second, CDK8 is a colon cancer oncogene that was

uncovered, in part, by a small hairpin RNA (shRNA) screen in

HCT116 cells (Firestein et al., 2008). Third, published gene

expression data exist in HCT116 cells with stable CDK8 or

CDK19 knockdown (Donner et al., 2010; Galbraith et al., 2013),

which allowed us to directly compare and de-couple the effects

of subunit knockdown versus targeted inhibition of kinase

activity.

RESULTS

Quantitative Phosphoproteomics in HCT116 Cells ± CA
To identify cellular CDK8 and CDK19 substrates, we used

SILAC coupled with a phosphoproteomics workflow. Experi-

ments were completed in HCT116 cells supplemented with

heavy (Arg10 and Lys8) or light (Arg0 and Lys0) amino

acids. Control (DMSO) and CA-treated cells were harvested

and mixed 1:1 based on total protein content (CA structure

shown in Figure 1A). Phosphopeptides were isolated using

titanium enrichment, followed by offline electrostatic repul-

sion hydrophilic interaction chromatography (ERLIC) with

liquid chromatography-tandem mass spectrometry (LC-MS/

MS) for phosphosite identification (Figure 1B). We collected

24 fractions during ERLIC fractionation, with an average

phosphopeptide enrichment of over 50% in biological tripli-

cate experiments (Figure 1C). In total, over 16,000 heavy-

light (H/L) phosphosite ratios were quantified (Table S1)

and over 12,000 were present in at least two biological rep-

licates (Figure 1D).

The majority of phosphosites were unaffected by CA treat-

ment, clustering around zero in a log2 plot of H/L SILAC ratios

across replicate experiments (Figure 1D). This result indicated

good reproducibility and provided further validation of CA

specificity. Many decreased phosphosites were highly corre-

lated across replicates (highlighted green in Figure 1D); in addi-

tion, we identified a smaller number of phosphosites that

increased upon CA treatment (highlighted peach in Figure 1D;

Table S2). Representative mass spectra for SILAC pairs shown

in Figures 1E and 1F are from experiments in which either light

(E) or heavy (F) cells were treated with CA. For two of three rep-

licates, the heavy population of cells was CA treated, whereas

in one replicate, light cells were CA treated, representing a label

swap. For data analysis purposes, a reciprocal of the H/L ratio

was calculated for the label swap experiment, such that

decreased H/L ratios could be evaluated across all biological

replicates.

Mediator Kinase Substrates Are Largely Transcription-
Associated Proteins
The phosphoproteomics workflow in Figure 1B identified novel

phosphosites whose intensities decreased significantly with

CA treatment (Figure 2A). We identified 78 phosphosites, repre-

sented in 64 proteins, that we designated as high confidence

based upon (1) their quantification in at least two of three biolog-

ical replicates, (2) a reproducible mean H/L ratio across repli-

cates, and (3) a significant decrease in H/L ratio with CA treat-

ment as determined by an empirical Bayes analysis (Margolin

et al., 2009; Ritchie et al., 2015). These high-confidence phos-

phosites are summarized in Table 1 and Figure 2A, and all quan-

tified phosphosites are shown in Table S1. To ensure that a

reduced H/L ratio did not result simply from a change in protein

level, we completed a quantitative proteome analysis in parallel

with phosphoproteomics. Importantly, very few high-confidence

phosphosites exhibited any change at the protein level with 1 hr

of CA treatment (Table S2). Those that did change somewhat

were FOXC1, MAML1, KDM3A, and ATF2, although some of

these changes were not consistent across deep proteome repli-

cates, and most of the phosphosite changes remained signifi-

cant even after accounting for small changes in protein level.

Although phosphosites not designated as high-confidence sites

could represent bona fide Mediator kinase substrates (e.g.,

those that are quantified in only one biological replicate), we

will only discuss targets designated as high confidence based

on the criteria above.

To determine whether an H/L ratio for a phosphosite changed

significantly with CA treatment across replicates, we employed

an empirical Bayes statistical approach using the limma software

package (Ritchie et al., 2015). An empirical Bayesian framework

allowed for the calculation of adjusted p values for each phos-

phosite (Figure 2B). This approach can account for experi-

ment-specific differences, which is advantageous compared to

more arbitrary approaches, such as a universal fold-change cut-

off (Margolin et al., 2009). We found that more phosphosite ratios

decreased than increased upon CA treatment, as expected with

targeted kinase inhibition for a short amount of time. This is

shown by a higher number of data points on the left side of the

volcano plot compared to the right side, using an adjusted p

value cutoff of 0.1 (Figure 2B; see also the Supplemental Note

in Supplemental Information).

We used iceLOGO (Colaert et al., 2009) to determine statisti-

cally enriched motifs within the identified Mediator kinase sub-

strates. We found that the majority of the phosphosites con-

tained an S/T-P motif (Figure S1A). Additionally, a proline at the

�2 and �1 positions relative to the phosphorylation site was

over-represented. These data support the notion that many

CDK8 phosphorylation sites occur within PX(S/T)Pmotifs as pre-

viously suggested (Alarcón et al., 2009; Bancerek et al., 2013).

Serine was more frequently phosphorylated than threonine (Fig-

ure S1A), and we did not see evidence for over-representation of

basic residues at positions C-terminal to the phosphosite, as

observed with other CDK motifs (Ubersax and Ferrell, 2007).

Because few substrates for human CDK8/19 have been iden-

tified, the analysis uncovered many phosphosite targets (Table

1). Many targets are DNA-binding transcription factors (TFs),

chromatin regulators, or other known regulators of pol II activity
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(Figures 2A and S1B), consistent with the established role of

CDK8 in transcription. Additional substrates, including proteins

implicated in DNA replication and repair (BRCA1 and MDC1)

and ubiquitination (HUWE1 and CUL4B) suggest biological

roles for Mediator kinases beyond transcription. A known

CDK8 substrate, STAT1 S727 (Bancerek et al., 2013), was iden-

tified as a high-confidence target, and other novel phosphosites

reside in proteins that interact with CDK8-Mediator and/or

the CDK8 module, including AFF4, MAML1, and Mediator

subunits (Figure 2A; Table 1). AFF4 is a core component of the

Figure 1. Quantitative Phosphoproteomics in HCT116 Cells ± CA

(A) Cortistatin A (CA) structure.

(B) Overview of phosphoproteomics workflow used to identify Mediator kinase substrates.

(C) Unique phosphopeptides identified with LC-MS/MS after ERLIC fractionation. Average of biological triplicates is represented.

(D) CA treatment with quantitative phosphoproteomics reproducibly identifies Mediator kinase substrates. H/L ratios quantified in two of three biological rep-

licates are plotted on the x and y axes. Plot shows proteins whose H/L ratios decrease (green) and increase (peach) upon CA treatment.

(E and F) Representativemass spectra. Spectra shown are from replicates in which either the light (E) or heavy (F) cells were CA treated. Differences in SILACpairs

are shown based on the labeled amino acid; Arg(10) in (E) and Lys(8) in (F). The charge is +2 for both peptides.
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super-elongation complex (SEC) (Luo et al., 2012), which co-pu-

rifies with CDK8-Mediator (Ebmeier and Taatjes, 2010), and

MAML1 is a Notch pathway co-activator that recruits CDK8 to

Notch-dependent genes where it phosphorylates the Notch

ICD (Fryer et al., 2004).

We submitted the 64 CDK8/19 substrate proteins to the

STRING protein-protein interaction database (Szklarczyk et al.,

2015) and found that six Mediator complex subunits, three sub-

units of the TIP60/NuA4 complex (EPC2, DMAP1, and MRGBP),

and two subunits of the NuRD complex (CHD3 and CHD4) were

represented (high-confidence score R 0.7; Figure S1C). The

TIP60/NuA4 and NuRD complexes are multi-subunit assemblies

that possessmultiple enzymatic activities, including nucleosome

remodeling, acetyltransferase, and deacetylase activities. Addi-

tionally, this analysis identified a network of interacting proteins

involved in DNA damage repair (Figure S1C), as well as an inter-

action between XRN2 and SETX. Taken together, these data

suggest that Mediator kinases regulate multiple and diverse

cellular processes, potentially via several distinct multi-subunit

assemblies.

Validation of Selected Mediator Kinase Substrates
To further validate the CDK8/19 substrates identified with

SILAC-based phosphoproteomics, we performed in vitro kinase

Figure 2. Identification of Mediator Kinase

Substrates

(A) Functional categorization of high-confidence

Mediator kinase substrates identified.

(B) Volcano plot of statistically significant phos-

phosite changes with CA treatment using an

empirical Bayes analysis.

assays, western blots, and MS experi-

ments. We selected proteins represent-

ing different classes of substrates (Fig-

ure 2A) for further evaluation. The

DNA-binding TF STAT1, a previously

identified CDK8 kinase substrate (Ban-

cerek et al., 2013), was probed by west-

ern blot in interferon (IFN)-g-induced

HCT116 cells (Figure 3A). This experi-

ment confirmed STAT1 S727 as a Medi-

ator kinase substrate in HCT116 cells

and also showed CA-dependent inhibi-

tion at low nM concentrations, as re-

ported previously (Pelish et al., 2015).

Among the chromatin modification

and regulation substrates, we examined

SIRT1, in part because an antibody

against the phosphorylated SIRT1 T530

site was commercially available. When

HCT116 cells were treated with CA, we

noted a decrease in SIRT1 T530 phos-

phorylation (Figures 3B and 3C). Total

SIRT1 levels were unaffected by CA

treatment, and levels of the CDK8 mod-

ule subunits CDK8, CCNC, and MED12
were not changed by treatment with the compound (Figure 3B).

The approximately 50% reduction in phospho-SIRT1 did not

change with increasing CA concentration, indicative of CA

selectivity (Pelish et al., 2015). Although other kinases, such

as CDK1 and JNK, are known to phosphorylate this site (Sa-

saki et al., 2008), treatment with inhibitors of CDK1 (RO-

3306) and JNK family kinases (SP600125) did not seem to

impact SIRT1 T530 phosphorylation; in fact, we were unable

to completely reduce SIRT1 phospho-T530 detection, even

when treating with all three inhibitors (Figure S2). In vitro kinase

assays with purified CDK8 module and SIRT1 confirmed

CDK8-dependent SIRT1 T530 phosphorylation by western

blot (Figure 3D).

Next, we tested two different substrates, RIF1 and TP53BP1,

linked to DNA replication and repair. Because these proteins are

very large (each over 200 kDa), we expressed glutathione

S-transferase (GST)-tagged fragments (ca. 100 residues) sur-

rounding the phosphosite. As shown in Figure 3E, the CDK8

module phosphorylated these substrates, whereas point muta-

tions (S to A) at the identified phosphorylation site(s) greatly

reduced substrate phosphorylation, supporting these sites as

CDK8 module targets in vitro (Figure 3E).

We also confirmed phosphorylation sites in MED12 and

MED13 using in vitro kinase assays using the recombinant

Cell Reports 15, 436–450, April 12, 2016 439



CDK8 module (containing CDK8, CCNC MED12, and MED13)

purified from insect cells. Incubation of the CDK8 module with

ATP and subsequent TiO2 enrichment and MS analysis con-

firmed both S688 on MED12 and S749 on MED13 as sub-

strates (Figures 3F and 3G). We did not identify the CCNC site

from these experiments because the site identified from CA-

treated HCT116 cells is not present in the canonical CCNC iso-

form used for recombinant CDK8 module expression and

purification.

The data summarized in Figure 3 verified each of seven high-

confidence Mediator kinase sites, representing about 10%

of all high-confidence sites listed in Table 1. These results,

combined with previous data demonstrating CA potency and

specificity (Pelish et al., 2015), support the substrates listed in

Table 1 as Mediator kinase targets. Although extensive kinome

profiling has demonstrated CA specificity, we conducted

in vitro kinase assays using a shared substrate, the pol II

CTD, and found that CDK1, ERK2, and GSK3b activity was un-

affected by CA treatment, even at concentrations 10-fold

above those used for proteomic and gene expression analyses

(Figure 3H).

Mediator Kinase Inhibition Has Limited and Specialized
Effects on Transcription
As Mediator-associated kinases, it was plausible that inhibition

of CDK8 and CDK19 activity could affect expression of large

numbers of genes. We analyzed gene expression (RNA-seq)

data from CA-treated HCT116 cells (Table S3). To minimize

secondary or indirect effects resulting from long-term Mediator

kinase inhibition, we completed RNA-seq after a 3-hr CA treat-

ment (100 nM); this also helped match mRNA changes with

measured phosphorylation changes that were determined after

1-hr CA treatment. RNA-seq analysis identified 150 genes

whose expression changed significantly with CA treatment (Fig-

ure 4A). Among these genes, the magnitude of change in

expression was modest (largely 1.2- to 2-fold), indicating that

CDK8/19 activity per se is not a major driver of their transcrip-

tion, at least in the context of this analysis (HCT116 cells under

normal growth conditions). Such modest gene expression

changes were also observed in CA-sensitive cell lines (e.g.,

MOLM-14), although the genes affected were distinct (Pelish

et al., 2015).

Gene Expression Changes in CA-Treated Cells
Compared to CDK8 or CDK19 Knockdown
Because CA inhibits both CDK8 and CDK19 kinases, we used

previously published HCT116 microarray datasets (normal

growth conditions), in which either CDK8 or CDK19 had been

stably knocked down (Donner et al., 2010; Galbraith et al.,

2013), as a comparison to CA-treated HCT116 cells. Only genes

exhibiting 1.5-fold change in expression or greater, with p

values < 0.05, were used from the microarray data; these genes

were compared to our RNA-seq analysis in which cells were

treated with 100 nM CA for 3 hr. We observed only a modest

overlap among genes differentially expressed (Figure 4B; note

that because CA inhibits both CDK8 and CDK19, gene sets for

CDK8 or CDK19 knockdown were combined). Because cellular

knockdown experiments take over 24 hr to manifest, the modest

correlation in gene expression changes could reflect the short

time of CA treatment. However, RNA-seq analyses after 24 hr

CA treatment revealed similarly low numbers of shared gene

expression changes (Figure 4C). These results, further summa-

rized in Figure S3, suggest that the physical presence of the

CDK8 or CDK19 protein has distinct effects on transcription

compared to targeted kinase inhibition.

Functional Links between Gene Expression Changes
and Mediator Kinase Substrates
Because many Mediator kinase substrates are TFs (Figure 2A),

we hypothesized that some of the observed differences in

gene expression due to CDK8/19 inhibition might be caused

by changes in TF function. To begin to address this hypo-

thesis, we extracted promoter sequences (±2 kb from the

transcription start site [TSS]) for genes that were differentially

expressed (increased or decreased expression) 3 hr CA

treatment. F-Match was then used to compare promoter se-

quences to controls to determine whether any TF-binding

sites, reported as Transfac matrices, were over-represented.

The ratio of this increase (CA-treated cells versus DMSO con-

trols) is displayed for over-represented sites in Figure 4D. We

found that many of the identified Transfac matrices for genes

whose expression increased or decreased with CA treatment

were mutually exclusive (Figure 4D). That is, an enriched TF-

binding site in CA increased genes was generally not present

in CA-decreased genes and vice versa. A hypergeometric

test confirmed a significant overlap (p value = 1.15E�5) be-

tween Mediator kinase targets identified in Table 1 and Trans-

fac matrices identified in our gene expression promoter anal-

ysis (Figure S3F).

Many of the Transfac matrices identified by F-match (Fig-

ure 4D) can be traced back to Mediator kinase activity, as

summarized in Figure S4. For example, the RREB1 TF was iden-

tified in both the F-match analysis (RREB1_01) and the SILAC

phosphoproteomics (Table 1). Enriched TF-binding sites were

observed for genes with altered expression in CA-treated

HCT116 cells (Figure 4A), including MYC, a b-catenin target

gene; EGR1 (i.e., KROX_Q6); and HES1, a Notch pathway target

gene. Moreover, the MGA and NAB2 proteins, each high-confi-

dence Mediator kinase substrates, are known regulators of

MYC and EGR1 activity, respectively (Hurlin et al., 1999; Svaren

et al., 1996). Transfac matrices representing the AP2 and ATF

family of TFs (e.g., AP2alpha_01 and ATF1_Q6) were also uncov-

ered in the F-match analysis. The Mediator kinase target KLF12

is a well-established repressor of AP2a activity (gene name:

TFAP2A; Imhof et al., 1999), whereas the ATF2 and ATF7 pro-

teins were each identified asMediator kinase targets. Finally, en-

riched binding sites for E2F1 and SREBP, previously identified

CDK8 kinase substrates (Morris et al., 2008; Zhao et al., 2012),

were found by the F-match analysis shown in Figure 4D.

Although these TFs were not identified in our HCT116 phospho-

proteomics experiments, several co-regulators of E2F1 or

SREBP activity (e.g., MGA and SIRT1; see Discussion) were

among the high-confidence substrates listed in Table 1. Thus,

there are many functional links between CA-dependent changes

in gene expression (Figure 4A) and the Mediator kinase targets

shown in Table 1.
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Table 1. High-Confidence Mediator Kinase Substrates Identified Using CA and Quantitative Phosphoproteomics

Protein ID Gene Name Position Location Probability Ratio (H/L) Adjusted p Value

Q9UHB7 AFF4 S31 0.79 0.209 ± 0.011 0.025

Q9UHB7 AFF4 S32 0.78 0.248 ± 0.070 0.056

Q9UHB7 AFF4 S1043 1.00 0.325 ± 0.035 0.020

Q9UHB7 AFF4 S814 1.00 0.410 ± 0.012 0.018

P15336 ATF2 S136 1.00 0.366 ± 0.012 0.015

P17544 ATF7 S434 0.88 0.302 ± 0.020 0.015

P17544 ATF7 S111 0.75 0.590 ± 0.062 0.082

P17544 ATF7 T112 0.99 0.593 ± 0.019 0.036

O00512 BCL9 S291 0.95 0.694 ± 0.031 0.092

Q12830 BPTF S1300 1.00 0.691 ± 0.035 0.095

P38398 BRCA1 S1613 0.96 0.447 ± 0.036 0.025

Q9H8M2 BRD9 S588 1.00 0.455 ± 0.009 0.019

H0YBQ5;E5RFK5 CCNC;CCNC S218;S272 1.00 0.642 ± 0.037 0.066

Q12873 CHD3 S1601 1.00 0.595 ± 0.036 0.048

Q14839 CHD4 T1553 0.94 0.096 ± 0.002 0.018

Q9P2D1 CHD7 T2153 0.99 0.572 ± 0.024 0.034

K4DI93 CUL4B S15 0.90 0.394 ± 0.038 0.078

Q9UER7 DAXX S671 1.00 0.651 ± 0.014 0.053

Q5T1V6 DDX59 S64/S76 0.99/0.76 0.535 ± 0.045 0.064

Q9NPF5 DMAP1 T409 1.00 0.134 ± 0.018 0.015

P19419 ELK1 S324 1.00 0.636 ± 0.058 0.092

Q52LR7 EPC2 T353 0.97 0.403 ± 0.019 0.059

Q96E09 FAM122A S267 0.79 0.513 ± 0.082 0.085

Q12948 FOXC1 S241 1.00 0.433 ± 0.063 0.048

Q9NZM4 GLTSCR1 S755 1.00 0.394 ± 0.052 0.032

P15822 HIVEP1 S479 0.99 0.649 ± 0.019 0.055

Q7Z6Z7 HUWE1 S3816 0.98 0.527 ± 0.018 0.025

Q8NFU5 IPMK S7 1.00 0.663 ± 0.050 0.098

Q9Y4C1 KDM3A S445 1.00 0.448 ± 0.034 0.025

Q9Y4X4 KLF12 S202 1.00 0.441 ± 0.071 0.056

Q3ZCW2 LGALSL S25 0.99 0.698 ± 0.029 0.092

Q92585 MAML1 S159 1.00 0.325 ± 0.009 0.015

Q92585 MAML1 S303 0.98 0.356 ± 0.018 0.049

Q14676 MDC1 S1775 1.00 0.453 ± 0.075 0.061

Q93074 MED12 S688 0.99 0.168 ± 0.036 0.020

Q9UHV7 MED13 S749 0.96 0.356 ± 0.041 0.073

Q71F56 MED13L S878 1.00 0.568 ± 0.060 0.065

O60244 MED14 S1112 1.00 0.233 ± 0.045 0.025

O60244 MED14 S1128/S1136 0.99/0.99 0.100 ± 0.015 0.025

O95402 MED26 S314 1.00 0.177 ± 0.039 0.025

Q8IWI9 MGA S2924 0.99 0.660 ± 0.032 0.070

O14686 MLL2 S3199 0.98 0.630 ± 0.019 0.047

P55197 MLLT10 S346 1.00 0.470 ± 0.005 0.076

O96007 MOCS2 S20 1.00 0.531 ± 0.035 0.034

Q9NV56 MRGBP S195 1.00 0.611 ± 0.023 0.043

Q6P1R3 MSANTD2 S27 1.00 0.623 ± 0.053 0.085

Q2TAK8 MUM1 S326 1.00 0.582 ± 0.050 0.059

Q15742 NAB2 S162 1.00 0.573 ± 0.014 0.032

(Continued on next page)
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Cellular Proteome Changes Resulting from Mediator
Kinase Inhibition
The ability of CDK8-dependent phosphorylation to regulate pro-

tein turnover has been reported in both yeast and human cells

(Alarcón et al., 2009; Fryer et al., 2004; Nelson et al., 2003; Rai-

thatha et al., 2012). We therefore hypothesized that CDK8/19 ac-

tivity might modulate protein abundance for some of the sub-

strates identified here. Rather than focus on selected Mediator

kinase targets, we performed quantitative proteome analyses

in CA-treated cells versus DMSO controls at six time points

(t = 0 hr, 1 hr, 3 hr, 6 hr, 18 hr, and 24 hr). In this way, we were

able to interrogate many cellular proteins at once and correlate

changes in Mediator kinase activity with increased or decreased

protein abundance. To complete these analyses, we used

SILAC-labeled HCT116 cells, consistent with the phosphopro-

teomics experiments.

The analysis consisted of a CA treatment time course from 0 to

24 hr, with six time points being used in total to treat heavy

(Arg10 and Lys8) or light (Arg0 and Lys0) HCT116 cell popula-

tions in biological replicate experiments (Figures 5A and 5B).

Peptides were harvested in a manner similar to that used for

phosphoproteomics, and 17 fractions from basic reversed-

phase chromatography were analyzed for changes in H/L ratio

at each time point. We found a high number of overlapping pro-

teins across replicates, and CA treatment did not affect global

H/L ratios for proteins across the time course in the replicates

(Figure 5B). Given the ability of CDK8 to promote substrate turn-

over in response to specific biological phenomena (e.g., starva-

tion; Nelson et al., 2003; Raithatha et al., 2012), we were some-

what surprised to find that CDK8/19 inhibition did not notably

alter the abundance of the target proteins listed in Table 1,

with the exception of MED13 and MED13L. A list of all quantified

proteins in CA-treated versus untreated cells (0–24 hr) is pro-

vided in Table S4.

An empirical Bayes analysis of the data suggested that

most proteome changes occurred at either 18 or 24 hr when

compared to control (0 hr, in which both populations were

DMSO treated), as shown by the volcano plot in Figure 5C.

Table 1. Continued

Protein ID Gene Name Position Location Probability Ratio (H/L) Adjusted p Value

Q15788 NCOA1 S698 1.00 0.381 ± 0.042 0.081

Q9H3P2 NELFA S363 0.96 0.403 ± 0.032 0.023

Q9H3P2 NELFA S360 0.50 0.441 ± 0.039 0.092

Q6P4R8 NFRKB S1291 1.00 0.688 ± 0.035 0.092

Q9NZT2 OGFR S349 1.00 0.170 ± 0.015 0.025

Q9NZT2 OGFR S484 0.99 0.348 ± 0.035 0.021

P29590 PML S530 1.00 0.674 ± 0.012 0.059

Q6EEV4 POLR2M S10 0.99 0.416 ± 0.018 0.019

Q5UIP0 RIF1 S1613 0.98 0.357 ± 0.014 0.048

Q5UIP0 RIF1 S1616 1.00 0.418 ± 0.051 0.033

Q92766 RREB1 S1653 1.00 0.237 ± 0.025 0.039

Q6SPF0 SAMD1 S425 0.94 0.418 ± 0.022 0.019

O15047 SETD1A T1088 1.00 0.204 ± 0.010 0.015

Q7Z333 SETX S2612 1.00 0.465 ± 0.018 0.080

Q96EB6 SIRT1 T530 1.00 0.201 ± 0.030 0.043

Q9UQ35 SRRM2 S2449 1.00 0.708 ± 0.004 0.081

P42224 STAT1 S727 0.99 0.367 ± 0.001 0.047

Q12962 TAF10 S44 1.00 0.565 ± 0.020 0.032

Q7Z2Z1 TICRR S1413 0.99 0.472 ± 0.066 0.059

Q12888 TP53BP1 S265 1.00 0.258 ± 0.014 0.015

Q12888 TP53BP1 S525 1.00 0.600 ± 0.014 0.036

P13051 UNG S63 0.84 0.473 ± 0.026 0.025

P13051 UNG T60/S63 0.99/0.62 0.487 ± 0.027 0.025

Q9H0D6 XRN2 S487 1.00 0.566 ± 0.041 0.047

Q9NUA8 ZBTB40 T166 0.99 0.378 ± 0.078 0.058

A6NFI3 ZNF316 S10 1.00 0.598 ± 0.043 0.056

Q6ZN55 ZNF574 S717 1.00 0.406 ± 0.052 0.033

O15014 ZNF609 S804 1.00 0.373 ± 0.001 0.015

All sites correspond to reviewed accessions and canonical isoforms in Uniprot except for CCNC, whose identified site is not present in the canonical

isoform. The ‘‘p value’’ column represents an adjusted p value from an empirical Bayes analysis (Ritchie et al., 2015). See also the Supplemental In-

formation.
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Approximately 200 proteins showed significant changes in

abundance, and these are listed in Table S5 (adj. p value <

0.1). To further examine changes in the proteome with CA treat-

ment, gene set enrichment analysis (GSEA) was employed

(Subramanian et al., 2005). Using the hallmark gene set collec-

tion, we identified biological processes that displayed significant

enrichment scores and false discovery rates (Figure 5D; Table

S6). Of these signatures, several have been previously shown

to be regulated by CDK8, including Wnt/b-catenin signaling,

Notch signaling, hypoxia, interferon gamma response, and

KRAS signaling (Bancerek et al., 2013; Firestein et al., 2008;

Fryer et al., 2004; Galbraith et al., 2013; Morris et al., 2008; Xu

et al., 2015). CDK8-dependent transcriptional changes have

been implicated in regulation of these pathways, and therefore,

the proteome data corroborate these findings at the protein

level. The GSEA results also reveal that proteome changes

may selectively affect metabolic pathways in CA-treated

HCT116 cells, with several (e.g., cholesterol homeostasis and

fatty acid metabolism) previously linked to CDK8 kinase activity

in model organisms (Zhao et al., 2012).

DISCUSSION

The natural product CA is an exceptionally selective inhibitor of

the Mediator kinases CDK8 and CDK19 (Pelish et al., 2015). As

such, it provided a means to rapidly and selectively probe

Figure 3. In Vitro Validation of Select CDK8/19 Substrates

(A) Validation of STAT1 S727 as a Mediator kinase target in HCT116 cells.

(B) Western blot validation of SIRT1 T530 as aMediator kinase target. Levels of total SIRT1 and other proteins known to regulate CDK8 activity (MED12 or CCNC)

remained unchanged. TBP is a loading control.

(C) Quantitation of data in (B). Error bars are SEM; n = 2 for technical replicates.

(D) In vitro kinase assay with recombinant CDK8 module and SIRT1. With increasing time, SIRT1 pT530 detection increases, indicating CDK8 is phosphorylating

this site. Increase is not seen in no kinase or no substrate (ns) controls.

(E) In vitro kinase assay with GST-tagged TP53BP1 or RIF1 fragments. Alanine mutations at identified phosphorylation sites show reduced phosphorylation by

CDK8.

(F) Overview of method for identifying MED12 and MED13 phosphorylation sites using recombinant CDK8 modules.

(G) Verification of MED12 S688 and MED13 S749 phosphorylation sites.

(H) In vitro kinase assay using CA and GST-pol II CTD as a substrate. Whereas each kinase tested phosphorylates this substrate, CA only inhibits the CDK8

module.
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CDK8- and CDK19-dependent phosphoproteome changes in

human cells. Because of their association with Mediator, CDK8

and CDK19 were expected to phosphorylate proteins involved

in regulating pol II activity and chromatin architecture. In accor-

dance with these expectations, our data support a primary role

for Mediator kinases in pol II transcription and chromatin regula-

tion. Strikingly, however, the direct impact of Mediator kinase in-

hibition on global pol II transcription was modest and affected a

limited set of genes, at least under the conditions of this study.

Limited transcriptional effects were also observed in CA-sensi-

tive acute myeloid leukemia (AML) cell lines (Pelish et al., 2015).

At the gene expression level, it appears that Mediator kinases

predominantly ‘‘regulate the regulators’’ of transcription. Many

genes whose expression increased or decreased 1.5-fold or

greater upon CA treatment are DNA-binding TFs or general tran-

scription or chromatin regulators. Similarly, DNA-binding TFs

and pol II transcription or chromatin regulators represented the

majority of high-confidence CDK8/CDK19 kinase targets from

the SILAC phosphoproteomics experiments. Quantitative prote-

omic data across a 24-hr time course implicated numerous

signaling and metabolic pathways that appear to be regulated

by Mediator kinase activity under normal growth conditions.

Whereas these pathways can be linked to known transcrip-

tional or phosphorylation targets of CDK8/CDK19 or those

now identified here, much additional investigation will be re-

quired to delineate the molecular mechanisms by which Medi-

ator kinases regulate specific signaling pathways or transcrip-

tional processes.

CDK8/19 Phosphorylate Mediator Subunits and
Post-initiation Transcription Regulators
CDK8 can reversibly associate with Mediator to form a CDK8-

Mediator complex (Taatjes et al., 2002), and immunoprecipita-

tion-mass spectrometry experiments in HeLa or HEK293T cells

suggest CDK19 interacts similarly with Mediator (Daniels et al.,

2013; Ebmeier and Taatjes, 2010; Sato et al., 2004). We identi-

fied eight high-confidence CDK8/19 phosphorylation sites in

six different Mediator subunits: CCNC; MED12; MED13;

MED13L; MED14; and MED26. CCNC, MED12, MED13, and

MED13L each associate with CDK8 or CDK19 as part of the ki-

nase module of Mediator. MED13 appears to be important for

physical interaction between the kinase module and Mediator

(Knuesel et al., 2009), and previous studies have shown that

increased MED13 or MED13L abundance can increase the pro-

portion of CDK8-Mediator versus core Mediator in cells (Davis

et al., 2013). These previous results were shown in the context

of inhibition of the E3 ubiquitin ligase FBW7, which ubiquitylates

MED13 and MED13L to promote their degradation. Our quanti-

tative whole-proteome data showed that the abundances of

MED13 and MED13L were each increased in CA-treated

HCT116 cells. FBW7-dependent ubiquitylation of MED13 or

MED13L required prior modification at residue T326, a phos-

pho-degron site in MED13 and MED13L (Davis et al., 2013).

The CDK8/19 sites identified in MED13 and MED13L are distinct

Figure 4. Mediator Kinase Inhibition Is Functionally Distinct from

CDK8 or CDK19 Knockdown

(A) Heatmap of differentially expressed genes (RNA-seq) after 3 hr CA treat-

ment. Green font represents transcription or chromatin regulator.

(B and C) Comparison with microarray data (Galbraith et al., 2013) using stable

CDK8/19 knockdown (shRNA) versus 3 hr CA treatment (B) or 24 hr treatment

(C) in HCT116 cells under normal growth conditions. A 1.5-fold cutoff was used

for microarray data, and Cufflinks was used for CA-treated cells (no specific

fold-change cutoff).

(D) TFBS analysis of promoters for genes whose expression changed with 3 hr

CA treatment (listed in A). Promoters (±2 kb from the TSS of the canonical

isoform) were analyzed using F-Match, part of the Transfac database. Over-

represented sites with at least 1.5-fold increase versus control promoters are

shown for Transfac vertebrate matrices. Matrix name is at left.
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Figure 5. Quantitative Proteomics Reveals Pathways and Proteins Affected by Mediator Kinase Inhibition

(A) Overview of quantitative proteomics method.

(B) Venn diagram of biological replicates showing number of proteins identified in the time series. Replicates show a high degree of overlap for protein IDs.

(legend continued on next page)
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(residue S749 and residue S878, respectively) and do not overlap

with known or predicted phospho-degronmotifs; thus, it remains

unclear how Mediator kinase activity may affect MED13 or

MED13L protein levels.

The MED26 subunit is generally absent from CDK8-Mediator

purifications (Ebmeier and Taatjes, 2010; Sato et al., 2004;

Taatjes et al., 2002), and hence, its phosphorylation by CDK8

or CDK19 may promote MED26 dissociation from Mediator.

The CDK8/19 modification site on MED26 (S314), however,

does not reside in regions required for Mediator association (Ta-

kahashi et al., 2011). The MED14 subunit is an important archi-

tectural factor withinMediator, and structural studies with recon-

stituted partial complexes and crosslinking-mass spectrometry

(CXMS) revealed MED14 crosslinks with several Mediator sub-

units, including MED8 and MED7, involving MED14 residues

1,256 and 1,295, respectively (Cevher et al., 2014). These reside

some distance (in sequence space) from the Mediator kinase

phosphorylation sites (S1112, S1128, and S1136). Furthermore,

CXMS and cryo-EM data with reconstituted yeast Mediator and

yeast pol II revealed MED14 interactions with pol II and TFIIF

(Plaschka et al., 2015). However, the S. cerevisiae Med14 sub-

unit from this study consisted of residues 1–755 (of 1,082 resi-

dues in yeast Med14) and the human MED14 S1112, S1128,

and S1136 residues do not appear to be conserved.

Knockdown experiments have implicated the CDK8 protein

in the regulation of transcription elongation and/or pol II pausing

or pause release (Donner et al., 2010; Galbraith et al.,

2013). Furthermore, chromatin immunoprecipitation sequencing

(ChIP-seq) data from CA-treated MOLM-14 cells indicated a

reduced pol II travel ratio (TR) (ratio of promoter-bound pol II

versus pol II in gene body) at genes whose expression was upre-

gulated by CA (Pelish et al., 2015), implicating Mediator kinase

activity in pol II pausing or pause release. The reduced TR

in CA-treated cells could also reflect inhibition of premature

pol II termination. Here, we identified AFF4, NELFA, MED26,

POLR2M, SETX, and XRN2 as high-confidence Mediator kinase

targets, and each of these factors has been implicated in regula-

tion of pol II pausing, premature termination, or elongation

(Brannan et al., 2012; Cheng et al., 2012; Jishage et al., 2012;

Kwak and Lis, 2013; Lin et al., 2010; Takahashi et al., 2011;

Wagschal et al., 2012).

Mediator Kinases as Potential Metabolic Regulators
CDK8 orthologs inDrosophila and yeast have been linked to lipid

and glucose metabolism and regulation of cellular responses to

nutrient stress (Kuchin et al., 1995; Lindsay et al., 2014; Mousley

et al., 2012; Zhao et al., 2012). Upon Mediator kinase inhibition

by CA, we observed changes in the abundance of about 200 pro-

teins (Figure 5), including many involved in basic metabolic path-

ways such as oxidative phosphorylation, fatty acid metabolism,

and cholesterol homeostasis. MED13 and CCNC appear to

regulate mitochondrial function in yeast (Cooper et al., 2014;

Khakhina et al., 2014), and overexpression of MED13 in mouse

cardiac tissue alters fatty acid metabolism, b-oxidation, and

mitochondrial content (Baskin et al., 2014). We identified

MED13 and CCNC as Mediator kinase substrates and observed

an increase in MED13 protein levels upon CA treatment, which

could contribute to altered fatty acid metabolism or oxidative

phosphorylation observed in CA-treated cells (Figure 5D).

CDK8 kinase activity has previously been linked to cholesterol

metabolism and fatty acid synthesis via regulation of SREBP.

In particular, CDK8-dependent phosphorylation of SREBP resi-

due T402 correlated with SREBP degradation in Drosophila

and mouse cells (Zhao et al., 2012). GSEA analysis of whole-

proteome data identified changes in the cholesterol homeosta-

sis, adipogenesis, and fatty acidmetabolism hallmark signatures

in CA-treated cells (Figure 5D). Moreover, F-match identified

SREBP-binding motifs as over-represented among genes

whose expression changed upon CA treatment (Figure 4D).

Whereas phosphorylation of SREBP T402 was detected in our

phosphoproteomics experiments, its level was not altered in

CA-treated cells, suggesting alternate means of Mediator ki-

nase-dependent SREBP regulation in HCT116 cells. Other ki-

nases, including GSK3b (Sundqvist et al., 2005), are known to

target SREBP T402, and we have confirmed that CA does not

inhibit GSK3b in cell lysates (Pelish et al., 2015) or in in vitro ki-

nase assays with the purified protein (Figure 3H). Therefore,

the SREBP T402 phosphorylation level may remain constant in

CA-treated cells due to other kinases targeting this site. Alter-

nately, SREBPmay not be a substrate for CDK8 in HCT116 cells.

SIRT1, a validated Mediator kinase target, can negatively regu-

late SREBP activity through deacetylation (Walker et al., 2010).

The Mediator kinases phosphorylate SIRT1 at residue T530,

and phosphorylation at T530 has been shown to activate the

SIRT1 deacetylase (Sasaki et al., 2008). Thus, via SIRT1 and

potentially other substrates, Mediator kinases may regulate

cholesterol or fatty acid metabolism independent of direct

SREBP phosphorylation in HCT116 cells.

Human Mediator Kinases and TF Turnover
Previous studies revealed that phosphorylation of nutrient-res-

ponsive TFs Gcn4, Ste12, or Phd1 by yeast Cdk8 promoted their

degradation (Chi et al., 2001; Nelson et al., 2003; Raithatha et al.,

2012). Studies in metazoans have shown evidence for CDK8-

dependent phosphorylation of the TFs SMAD1, SMAD3, Notch

ICD, SREBP, E2F1, and STAT1 (Alarcón et al., 2009; Bancerek

et al., 2013; Fryer et al., 2004; Morris et al., 2008; Zhao et al.,

2012). Among these, increased degradation of the Notch ICD,

SMAD1, SMAD3, and SREBP correlated with phosphorylation.

For these reasons, we anticipated that inhibition of CDK8 and

(C) Volcano plot comparing protein abundance at 18 hr and 24 hr time points versus control (0 hr). Adjusted p values are colored according to an empirical Bayes

analysis.

(D) Individual analysis of t = 3 hr, 6 hr, 18 hr, and 24 hr CA treatment time points using GSEA and the hallmark gene sets from the Molecular Signatures Database.

Comparison of the t = 0 hr and 1 hr time points showed no differences in the hallmark gene sets (not shown). The color of the heatmap corresponds to the direction

andmagnitude of the normalized enrichment score for that gene set at each time point, compared to t = 0 hr controls. ‘‘NA’’ and the corresponding color indicate a

hallmark gene set not being identified from the proteome data at the designated time.

(E) Protein abundance increases for MED13 and MED13L in CA-treated cells.
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CDK19 kinase activity would affect the protein levels of a subset

of their targets. Whole-proteome data revealed no evidence

that TF phosphorylation by Mediator kinases affected their

stability, even with analyses at 1, 3, 6, 18, or 24 hr of CA treat-

ment. In fact, we found little evidence for altered stability of

any high-confidence Mediator kinase targets, with the notable

exception of MED13 and MED13L. Despite this result, cell type

or context may be key factors that dictate the effect of Mediator

kinase phosphorylation on protein turnover. Here, we evaluated

HCT116 cells in normal growth conditions whereas Mediator

kinases may in fact more generally regulate substrate protein

turnover during stress responses or at different developmental

stages.

Whereas no changes in TF turnover were evident from the

whole-proteome data in CA-treated versus control cells, we

identified many links between the gene expression changes

and the phosphoproteomics data (Figure S4). These results

are consistent with Mediator kinases affecting TF activity in

HCT116 cells under normal growth conditions, rather than TF

turnover.

CDK8 as a Colon Cancer Oncogene: Mediator Kinase
Inhibition versus Subunit Knockdown
CDK8 was identified as a colon cancer oncogene in part through

a shRNA screen for genes required for HCT116 cell proliferation

(Firestein et al., 2008). CDK8 was one of 166 candidates in this

screen; CDK8 was also identified in a screen for factors required

for activation of a b-catenin-driven reporter in a different colon

cancer line, DLD-1 (Firestein et al., 2008). Our analyses with

CA indicate that, in contrast to CDK8 knockdown, Mediator ki-

nase inhibition does not affect HCT116 cell growth (Pelish

et al., 2015). These findings highlight the distinction between

physical loss of a protein versus targeted inhibition of its enzy-

matic activity.

As a TF, b-catenin assembles with the DNA-binding proteins

TCF and LEF-1 to activate genes that drive cell proliferation.

HCT116 cells are heterozygous for a mutant b-catenin protein

that is resistant to degradation (Morin et al., 1997). Conse-

quently, HCT116 cells have increased b-catenin levels and are

considered ‘‘b-catenin dependent.’’ Consistent with an onco-

genic function for CDK8, CDK8 knockdown prevented activation

of b-catenin target genes in colon cancer cell lines (Firestein

et al., 2008). In addition, the E2F1 TF has been shown to be an

important negative regulator of b-catenin stability (through un-

known mechanisms), and elevated levels of the CDK8 protein,

as observed in HCT116 cells (Firestein et al., 2008), can block

E2F1-dependent inhibition of b-catenin target gene expression

(Morris et al., 2008). Thus, in colon cancer cells, the CDK8 protein

appears to upregulate b-catenin target gene expression in two

ways: as a b-catenin co-activator and as an inhibitor of E2F1

activity.

Whereas E2F1 and b-catenin activity or stability is known to be

regulated by phosphorylation, we did not observe significant

changes in E2F1 or b-catenin protein or phosphopeptide levels

in CA-treated HCT116 cells. An F-match analysis based upon

gene expression changes in CA-treated cells, however, identi-

fied E2F binding motifs as over-represented (Figure 4D), and In-

genuity Pathway Analysis (IPA) of upstream regulators identified

b-catenin target genes as over-represented among those whose

expression increased or decreased upon CA treatment (Table

S7). GSEA of our proteomics data (CA-treated versus untreated;

0–24 hr) revealed upregulation of the E2F1 and b-catenin path-

ways (Figure 5D). Furthermore, numerous high-confidence

Mediator kinase substrates are known to directly regulate b-cat-

enin or E2F activity, and these are summarized in Table S8.

Although these results implicate Mediator kinase activity in the

regulation of E2F1 and b-catenin transcription networks in

HCT116 cells, the effects of Mediator kinase inhibition are clearly

distinct from CDK8 or CDK19 knockdown (Donner et al., 2010;

Firestein et al., 2008; Galbraith et al., 2013). This was not unex-

pected, as the physical presence of an enzyme typically serves

structural roles, such as maintaining the integrity of a multi-pro-

tein complex. For example, ablation of the CDK7 ortholog in

yeast (Kin28) abolishes essentially all pol II transcription (Hol-

stege et al., 1998), in contrast to targeted inhibition of Kin28 ac-

tivity (Kanin et al., 2007). Direct comparison of the transcriptional

changes that resulted from physical loss of the CDK8 or CDK19

protein versus targeted inhibition of kinase activity (i.e., with pro-

tein levels remaining intact) revealed stark differences in the

genes affected and the magnitude of gene expression changes.

These differences highlight the importance of a structural or

‘‘scaffolding’’ role of the CDK8 or CDK19 proteins. Indeed,

CDK8 knockdown decreases MED12 levels and increases

CDK19 protein levels in HCT116 cells (Donner et al., 2010; Gal-

braith et al., 2013), which likely contributes to the distinct gene

expression and anti-proliferative effects of CDK8 knockdown

(Firestein et al., 2008) compared with kinase inhibition by CA.

Because CA inhibits CDK19 as well as CDK8 (Pelish et al.,

2015), this may also result in compensatory effects that distin-

guish the CDK8 knockdown phenotype from CDK8/CDK19 inhi-

bition. Future studies are needed to more precisely establish the

roles of CDK8 versus CDK19 in regulating the elaborate E2F1,

b-catenin, and other inter-related signaling networks that

contribute to HCT116 survival and proliferation.

Conclusions
This study provides a large-scale identification of Mediator ki-

nase substrates and the impact of Mediator kinase activity on

pol II transcription and the cellular proteome. In comparison

with the �170 potential CDK9 kinase substrates recently identi-

fied in HCT116 cells (Sansó et al., 2016), it is notable that the

high-confidence substrates for CDK9 are distinct from the

Mediator kinases. This further suggests that CDK9 (e.g., as

part of P-TEFb or the SEC) and Mediator kinases play non-

redundant roles in transcription regulation.

Our results were enabled by the rigorous biochemical, cellular,

and biophysical characterization of CA, which demonstrated

that it represents an unusual case of an inhibitor that is truly se-

lective for Mediator kinases in human cells (Pelish et al., 2015).

The data and methodologies presented provide a valuable

resource for further delineation of the molecular mechanisms

whereby Mediator kinases, and their substrates, regulate pro-

cesses that are fundamentally important in human development

and disease. For example, the methodologies described could

be applied toward other cell types or contexts to uncover cell-

type- or context-specific roles for Mediator kinases. Alternately,
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the Mediator kinase targets or proteome changes identified here

could be further tested for their mechanistic role(s) in regulating

chromatin structure and function, DNA repair or replication, cell

metabolism, or pol II transcription.

EXPERIMENTAL PROCEDURES

Cell Culture

HCT116 cells were cultured in DMEM supplemented with 10% fetal bovine

serum (FBS) and penicillin/streptomycin. Cells were maintained at 37�C and

5% CO2.

SILAC Labeling

HCT116 cells were cultured in DMEM lacking arginine and lysine (Pierce,

88420) supplemented with either Arg10 (33.6 mg/ml) and Lys8 (73 mg/ml) or

Arg0 and Lys0 for heavy and light treatment, respectively. After six passages

at 1:3 ratio, cells were tested for Arg/Lys incorporation and were subsequently

supplemented with 200 mg/l of proline (Sigma-Aldrich, P5607) as a small

amount of Arg/Pro conversion was detected. Cells were maintained in

10% dialyzed FBS and penicillin/streptomycin.

TiO2 Phosphopeptide Enrichment, ERLIC Chromatography, and

LC-MS/MS

Protocols were carried out as described (Stuart et al., 2015). An Orbitrap LTQ

(Thermo Fisher) was used for phosphoproteomics, and an Orbitrap Velos

(Thermo Fisher) was used for quantitative proteome analysis.

In Vitro Kinase Assays

Assays were done essentially as described (Bancerek et al., 2013). Additional

details are provided in Supplemental Experimental Procedures.

Gene Expression Comparison between CA-Treated HCT116 Cells

and shRNA CDK8/19

shRNA CDK8 and CDK19 microarray data were obtained from the GEO

(accession number: GSE38061), and data under the ‘‘normoxia’’ tab were

used for the comparison to CA-treated cells.
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The accession numbers for the RNA-seq data reported in this paper are GEO:

GSE65161 and GEO: GSE78506. The accession number for the proteomics

data reported in this paper is ProteomeXchange PRIDE: PXD003698.
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