Software Process Interpretation and Software Environments *

Leon Osterweil

CU-CS-324-86

DEPARTMENT OF COMPUTER SCIENCE

- This work was supported by grants from the U. S. Department of Energy numbered DE-FG02-841ER13283 and from the National
Science Foundation numbered DCR-8403341.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Software Process Interpretation
and Software Environments

by
Leon Osterweil

CU-CS-324-86 April, 1986

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309-0430
USA

This work was supported by grants from the U.S. Department of Energy num-
bered DE-FG02-84ER13283 and from the National Science Foundation num-
bered DCR-8403341.

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States
nor the Department of Energy, nor any of their employees,
nor any of their contractors, subcontractors, or their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy,

. .completeness, or usefulness of any information, apparatus,
product or process disclosed or represents that its use would
not infringe privately-owned rights.

Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author and

do not necessarily reflect the views of the National Science
Foundation.

ABSTRACT

This paper suggests and explores the idea that software engineering processes
should be specified by means of rigorous algorithmic descriptions. The paper
suggests that rigorous encodings of such processes as development and mainte-
nance, can serve both as guides to better understanding of the processes and as
a guides to superior-architectures for integrating software tools into environ-
ments.

The paper presents some algorithmic specifications for some key software
- processes and uses them to show how examination and elaboration of these pro-
cess descriptions leads to deeper understandings of the processes, better appre-
ciation of the relations of the processes to each other and to a truer under-
standing of such software engineering notions as reuse, metrics and modularity.

The paper also suggests that software process encodings should themselves be
viewed as items of software which have been created as products of develop-
ment processes. Examination of such process development processes leads to
further insights. The paper also suggests that maintenance should be viewed
as an activity aimed at the modification of software objects, where these objects
may equally well be applications software or software processes. This view
leads to a satisfyingly general and powerful architecture for the integration of
diverse software tools into a software environment.

The paper also addresses the question of what sort of language might be needed
in order to do an effective job of supporting the expression of software process
programs.

1. INTRODUCTION. -

The goal of software engineering is to systematize the processes of developing
and maintaining software, thereby improving the quality of the end product and
reducing costs. A great deal of research has been aimed at attempting to
understand how software should be developed and maintained (eg. through
methodology studies), how improvements in current practice can be effected (eg.
through the application of automated tools and aids), how well various tools
and methologies are working (eg. through the creation, application and
refinement of software metrics), and how the entire software process can be
-qualitatively changed and improved (eg. by treating it as a manufacturing pro-
cess which exploits reuse of major components). The approach presented here
incorporates some elements of all of these activities and should stimulate all by
showing the mutually enriching relations that each bears to the others.

This paper suggests that software engineering must become the study of how
to formalize, specify and automate the complex processes by which software
products are synthesized out of very large and intricately structured collections
of software objects. We suggest that software systems are most profitably
thought of as products of uncomfortably large and complex manufacturing and
fabrication processes, - but that these might well be very effectively described,
automated and controlled by surprisingly comfortable and familiar algorithmic
programming techniques.

This suggestion should not be too surprising, as software is a product which is
built entirely out of data (as opposed to other products which are merely
modelled by data). Thus it seems only logical that the effective application of
computing power should be a promising and appropriate medium for control of
its manufacture and management. Thus this paper suggests that the large and
intricate object which is a software product should be viewed as a data process-
ing product to be created and managed with computing resources and software.

This view obliges us to take a fresh look at the processes which surround the
development and maintenance of this product. This suggestion then leads to a
gratifyingly elegant unifying perspective on such key software engineering issues
as reuse, maintenance, quality assurance, software metrics and lifecycle models.

It also suggests how these processes can be used to guide the application of
software tools to support the processes, and how these tools might be effectively
integrated into environments to automate the processes.

-3-

2. BACKGROUND.

One of the longest standing goals of software engineering has been the effective
application of computing power to the task of assisting the development and
maintenance of software. The earliest efforts at doing this resulted in the crea-
tion of individual computer programs, called software tools, which provided
computer support for carrying out various software tasks. Software tools have
been produced in considerable numbers and variety over the past ten or so
years. Few have been widely used to good effect, however.

Currently, it is popular to suggest that tools have been unsuccessful because
they have focussed on restricted aspects of larger software development
processes, rather than on entire processes. It is suggested that collections of
tools artfully integrated in support of entire processes will succeed where indivi-
dual tools failed. Thus efforts at supporting and automating software have
shifted to focus on environments--integrated collections of tools. Environment
research has attempted to determine satisfactory rationales and strategies for
integrating software tools in such a way as to increase their impact. Here we
suggest that effective integration of tools into environments is tantamount to
codifying and automating well defined software processes. We can start to
appreciate this by studying the history of successes and failures in tool and
environment utilization.

It has been a disappointment and an apparent paradox that some of the most
sophisticated and powerful tools have seen the least use. On the other hand, it
“has been observed that some of the most effective tools are ones which focus
most sharply on smaller tasks and which, therefore, are able to strongly support
those tasks directly. It has been suggested that the failure of the larger and
more powerful tools is that the facilities they have offered have not been well
matched to the tasks in need of support, and that they have not been well
fitted into the larger processes of which these tasks are themselves a part.

It has been suggested that the main problem with larger tools is that they
attempt to support collections of smaller tasks and that these collections of
tasks are organized into processes in different ways by different software organ-
izations. Thus it is correspondingly difficult or impossible to create a single
large tool which will be well enough matched to the variety of extant processes
to be widely adopted and widely effective. This realization has caused software
tool makers to become increasingly interested in the processes by which
software is developed and maintained in actual practice. The hope is that
software toolsmiths might then be able to provide effective support for these
actual processes, while also coming to understand needed improvements to these
processes and laying the groundwork for evolutionary migration to tool support
for these improved processes.

-4-

Environments are perhaps best viewed as systems for supporting entire software
processes. Experiences with software environments have also indicated that
environments which are most sharply aimed at supporting specific software
methodologies are most successful and most effective. The very high costs of
producing software tools and environments, however, serve to discourage the
idea of producing separate sharply- aimed specific software environments for
different software processes and activities. Instead it has been suggested that
tools and environments should be generated out of metatools and metaenviron-
ments (eg. [Reps 85| [Gandalf 85]) or that they should be tailored or adapted
out of flexible and /or extensible toolsets (eg. [Osterweil 83]). In both cases the
aim is the same--the production of a comprehensive, smoothly integrated collec-
tion of software support tools and aids capable of providing strong, sharp sup-
port for people engaged in the various activities comprising some specific
software process (eg. development of new software or maintenance of existing
software). In both cases there are some very important problems to be solved.

Perhaps the most fundamental obstacle to being able to create sharply tailored,
highly effective toolsets and environments is the very primitive state of our abil-
ity to understand and specify the processes which these toolsets and environ-
ments must support. There has been some significant work in studying, com-
paring and evaluating the way in which certain specific software tasks are car-
“ried out. -There have been attempts to understand and describe how design is
and should be carried out (eg. [JeffTPA 81] [Kant 85| [Riddle 85]). ~ There have
also been attempts to understand and describe how testing and evaluation
should be carried out (eg. [Howden 85] [Osterweil 82]). These efforts have only
_been partially satisfactory, as they have inevitably led to an understanding that
these individual activities require important linkages to other software activities
if they are to be done properly and effectively.

This has encouraged study of the ways in which the larger software processes
such as development and maintenance are carried out as well. Early work in
this area seems to have centered on discussions of the so-called "Waterfall
Model" of software development [Boehm MU 75| [Boehm 81] and on the
Configuration Managment/Control approach to software development and
maintenance [BryChaSie 81] [Huff 81] [Bersoff 84]. These earlier discussions
had the beneficial effect of indicating that these subjects are difficult and impor-
tant. There is some sentiment that study of these processes may well be the
central issue of software engineering. This has led to organized and serious
efforts to describe and understand the exact nature of the software development
and maintenance processes. The most visible efforts in this area have centered
on a recently inaugurated series of workshops aimed at understanding and sys-
tematizing the "Software Process” [SPW1 84] [SPW2 85].

We believe that the careful and rigorous description of these key software

-5~

engineering processes is critically important for a variety of reasons. Our origi-
nal interest in it is to provide guidance in the development of supportive tool
environments. We now also believe that this work will inevitably lead to
better understanding of the underlying processes themselves, leading to
improvements in the processes and the ability of software practitioners to carry
them out. Our early pursuit of this research has also indicated that careful
examination of detailed descriptions of the development and maintenance
processes also leads to a deeper understanding of software reuse, software
metrics, and software evaluation and to an understanding of the close relations
of these activities to each other.

Our approach to the problem of improving our understanding and descriptions
of software processes has been to describe them with algorithmic programming
languages. This approach leads to some elegant characterizations of past work
in this area as well as some clear indications of how significant improvements in
this past work can be achieved. Thus, for example, our perspective tells us that
the Waterfall Model of software development is an attempt to describe this pro-
cess as a very staightforward one consisting of a strictly linear sequence of
development phases. From this perspective, the early critics of the waterfall
process were essentially arguing that the development process cannot be accu-
rately modelled so simply, and were suggesting the use of more powerful and
diverse control flow constructs such as iteration and branching. Advocates of
iterative refinement suggested the need for procedure invocation capabilities as
well.

In this paper we suggest that further control flow capabilities are needed in
order to effectively portray software development. We also suggest that facili-
ties for adequately describing the data objects to be manipulated are also
needed and that adequate mechanisms for this have to this point been underin-
vestigated. This focus on data objects also fits nicely with growing interest in
the power and importance of object orientation in programming languages and
systems. In software engineering systems such as environments there have been
some noteworthy attempts to portray an environment as a manager of software
objects. The Smalltalk [Goldberg 84| project pioneered this approach, and sub-
sequent work such as [Balzer GN84] has also adopted it. Our own attempts to
exploit object orientation as an organizing strategy for a software environment
[ClemmOst 86| have served to convice us of the power and value of this
approach also.

Our experience has suggested to us, however, that the proper role of software
objects in software environments is to serve as operands to software tools acting
as software operators within a software engineering language which is then used
to express software engineering processes (eg. development and maintenance)
algorithmically.

-8-

Research exploring this premise has already begun, and has already led to a
better understanding of software processes and the way in which software
environments can be made more effective by supporting these processes. In
addition, this work has led unexpectedly to an understanding of a variety of
other software engineering issues, such as the relation of software reuse to the
maintenance process, and the place and purpose of software metrics such as
those described in [Basili 80] [KafuHenr 81| and [McCabe 76] in supporting the
maintenance of software processes themselves. In short, we have discovered
that this research premise leads to a deeper understanding of the nature of
software engineering and to a better appreciation of the relations between vari-
ous of its major problems.

In the following sections we elaborate upon these ideas and present more details
of this research.

3. PROGRAMMING SOFTWARE ENGINEERING PROCESSES.

In this section we provide concrete illustrations of what we mean when we talk
about "programming software engineering processes.” We develop some algo-
- rithmic descriptions of some well-known software engineering activities. Our
basic approach is to use iterative refinement to go from a conceptual and struc-
“tural view of the processes, to the-lower levels of detail at which the important
specifics of the various subphases and subprocesses can be seen. As we delve
into the lower levels of detail we gain insights into the processes themselves,
other (sometimes unexpectedly) related processes, and the tool supports which
they all need. We discover that in order to effectively describe software
engineering processes we require unexpectedly powerful algorithmic constructs
and data description and definition capabilities. We also discover that the
proper treatment of testing and evaluation seems quite hard, and may perhaps
entail the use of different programming capabilities. As we proceed with inves-
tigations of the software development and maintenance processes, we are drawn
into deeper considerations which lead to improved understanding of other
processes, some of which may not have seem related at first.

- 3.1. THE SOFTWARE DEVELOPMENT PROCESS.

We begin by constructing a sequence of algorithms describing the software
development process. The sequence begins with a very high level algorithmic
description expressed in terms of very high level data objects and correspond-
ingly high level processes. Thus, at this level we consider a body of source text
to be a single object. Other objects at this level are testcase sets, requirements
specifications, executable programs and test results. At this level the
corresponding operations include compilation, test-execution and design

7.

synthesis.

The first algorithms are tantamount to somewhat formalized renderings of the
development process described by the Waterfall Model and some subsequent
enhancements to it. At lower levels we uncover details which suggest algo-
rithms which seem to us to be more satisfying descriptions of software develop-
ment than we have seen suggested before.

To start, the highest level algorithm depicting the classical view of program
development might look something like Figure 1. This program abstracts away
from view virtually all of the substantive issues, which are concealed in such
main procedures as create_design, fix_requirements, design_ok, and fix_code.
Interesting and important features appear as we begin to elaborate on these
details. We could choose to elaborate upon such major subprocedures as
"create_design"”, but shall not do so here. Active work in the area of studying
design (eg. [Kant 85]) and in comparing methodological approaches (eg. [Riddle
85]) should lead to understandings enabling us to provide sharper detail of this
code. Conversely, we also believe that the approach we are suggesting here will
be of considerable value in helping those researchers to sharpen and rigorize
their discourse and focus.

-~ - Instead,-we choose to elaborate upon some details of the testing and evaluation

subprocesses. This is an area in which we have ongoing research interests (eg.
- [Osterweil 81] [Osterweil 82|, and is also an aspect of the development process
whose investigation and elaboration seems to lead most rapidly to substantive
~-and productive new views.

3.1.1. AN ALGORITHMIC VIEW OF TESTING AND EVALUATION.

We begin by attempting to focus on the procedure "code_ok". This procedure
has as its job determining that the code which has been created is an object
which is satisfactory in the context of the other software objects. In earlier
papers we have discussed the difficulty of deciding when a body of code should
be considered to be satisfactory [Osterweil 81, Osterweil 82]. In those papers
we expressed the view that the central issue in such considerations must be the
presence or absence of errors, and that the notion of "error” is a relative one,
with an error being a deviation of the program’s actual behavior from its
expected behavior.

Thus we have previously expressed the opinion that the testing and evaluation
of code should be a question of determining its consistency with specifications.
In this section we examine more closely the ramifications of this viewpoint in
‘the context of algorithmically expressing the software development process.

-8-

We are led to conclude that our procedure "code_ok" must consist of code to
verify various consistency relations, among various software development
objects. Decisions about just which consistency relations are to be verified by
these procedures are squarely the responsibility of the software project manage-
ment. On the other hand, management should be in a position to select these
procedures from among a body of available procedures and techniques, each of
which is described by algorithmic code and supported by software tool
configurations. The way in which these various procedures and techniques
might be embodied, selected from among, and evaluated by testing and evalua-
tion practitioners is a difficult and crucial issue, which is a central concern of
this paper. In order to address it most effectively, however, we must defer it
until our basic ideas have been more fully and carefully presented.

Thus, for the purposes of this discussion, suppose that it has been decided that
"code_ok" is to be considered true if and only if the execution of a body of test
cases produces results that are identical with prespecified results. In order to
write code for this, declarations such as those shown in Figure 2 are necessary.
With these declarations, it is now possible to code the algorithmic portion of
"code_ok'. This algorithmic specification is shown in Figure 3.

Figure 3 has several noteworthy features. One feature worth pursuing is the
~-procedure "derive" which "code_ok'"-invokes. The purpose of this procedure is
to create the object ‘named as the first argument using as input the software
object named as the second argument. The effect of execution of this pro-
cedure is not merely the creation of the new object, but also the establishment
of a "derivation" relation between input and output objects. We believe that
this "derivation" relation is a very fundamental technique for organizing and
structuring the large number and variety of software objects needed to comprise
a software product. In this example the derivation process is intended to be
carried out in both cases by automated tools, but that need not always be the
case. We shall return to discussion of derivation later in this paper.

Another feature of the previous example is the procedure "consistent.” This pro-
cedure is used to determine when and whether a test result is "consistent” with
expected results. In some cases this procedure may be elaborated to something
as simple as determining the equality of two integers or the bit-for-bit equality
of two files. In other cases, complex numerical analysis may be required in
order to assure that test results are "consistent" with specifications. In any
case, however, such details can and should be supplied in lower level pro-
cedures. These lower level procedures should be created and placed in a library
by testing experts who should also, ideally, create automated tools to support
the procedures. This having been done, the selection from among these
libraries, and assimilation of selected procedures and support tools into
"code_ok" should be done by software engineers and project management in

-9.

accordance with project needs and guidelines. The details of how this can be
done is presented in subsequent sections of this paper.

Some difficulties with the procedure in Figure 3 cannot be solved by simple
iterative refinement, however. There is a major architectural weakness in the
procedure which appears as one considers how the lower level subprocedures of
"code_ok" must interact with each other. In actual practice, one rarely waits
until all code has been written before embarking on a monolithic testing regi-
men. In practice, code is written in small increments, and each increment is
tested progressively carefully. At first testing may be difficult or impossible
because only small pieces of the code exist (ie. the procedure derive
(code.executable, code) is itself unexecutable because the hierarchical structure,
"code", is still incompletely defined). In this case, practitioners carry out such
procedures as checkout compilation to seek syntax and elementary semantic
errors, and test execution using test harnesses and testing stubs.

Thus, the major difficulty with "code_ok" is that, if it is to correctly represent
the way code testing is and should be carried out, it will not fit neatly into the
linear algorithmic flow of the main procedure develop_software. This should
not be at all surprising as most observers have concluded that software is virtu-
ally never built in the neat linear fashion shown there, which we now under-
- stand corresponds to the most simplistic algorithmic encoding of the "waterfall”
development process. Our current example indicates that once coding begins,
there are also testing activities interspersed with it, that these may necessitate
peripheral coding activities (eg. to create test harnesses), that they may entail
revisitation of requirements specifications (as testcases are devised), that they
may uncover inconsistencies either within the evolving code object (necessitating
alterations to the code objects) or between the code object and the require-
ments and /or design object(s) (necessitating changes to any or all of the three).

Other observers have previously lamented this apparently chaotic situation.
- Nevertheless it has also been observed that this apparently chaotic situation
virtually always prevails in actual software development practice, and that it is
sometimes successful in producing an acceptable software product. Thus the
situation is apparently controllable, and in fact ought to be expressed algo-
- rithmically. In doing so it them becomes possible to to show how the
apparently chaotic process is controllable, thereby enabling more effective con-
trol, and also indicating how tools can be used to effectively support the pro-
cess.

3.1.2. DEVELOPEMENT AS AN OBJECT CREATION/ASSIMILATION PRO-
CESS.

-10-

We start by observing that the ostensibly chaotic situation just described is in
fact not all that chaotic, but can and should be viewed as the progressive pro-
cess of creating new code objects and meticulously incorporating them into the
large and evolving structure being created by the development process. One of
the key ways in which such new objects must be incorporated is by assuring
that they are connected by all of the "derivation" and "consistent” relations
which are created as directed by the algorithmic code of the "develop_software”
procedure. When inconsistencies are encountered, either the new objects must
be changed or withdrawn, or older objects must be changed or withdrawn.
~ Obviously this latter can entail considerable trauma as the older objects should
already be connected to other older objects by previously established relations.
Nevertheless, this seems to be an accurate view of how a code object is
developed. It suggests that the algorithmic process for developing code should
be as shown in Figure 4.

Here again we must delve into the details of such procedures as ok() and
change_design() in order to appreciate the subtleties of the higher level pro-
cedure. We shall focus on procedure "ok()" which is designed to determine the
acceptability of a newly created piece of code. Algorithmic code for this pro-
cedure might look something like the algorithm shown in Figure 5. It is impor-
tant to observe that this procedure is generally executed during code develop-
. ment in addition to, rather than instead of, procedure "code_ok" which was pre-
viously presented.

learly the procedure for determining whether or not the code structure S is
_complete is likely to be a complicated procedure probably requiring considerable
static analysis. On the other hand, the existence of such a procedure, reliably
implemented by software tools, can be invaluable to software developers in
advising them as to when and whether test harnesses need to be contrived
because existing source is insufficiently complete to support testing activities.

It is also clear that the procedure build_test_harness is likely to be a very com-
plicated one which will have to incorporate subfunctions for accessing design
specifications for invoked (but currently uncoded) subprocedures, for recapitu-
lating the entire development process in order to construct code for the test
harness, and (probably) for deciding whether or not the work entailed in doing
all of this is warranted. In fact, it is likely that "build_test_harness" must be a
Boolean procedure which returns FALSE when it is decided that the effort of
building a test harness is not currently warranted. In this case the subsequent
testing procedure will have to be a null procedure, thereby leaving undone the
process of determining whether certain of the software objects being developed
are sufficiently "consistent." Thus this decision is one which often has far
reaching consequences. If it is encoded in the context of a precise development
algorithm it can be based upon accurate information and reliable estimates.

-11-

Once made, its consequences can be made clear in terms of software objects and
consistency relations omitted.

We should not need to explicitly show the algorithm for implementing the pro-
cedure "change_design ()" in order to make the point that the implementation
of this procedure will necessarily entail the modification of some subobject or
subobjects contained within the design object at the cost of considerable
trauma. As that object has presumably been related to numerous other objects
in order for the process create_design and the process ok_design to have com-
pleted successfully, any alteration to the subobjects within the design object
will necessarily occasion the need for the reconsideration and reevaluation of all
of these relations. The ripple effect of such a change has been noticed in all
development projects. The usual problem is that the extent of the ripples is
difficult to determine accurately once changes begin to cascade. Here the use of
a formalism would seem to have considerable value. Ripples continue exactly as
far as previously defined consistency relations continue to be evaluated to the
value FALSE. As the consistency relations have been previously defined and
the objects on which they must be imposed have been previously created and
placed within a structure, there should not be any difficulty in deciding when
_ the effects of changes must be propagated further and when they need not.

~The-foregoing examples illustrate the point that software development can and
probably should be thought of as the process of creating new objects, determin-
ing the extent to which they are consistent with previously defined mandated
consistency relations, making alterations to either the newcomers or previously
-created objects, rippling the effects of these changes outward, and continuing
with the process of creating new objects.

This view has certain satisfying aspects, some of which have been touched upon
before. In some ways, it continues to present problems, however. One problem
is that is does not appear to provide much guidance as to the order in which
- new objects are to be created, nor the choice about when to evaluate con-
sistency relations and when (and how) to ripple out the effects of changes.

3.1.3. A MODULAR SOFTWARE DEVELOPMENT PROCESS.

One strategy that seems to make a great deal of sense is to create software
objects in clumps, where a clump consists of a set of objects which must be
tightly interrelated within the larger structured software product. This strategy
enables the software developer to create closely related objects either in parallel
or in close time sequence. This makes it easier to evaluate the needed "derives"
and "consistent” relations which must bind them and to be more sure that these
relations will be satisfied.

-12-

What is being suggested here is not too dissimilar to the notion advanced by
researchers (eg. [Parnas 72|, [LiskZill 75]) advocating the use of modules. They
suggest that a module is a tightly interconnected collection of software objects
(in their case the objects are assumed to be code objects) and they are to be
clustered together in order to minimize their interactions with other objects,
while maximizing the chance that they will deal consistently with internally
shared data structures.

Thus, from our perspective, the importance of the notion of modularity is that
it advocates the identification of software objects which are most tightly inter-
connected and suggests that they be developed and interrelated together. It is
then easier to weave them into the larger structured software product as an
aggregate than it would have been to attempt to do this as a sequence of indivi-
dual objects. Our view of a module is different from the classical view, how-
ever, in that we believe that a module is any tightly interconnected group of
software objects, and that they need not all (or any) be code objects. Thus we
believe that a module might well consist of some design objects, some
specification objects and some code objects. Testcase objects might also be
included in a module. This suggests that it might be advantageous to develop
an entire "thread" of software objects, spanning specification through testing,
more or less at once and then integrate this internally consistent collection of
~objects after it has been fully developed.' It is interesting to observe that this is
a paradigm that is often followed in actual software development projects and
that it often works very successfully. This perspective might help explain why.

3.1.4. IMPLICATIONS FOR A SOFTWARE REUSE PROCESS.

This discussion seems to also lead to some important insights into software
reuse. We should observe that software objects cannot successfully be reused
until and unless they are correctly interrelated with other software objects
which are being developed by the same development process. Thus reuse entails
taking a product which has presumably been produced by one development pro-
cess and integrating it into the product of another (possibly different) develop-
ment process. This reuse activity has the greatest chance of being successful
and efficient when the source and target development processes are the same or
are described by algorithms which are very similar. In these cases it can be
expected that many or all of the "derive” and "consistent” relations which will
need to be evaluated to assure acceptable assimilation into the target product
will have been evaluated in the context of the source product. In any case, if
the object(s) to be reused must satisfy numerous and complicated consistency
relations, the effort is unlikely to prove worthwhile. If, on the other hand, a
modular clump of objects is to be reused, the "derive” and "consistent” relations
to be satisfied will be fewer and simpler, and the reused software objects will be

-14-

Thus it appears that in order to successfully program the software development
process, the algorithmic language used must support the expression of parallel
tasking, access to shared data objects, and task synchronization. With such
facilities it is possible to program daemons which would then be able to assess
the status of the evolving software product, establish some consistency relations
automatically, derive various software objects concurrently with human
development efforts, enforce project guidelines, and enforce such management
decisions as the freezing of development in certain areas.

Using such an algorithmic language the procedures create_code, create_design
and create_requirements would be implemented as tasks and software practi-
~ tioners might participate in the execution of several of these tasks concurrently.
Procedures such as code_ok would also execute concurrently, but they might be
executed, at least partially, under the control of daemons. The specification,
design and coding of such daemons seems to be an important research problems
in software engineering. We believe that we are, in this paper, creating a set-
ting and structure within which these tasks can be readily understood and
within which the needed procedural code can be expressed and experimented
upon.

- 3.2. PROGRAMMING THE MAINTENANCE PROCESS.

In this section we explore the notion that software maintenance is the process of
altering the form of a software product, the contents of a software product, or
the process by which such products are produced (or any combination of all
three). We begin by observing that all of these types of alteration are
currently done quite routinely but under the single heading of "software mainte-
nance." In failing to recognize that they are distinct, however, and that they
have differing ramifications, they are often carried out incorrectly with conse-
quences which are often expensive and disastrous.

One way to help distinguish among these three types of maintenance is to think
of any particular software product as a template filled with information. Any
particular software product is profitably and accurately viewed as one such
filled template, which is built up by aggregation of the of more primitive sub-
templates and objects which comprise the final software product. Such a filled
template is clearly quite a bit different from the template itself. Both are, in
turn, quite a bit different from the process by which an empty template is filled
with values, producing a completed template.

This observation suggests that there are three principal objects of importance in
software--the software product, the template which structures the product and
the process by which the structured product is developed. We will have much

-13-

more numerous. Among the implications of this observation is that reuse of
code objects alone is likely to be ineffective, especially if these code objects are
extracted from a source development product which incorporates a set of
objects and relations which is significantly different from the object and relation
set of the target product. On the other hand, reuse of development strands
should show far more promise, especially if these strands are extracted from a
development product which is similar to the target development product.

3.1.5. PARALLELISM IN THE DEVELOPMENT PROCESS.

. Although there seems to be much promise in the previous suggestions that the
development process be viewed as the incremental creation and assimilation of
modules of software objects, there is a problem in that straightforward sequen-
tial development algorithms do not accomodate this sort of development stategy
very well. On the other hand a development model capable of expressing asyn-
chronous, parallel development tasks seems to accomodate it very well and
show considerable promise. A reasonable software development algorithm might
" be one in which the development of each module of a software product is car-
ried out as a separate development task, and the process of incorporating such
modules is expressed by a different task or tasks. The incorporation task(s),
focussing on the evaluation and verification of needed consistency relations
might be overtly invoked by the module writer or project manager, or might be
invoked by a daemon. The daemon might simply periodically check the status
of the project, or it might be triggered by some prespecified set of conditions
corresponding to a preconceived notion of drastic change in the status of the
product.

The need to inject asynchrony into the proposed process is further motivated
(strongly) by the need to accurately model how software is to be produced by
teams of workers. It has often been observed that software engineering is most
- desperately needed to assist the development of large software by large teams of
workers, and is far less important as an aid to a single software developer. In
the case of team development it should be clear that each developer is, in effect,
a parallel processing activity, but that all are sharing access to the central
object which is the evolving software product. Thus, the development process is
being carried out as a collection of asynchronous development tasks--with each
worker executing at least one such task. It follows that the task of assuring the
consistency of the software product under development is crucial and enor-
mously difficult. This task falls to the software manager, most of whom will
attest to its enormity. We suggest that the success of a large software develop-
ment activity most often hinges on the ability of the software development
manager to effectively synchronize the myriad development tasks in such a way
' as to preserve the consistency of the evolving product.

-15-

more to say about these and other software objects in later sections of this
paper. For the purposes of this section, however, let us simply observe that the
three types of maintenance just referred to correspond to processes aimed at
the alteration of the three types of objects just enumerated.

The first type of maintenance entails alterations to a filled-in template. The
second type of maintenance entails alteration of the template itself. The third
type of maintenance entails alteration of the process by which individual
instances of a filled-in template are created.

For example, sometimes it is deemed necessary or important to alter the
"derives’" and "consistent' relations defining the structure of the software pro-
duct. This is an example of the second type of maintenance. Sometimes altera-
tions are made to the order in which the creation and verification of such rela-
tions are carried out. This is an example of the third type of maintenance.

Either type of alteration is quite distinct from the first type of maintenance in
which only specific data contents of a single software product is carried out.
Thus, adding new code and/or testcase objects to a software product, is an
example of the first type of maintenance. This entails the transformation of
one particular filled-in template into another filled-in template. This requires
~ that new objects be created and inserted into the existing template. This
activity would presumably be carried out when the executable code object con-
tained in a developed software product was found to commit errors or be incom-
pletely tested.

Maintenance aimed at altering the template itself is a more complex and
significant maintenance activity. It is required when it is discovered or decided
that the product structure which is which has previously been used to guide the
development of past software products itself is either faulty or incomplete and
has to be changed. Under these circumstances it is necessary to change the
“structure itself, begin using it to develop all subsequent software products, and
somehow go back and transform earlier products, which had been created by
essentially filling with objects the template which has now been changed. Later
in this paper we shall discuss how the need to change the template itself may
arise and be recognized.

Whatever the reason for carrying out the maintenance activity, in this section
of the paper we are concerned with indicating how such an activity can be
expressed algorithmically. To begin, we address the question of how one filled-
in template can be transformed into another such filled-in template. An algo-
rithm for receiving a request for such a change, and carrying it out would, at
the highest level, look something like the procedure shown in Figure 6.

-16-

It is important to address the problem of deciding how and when to attempt to
reestablish the consistency relations involving altered objects. Clearly one could
elect to include at the end of each of the "change " procedures the invocation of
a consistency checking procedure which would then be responsible for verifying
the soundness of the software product after each change. As a change may
involve the alteration of more than one object, however, this raises the question
of when the consistency checker ought to run--after each object has been
changed, after several have been changed, or after all have been changed?

Compounding this difficulty is the fact that maintenance activities on actual
software systems are generally carried out in parallel. In a commercial software
operation the maintenance organization generally acts as a funnel, receiving
requests for maintenance and then dispatching them to individuals for remedia-
tion. From the point of view of simplicity and control it would be easiest if this
dispatching procedure were carried out as a sequential loop such as shown in
Figure 7. This is quite different from the way maintenance is actually done how-
ever, as the actual process involves carrying out multiple maintenance activities
in parallel, adjusting the priorities given to various maintenance activities,
dynamically deleting some, and so forth. Thus, the dispatching and handling of
maintenance jobs is generally carried out as a multitasking activity. Further,
our previous discussion has already suggested that the process of checking on
- the ‘'soundness. of the result of a maintenance activity is best thought of as a
task which may not always be started under the direct control of the main-
tainer.

In practice the responsibility for checking the consistency of a change with
preexisting software objects and structure is often carried out by a special task
(the "configuration manager'--often a person or committee). We now suggest
that consistency checking might be the responsibility of a daemon which is
started up either by a timer, or by other daemons whose jobs are simply to
monitor the flow of alterations to the software product. In any case, we believe
it is noteworthy that it is far more satisfactory to attempt to express the way in
which maintenance is and should be done in terms of concurrent tasks than by
means of algorithms which are not able to exploit such control flow primitives.

Similarly this seems to be an appropriate mechanism for helping to control the
larger and more complex process of transforming the template used to define a
software product into an another template, corresponding to a software product
structure. As observed above, this sort of maintenance also entails the transfor-
mation of existing filled-in templates into instances of the new template, where
previously created objects may have to be relocated, deleted, transformed or
related to different objects, perhaps in different ways.

The transformation of these old filled-in templates into new templates might

-17-

well be carried out as described above once the new has template been defined
and put into effect. The process of setting up the new template, will be a
different process, however, aimed at the transformation of a different sort of
object. The process of "publishing" the new template and "putting it into
force" is another process still. All of these processes can and should be
described algorithmically, thereby comprising an algorithmic picture of what
this second type of maintenance entails.

3.3. DATA OBJECTS IN SOFTWARE ENGINEERING PROCESSES

Although the preceding discussions have been primarily aimed at furnishing
algorithmic details of the development and maintenance processes they have
also strongly indicated that a great deal of data object description is necessary
in order to specify these algorithmic details. This should not be surprising as
both software developers and programming language designers have become
increasingly impressed with the importance of powerful and precise data
specification in creating superior programs. Thus, as we are suggesting a pro-
gramming approach to describing software processes, it seems only natural that
we should devote considerable attention to defining data objects and structures
for sharpening and facilitating our algorithms. .- The alert reader has probably
noticed that data object issues have already entered some of our earlier discus-
sions. It is now time to address them directly and systematically.

3.3.1. STRUCTURING THE OBJECTS OF A SOFTWARE PRODUCT.

Our previous presentation of software process algorithms have most noticeably
required that some structure be placed upon the diversity of objects upon which
they were operating. In "code_ok', for example, testing was viewed as an
activity which processed an array of testcases. The testcases, in turn, consisted
of pairs--test inputs and specifications of required outputs. Our subsequent dis-
cussion of the difficulties presented by the need to test code while it is still
under development touched upon the fact that code should be developed in
pieces and integrated incrementally. This left unstated, but nevertheless quite
obvious, the fact that a code object must be viewed as a hierarchical structure
- of lower level subobjects, modules and compilation units. Thus we have already
seen instances of the need to place a hierarchical and aggregation structure
upon some of the software objects manipulated by the algorithms we are
developing.

We also emphasized our conviction that testing and evaluation are processes
which tantamount to the establishment of a different sort of structure--namely
a "consistency’ structure. A consistency structure of software objects relates to
each other those objects whose contents must be be consistent in certain

.18-

specified ways. The purpose of this structure is to define what constitutes an
error in the software product being built and to specify ways in which these
inconsistencies (errors) can be detected.

Still another type of structural relation that our previous discussions indicated
was the "derive" relation. This was mentioned briefly in the context of our dis-
cussion of testing, where it was indicated that an executable program object
was to be created out of an existing source text object. There we observed that
the new object was not simply created as a freestanding entity, but rather that
it was created and related to its predecessor object--the source text--by a
derivation relation. We believe that it is important to make such derivation
‘relations visible and explicit as an aid to software practitioners and managers.
In addition, in subsequent sections of this paper we shall see that making this
relation explicit can be used to greatly improve the efficiency of automated tools
and integrated environments.

In our early investigations we have been surprised at the number and complex-
ity of the relations which seem necessary in order to express the structure of a
software product. We have found that a given object is generally involved
either directly or indirectly (eg. through derivation chains) in several different
hierarchy relations, several different consistency relations and several different
--derivation relations. In addition, the structures of these relations need not be
related to each other in any particular way. Thus, a given object, say a modu-
lar group of source text objects, may be hierarchically related to a particular
set of objects (eg. if it consists of a set of separate compilation units, and is also
included in a set of higher level procedures), but may be a part of some different
"consistency’ relations (eg. if it is necessary for it to be consistent with some
project guidelines concerning source text size, structure or format), and may be
a participant in still different "derivation" relations (eg. if the module is a pret-
typrinted or instrumented version of a different source text object).

" We are: left with the feeling that software products have far more structure
than we had previously believed or than we had expected when we began this
investigation. We note that Howden has also discovered that complex struc-
tural relations among various types of software objects, spanning several
software lifecycle phases, are necessary in order to carry out testing in the way
~ he suggests [Howden 85|. Thus we are increasingly convinced that computing
support is essential in specifying what these relations ought to be and how they
are to be established. Specification and establishment of the various relations
is the job of the individual who creates the process which builds and exploits
these relations and it should be carried out according to algorithmic steps which
are part of the process.

-19-

3.3.2. TYPING SOFTWARE OBJECTS.

We also strongly believe in the importance of attaching type attributes to the
objects of a software process. The "derives" relation encourages the view that
the data objects manipulated by software processes are mostly derived from
each other by the action of tools. This suggests that tools should be thought of
as operators which transform objects (operands) into other objects. There seem
to be a number of advantages to this view, to tool writers, process encoders and
software object managers alike. Thus, for example we believe one should con-
sider a compiler to be a transformer which maps objects of type "source_text"
into objects of type "object_code". Probably any specific and actual compiler is

- probably best thought of as mapping a "source_code" object into an object of a
type which is specific to that compiler and a subtype of type "object_code” from
which it inherits certain properties and characteristics (eg. loadability).
Different compilers for the same language dialect would be thought of as dis-
tinct operators tranforming "source_text" objects into different subtypes of the
"object_code" type.

A specific program execution environment can also be considered to be a tool
which implements a transformation operation. This operation is capable of
mapping pairs, consisting of an object of type “executable_program” and an
- object of type "test_data' into an object of type "test_results." When impor-
tant or necessary objects of these various types can and should be coerced into
objects of different types-- for example when it becomes important for a
"source_text' object to be used as input to some tool which may have been
“created to deal with arbitrary raw character strings.

Many of these notions were advanced and implemented as part of our research
in creating the Odin software tool integration system [ClemmOst 86 and in
using Odin to integrate some powerful tool collections. Odin is perhaps best
viewed as a manager of large grained persistent software objects. It uses
- hierarchy and derivation (although not consistency) relations to organize,
manage, and optimize the creation of these software objects.

Objects in Odin are also typed. In fact, the structure of the types operated
upon by the various tools which Odin integrates is captured and expressed in a
separate object--the Odin dependency graph (see [Clemm 86] [ClemmOst 86}).
By creating this type structure as a separate object we discovered that it was a
great deal easier to maintain the type structure (eg. by altering or adding new
types and new tools). From the perspective of this paper we can now see that
the Odin dependency graph is a vehicle for the definition of the structure which
can be placed upon the types of the objects being manipulated by the users of
the various software processes which are interpreted by Odin.

-20-

This perspective helps us to understand the nature of software development and
maintenance better, and reinforces our belief that data definition and descrip-
tion play very central roles in effectively programming these processes. We
now understand that software development is the process of defining the type of
the software product(s) to be produced, then instantiating the product(s) type(s)
and finally elaborating and evaluating the needed instances. This view of the
development process is illustrated in Figure 8. Interestingly, this view points up
the fact that most software development process attention has been focussed on
creating algorithms for the elaboration and evaluation of the instances. It is
clear that more attention needs to be paid to processes for defining software
product types as well. Later we shall indicate, however, that this process is
actually best. thought of as a subprocess of the process of creating a software
process, rather than creating a software product.

Earlier we also indicated that maintenance may be of three sorts. We now
name them product maintenance, product structure maintenance, and process
maintenance. The first is best thought of as the algorithmic process of
transforming one software product type instance into another instance of the
same type. The second is best thought of as the algorithmic process of
transforming one type description into another type description, and then deal-
ing with the implications that this transformation has for existing software

. objects and products. The third:is best thought.of as an algorithmic process

aimed at transforming one algorithmic description into another algorithmic
description. Here too this process must study and resolve the impacts of such
alterations upon existing objects and processes.

Thus the three types of maintenance are all transformation processes, but are
carried out on different sorts of objects. The object at which product structure
maintenance is directed is a type definition, which we shall refer to as the
software product structure (SPS); the object at which product maintenance is
directed is an instance of such an SPS, namely a software product, which we
shall denote an SP for clarity.

Thus it is clear that in order to create effective algorithmic specification of such
key software processes as development and the three types of maintenance we
‘must incorporate powerful data type specification capabilities into any software
engineering language used to express these processes. We have indicated the
need for the ability to type objects and object aggregates. Also critically impor-
tant, however, are capabilities for attaching type specifications to the various
relations which interconnect software products. We have discussed the value
and importance of derivation in placing a structure on the diversity of software
objects comprising a product. Now it is worthwhile to observe that "derive” is
probably best viewed as a type of relation and that the various tools and agen-
cies used in the various actual derivation processes are best viewed as subtypes

-21-

of this relation type. In this way it becomes far more natural to differentiate
as needed among the various ways in which tool or other sorts of actions have
developed descendant objects from ancestor objects.

The value of typing relations becomes far clearer when considering consistency
relations. Our early investigations of consistency relations do not indicate
clearly whether they are best expressed as algorithms, Boolean predicates,
predicate calculus statements, or in some other formalism. We believe that
each relation is probably best evaluated during the development process by a
separate task. This serves to reinforce our belief that consistency relations
should be constructed hierarchically out of lower level consistency primitives
- whichare themselves implemented by primitive consistency checking tasks.
Research must address what these primitive relations and tasks ought to be. It
must also address the smooth integration of specifications of consistency rela-
tions into the software engineering language. Certainly we expect that con-
sistency relations will be implemented in a wide variety of ways and should
therefore be expected to exhibit important differences. We expect that these
differences as well as equally interesting and important similarities are likely to
be best identified with the help of a hierarchical type structure.

Although we have so far betrayed a prejudice towards adoption of an algo-
rithmic programming language paradigm as the basis for the encoding of
software process algorithms, the issue of adequate expression of consistency con-
straints serves to shake our confidence in the suitability of this paradigm. We
shall discuss research issues pertaining to the selection of a language paradigm
later in this paper. For now, suffice it to say that we are concerned that a
language in the classical algorithmic mold may not be sufficient for the effective
expression of consistency relations.

3.4. OTHER RELATED SOFTWARE ENGINEERING PROCESSES.

~ Qur earlier attempts to give increasingly precise and detailed algorithmic
descriptions of the software development and maintenance processes have led to
deeper and more unified understanding of such other important software
engineering issues as testing and evaluation, modularity and reuse. In this sec-
- tion we pursue these discussions: further to strengthen our claim that the tech-
nique of programming these processes leads to a deeper understanding of each
and the relation of each to the others. In the process we establish satisfying
connections with still other software engineering activities (eg. software metrics
research).

-22.

3.4.1. TESTING AND EVALUATION OF "SOFTWARE ENGINEERING
PROCESSES AND PRODUCTS.

Our suggestion that software development be viewed as a process of creating
instantiating, elaborating and evaluating a data type suggests that the indivi-
dual who programs this process is a classical programmer, devising data aggre-
gates (eg. SPS’s), and creating algorithmic procedures for manipulating these
SPS’s. We propose that this individual should be referred to as a software
engineer and that individuals who participate in the creation of the actual SP’s
should be referred to as software practitioners or software artisans. Thus both
are programmers, but the software engineer effects the development of a
‘different, larger and more abstract object. One troubling aspect of this view is
that software engineers now accept and espouse the notion that such algo-
rithmic code should not be created until and unless other types of objects (eg.
requirements and design objects) have previously been created.

Thus, as the software engineer is a programmer who creates data structures
and code for the software development and maintenance processes, it is impor-
tant that proper software development practice be followed in the creation of
that code. The point here is that the software development procedure is indeed
a piece of software itself and as such is far more than just a piece of code and
.associated data structure declarations (ie. the SPS). This piece of software is
also a complex structure of interrelated subobjects, which include requirements,
design, code, and test-related objects as well. This latter software product is
the product produced by the software engineer. This product contains as one of
its component software objects a process and SPS which are then used by
software practitioners to guide their creation of the SP’s which contain data
processing systems for end users.

To lend emphasis to this dual nature of the software development process as
both a process and a product of a higher level process, we shall now begin to
refer to a software development (or maintenance) process as a software
process-object, when we are discussing it in the context of the process by which
it is itself created.

~ One important ramification of the observation the the software process-object is
the product of a process is that we should now understand that the software
process-object must in some contexts be thought of as merely an object of one
type in a larger structured software product (ie. a higher level or more abstract
SP) which consists of a variety of other object and relation types and instances.
This perspective is an important one, because the software process-object, like
all objects in any SP, must be assumed to be an object which must continue to
evolve as it continues to attempt to meet needs which are constantly changing
in their nature or perception or both. In the case of the software process-

.23-

object, the changes are necessary in order to assure that the process-object con-
tinues to produce data transformation systems whose characteristics are "con-
sistent’ with the expectations of those of who require that they be built.

For example, it may be the case that an executable system object, built for an
end-user, must be built in such a way that no transformation ever be executed
which produces data values which violate behavioral specifications laid out in a
requirements specification object. If such a specification violation is subse-
quently observed, then the. customer can legitimately question not only the exe-
cutable object, but also the process by which that object was built and tested.
This is because, not only did the executable object violate the customer’s func-
_tional specifications, but the. software development process violated the
customer’s specifications for the process-object.

As another example, consider the case of a software development organization
in which there is a "testedness" standard in force which requires that all
software development activities assure that 909 of all statements in any
delivered source text object must have been exercised by a test regimen before
system delivery. This requirement is actually a specification object with which
all process-objects used by that software development organization must be
shown to be consistent. All software engineers must devise software processes
which incorporate -testing procedures which must effect the 90% coverage in
order to be in compliance with the organization’s requirement. If, after execu-
tion of the software engineer’'s development process, a resulting software pro-
duct does not incorporate a test result object which reflects 90% code coverage,
-then the software process is not in compliance with the requirement. The
software engineer must either alter the testcases used or the process used in
order to avert a demonstration of the non-compliance of the process-object with
its requirements.

These examples are illustrated in Figure 9. They show some ways in which the

- need to alter a software process-object can arise, and ways in which this need

can be detected. ~ We note that detection is invariably based upon the detec-

tion of an inconsistency between the process-object and another software
 object. We will discuss how these other objects come into existence shortly.
For now, we shall address the issue of testing and evaluation of software
process-objects.

We characterize the previous two examples as testing approaches to the evalua-
tion of a software process-object. In each case, the process-object has been
created and then executed to produce a software product (SP), containing an
executable data transformation system object. In each case the process-object
is evaluated by studying its consistency with specifications. In the first case, we
suggest that the software engineer must have specified that the development

-24-

process create a 'test-result” object type, whose instances were to hold a
Boolean value indicating whether or not all test cases to date had adhered to
all assertions of intent. This object would then have been considered to be one
of the software objects contained in the software product produced by the
software engineer’s software process-object. In a very real sense, the Boolean
"test-result” object is an output of the software engineer’s program. When this
output value is False, the software engineer recognizes that his or her program
is producing a data output which is inconsistent with the requirements
specification object with which the software engineer’s process-object must be
consistent. A similar argument supports our contention that the second exam-
ple is another instance of a testing approach to the evaluation of the process-
object.

In each of the above cases, it seems important to note that the evaluative pro-
cess is greatly improved by considering it to be a process very much like the
testing processes which we currently apply to executable objects within SP’s
built to the specifications of an SPS. It also seems important to note that the
concept of testing as being an activity in which performance is compared to
expectations is not merely applicable, but also highly profitable, when applied
to evaluation of process-objects. Consideration -of the need to enunciate specific
expectations for the functioning of a software process, and the separation of
these ‘from expectations for individual software products, seems to be a very
worthwhile step. -Too often it seems that these expectations have been con-
fused, and errors in one have been approached by making changes in the other.

- Thus we have seen that software process-object testing can be used to deter-
mine the effectiveness of a process in creating software products which achieve
satisfactory levels of functional correctness and testedness. There should be lit-
tle difficulty in imagining how process-object testing could also evaluate the suc-
cess of the process-object in producing products which are satisfactorally fast,
responsive, small, crash resistent and so forth.

We must hasten to observe that these testing approaches to the evaluation of a
software process-object continue to suffer from the generic weaknesses of
dynamic testing. Thus, they are capable of showing the existence of an
instance of inconsistency between functioning and expectation, but are not able
to provide assurances of the absence of such inconsistencies ' [Dijkstra 72|.
Further, these techniques in themselves do not furnish reliability or testedness
measures which are desired in order to provide managers and customers with
estimates of the degree of confidence which might be placed on the object under
test. Thus, we see that it is very reasonable to expect to be able to test a
software process-object, but it is also very reasonable to question the adequacy
of testing as the sole vehicle for gaining confidence in the process-object. It
thus becomes important to consider the possibility of static analysis approaches

-25-

to evaluation as well.

Static analysis of software process-objects seems to be an eminently reasonable
and realizable approach to evaluation. What is suggested here is that the
rigorous algorithmic coding of software processes seems to be an excellent sub-
ject for correspondingly rigorous and effective reasoning processes about the
nature and expected behavior of the processes. We believe it is important to
observe that successful software development managers undoubtedly carry out
such reasoning processes at least mentally to assure themselves that the
processes which they are supervising are likely to be effective. Unfortunately, as
these reasoning processes are invariably mental processes, studying informal or
. unspecified software development processes, they can be incomplete or incorrect.
Certainly as the size of a software product grows, and the size of the process for
creating it grows (often nonlinearly) the task of reasoning correctly about both
becomes uncomfortably large. It is not difficult to point to examples of projects
containing software process flaws that have interfered with the success of the
software product. In such cases, the very lack of a written or rigorous represen-
tation of the process serves as a most fundamental stumbling block. Thus it
would seem that our suggestion of a rigorous algorithmic expression of software
processes provides the basis for an approach to this problem.

. When viewed in this light, some promising forms of static analysis immediately

suggest themselves. One such form of analysis is straightforward type checking.
We have indicated that the objects comprising a structured software product
should be thought of as being typed, and the tools and subprocesses used in
creating them should be thought of as type transformers. Thus it makes a
great deal of sense to analyze the software engineer’s process to assure that it
specifies the correct manipulation of types. This suggests the desirability of
having the language in which software processes are to be programmed be a
strongly typed language. It would be interesting to study the impact that mak-
ing a software process language strongly typed might have on the ability of the
software engineer to create effective processes.

Another promising possibility is to carry out data flow analysis of software
processes [FosOst 76]. Data flow analysis is best characterized as the examina-
" tion of the structure of an algorithmic procedure to determine whether or not
certain specified event sequences might occur in any possible execution of the
procedure [Osterweil 81]. The importance of being able to carry out such
analysis of a software process is that such analysis could pinpoint bottlenecks.
and malcoordination in the software engineer’s algorithm for creating a
software product.

For example, a software engineer might have specified that a particular testing
or integration analysis procedure take place at a time when the rest of the

-28-

development process may not have assured that all needed source code objects
and /or test data objects had been completed. It appears that such instances of
malcoordination might easily be modelled as problems of determining "liveness”
or "availability" [FosOst 76]. Such analyses could pinpoint places in which the
process mandated the completion of development steps whose undertaking
might not be safely assured. Often such development steps as key testing or
evaluation procedures correspond to such important project milestones as Criti-
cal Design Reviews and Integration Testing completion. Surely it would be use-
ful to the software engineer and project management to know that their
development plans were sound at least to the extent that all needed inputs to
these important subprocesses will be available to them. Data flow analysis
seems capable of furnishing such assurances.

Closely related to the previous type of analysis is shortest path or critical path
analysis. These types of analysis are already in use in the management of some
(especially larger) projects. This type of analysis is aimed at detecting which
development tasks and lines are most critical to assuring timely progress in a
software project. The basis of these analyses is generally a network flow
representation of the tasks of the project, annotated with estimates of the
amounts of time and effort required to complete the various tasks. Our sugges-
tion that the software development process be expressed as a rigorously defined
~algorithm will have the effect of making available the basis for the construction
of a reliable network flow model, abstracted from the rigorous representation.
Thus, critical path types of analysis would be placed upon a more rigorous and
reliable footing, and would have concrete ties to actual ongoing development
work. In fact, such flow networks would be good examples of other objects pro-
duced as part of the process of developing the software development process.
Thus we see examples of other objects created by this process.

3.4.2. SOFTWARE METRICS IN EVALUATION OF SOFTWARE PROCESS-
OBJECT DEVELOPMENT. '

The preceding discussion also suggests a way in which to evaluate the perfor-
mance of a software development process. The performance of a software
- development process might be measured in terms of the speed at which the pro-
cess is executed (ie. how fast the development activity is progressing) and the
size of the product being produced (ie. the size of the SP). It is important to
observe that these issues are at the heart of the attempts that have been made
for decades to attempt to provide reliable and accurate measures of software
product size, and development progress. Our perspective now indicates that
questions about the size of a software product, and the degree to which it has
been completed now appear to be questions which should be addressed to the
“software process-object, rather than to the software product (SP), or worse yet,

-27.

" to executable object contained within the SP.

If software development is aimed at the production of a software product
which is a large and tightly interconnected structure of subobjects, then the size
of the project must be a function of that object. If the degree of completion of
the development process is to be measured, it seems only reasonable to
approach this by measuring the extent to which the development process has
proceeded through execution of the algorithm which describes it, and the extent
to which the software product under development has been evaluated. Thus we
are convinced that our perspective on software engineering provides important
insights and directions for those who are interested in measurement and evalua-
tion of software. We also see from this discussion that such measures are
further examples of objects which should be created as part of the process of
developing {and certainly maintaining) the software development process.

3.4.3. SOFTWARE MAINTENANCE PROCESSES FOR SUPPORTING REUSE.

Earlier we observed that software maintenance is an activity which is aimed at
the alteration of either a particular software product, or either the structure or
process according to which software product instances are developed. The
difficult part of maintenance is not making these alterations, but rather making
* them while simultaneously assuring that as many of the previously developed
software objects within existing software products can be reused. Thus it
appears that software reuse considerations lie-at the very heart of the difficulty
in software maintenance.

Although not strictly essential, we believe that, in order for a software mainte-
nance process to be acceptable it must be able to reuse, to a very extensive
degree, software objects within products developed by processes which have
been altered by maintenance activities, and are no longer in use. This, in turn,
seems to be merely one manifestation of the more universal need to be able to
~effectively reuse in a software development (or maintenance) process software
products (either complete or fragmentary) which have been created by a
different development process.

In software product maintenance, one must alter the product while retaining as
much of the product which has not been directly altered as possible. Here the
primary difficulty is in determining the extent to which alterations have invali-
dated previous work. Clearly the materialization of the structure of the
software product is an enormous help, as it can be used to indicate exactly
which software objects must be related to which others and the exact nature of
the required relations.

Thus one major functional requirement of a maintenance process is for it to

-28-

facilitate the detection of all software objects not affected by the maintenance
changes and to recertify them for continued use in the altered software product.
In the case of software objects which are affected by maintenance changes, the
process must determine how these objects are affected by the alterations. The
process should also determine which objects must be recreated, and the way in
which the recreation should be carried out. In short, achieveing effective
software product maintenance is dependent upon determining how to achieve
effective reuse.

Similarly effective software process maintenance also depends upon effective
reuse in the face of more significant alteration and disruption. In this case, the
- algorithmic process or the object structure of the software product is itself the
object of change, and can no longer be considered to be a reliable constant,
capable of guiding changes to underlying software products. The type structure
itself may have undergone change, and may now describe a product which con-
tains some new object and relation types and instances. In addition, the new
type may no longer incorporate some object and relation types and instances
which were incorporated into the previous one.

The job of the maintenance process is no different in this case. Here too, the
process must provide effective support for the determination of which software
‘ obJects, and which of their relations, have remained useful in the face of the
changes, and which have been affected by the changes. In the case of objects
and relations which have been affected, the process must provide effective sup-
port for determining the impact of the changes, must determine which objects
and relations must be redeveloped, and the order and fashion in which such
redevelopment are to take place. Object and relation types and instances
which were present in the old SPS, but not present in the new SPS would not
appear to be worth retaining. On the other hand, both the volatility of most
software projects, and the proliferation of software projects suggest that
software objects produced by a former development process have some future
‘value, not anticipated at the time of development, and possibly unanticipated
at the time of a decision about whether or not they should be discarded. Cer-
tainly the exceedingly high costs of software development should encourage the
very careful consideration of possible future reuse of such software objects and
processes.

Thus the larger software engineering issue to which our consideration of
software maintenance leads is the issue of how the software products produced
by one software development process can be reused as part of another software
development process. In the classical conceptualization of software mainte-
nance, the two software product structures in question are presumed to be quite
similar, representing the (hopefully orderly and gradual) evolution of the
development process. The software product itself is presumed to be incompletely

-29-

developed, raising the complicating issues of how to carry on with an algo-
rithmic process on an object which was left only partially created (and perhaps
in an internally inconsistent state) by a different algorithmic process.

In the emerging conceptualization of software reuse, what is needed is the abil-
ity to assimilate into a developing software product either part or all of a
different product. Little attention has, to date, been focussed on the impor-
tance of the relationship between the process by which the candidate for reuse
was developed and the process under which the developing software is being
developed. It has been presumed, however, that the reused software product is
to be made available to the reusing process in a "completed” form. Our current
view of the nature of a.software product is that it is a tightly interrelated
structure of smaller software objects. Thus, the software product which is to be
the reuser will have to assimilate the reused software into such a structure.
Clearly, this can be done most effectively if the reused software is already built
into such a structure. Thus, the issue of the process by which the reused
software has been built now emerges as a critically important one. Small
wonder that many who have attempted to reuse software have come away from
their experiences disappointed and disillusioned.

This discussion indicates that effective reuse of a software product requires that
both the product and the process by which it was created be delivered to the
" reusing party. The reuser, like the maintainer, is then in a position to compare
the development process used, and the SPS which this process seeks to instan-
tiate, and evaluate to the current development process and its SPS in order to
determine how closely the algorithms, and object and relation types and
instances match. In the case of a close match substantial reuse should be
expected. In the case of a serious mismatch, significant benefits from attempts
at reuse should not be expected.

Software managers who have attempted to reuse software have long ago under-
stood that it is necessary to "plan for reuse” if this is to have a chance of suc-
cess. Here we go further and note that such a reuse plan can and should be
expressed procedurally in the form of an algorithm for the manipulation and
evaluation of both contributed and existing software processes and products.
Issues surrounding the construction of such reuse algorithms and the design of
languages in which they can be effectively expressed would appear to be criti-
cally important research issues.

-30-

3.4.4. IMPLICATIONS FOR SOFTWARE MODULARITY.

Earlier we observed that the nature of a module is that it is a body of software
objects which are relatively tightly interconnected among themselves, but rela-
tively less tightly connected to other objects in the software product which con-
tains them. One advantage of taking care to aggregate software objects into
modules wherever possible is that the sparse connections of such modules to
other software objects makes it correspondingly easier to combine them with
those other software objects to comprise larger software products. Another
advantage can be seen from our present discussion of reuse. We note that the
relatively sparse connections between modules and the software objects of their
containing software products also facilitate the process of reusing the modules.
As the modules themselves are tightly interconnected lumps of software objects,
the amount of software which is thereby reused is correspondingly larger as
well.

In earlier work (eg. [Parnas 72|) the objects comprising a2 module were thought
of as all being of type source code. From our perspective we now see that in a
superior software product the source code objects are likely to be tightly con-
nected to a variety of objects of other types. Thus we are led to conclude that a
module must be a collection of software ‘objects having diverse types. Further,
this suggests that-a collection of software objects may appear to be more or less
~ modular depending upon the structure of the SPS which defines the software
product within which it is embedded. Thus a collection of software objects
created by one process may lack significant object types required by a different
process. This lack may necessitate such considerable amounts of new software
object and relation development that the software collection may not merit the
designation "module.” Conversely, a module may be furnished which contains a
larger variety of object and relation types than the process which is receiving it
either requires or understands. After these unfamiliar object and relation
types and instances are ignored by the reusing process, it may be unclear to
that process why the submitted module was considered to be a module at all.

One intriguing possibility that is raised by the suggestion that software pro-
ducts be created as elaborated, evaluated type instances is that the modularity
of a subset of the objects comprising such a product might be measurable.
This would presumably entail attaching measures to the various costs of ela-
borating the consistency relations connecting the various module objects both to
each other and to objects outside the module.

3.5. SOFTWARE TOOLS AND ENVIRONMENTS AS INTERPRETERS FOR
SOFTWARE ENGINEERING PROCESS PROGRAMS.

An environment should be thought of as a software system capable of effectively

-31-

assisting in the composition, compilation and execution of both software
development /maintenance process programs, and the programs needed to
develop and maintain such programs. Thus our work suggests that a software
environment is a system of computer aids capable of providing effective support
for the process of developing and maintaining the processes by which we
develop and maintain software products. Further, we believe that this support
ought to be supplied in the form of a single system offering the user as uniform
and consistent a view of what it is doing as possible. We are convinced that
an ideal vehicle for doing this would be a rigorously defined language, supported
by compilation and execution support systems.

‘This -perspective should help to clarify what the central issues in software
environment design and implementation ought to be. If the environment is to
appear to the user to be a language interpretation system, then some central
issues are the efficiency of the implementation of the interpreter, the way in
which the interpreter interacts with interpretive subprocesses, and the interface
which these subprocesses and the interpreter itself present to the user. So far
we believe we have established that an environment requires a very wide range
of interpretive subprocesses, ranging from a subprocess to create specification to
a subprocess for producing object code from source text. Thus we see that
some operators must almost certainly be implemented manually (ie. by human
‘processing) while others might well be better implemented by automated tools.
In fact processes. effected by automated tools are of particular concern to end
users because the tools in question may be expected to be large and potentially
quite slow. Thus, the implementation of the interpretive subprocesses is an
important issue.

In our earlier work in connection with the Toolpack project [Osterweil 83, Clem-
mOst 86|, we experimented with the implementation of larger tool functions by
means of configurations of smaller tool fragments. This notion is quite con-
sistent with the Unix (TM) "small is beautiful” [Kernighan 81] strategy. We
discovered that by synthesizing large tool functions out of smaller tool fragment
capabilities and saving the intermediate products of these tool fragments, we
were often able to exploit these cached intermediate products in responding far
more efficiently to future requests. Thus our new perspective indicates that this
strategy of building larger tools out of smaller ones is an optimization strategy
and it suggests that a key research area is the identification of the most stra-
tegically important object types and operators on those types.

The algorithmic specification of when operators are to be invoked is also impor-
tant in managing both human operations and in managing computer operations.
In the case of human operations, the algorithmic content of the development
process is needed to specify the order in which human software developers are
to go about their work. In the case of computer implemented operators

.32

algorithmic direction is also qkuite useful in directing, and also controlling, the
extent to which the software tools which implement the computer operators are
to carry out their work.

For example, it is clear that a compiler should transform a source code object
into the corresponding object code object, but it is less clear when this should
happen. The obvious strategy seems to be to wait until the source code object
is completely created. On the other hand, advocates of such tools as checkout
and incremental (eg. [Gandalf 84], [DemRepTei 81]) compilers might well sug-
gest that a compilation process or at least a parsing operation should be carried
out automatically after each source line is created, or after some fixed number
of such lines is created.

Pursuing this example further, consider the importance of exercising control
over when consistency of object code objects should be determined by the relo-
catable loader. In the case of a very large body of source text, we often do not
wish to study this sort of consistency by reloading the entire program every
time a new source text object is compiled into an object code object. Control
over the intervals and fashion in which this tool is to be applied ought to be
specified by the software engineer and automatically carried out by the
appropriate tools under the guidance and control of the development environ-
ment.

Our discussion has indicated that it is desirable for an environment to automat-
ically invoke tools to create dependency and consistency relations, but that the
environment ought not to decide how and when this should be done. This con-
trol must reside with the software engineer. The environment must then be a
vehicle for assisting the software engineer in simply and precisely specifying this
control and must then see that the software engineer’s specifications are exe-
cuted correctly. Our preference is for this specification of control of the appli-
cation of software tools to be done through the mechanism of algorithmic pro-
gramming in a software engineering language.

It is interesting to observe the extent to which some current software develop-
ment environments match these design criteria. Clearly the Smalltalk (TM)
environment [Goldberg 84| strongly encourages users to think of their work as
being the process of creating objects and defining operations on types of objects.
Similarly it seems that Interlisp encourages a user view of creating software by
developing new objects and weaving them into a structure of existing objects
[TeitMas 81]. Balzer's system [BalzerGN 84| and the Odin system also
encourage this view. The last two seem to come the closest to widening their
scope of object management sufficiently far to support development of large
software. In the case of Smalltalk, the objects manipulated tend to be small
grained, although this may not be inherent in the Smalltalk design and

-33-

approach. Interlisp does not supply mechanisms for typing objects, and thus
seems to lack the capability for effectively controlling the application of tools.
Recent work has, however, resulted in augmentation of Lisp to include typing
mechanisms. Application of Interlisp or its architectural approach to such an
enhanced dialect of Lisp might show promise as a vehicle for process encoding.

The strategies followed by these environments in controlling the application of
tools seems to lack the flexibility and potential for user control which we feel is
essential. In the case of Balzer’s system and Smalltalk, the maintenance of con-
sistency within the object store is carried out automatically whenever an object
is altered. This was also the strategy pursued in the Joseph environment [Rid-
dle 83] and was also a key design objective in Feldman's pioneering Make sys-
tem [Feldman 79]. Thus automated tools are always invoked when it seems
that they can be used to ripple out the effects of changes and thereby restore
consistency. In Odin, the opposite strategy is used. Odin follows a lazy, or
demand, evaluation strategy in which consistency and dependency relations are
not maintained until and unless a user requests access to an object which parti-
cipates in such a relation. At that time, all consistency and dependency rela-
tions involving that object, either directly or indirectly, are recomputed or
reverified. Each of these strategies has advantages and disadvantages. Neither
should be adopted to the exclusion of the other. Instead, the software engineer
-~ must be given the power to algorithmically specify how the two should be
blended. A software engineering language in which the software development
process is algorithmically described provides the basis for this control.

4. RELATION OF THIS RESEARCH TO OTHER KEY RESEARCH ACTIVITIES.

It is important to explain the relation of our research to activities in related
areas. FEarlier we observed that our attempts to understand key software
. engineering processes fits nicely with recent attention which is being devoted to
studying the Software Process [SPW1 84, SPW2 85|. What distinguishes our
suggested approach from most other work in this area is that we are attempting
to use programming and program language formalisms and techniques to eluci-
date software processes in far more detail than seems possible without such for-
- malisms. We believe that there is much promise in this work because it has
already led to deeper insights into these processes and unconvered new relations
between them. It also provides a mechanism for exploring and exploiting the
exact nature of these relations.

Another distinguishing feature of our work is that it is aimed at developing the
understanding needed to provide a firm basis for tool integration and environ-
‘ment architectures. This need to discover sound tool integration architecture

-34-

strategies was the original impetus for our search for process description formal-
isms. It has led to a somewhat new research orientation towards process and
language studies themselves, but our orientation towards tools remains. Our
ability to successfully pursue research in both directions more or less simultane-
ously is perhaps the most unique feature of this research.

4.1. KNOWLEDGE BASED SOFTWARE ENVIRONMENTS.

No attempt to characterize software environment research can be considered
satisfactory without discussing its relationship to work in the area of Knowledge
- Based Software Environments (KBSE’s) and Software Assistants (eg. [BalzerGN
84, SmithKW 85, Waters 85]). These exciting and innovative research projects
have as their goal a new generation of software engineering aids in which
knowledge is effectively captured, organized and then used in helping the
software practitioner to do a better job. The philosophies and goals of these
efforts are well summarized in [BalzerGrCh 83] and [TSE11 85].

From our perspective, the goal of KBSE research is to materially assist the vari-
ous software engineering processes by automatically creating new information
objects of importance to the processes. New information objects are automati-
cally inferred from existing objects (possibly with human assistance) and that
information is then applied--either with or without the knowledge and control of
human parctitioners—-to the creation or management of the ongoing develop-
ment, maintenance or evaluation process. Thus we believe it is quite reasonable
to characterize the goal of this research as the understanding of what is
required in order to incorporate such automatically synthesized objects
effectively into software processes. From our viewpoint, this research is aimed
at the creation of daemons, capable of executing in parallel with other software
engineering tasks, aimed at the synthesis of such new objects, and their effective
assimilation into existing software product structures in such a way as to pro-
~ vide significant benefits to human practitioners.

This viewpoint suggests that KBSE research is quite compatible with our own,
but would add an exciting new dimension to environments which we believe we
can create now, with more classical tool supports. Current KBSE research is
actively experimenting with non-algorithmic language paradigms for the expres-
sion of the subprocesses needed to assimilate and create new knowledge. We
see no essential conflict between the use of one language paradigm for express-
ing the actions of (some) daemons and the use of another language paradigm for
expressing other activities in a software process. What is important is that all
activities operate upon the same information repository. KBSE research is
~currently aimed quite directly at coming to understand what the nature and
structure of that repository must be. Clearly any advances in that research will

-35-

be of the utmost importance to us as well. We see no reason to doubt, however,
that any structures which might be indicated by KBSE research will be
eminently describable and constructible with algorithmic languages of the type
we are considering.

Conversely, we believe that our own research should benefit KBSE researchers
as well. Their work is aimed at effective creation of the most effective new
information objects. Clearly the notion of "most effective” must be at least
partly relative to the process which is to be aided by this information. Thus,
we believe that KBSE research can itself be materially assisted by the deeper
understandings of software processes and products to which we believe our own
research can lead.

Another apparent difference between our work and KBSE research is that the
knowledge objects which are currently the focus of KBSE research are much
smaller than the large-grained software objects we have been describing.
KBSE research is aimed at inferring knowledge of all types from objects of all
types. Currently its algorithms tend to entail large amounts of processing.
Thus at present it addresses the creation of relative modest sized information
objects from objects of similar sizes. It is.a clear goal of KBSE research to syn-
thesize objects of whatever sizes are needed from whatever sized objects are
available. This is not presently a practical goal, and KBSE research is
currently thoroughly enough challenged by restricting itself to smaller objects.
Our own research must eventually address the algorithmic description and pro-
gramming of small software objects when refinement of these algorithms leads
to low enough levels. Currently it seems most worthwhile to proceed top-down
and thus come to an understanding of the overall architecture of key software
processes. As our research leads to more detailed algorithms it will be necessary
to precisely and effectively describe objects whose sizes range considerably, and
operators which are probably hierarchically structured. We expect that doing
this in such a way as to still enable effective and efficient execution of the
resulting software processes will be an important and difficult research chal-
lenge. Thus, it appears that the difference in granular sizes of objects currently
addressed by KBSE researchers and our own research is currently a matter of
history and convenience. In the near future both research efforts will have to
come to grips with the serious problems posed by widely different object sizes.

In summary, we believe that our research is nicely complementary with KBSE
research. We believe that successes in both areas will be mutually enriching
and stimulating. We see concrete ways in which we can profit from successes
with KBSE's and we also see ways in which KBSE researchers might materially
benefit from the results we expect to produce.

-36-

5. FUTURE DIRECTIONS FOR THIS RESEARCH.

In this section we outline plans for pursuing the research consequences of the
view of software engineering just advanced. We suggest that diverse areas of
software engineering research can be significantly advanced by establishing a
language in which software engineering processes can be effectively expressed,
by expressing various key processes in that language, by creating compilation
and runtime support systems for that language, and by then attempting to use
these systems to provide effective automated support for the execution of these
key software processes.

5.1. EXPERIMENTATION WITH SOFTWARE PROCESS ALGORITHMS.

If there is a central focus to this research it is to devise and study various algo-
rithms for expressing software engineering processes. We have already begun to
create algorithms for software development, software product maintenance,
software process maintenance, software product evaluation and software pro-
cess evaluation. As we have proceeded with the iterative refinement of these
algorithms we have begun to learn much about the nature of these processes,
their relations to each other and to other processes such as reuse. Thus we
expect that continuation of this activity will lead to more important insights,
and, eventually to sound process algorithms.

Qur intention is to arrive at acceptable algorithms for describing development,
maintenance, evaluation and testing, and reuse. Having devised these algo-
rithms we expect to solidify our notions of superior language paradigms and
constructs for expressing them, and to solidify our notions of tool and environ-
ment architecture by examining the runtime structures and procedures needed

to effectively support execution of these algorithms.

" 5.2. DESIGN OF THE SOFTWARE ENGINEERING LANGUAGE ITSELF.

While exploratory development of process algorithms seems more central to the
pursuit of this research, development of a language system in which such algo-
rithms might be encoded also strikes us as important. As this area.is somewhat
better established, it is, moreover, easier to categorize and organize the way in
which this research might be pursued.

In this section we attempt to indicate how an orderly attack on the problem of
creating a software engineering language might be organized.

-37-

5.2.1. THE LANGUAGE PARADIGM.

Earlier sections of this paper have indicated that some of the features this
language must have are:

1. The ability to declare objects to be of different data types
which are built into the language and to define new data types.

2. The ability to aggregate data objects into arrays and structures
- 3. Strong support for the creation and management of modules

4. Support for concurrency and tasking, in addition to alternation,
looping and proceduring

5. Capabilities for defining and maintaining consistency and
derivation relations among data objects.

This list of needed capabilities suggests that the language we seek requires that
powerful tasking and synchronization capabilities be incorporated comfortably
- with powerful capabilities for creating highly dynamic, intricately intercon-
nected data aggregates. It seems clear that the definition of such a language is
an important research task which appears to be essential to the emergence of
software engineering as a true discipline.

The first task in defining this language will be to decide which linguistic para-
digm is most suitable. Earlier in this paper we gave some simple example algo-
rithmic representations for some very high level software processes. These
examples clearly betrayed a bias towards the use of an algorithmic language.
This bias is at least largely based upon our belief that software engineers will
be drawn from the ranks of software practitioners, and are most likely to be
trained in programming in algorithmic, sequential (possibly parallel) program-
ming languages. Thus it is most attractive to suggest that, as software
engineers, they program in a language with a similar, and therefore comfort-
~able, philosophy and paradigm. Making such an important decision based
solely on the grounds of tradition and convenience is imprudent, however. Thus
we have attempted to seek deeper justification for this prediliction.

Our second basis for believing that a parallel, sequential algorithmic language is
best suited for programming software engineering is that software development
and maintenance are to be carried out by human practitioners, and humans
seem to us to be psychologically most self assured in thinking about their plans

-38-

and actions in terms of discrete, sequential steps and activities. Thus, a pro-
gramming language which will be use to describe, regulate and control their
activities in building software should seem most natural and comfortable if it
expresses their activities in similarly discrete and sequential steps.

Although our current predisposition is towards more traditional and comfort-
able algorithmic languages, we recognize the need to consider non-traditional
languages as well. We have already indicated a concern that traditional
languages may not be effective in expressing consistency relations, for example.
We have, accordingly, pondered a variety of non-algorithmic language para-
digms. One interesting paradigm, for example, is that of a process control
-language. As previously described, software development and maintenance
might well be viewed as a real-time processes involving the synchronization of
the activities of people and mechanized aids. Borrowing from the idiom of pro-
cess control software might thus be highly effective. From this perspective,
activities such as code and design creation would correspond to synthesis
(input) processes, and consistency checking activities would correspond to
analysis processes. The software development program would then be a
software system which incorporated a variety of such synthesis and analysis
- processes as asynchronous tasks, which, nevertheless communicated broadly
among themselves, and paused at programmed intervals and events to syn-

-+ chronize and evaluate progress and consistency. Thus, control process software

should be examined carefully as a model which might be worth emulating.
Simulation languages capable of supporting the programming of such processes
(eg. Simula and Simscript) are also worth examining.

Other potentially useful paradigms include object-oriented languages, functional
or applicative languages and database language approaches. The appeal of an
object oriented language approach is that it would clearly support and
encourage the view of a software product as a collection of objects of diverse
types. It seems clear that the designer of a language for software engineering
« should borrow heavily from object oriented language mechanisms for defining
object types and operations on such types. In fact this strategy has been
adopted by some KBSE researchers. Their work centers on the creation of a
large and intricate knowledge structure which captures and correctly interre-
lates all information pertaining to the software being developed or maintained,
and using that knowledge effectively in support of these processes. This is
important to us, because, as observed earlier, our SPS can very reasonably be
viewed as a knowledge structure, although it seems that the SPS and SP’s we
envision would probably be structures of much larger objects than are
envisioned as the constituents of KBSE's.

We are still not persuaded that we should adopt an object-oriented language
paradigm for our work, however, because of our relatively greater emphasis on

-39-

the algorithms needed to develop and maintain the knowledge and information
structures which we agree are central. We remain convinced that software
engineers and practitioners do maintain a strongly algorithmic view of what
they do, but that they have been thwarted in effectively exploiting it due to the
lack of an adequate expressive device. Object oriented languages do not seem
to us to sufficiently encourage the attention to algorithmic expression which
seems urgently needed at this stage of exploration of the nature of software
engineering processes.

The appeal of a functional language is that it could support and encourage the
view that software processes (eg. development and maintenance) are essentially
the evaluation of large functions which are computed by the evaluation of a
complex substructure of smaller functions. This view is appealing in that the
software product which is the focus of these software processes is a complex
composite of smaller objects and interrelations. Thus, it seems quite useful to
describe processes on this product as the processes of creating its subcom-
ponents and evaluating needed interrelations.

There appear to be significant problems in adopting a functional programming
language approach, however. One is the need to at least partially linearize the
order of evaluation of functions and subfunctions. The problem here is that
‘some of the functions are to be carried out by humans who have difficulty car-
rying out unbounded parallel activities, and because the other functions must
be carried out on a bounded number of computing devices. Functional pro-
gramming systems assume the responsibility for such linearization, and take this
process out of the hands of the software engineer. This strikes us as being
awkward, at least for the present, when efficient compilation of efficient object
code for large and complex functional programs is very much a research topic.
Further, we continue to believe that some aspects of at least some software
development processes are more straightforwardly describable in terms of
sequential algorithmic steps rather than composition and nesting of functions.
- Testing and consistency determination would seem to be in this category.
Thus, perhaps it is most reasonable to design the software engineering language
in such a way as to combine both procedural and functional programming capa-
bilities in such a way as to exploit the strengths of each in supporting software
‘engineering process description and control.

Finally, it seems certain that at least some of the notational and descriptive
devices used in database languages are useful as means for describing the
software product in a software engineering language. Thus we would expect to
borrow at least some of the descriptive mechanisms of such languages. We are
not as sanguine about the prospect of exploiting such languages as vehicles for
~ expressing software processes. We are particularly skeptical about how well
such languages and associated support systems would be able to support

-40-

software process maintenance. Earlier we observed that this sort of mainte-
nance entails alteration of the software product structure (the database
schema) while retaining and reassimilating most, if not all, of its contents. We
believe that extensible algorithmic language compilation systems currently pro-
vide the most useful paradigms for how to approach this problem.

Whatever the language paradigms used or merged to form the basis for the
software engineering language, there will have to be important further research
in establishing an effective semantic base within that language for support of
software activities. Thus another important aspect of this research will be the
determination of the built-in primitive data types and operators which the
language should provide, as well as the appropriate linguistic and conceptual
treatment of the relations which bind software objects together to form
software products.

5.2.2. A COMPILATION SYSTEM FOR THE SOFTWARE ENGINEERING
LANGUAGE.

As noted earlier, one of the primary reasons for creating a software engineering
language is to use it as the basis for coordinating the work of software tools and
their integration into a cogent software environment. A prerequisite for such an
environment to be effective is the implementation of a compiler for the
language. This compiler will have to accept SPS type declarations and
transform them into object stores which will then be able to organize and struc-
ture software products as they are created. The compiler will also have to
accept development and maintenance process definitions and transform them
into procedures which coordinate the work of human software workers with
each other and with the activities of software tools which implement various
automatically supported software operations.

Compilation issues can be divided broadly into three types--syntactic issues,
semantic issues and code generation issues. = The last two types of issues seem
to be the most interesting.

5.2.2.1. SOFTWARE ENGINEERING LANGUAGE SEMANTIC ISSUES.

It is difficult to guess at which issues will pose the most difficulty in carrying out
semantic analysis of the software engineering language, especially in view of the
fact that not even the language paradigm has been selected. On the other
hand, it does seem that a powerful and extensible type structure is essential,
and this indicates that the semantic phase will have to be capable of potentially

. sophisticated type checking. In addition, the need for supporting extensions and

alterations to the type structure of the language, while facilitating the large-

-41-

scale retention of objects created under the previous type schema, indicate the
need for a compilation system in which the type structure can be modified as an
object and used to create a new semantic phase for the compiler. In addition,
the compilation system must be capable of analyzing the differences between
the old and new type structures to enable maximal reuse and retention of
objects.

This last observation suggests that the compiler for the software engineering
language must be considered to be part of the process by which process-objects
are developed. Any single instance of a software engineering language compiler
must be considered to be an operator in the process by which process-objects
- are developed. In addition, however, the part of the software engineering com-
pilation system which is able to alter the semantics of this language must be
considered to be an operator which is used by the process which maintains
process-objects. Thus the semantics-alteration system we have described is a
process-object maintenance operator. It is interesting to note that we are now
coming to identify some of the objects and operators which populate the
process-object development and maintenance product and attendant processes.
As we do so we are interested to note that they do not seem too dissimilar to
objects and operators which we wish to describe with the software engineering
language itself. This reinforces our belief that the software engineering
- language is suitable for maintaining both itself and the processes which it is
used to encode.

5.2.2.2. SOFTWARE ENGINEERING LANGUAGE OPTIMIZATION ISSUES.

The task of the optimization phase of a software engineering language compila-
tion systems is to emit sequences of inmstructions to carry out and synchronize
either human operations or computer based activities in such a way as to effect
the algorithmic processes described by the coder. Language semantic definitions
‘should assure that there is no doubt about how language operations are to be
interpreted in terms of manual processes and mechanized tools. Further, con-
trol low and synchronization operations will also require semantic definition in
order to enable emission of effective object code.

Generation - of efficient code is a more interesting problem. Two efficiency
issues suggest themselves--one is the efficient storage of software objects and the
second is effective reuse of intermediate software objects. The problem of
achieving efficient storage of software objects is an important one, which seems
to fall more in the province of runtime support systems, and will be discussed
shortly. The problem of achieving effective reuse of intermediate objects is a
central issue in compilation and also affects the philosophy of tool implementa-
tion. Reuse of intermediate objects is only possible if the operations specified

-42-

by the user can be seen as being composed of lower level operations which
create such intermediate objects. Thus, if all of the operations in the software
engineering language are implemented as monoliths, there would seem to be
correspondingly little opportunity for reuse of intermediate objects. On the
other hand, if operations are generally implemented as concatenations or struc-
tures of lower level operators, which produce intermediate software objects,
these then become ideal candidates for reuse in subsequent computations.

Thus, the desirability of optimizing the object code generated by the software
engineering language compiler provides strong impetus for the implementation
of functional tools as composites of smaller, lower level tools (called tool frag-
ments in [Osterweil 83]). The strategy governing the way in which intermediate
objects are selected for storage for potential reuse was a research issue in the
context of [Osterweil 83| and [ClemmOst 86]. Language statements were pro-
cessed essentially interactively and there were no alternatives to statistical
approaches to guide the strategy for saving intermediate objects. In this propo-
sal, with our suggestion that software development and maintenance processes
be captured in compilable code, it becomes clear that optimization algorithms
and strategies much like those used in classical languages can and should be
applied.

5.2.3. RUNTIME SUPPORT FOR THE SOFTWARE ENGINEERING LANGUAGE
PROCESSOR.

It is clear that the software engineering language will require powerful runtime
support subsystems in order to be the basis for effective execution of software
engineering processes. Two key areas of support immediately suggest them-
selves for early consideration-- object management and input /output.

The need for a powerful object manager has been amply indicated by earlier
sections of this paper. One of the central concepts in the approach we are sug-
gesting here is that software development be thought of in terms of the need for
creating, organizing and managing software objects. Clearly it is imperative to
have effective ways in which to store them. The problems in doing so are badly
compounded by our contention that objects are tightly interconnected to each
 other by such types of relations as hierarchy, derivation, and consistency.
Clearly such simple organizational strategies as tree structures are woefully
inadequate. We believe that relational database approaches have serious draw-
backs as well. Some of these have been indicated earlier, and center on the
dynamism of the structure of the object store.

We view the Odin system [ClemmOst 86] as a prototype object management
capability which incorporates a number of desirable features. From the

-43-

perspective of this paper, we now understand that Odin actually incorporates
some features of a software engineering language subset, a semantic analyzer
modification and maintenance system subset, and an object manager. It seems
clear that whatever object managment system is incorporated into the proposed
software engineering language, it will have to have strong ties to the semantic
analysis phase of the language compiler.

Input /output capabilities for the language are also quite interesting to ponder.
Here we are inclined to view all processes which are carried out by humans as
being input processes, and therefore in need of language assistance. Such assis-
tance would have to range from simple text I/O support, through interactive
- editor ‘support, to support for interaction with graphical and pictorial images.
It seems essential that all of these interactions be implemented and supported
in terms of basic language [/O primitives to assure a reasonably uniform user
view of the software processing capabilities offered. Thus, whether the user
were creating source code, design elements, test data sets or functional
specifications, there would be a strong sense of uniformity of interaction with
the software engineering language’s features.

Output would have to offer a similarly uniform feel. The purpose of output
capabilities would be to enable the user to see objects and relations in the
emerging software product. ‘Thus, we expect that it will be important for the
user to be able to view a variety of objects, perhaps from a variety of perspec-
tives, and to interact with those objects. This suggests that the I/O package
will have to incorporate such capabilities as windowing, and menus. The use of
color might well also prove to be of value.

Finally, it should be noted that the software engineer is also likely to need to
view the process-objects which are being created and to get some insight into
the processes which have been constructed. This interaction is different from
the interaction needed by software practitioners. It corresponds more to the
needs of a debugger of a program than to the needs of a user of that program.
Thus, it is expected that the runtime system will also have to incorporate tools
and capabilities for enabling the software engineer to study the structure and
contents of the software process-object itself, in addition to the structure and
~ contents of its individual component objects and relations. Here too, we are
struck by the fact that these needs do not differ signifcantly from the needs of
the software practitioners. This again suggests that the software engineering
language may be adequate for the development and maintenance of programs
for the development and maintenance of software process-objects.

6. CONCLUSION.

In this paper we have suggested that a reasonable focus of software engineering

-44-

is the notion of a "process-object"--namely an object which has been created by
a development process, and which is itself a process. It then follows that the
essence of software engineering is the study of effective ways of developing
process-objects and of maintaining their effectiveness in the face of the need to
make a wide variety of changes. These changes might entail alteration of the
products produced by the process-object or alteration of the process-object
itself.

The main features of the insights and suggestions presented here revolve around
the notion that process-objects must be defined in a precise, powerful and
rigorous formalism, and that once this has been done, the key activities of
~development, evaluation and maintenance of both process-objects themselves,
and their constituent parts alike, can and should be specified and implemented
algorithmically.

The suggested focus on process-objects draws a much-needed sharp line between
software product development, evaluation and maintenance and software pro-
~ cess development, evaluation and maintenance. This serves to improve our
understanding of both and to help us to better understand the connections
between such issues as maintenance, evaluation, reuse, and modularity.

 These understandings are vital to further substantial progress in software
engineering. We believe that they will be materially advanced by further
research in identifying key software engineering processes and rigorously
defining them by algorithmic specifications.

Finally, all of this strongly suggests the importance of devising a software
engineering language and compilation /interpretation system. This language
would become a vehicle for the specification of process-objects. A compiler for
that language would become a vehicle for the organization of tools for facilitat-
ing development and maintenance of both the specified process, and the

- process-object itself. A runtime support system for the language would enable

the execution of development, evaluation and maintenance processes, and would
also provide a much needed mechanism for providing substantive support for
software measurement and management.

We are convinced that vigorous research directed towards the specification of a
software engineering language, its subsequent compilation and runtime support,
and the use of such tools in the careful definition of key software processes will
surely be of enormous value in hastening the maturation of software engineering
as a discipline.

-45-

7. REFERENCES.

[BalzerGrCh 83] R. Balzer, T. Cheatham, C. Green, "Software
Technology in the 1990’s Using a New Paradigm,"
IEEE Computer pp. 39-45 (Nov. 1983).

[Balzer GN 84] R.Balzer, N.Goldman, B.Neches, "Specification Based
Computing Environments for Information Management,"
Proc. Int. Conf. on Data Engineering, Los Angeles,
pp. 454-458 (April 1984).

[Basili 80| V.R. Basili, Tutorial on Models and Metrics for
Software Management and Engineering, IEEE
Computer Society, New York, 1980.

[Bersoff 84| E.H. Bersoff, "Elements of Software Configuration
Management,”" [EEE Trans. on Software Eng. SE-10
June 1984. s

* [Boehm MU 75] - B. Boehm, R. McClean, D. Urfrig, "Some Experiments
with Automated Aids to the Design of Large Scale
Reliable Software," IEEE Trans. on Software Eng.,

SE-1, pp. 125-133 (1975).

[Boehm 81] B.W. Boehm, "Software Engineering Economics,” Prentice-
Hall, 1981.

[BryChaSie 81] W.Bryan, C.Chadbourne, S.Siegel (eds.) "Tutorial:
Software Configuration Management,” IEEE Computer
Society Press, 1981.

[Clemm 84] G.M. Clemm, "Odin—-An Extensible Software Environment,”
Univ. of Colo. Dept. of Comp. Sci. Tech Rpt.
#CU-CS-262-84, Boulder, CO (1984).

[ClemmOst 86] G.M. Clemm and L.J. Osterweil, "The ODIN
Environment Integration Mechanism," Univ. of
Colo. Dept. of Comp. Sci. Tech Rpt. #CU-CS-323-86,
Boulder, CO (1986).

[DemRepTei 81] A.Demers, T.Reps, T.Teitelbaum, “Incremental Evaluation
for Attribute Grammars with Application to Syntax

[Dijkstra 72]

[Feldman 78]

[FosOst 76]

[Gandalf 85]

(Gilb 85]

[Goldberg 84]

-46-

Directed Editors,” Proc. 88h ACM POPL, Williamsburg,
VA, pp.105-116, (Jan. 1981).

E.W. Dijkstra, "Structured Programming,” in Structured
Programming (O.-J. Dahl, ed) Academic Press, NY, 1972.

S.I. Feldman, "Make--A Program for Maintaining Computer
Programs,” Software--Practice & Experience 9
pp. 255-265 (April 1979).

L.D. Fosdick and L.J. Osterweil, "Data Flow Analysis
in Software Reliability,” ACM Computing Surveys,
8 pp. 305-330 (Sept. 1976).

Special Issue of "Journal of Systems and Software,"
on Gandalf Project. Journal of Systems and
Software, 5, #2 (May 1985).

Tom Gilb, "Evolutionary Delivery versus the Waterfall
Model," Software Engineering Notes, 10 pp. 49-61,
(July 1985).

‘A. Goldberg, "Smalltalk-80: The Interactive
Programming Environment,” Addison-Wesley, Reading,
Mass, 1984.

[Guttag HW 85| J.V. Guttag, J.J.Horning, J.M.Wing, "The Larch

[Howden 85]

[Huff 81]

[JefTPA 81

(KafuHenr 81]

Family of Specification Languages,” IEEE
Software, 2 pp.24-36 (September 1985).

W.E. Howden, "The Theory and Practice of Functional
Testing," IEEE Software, 2 pp.6-17, (Sept. 1985).

K.Huff, "A Database Model for Effective Configuration
Management in the Programming Environment," Proc. Int.
Conf. on Softw. Eng, San Diego, [EEE Computer Society,
pp. 54-61, March 1981.

R.Jeffries, A.Turner, P.Polson, M.Atwood, "The
Processes Involved in Designing Software,” in
Cognitive Skills and Their Acquisition,"
(Anderson, ed.) Lawrence Erlbaum, Hillsdale, NJ, 1981.

D.Kafura, S.Henry, "Software Quality Metrics Based on

[Kant 85]

[Kernighan 81]

[LeblChas 84]

[LiskZill 75]

McCabe 76]

[Osterweil 81]

[Osterweil 82]

[Osterweil 83|

[Osterweil 86]

[Parnas 72|

Interconnectivity,”" Journal of Systems and Software,
2 pp.121-131, (1981).

E. Kant, "Understanding and Automating Algorithm
Design,” IEEE Trans. on Software Eng. SE-11,
pp. 1361-1374 (Nov. 1985).

B.Kernighan, "The Unix Programming Environment,”
Computer (May 1981).

D.B. Leblang and R.P.Chase,Jr., "Computer-Aided
Software Engineering in a Distributed Workstation
Environment," ACM Sigplan/Sigsoft Symp. on Practical
Soft. Dev. Envs., Pittsburgh, April 1984.

B.Liskov and S.Zilles, "Specification Techniques for
Data Abstractions," IEEE Trans. on Software Eng.
SE-1 pp. 7-18 (1975).

T.J. McCabe, "A Complexity Measure,” IEEE Trans. on
Software Eng. SE-2 pp. 308-320 (Dec. 1976).

L. J. Osterweil, "Using Data Flow Tools in Software
Engineering,” in Program Flow Analysis: Theory and
Application (Muchnick and Jones, eds.) Prentice-Hall
Englewood Cliffs, N.J., 1981.

L.J. Osterweil, "A Strategy for Integrating Program
Program Testing and Analysis,” in Program Testing,
(Chandrasekaran and Radicchi, eds.) North Holland,
pp. 187-229, (1982).

L.J. Osterweil, "Toolpack--An Experimental
Software Development Environment Research
Project,” IEEE Trans. on Software Eng., SE-9,

- pp. 673-685 (November 1983).

L.J. Osterweil, "A Structure for Software Engineering,”
University of Colorado Department of Computer Science
Technical Report,” to appear February 1986.

D.L. Parnas, "On the Criteria to be Used in Decomposing
Systems into Modules,” CACM 15 pp. 1053-1058 (1972).

-48-

[Reps 84] T.Reps, "Generating Language Based Environments,"
MIT Press, Cambridge, MA, 1984.

[Riddle 83] W.E. Riddle, "The Evolutionary Approach to Building
the Joseph Software Development Environment," Proc.
IEEE Softfair--Software Development Tools, Techniques
and Alternatives," pp. 317-325, Alexandria, VA,
July 1983.

[Riddle 85] W.E. Riddle, Transcript of Symposium on Comparative
Software Design Techniques, Aspen Colorado, July
1985. Contact Rocky Mountain Institute of Software
Engineering, 1670 Bear Mtn. Dr., Boulder CO 80303.

[Smith KW 85| D.Smith, G.Kotik and S.J. Westfold, "Research on
Knowledge-Based Software Environments at Kestrel
Institute” IEEE Trans. on Software Eng. SE-11
pp.1278-1295, Nov. 1985.

[SPW1 84] Proceedings of Software Process Workshop, Runnymede,
England, February 1984. '

[SPW2 85] Proceedings of Second Software Process Workshop,
Coto de Caza, CA, March 1985.

[Subra 85] P.A. Subramanyam, "The Software Engineering of Expert
Systems: Is Prolog Appropriate?”, [EEE Trans. on
Software Eng. SE-11 pp. 1391-1400 (Nov. 1985).

[TeitMas 81] W.Teitelman and L.Masinter, "The Interlisp Programming
Environment," Computer, 14 pp. 25-33 (April 1981).

[Tichy783] W. Tichy, "RCS--The Revision Control System"

[TSE11 85] IEEE Transactions on Software Engineering, Special
Issue on Artificial Intelligence and Software
Engineering, (J. Mostow, ed.) SE-11, (Nov. 1985).

[Waters 85] R.C. Waters, "The Programmer’s Apprentice: A Session
With KBEmacs," IEEE Trans. on Software Eng. SE-11,
(Nov. 1985).

-49-

Procedure develop_software;
Declare software_product structure of
-At the highest level, perhaps only
-these three major components of the
-final software product are visible
Requirements_spec,
Design_spec,
Code;
-This first piece of code represents
-the process of creating a plausible
-initial set of requirements

create_requirements;
-carry out a process of reviewing the
-requirements and determining that they
-are "'ok", what this means is to be defined
-at lower levels of this program
do_while “(requirement_ok);
fix_requirements;
od;

-Create a first set of design specifications

create_design;

and check that they are "ok"

do_while “(design_ok);
fix_design;
od;

. -Now build the code

-

create_code;

-Now make sure the code is "ok"

do_while “(code_ok);
fix_code;
od;

-50-

-At this point there is a software product
-consisting of requirements, design and code.

-The next piece of this program addresses

-the way in which it is to be maintained.
do_forever;

-maintenance is to be described in a susequent
-section of this proposal. Here we merely indicate
-that it can be viewed as a process which is carried out
-subsequent to the development process.

maintain (software_object);

end develop_software;

Figure 1. A very simple, top-level algorithmic description of the software
development process as suggested by the classical "Waterfall Model" view.

-51-

declare regirements_specification
consists_of
array_of testresults;
array_of testcases;
testcases
consists_of
(test_input, results_required);

testresults
consists_of
array_of results_produced;

Figure 2: The declarations necessary to support a simple algorithmic testing
process.

-5H2-

procedure code_ok (requirement_spec, code);

declare

-declarations inserted here are as shown in Figure 2.
-For this procedure, we assume that TEST is an instance
-of type testcases, and the components of its elements
-are INPUT and RQD

-begin by creating the executable object derived from the
-code object being tested

derive (code.executable, code);
code_ok := TRUE;
do_for_all elements, I, in TEST

derive (RESULT(I], (code.executable, INPUTI[I]));

if “consistent (RESULT]I], RQD{I])

then code_ok := FALSE;
exit;
od;

Figure 3: A high level algorithm describing the way in which a code testing
procedure can be expressed.

-53-

procedure create_code(S);
For_all design_specs DSO in design_object, D
do
get DSO;
build source_code_object (SO);
while “0k(8,S0)) do
case of:
code wrong: change_code (SO),
design_spec wrong: change_design (D),
ok_spec wrong: change ok_spec,
esac;
od;
end create_code;
Figure 4: A very high level algorithmic procedure for describing the way in
which evolving code is incrementally evaluated in practice.

-54-

procedure ok(S,30);
declare S structure_of -
source_code_objects, SO;
if “complete_code (S)
then
static_check(SO);
create_test_harness (S,S0O);
create_testcases (SO);
ok := TRUE;
do_for_all testcases, T
if “consistent (T,S0)
then
ok := FALSE;
exit;
endif;
endo;
else
ok_code (SO);
endif;
end ok;

Figure 5: A very high level algorithm representing what is required in order to
test a portion of an incomplete body of code.

-55-

procedure do_maintenance;
input (change_request);
case of change_request is
requirements_change : change_requirements;

design_change : change_design;
code_change : change_code;
esac;

end do_maintenance;

Figure 6: A very high level procedure indicating the overall structure of a
software product maintenance procedure.

-58-

while “empty(maintenance_request_list) do
accept_next maintenance_request;
process_maintenance_request;
-this last procedure presumably incorporates an invocation
-of a procedure for checking the consistency of the resulting
-software object
delete maintenance_request;
endo;

Figure 7: A simple dispatching léop for servicing maintenance requests.

-57-

SOF TWARE
PRODUCT STRUCTURE
(SPS)

//i;; \ | sp

INSTANTIATION SPS,

N

ELABORATION //

UNELABORATION
SP’s
(COPIES OF SPS)

SPSy

Figure 8: Software development, viewed as the process of instantiating
an SPS and then elaborating the SPS instance into an SP.

OTHER PROCESS-OBJECT DEVELOPMENTAL OBJECTS
PROCESS-0OBJECT

PROCESS SPS
ALOGRITHM
PROCESS JE—
RQTS —
STATIC —_—
CONSISTENCY
ANALYSIS
/7 T\
INSTANCES + -+ -
PROCESS ¥ EW SP SP SP
INPUT ENG L \SP2]3
L]
l
CONSISTENCY
ANALYSIS
(DYNAMIC)

TEST METRICS
AND
ANALYTIC OBJECTS

Figure 9: Process-Object maintenance: The Process-Object, created by
an unillustrated development process, in response to a
process-object object requirements specification, is
evaluated both by static analysis of its structure and
contents and by evaluating SP’s which it produces (dynamic
analysis of the process-object).. Both forms of analysis
are essentially consistency comparison of derived objects

with original requirements object.

