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The success of stochastic optimization hinges on the assumption that the distribution of the

data remains stationary both throughout the run of an optimization algorithm and after deployment

of a solution. However, in applications where data acquisition requires feedback from humans with

vested interests in optimization outcomes, this assumption often fails as humans tend to modify

their attributes to achieve desired results, leading to a changing data distribution. To capture

this optimization induced distributional shift, we pose the formulation of stochastic optimization

problems in which the data distribution depends explicitly on optimization variables.

We characterize two distinct types of solutions that arise: optimal points that are universally

best but require significant investment to find, and stable points that can be found during “ standard

operation” but are only optimal for the behaviors they induce. This work provides convergence

guarantees for stochastic gradient algorithms that find stable points using only feedback from

the system. We demonstrate online tracking for a time-varying extension in expectation, and high

probability. We show that stochastic saddle point problems with decision-dependence can be solved

using derivative free methods, and the resulting stable point problem can be solved using stochastic

primal-dual. Furthermore, we extend this framework to continuous games, demonstrating that a

approximate Nash equilibrium can be achieved when players are capable of learning a parameterized

model of their distribution.
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Chapter 1

Introduction

Stochastic optimization plays a central role in computing, statistical science, and engineering

systems in which the goal is to find an optimal decision from a limited dataset that generalizes well

to the unseen data [10, 50]. In its simplest form, these problems typically appear as the optimization

problem

x∗ ∈ argmin
x∈X

E
z∼D

[f(x, z)] (1.1)

where f : Rd×Rk → R is such that x 7→ f(x, z) is smooth and convex for all z ∈ Rk, and X ⊆ Rd is

convex. Solving problems of this form amounts to collecting m ∈ N samples {zi}mi=1
i.i.d.∼ D, either

prior to optimization or throughout the run of an optimization algorithm, thus giving rise to the

empirical risk minimization problem

x∗m ∈ argmin
x∈X

1

m

m∑
i=1

f(x, zi) (1.2)

The result is a solution x∗m that will approximate x∗ for a sufficient number of samples.

In practice, this decision x∗m will be deployed into the system or population from which

data has been gathered and will retain its optimality guarantees insofar as the assumption that

{zi}mi=1
i.i.d.∼ D still holds. In many applications however, the distribution of data does not re-

main stationary after deployment of decision variables. This phenomena is typically referred to

as distributional shift within the optimization literature and its study is primarily focused on two

distinct sources of this occurrence. The first of which is temporal, wherein data from the systems

evolves according to a time series even though the cost function itself may be time invariant. While
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this setting is not the focus of this work, we will draw on the analysis of this case for inspiration

later. The second, and the primary focus of this work, is a change in the distribution due to the

deployment of the optimization variables themselves. In these systems, the data is in some way

dependent on the decision with which it is used to make and deploying a new decision will cause

the distribution to shift shortly after deployment.

1.1 Motivating Examples

Though not exhaustive, this phenomena can be observed in learning tasks and engineering

systems in which the objective used to make optimal decisions for a population of humans in the

loop.

Classification. Gaming is a common behavior observed in response to classification tasks

whereby a strategic or adversarial population respond to the deployment of a classifier by modifying

their attributes to receive a desired outcome from the classifier [12, 19, 31]. Here, the decision

variable x parameterizes a latent function h so that hx(a) ≈ b, where z = (z, b) and a are population

features and b ∈ {0, 1} are labels. The optimization problem then uses training data to find optimal

parameters x via some appropriate loss f(x, z), and test data drawn from the same distribution to

measure generalize ability to unseen data. In this instance, the assumption that the training and

testing data is drawn from the same distribution is violated as the distribution changes before test

data is drawn.

Markets. Dynamic price models are a common feature used in markets, where they serve

as a mechanism by which a firm or service provider set prices x to incentive users to shift their

demand z. Ride-hailing services use dynamic pricing to both incentives users to request rides after

querying the app, and incentive drivers to accept ride requests by minimizing operational cost or the

estimated time of arrival of drivers to customers [8, 24, 32, 66]. Energy markets use dynamic pricing

to incentives users to disperse demand and avoid spikes, or use services when demand can be met

by maximizing utility [17, 27, 41, 42, 56, 58]. In either case, optimization used to modify demand

of service to accommodate or combat period of oversupply and under-supply. While the efficacy
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of this method is predicated on the price-demand relationship existing, the explicit dependence of

demand on price is typically not modeled within these problems.

Vehicle Routing. Problems in vehicle routing seek to choose optimal routes x for users

subject to traffic flow z while minimizing travel time and encountered traffic congestion [1, 4].

However, for sufficiently large platforms, choosing routes for a fleet can in turn directly impact the

traffic flow by changing the number of vehicles along a specific route.

1.2 Formalizing Decision-dependence

Critical to our success is the observation that since the data distribution D will change after

any deployment from the learner, the population and learner create a closed feedback loop. This

can be explicitly expressed by representing the populations data distribution as a distributional map

D : Rd → P(Rk), so that for any x ∈ Rd, D(x) is a stationary probability distribution supported

on Rk.

An optimal decision in this setting is one that is not just optimal for the current state of the

system that is observable to the learner, but is optimal over all possible states. This new problem

takes the form

x∗ ∈ argmin
x∈X

E
z∼D(x)

[f(x, z)]. (1.3)

While the power of this framework is in allowing us to express explicit dependence of the

data z on x, it also introduces a new challenge. Finding x∗ using standard stochastic gradient

techniques requires that we estimate the gradient of Ez∼D(x)f(x, z), which will in turn require that

we have complete knowledge of the distribution D(x). Indeed, we will assume that since z is data

from a large system, then D(x) is a continuous probability distribution with density function px(z)

so that

E
z∼D(x)

[f(x, z)] =

∫
Rk

f(x, z)px(z)dz, (1.4)

and its gradient can be conveniently represented as

∇ E
z∼D(x)

[f(x, z)] = E
z∼D(x)

[∇xf(x, z)] + E
z∼D(x)

[f(x, z)∇x log px(z)]. (1.5)
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While (1.4) can be estimated purely from samples from D(x) for each evaluation of x, (1.5) requires

that we be able to compute ∇xpx(z) = px(z)∇x log px(z). In this work, we will discuss how to

overcome this challenge first by using derivative free optimization, and later by learning a model

for D(x) from samples. These approaches are not without their own drawbacks, however. The

former uses a gradient approximation with only a single function evaluation, making it quite slow

to converge. While the latter enjoys a faster convergence, leveraging statistical learning means that

we must contend with the bias-variance trade-off.

For this reason, the approach taken at the inception of this framework can still find value. A

common practice in the literature on distributional shift is the notion of repeated retraining : each

time the distribution changes, solve the new optimization problem to convergence. This involves

formulating a sequence {xt}t≥0 satisfying

xt+1 ∈ argmin
x∈X

E
z∼D(xt)

[f(x, z)]. (1.6)

When the source of distributional shift is due to time alone, this approach is particularly appeal-

ing—provided that the problem can be solved within the time scale —as it gives us a sequence

of decision that we can repeatedly deploy. However, since we are interested in distributional shift

that is due to an explicit response and does not necessarily evolve in time, it is possible that this

repeated retraining procedure converges (provided that the change due to x is small enough). The

limit point of repeated retraining will be referred to as stable points in this work, are points x̄ ∈ X

satisfying

x̄ ∈ argmin
x∈X

E
z∼D(x̄)

[f(x, z)]. (1.7)

Intuitively, x̄ is a decision which is optimal for the stationary stochastic optimization problem that it

induces. Namely, when the system is in a state induced by decision x̄, the learners optimal decision

is also x̄. This approach is the discussion of preliminary works on the subject when convexity

conditions for the map x 7→ Ez∼D(x)f(x, z) where unknown [23, 49, 64]. When stable points are

known to be unique, one can find them using simple stochastic first order optimization methods,

preventing the need to run repeated retraining to convergence. An advantage of this approach is
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that x̄ can be found by standard operation of the system, and in systems in which estimating D(x)

is not possible or appropriate. Relative to optimizers x∗, which represent global solutions to the

problem (1.3) in the sense that they are optimal for all possible states D(x), stable points x̄ are a

local solution in that they are optimal when the system is in state x̄.

There are caveats of course. As we will discuss in Chapter 2, x̄ is decidedly not optimal for all

possible states of the system; in fact stable points can be arbitrarily far from optimal points. The

very nature of x̄ and the ability to find them by interacting with the system implies that finding x̄

amounts to controlling or steering the driving the system—driving the system to a desirable state

in which the problem can be solves—rather the being agnostic to the state. Furthermore, finding

stable points via standard stochastic gradient methods hinges on the assumption that feedback

from the system in the form of zt can be readily and quickly acquired. However, if the rate of

feedback from the system is the limiting factor in time, it is possible that the optimization problem

changes in time throughout the run of the algorithm.

1.3 Preliminaries

This section introduces the notational conventions and core definitions used in this work.

Throughout, Rd denotes the d-dimensional Euclidean space with inner product ⟨·, ·⟩, and Euclidean

norm ∥ · ∥. For a matrix X ∈ Rn×m, ∥X∥ denotes the spectral norm. For a given integer n,

[n] denotes the set {1, 2, . . . , n} and Sn−1 denotes the Euclidean hypersphere in n dimensions,

{x ∈ Rn| ∥x∥ = 1}. The symbol 1d is used to denote the d-dimensional vector of all ones, and Id

is the d× d identity matrix. Given vectors x ∈ Rn and z ∈ Rm, we let (x, z) ∈ Rn+m denote their

concatenation.

For a symmetric positive definite matrix W ∈ Rd×d, the weighted inner product is defined

by ⟨x, y⟩W = ⟨x,Wy⟩ and corresponding weighted norm ∥x∥W =
√
⟨x, x⟩W for any x, y ∈ Rd.

The weighted projection onto a set X ⊆ Rd with respect to the symmetric positive definite matrix
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W ∈ Rd×d is given by the map

projX ,W (x) := argmin
y∈X

1

2
∥x− y∥2W (1.8)

for any x ∈ Rd. When W = Id, we simply write projX .

1.3.1 Probability measures

We restrict our focus to random variables drawn from continuous probability distributions

supported over the Euclidean space. When random variables X,Y ∈ Rk are equal in distribution,

i.e., P (X ≤ x) = P (Y ≤ x) for all x ∈ Rk, we write X
d
= Y . We will denote the point mass

distribution at a ∈ R as δa, so that P (x = a) = 1 and P (x ̸= a) = 0.

To compare probability distributions, we will be interested in computing the distance be-

tween their associated probability measures—for which we need a complete metric space. We let

P(Rk) denote the set of finite first moment probability measures supported on Rk and write the

Wasserstein-1 distance as

W1(µ, ν) = sup
h∈L1

{
EX∼µ[h(X)]− EY∼ν [h(Y )]

}
(1.9)

for any µ, ν ∈ P(Rk), where L1 is the set of all 1-Lipschitz continuous functions h : Rk → R.

We note that this representation is due to Kantorovich-Rubenstein duality, which holds under the

Euclidean space setting we impose [9]. Additionally, under these conditions, the set (P(Rk),W1)

forms a complete metric space [9].

Our analysis includes study of sub-Gaussian, sub-exponential, and sub-Weibull random vari-

ables as a tool to discuss high probability guarantees. We adopt the definition of sub-Weibull

random variables from [61].

Definition 1 (Sub-Weibull Random Variable). If random variable X satisfies

P (|X| ≥ x) ≤ a exp

(
−
(x
ω

) 1
θ

)
(1.10)

for a, ν, θ > 0, then X is a sub-Weibull random variable with tail parameter θ and variance proxy

ω. We denote this as X ∼ subW (θ, ω).
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The sub-Weibull family of distributions offer a convenient theoretical tool; they include a tail

parameter θ > 0 that measure the thickness of the tail of a distribution, allowing us to capture sub-

exponential with θ = 1 and sub-Gaussian with θ = 1/2 distributions. The parameter ω represents

a proxy for the variance of X [61, 63]. The following result provides a bridge between alternative

characterization that we may use in our analysis. Moreover, the closure properties will allow us

to develop high probability bounds without appealing to concentration inequalities—which may

loosen the resulting bound in our arguments.

Proposition 1 (Equivalent Characterizations). For any random variable X, the following charac-

terizations are equivalent:

(C1) ∃ ω1 > 0 such that P(|X| ≥ x) ≤ 2 exp
(
−
(
ω−1
1 x

)1/θ)
for all x ≥ 0.

(C2) ∃ ω2 > 0 such that ∥z∥k ≤ ω2k
θ for all k ≥ 1.

(C3) ∃ ω3 > 0 such that E[exp(λ|X|1/θ)] ≤ exp((ω3λ)
1/θ) for all 0 ≤ λ ≤ ω−1

3 .

(C4) ∃ ω4 > 0 such that E[exp(|ω−1
4 X|1/θ)] ≤ 2 for all 0 ≤ λ ≤ ω−1

4 .

Proposition 2 (Sub-Weibull Inclusion). If X ∼ subW (θ, ω) and θ′, ω′ > 0 are such that θ ≤ θ′

and ω ≤ ω′ then X ∼ subW (θ′, ω′).

Proposition 3 (Sub-Weibull Closure). If X1 ∼ subW (θ1, ω1), X2 ∼ subW (θ2, ω2) are (possibly

coupled) sub-Weibull random variables and c ∈ R, then the following hold:

(1) X1 +X2 ∼ subW (max{θ1, θ2}, ω1 + ω2);

(2) X1X2 ∼ subW (θ1 + θ2, g(θ1, θ2)ω1ω2), g(θ1, θ2) := (θ1 + θ2)
θ1+θ2/(θθ11 θθ22 );

(3) cX1 ∼ subW (θ1, |c|ω1).

The proofs of these lemmas can be found in [61, 63]. Our high probability analysis will

primarily use characterizations (C1) and (C2) in Proposition 1. We note that if X ∼ subW (θ, ω),

then (C2) holds with ω′ =
(

θ
2e

)θ
ω.
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The class of sub-Weibull distributions allows one to consider variety of error models. For

instance, it includes sub-Gaussian and sub-exponential as sub-cases by setting θ = 1/2 and θ = 1,

respectively. We notice that a sub-Gaussian assumption was typically utilized in prior works on

stochastic gradient descent; for example, the assumption E[exp
(
ξ2/σ2

)
] ≤ e in [48] corresponds to

sub-Gaussian tail behavior. However, recent works suggest that stochastic gradient descent may

exhibit errors with tails that are heavier than a sub-Gaussian (see, e.g., [33]). To further elaborate

on the flexibility offered by a sub-Weibull model, we provide the following additional examples.

Example 1. Suppose that each entry of ξ follows is a sub-Weibull distribution in the sense that

eTi ξt ∼ subW (θ, ω) for all i ∈ [d]. Then ∥ξt∥ is sub-Weibull with ∥ξt∥ ∼ subW (θ, 2θ
√
dν) [5]. □

Example 2. Suppose that each entry of ξ is Gaussian zero mean and variance ς2; then, it it

sub-Gaussian with sub-Gaussian norm Cς, with C an absolute constant [59], and it is therefore

subW (1/2, C ′ς) with C ′ an absolute constant. □

Example 3. Suppose that ξ is a random variable with mean µ := Eξt, such that ξ ∈ [a, b] almost

surely for some a, b ∈ R. Then ξ − µ ∼ subW (1/2, (a− b)/
√
2) [5]. □

1.3.2 Convex Analysis

In our minimization problem formulation, we will consider cost functions that are (strongly)

convex and smooth so as to restrict ourselves to problems with a desirable geometry.

Definition 2 (Convexity). A function f : Rd 7→ R is convex on X provided that, for any x, y ∈ X

f(τx+ (1− τ)y) ≤ τf(x) + (1− τ)f(y) (1.11)

for all τ ∈ [0, 1].

Intuitively, a convex function is such that the line joining any two points lies above its

graph. We are primarily interested in continuously differentiable convex functions, which satisfy

the characterization:

f(x) ≥ f(y) + ⟨x− y,∇f(y)⟩ (1.12)
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for any x, y ∈ Rd. Convexity is typically a desired property for objectives within the optimization

literature as the geometry informs the existence of minimizers. Indeed, convex functions have the

unique property that every local minimizers is a global minimizer, and hence the value f(x∗) is

unique for all x∗ ∈ argminx f(x). An even stronger notion of convexity, strong-convexity, allows us

to characterize functions with unique minimizers.

Definition 3 (Strong-Convexity). A function f : Rd 7→ R is γ-strongly convex if the function

x 7→ f(x)− γ

2
∥x∥2

is convex.

Intuitively, this says that f can be lower bounded by a quadratic function with modulus

γ. When γ = 0, then f is merely convex. In our analysis, we will frequently make use of the

characterization that γ-strongly convex function satisfy

f(x) ≥ f(y) + ⟨x− y,∇f(y)⟩+ γ

2
∥x− y∥2 (1.13)

for any x, y ∈ Rd.

Even when convexity fails, the notion of Lipschitz continuity is still required to achieve

desirable outcomes in optimization. We will refer to a function f : Rd 7→ R as L-smooth if its

gradient ∇f is L-Lipschitz continuous.

Definition 4 (Smoothness). A function f : Rd 7→ R is L-smooth provided that ∇f satisfies

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (1.14)

for all x, y ∈ Rd.

Smoothness of the cost limits the rate of change of the gradient, and gives us the relationship:

f(x) ≤ f(y) + ⟨x− y,∇f(y)⟩+ L

2
∥x− y∥2 (1.15)

for any x, y ∈ Rd. If f is twice continuously differentiable, γ-strongly convex, and L-smooth then

the hessian satisfies

γId ≤ ∇2f(x) ≤ LId (1.16)
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for all x ∈ Rd.

Frequently we will restrict the scope of our problem to a subset X ⊆ Rd, where X typically

captures a set of implicit constraints that are relevant to the problem. In this case, the notion of

local (strong) convexity and smoothness simply hold by replacing Rd with the set X . Then the

problem can be solved provided that the set X is convex.

Definition 5 (Convex Set). A set X ⊆ R is convex provided that, for all x, y ∈ X

τx+ (1− τ)y ∈ X (1.17)

for all τ ∈ [0, 1].

Similar to convex functions, a set is convex provided that a line segment joining any two

points inside X is completely contained in X .

1.3.3 Games

In our continuous game formulation, we consider a game that consists of n players. Each

player has a cost function Fi, distributional map Di, and decision set Xi ⊆ Rdi . Hence, each player

chooses a decision, or strategy xi ∈ Xi ⊆ Rdi . The concatenation of the decision variables is written

as x = (x1, . . . , xn) ∈ X ⊆ Rd where X =
∏n

i=1Xi and d =
∑n

i=1 di. For a fixed agent i, we will

decompose the decision x as x = (xi, x−i) where x−i ∈ Rd−di is the strategy vector of all agents

excluding the ith one.

The collection of costs Fi and decision sets Xi defines the game

min
xi∈Xi

Fi(xi, x−i), i ∈ [n]. (1.18)

A Nash equilibrium of this game is a point x∗ ∈ X provided that

x∗i ∈ argmin
xi∈Xi

Fi(xi, x
∗
−i) (1.19)

for all i ∈ [n]. Intuitively, x∗ is a strategy such that no agent can be incentivized by its cost to

deviate from x∗i when all other agents play x∗−i. Finding Nash equilibria is the primary focus in

this setting.
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Games of this form are commonly cast into a variational inequality framework. This is due,

in part, to the observation that the Nash equilibria x∗ ∈ X are the solutions to the variational

inequality

⟨x− x∗, G(x∗)⟩ ≥ 0, ∀x ∈ X ,

where the gradient map G : Rd → Rd is defined as

G(x) = (∇1F1(x), . . . ,∇nFn(x)) . (1.20)

Here, the notation ∇i is used to represent the partial gradient ∇xi . We will denote the set of Nash

equilibria of a game with gradient map G and domain X as NASH(G,X ). Existence of solutions to

variational inequalities of this form is guaranteed provided that the set X is convex and compact

and the gradient map G is monotone; uniqueness is guaranteed when G is strongly-monotone [25].

We say that G is α-strongly-monotone on X provided that there exists α > 0 such that

⟨x− y,G(x)−G(y)⟩ ≥ α∥x− y∥2, ∀x, y ∈ X , (1.21)

and monotone when α = 0. In this work, we primarily focus on strongly-monotone games. While

monotone games are tractable, methods for solving them with decision-dependent distributions

require alternative gradient estimators—a topic we leave to future work.

1.4 Organization

This thesis is based on the following four papers centered around stochastic optimization

problems with decision dependent distributions:

(1) Killian Wood, Gianluca Bianchin, and Emiliano Dall’Anese. Online projected gradient

descent for stochastic optimization with decision-dependent distributions. IEEE Control

Systems Letters, 6:1646–1651, 2021

(2) Killian Wood and Emiliano Dall’Anese. Stochastic saddle point problems with decision-

dependent distributions. SIAM Journal on Optimization, 33(3):1943–1967, 2023
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(3) KillianWood and Emiliano Dall’Anese. Online saddle point tracking with decision-dependent

data. In Learning for Dynamics and Control Conference, pages 1416–1428. PMLR, 2023.

(4) Killian Wood, Ahmed Zamzam, and Emiliano Dall’Anese. Solving decision-dependent

games by learning from feedback. IEEE Open Journal of Control Systems, 2024.

To provide context for the exposition, we will reference material from pertinent references therein.

In Chapter 2, we lay the theoretical foundations for solving the convex optimization problem in

(1.3) using both optimal and stable approaches by drawing on the works of (1) and (4). In Chapter

3, we build on the first Chapter by considering a Saddle Point problem with decision-dependent

distributions based the works of (2) and (3). In Chapter 4, we move to non-cooperative multiplayer

games, which is the subject of (4).



Chapter 2

Convex Optimization

In this chapter, we provide an overview of the stochastic optimization problem with decision-

dependent distributions, with the ultimate goal of highlighting the work in [64]. Formally, this

problem takes the form

x∗ ∈ argmin
x∈X

{
F (x) := E

z∼D
[f(x, z)]

}
(2.1)

with cost f : Rd × Rk → R, distributional map D : Rd → P(Rk), and domain X ⊆ Rd. As we

discussed in the introductory chapter, the power in this problem statement lies in in the fact that

it allows the learner to explicitly express the dependence of a data distribution on the optimization

as a means to combat optimization-induced distributional shift. In doing so however, we have

constructed a problem that is significantly more difficult to solve. The minimizers x∗ are appealing

in that they represent a decision that is uniformly best for all possible states of the system in which

we acquire data. It is precisely this expression that prevents us from formulating a basic stochastic

gradient algorithm that is capable of finding x∗: computing the gradient ∇F requires the gradient

of the probability density of the distributional map with respect to x, and thus estimating ∇F

requires complete knowledge of the distribution.

For this reason, the work of “Performative Prediction” draws on the analogy of decision-

dependent to time-varying distributional shift to formulate a repeated retraining heuristic. This

posits that we solve a new optimization problem each time the data distribution changes. In this

setting, the distribution changes due to deploying the previous optimizer, but the idea is the same.
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This amounts to formulating the sequence

xt+1 ∈ argmin
x∈X

E
z∼D(xt)

[f(x, z)].

Unique to our setting, however, is the fact that the degree to which the iterates xt and xt+1 is entirely

dependent on properties of the cost f and the distributional map D. Thus if, these properties can

be characterized, and do not change too much, it is possible that the sequence xt converges to a

limit in X . In the next section, we will discuss the conditions required for convergence of repeated

retraining and alternative ways of finding these limit points.

2.1 The Stability Problem

In the work that follows, we denote stable points x̄ ∈ X as the limit points of repeated

retraining. Hence, they satisfy the relation

x̄ ∈ argmin
x∈X

E
z∼D(x̄)

[f(x, z)]. (2.2)

Relative to the optimizers x∗, they only satisfy the local property of being optimal for the stationary

problem that they induce; however, the conditions for their existence and uniqueness as well as the

mechanism required for finding them is more mild than that of optimizers. This work is primarily

interested in the case of uniqueness of solutions and hence we only present these conditions. For

conditions on mere existence, see [49], though finding x̄ in this case remains an open problem.

In the following, we present a main result of [49]: that in setting where the effects of “per-

formativity” or decision-dependence are bounded by the condition number of the cost, repeated

retraining terminates and the limit is a stable point.

Theorem 4 (Repeated Retraining Convergence, [49]). Suppose that the following hold:

(i) x 7→ f(x, z) is γ-strongly convex for all z ∈ Rk,

(ii) z 7→ ∇f(x, z) is L-Lipschitz continuous for all x ∈ X ,

(iii) x 7→ D(x) is ν-Lipschitz continuous on (P(Rk),W1),
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(iv) X ⊆ Rd is closed and convex.

If νL/γ < 1, then sequence {xt}t≥0 given by

xt+1 ∈ argmin
x∈X

E
z∼D(xt)

[f(x, z)].

converges to a unique limit x̄ ∈ X .

Proof of this result is due to [49] and amounts to showing that the fixed point iteration

satisfies the Banach-Picard fixed point theorem. We note that conditions (i) and (ii) are standard

conditions for convex optimization when pursuing unique solutions and hence represent a best-

case scenario. The novelty of this result is condition (iii), typically referred to as ν-sensitivity in

the literature, which quantifies the decision-dependent component of the problem. Formally, this

condition states that

W1(D(x), D(y)) ≤ ν∥x− y∥ (2.3)

for all x, y ∈ Rd. Simple examples of distributional maps that satisfy this include location scale

families, in which z ∼ D(x) takes the form

z
d
= ξ +Bx (2.4)

where ξ is some zero-mean stationary random variable, and B ∈ Rk×d. A simple calculation yields

that

W1(D(x), D(y)) ≤ ∥B∥∥x− y∥, (2.5)

and hence ν-sensitivity provided that ν = ∥B∥ is well-defined.

Conversely, the univariate Gaussian D(x) = N (
√
x, σ2) is not ν-sensitive for any finite ν > 0.

Indeed, from [16, Theorem 3.1] we have that

W1(D(x), D(y)) = |
√
x−√

y| (2.6)

for any x, y ≥ 0, so D is ν-sensitive if and only if x 7→
√
x is ν-Lipschitz continuous for some ν. To

see that this is not the case, we can consider a simple contradiction argument. Suppose that there
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does exist ν > 0 such that

|
√
x−√

y| ≤ ν|x− y| (2.7)

for any x, y ≥ 0. Then it must hold for x = 1/c for c > 0 and y = 0. Substituting into the above

and rearranging yields the implication that
√
c ≤ ν. However, choosing c = ν2 + 1 yields a clear

contradiction.

While repeated retraining is a useful conceptual and theoretical tool for this analysis, using

this as an algorithmic method is highly impractical. Though the rate of this fixed point iteration

is linear, performing the assignment requires that we solve an expected minimization problem at

each iteration. To avoid this, we leverage the observation that x̄ satisfies the fixed point relation

x̄ = projX

[
x̄− η E

z∼D(x̄)
[∇xf(x̄, z)]

]
, (2.8)

for any η > 0, and hence the update

xt+1 = projX

[
xt − ηt E

z∼D(xt)
[∇xf(xt, z)]

]
, (2.9)

should be suitable for finding stable points. Since this amounts to deterministic gradient descent,

it can be shown that this algorithm converges linearly to x̄ provided that x 7→ f(x, z) is strongly-

convex and L-smooth [49, Theorem 3.8]. In practice, we will use responses zt ∼ Dt(xt) to formulate

some stochastic gradient estimator gt and do

xt+1 = projX [xt − ηtgt] . (2.10)

For this to work, we must assume the existence of a mechanism by which the learner can

acquire samples from D(xt) at each iteration (i.e. an oracle). Though this assumption is somewhat

mild in terms of application, it can cause issue if the data acquisition step requires more time

than the algorithmic update—an observation that motivates our next section. To proceed, we will

further assume the that stochastic gradient estimator satisfy the following assumptions.

Assumption 1 (Stochastic Framework). Let F = (Ft)t≥0 with elements

Ft := σ(gτ , τ ≤ t) (2.11)
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be the natural filtration of the Borel σ-algebra over Rd with respect to gt. Denote Et[ · ] = E[·|Ft]

as the conditional expectation with respect Ft over distribution D(xt). Suppose that gt satisfies the

following:

(1) (Unbiased) Et[gt] = Ez∼Dt(xt)[∇xf(xt, z)]

(2) (Bounded Variance) Et∥gt − Ez∼Dt(xt)[∇xf(xt, z)]∥2 ≤ σ2

This assumption is a common stochastic framework used to study convergence of optimization

algorithms in expectation. We will revisit variations of this framework throughout the rest of the

work. With these assumptions, we are able to state the following convergence result due to [22].

Theorem 5. Suppose that the following hold with νL/γ < 1

(i) x 7→ f(x, z) is γ-strongly convex for all z ∈ Rk

(ii) z 7→ ∇f(x, z) is L-Lipschitz continuous for all x ∈ X

(iii) x 7→ D(x) is ν-Lipschitz continuous on (P(Rk),W1).

(iv) X ⊆ Rd is closed and convex.

Then the sequence {xt} generated by (2.10) satisfies the following

(1) if ηt = η > 0 then

E∥xt − x̄∥2 ≤ (1− (γ − νL)η)t∥x0 − x̄∥2 + 2σ2

1− η
(2.12)

(2) if ηt = 2/(r + t) for r > 0 then

E∥xt − x̄∥2 ≤ M

r + t
(2.13)

where

M = max

{
r∥x0 − x̄∥2, 1

(γ − νL)

}
(2.14)
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Since this is a standard result within the literature, we refer the reader to [22, 44] for proof.

With this result in mind, we have effectively demonstrated that the stable problem enjoys the same

convergence guarantees as standard stochastic optimization with stochastic gradient descent. This

result does however rely heavily on the fact that samples can be readily acquired at each iteration

t to form the stochastic gradient estimator gt. The result above demonstrates that, for a nicely

conditioned problem, a reasonable degree of accuracy can be achieved with a decaying step-size after

1,000 iterations. When the time required to get feedback is a mere 5 seconds or less, then we can

reach an answer in less than 1.4 hours. However, in the extreme case, 20 seconds between updates

can take 5.5 hours to reach an answer—a time window over which many real-world problems and

systems will naturally evolve dynamically. For this reason, it is necessary to develop a time-varying

formulation of this stable problem to accommodate such a case by tracking a trajectory of stable

points as it evolves in time.

2.2 Time-varying Stability

This section considers the problem of developing and analyzing online algorithms to track the

trajectory of solutions for time-varying stochastic optimization problems with decision-dependent

distributions. The sequence of problems has the form

min
x∈Xt

E
z∼Dt(x)

[ft(x, z)] , (2.15)

where t ∈ N0 is a time index, x ∈ Rd is the decision variable, Dt : Rd → P(Rk) is a map from the

set Rd to the space of distributions, z is a random variable supported on Rk, ft : Rd × Rk → R is

the loss function, and Xt ⊆ Rd is a closed and convex set.

At each time t, we have a new problem instance and hence a distinct solution. Here we are

only interested in the trajectory of stable points {x̄t}t≥0, which satisfies the relation

x̄t ∈ arg min
x∈Xt

E
z∼Dt(x̄t)

[ft(x, z)] . (2.16)

Like the time-invariant case, the stable point x̄t is optimal for the stationary stochastic optimization
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it induces. To proceed, we demonstrate some of the basic properties of stable points still hold in

this setting.

2.2.1 Time-varying Framework

The assumptions that follow are time-varying analogs of the standard optimization framework

we pose in the previous section. We adopt the following list of assumptions at each time t ∈ N0.

Assumption 2 (Strong Convexity). There exists γt > 0 such that x 7→ ft(x, z) is γt-strongly

convex for all z ∈ Rk.

Assumption 3 (Joint smoothness). There exist Lt > 0 such that x 7→ ∇xft(x, z) is Lt-Lipschitz

continuous and z 7→ ∇xft(x, z) is Lt-Lipschitz continuous for all x ∈ Rd.

Assumption 4 (Distributional Sensitivity). There exists νt > 0 such that

W1(Dt(x), Dt(x
′)) ≤ νt∥x− x′∥ (2.17)

for any x, x′ ∈ Rd. □

Assumption 5 (Convex Constraint Set). The set Xt ⊆ Rd is closed and convex. □

Assumption 6 (Time Variability). There exists ∆ ∈ (0,∞) such that the stable drift sequence

∆t := ∥x̄t+1 − x̄t∥ satisfies ∆t ≤ ∆.

Assumptions 2, 3, and 5 are standard assumption used throughout stochastic optimization

to grantee convergence (time-invariant) and tracking (time-varying) of unique solutions, and hence

are rather mild. Assumption 4 is unique to the literature on decision-dependent distributions and

is necessary to characterize the degree of decision-dependence within the system [22, 49]. Note

that νt = 0 here naturally implies the absence of decision-dependence and hence stable points

and optimal points coincide. Lastly, Assumption 6 is standard in the literature on time-varying

optimization problems as it prevents the trajectory of solutions from changing too much due to

adversarially chosen functions ft. This is perhaps the most mild assumption one could place on
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time varying assumption, as it merely assumes that the worst drift is finite. If this were not the

case, then ∆t would grow unbounded and tracking {x̄t}t≥ would be meaningless.

In addition to these assumption, we will suppose that there exist finite constants γ, L, ν > 0

such that γ = inft γt, L = supt Lt, and ν = supt νt. These serve as uniform constants for which the

above assumptions hold for all t, and will allow us to develop a worst-case analysis.

Lemma 6 ([49, Theorem 3.5]). Let Assumptions 2-5 hold, and suppose that νtLt
γt

< 1 for all t ∈ N0.

Then, a sequence of performatively stable points {x̄t}t∈N0 exists and is unique.

In general, performatively stable points may not coincide with the optimizers of the original

problem (2.15). However, an explicit error bound can be derived, as formally stated next.

Lemma 7 ([49, Theorem 4.3]). Suppose that the function z 7→ ft(x, z) is Lt-Lipschitz continuous

for all x ∈ Rd and t ∈ N0. Then, under the same assumptions of Lemma 6, it holds that

∥x̄t − x∗t ∥ ≤ 2νtLtγ
−1
t , for all ∈ N0. (2.18)

The proof Lemma 7 follows from [49, Thm 3.5, Thm 4.3]. In the remainder of this paper,

we assume that the assumptions of Lemma 6 are satisfied, so that the performatively stable point

sequence is unique. We illustrate the difference between x̄t and x∗t in the following example.

Example 4. Consider an instance of (2.15) where ft(x, z) = x2+ z, Xt = R, Dt(x) = N (µtx, σ
2
t ),

µt, σt > 0. In this case, the objective can be specified in closed form as: E
z∼Dt(x)

[
x2 + z

]
= x2 +

µtx, and thus the unique performatively optimal point is given by x∗t = −µt/2. To determine the

performatively stable point, notice that ∇xft(x, z) = 2x, and thus x̄t satisfies E
z∼Dt(x̄t)

[2x̄t] = 0,

which implies x̄t = 0. The bound in (2.18) thus holds by noting that νt = µt, γt = 1, and γt = 2. □

2.2.2 Deterministic Tracking

For the sake of notational ease, we will denote the decoupled cost as

Ft(x|y) = Ez∼Dt(y)[ft(x, z)], (2.19)
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and the corresponding gradient as

Gt(x|y) = Ez∼Dt(y)[∇xft(x, z)]. (2.20)

In order to successfully track stable points, we will employ a time varying analog of the procedure

in (2.10). This takes the form

xt+1 = projXt
[xt − ηtGt(xt|xt)] . (2.21)

This is an example of an online algorithm as it uses information that arrives sequentially in time

to perform its update. Observe that the update above can be expressed using the algorithmic map

At : Xt ×Xt → Xt given by

At(x|y) = projXt
[x− ηtGt(x|y)] , (2.22)

for all x, y ∈ Xt.

To analyze the behavior of our deterministic update, we rely on characterizing the gradient

map Gt in a way that will allow us to use classical optimization results. The first of which is the

so-called gradient deviations property observed in [23, 49]. We refer the reader to these works for

a detailed proof.

Lemma 8 (Gradient Deviations). If Assumption 2 holds, then for any t ≥ 0, x 7→ Gt(x0|x) is

νtLt-Lipschitz continuous for any x0 ∈ Rd. Specifically,

∥Gt(x0|x)−Gt(x0|y)∥ ≤ νtLt∥x− y∥ (2.23)

for all x, y ∈ Rd.

This result allows us to describe the impact of decision-dependent behavior on the gradient.

Our analysis At functions by relating the trajectory of {xt}t≥0 to the trajectory of online gradient

descent in the solution state Dt(x̄t). Hence, we first show that an online gradient descent step is

Lipschitz continuous. Proof of this result relies on classical convex analysis result.
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Lemma 9 (Contractive Map). If Assumptions 2-3 then the map x 7→ At(x|x0) is ρt- Lipschitz

continuous for any x0 ∈ Rd where κt = max{|1− γtηt|, |1− Ltηt|}. That is,

∥At(x|x0)−At(y|x0)∥ ≤ κt∥x− y∥, (2.24)

for any x, y ∈ Rd. Furthermore, if κt < 1 then x̄t = At(x̄t|x̄t).

Proof. Fix x0, x, y ∈ Rd. We note that x 7→ x − ηtGt(x|x0) has Jacobian Jt defined by Jt(x) =

Idx − ηt∇Gt(x|x0) where ∇Gt(x|x0) = Ez∼Dt(x0)[∇2
xft(x, z)]. Due to non-expansiveness, we have

that

∥At(x|x0)−At(y|x0)∥ ≤ ∥ (x− ηtGt(x|x0))− (y − ηtGt(y|x0)) ∥ ≤ sup
x

∥Jt(x)∥∥x− y∥,

so the result follows if supx ∥x− ηt∇Gt(x|x0)∥ ≤ ρt. By assumption we have that

γt∥x∥2 ≤ ⟨x,∇Gt(x|x0)⟩ ≤ Lt∥x∥2,

and hence

(1− Ltηt) ∥x∥2 ≤ ⟨x, Jt(x))⟩ ≤ (1− γtηt) ∥x∥2.

From this the result follows.

In characterizing the individual components of change in our algorithmic step, we have en-

abled the ability to demonstrate how the error incurred by the sequence xt+1 = At(xt|xt) propagates

relative to its starting position ∥x0 − x̄0∥ and the stable drift ∆t.

Lemma 10 (Tracking Error Bound). Let Assumptions 2-5 hold, and suppose thatνtLt
γt

< 1 for all

t ≥ 0. Then the sequence {xt}t≥0 defined by xt+1 = At(xt|xt) satisfies

∥xt+1 − x̄t+1∥ ≤ at∥x0 − x̄0∥+
t∑

i=0

bi∆i, (2.25)

where at :=
∏t

i=1 κt + νtLtηi,

bi :=


1 if i = t,

∏t
k=i+1 κi + ηiLiηi if i ̸= t,
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Proof. Note that xt ∈ Xt for all t ≥ 0 directly follows by definition of Euclidean projection. By

using the triangle inequality, we find that

∥xt+1 − x̄t+1∥ ≤ ∥xt+1 − x̄t∥+ ∥x̄t − x̄t+1∥

= ∥At(xt|xt)−At(x̄t|x̄t)∥+∆t

≤ ∥At(xt|xt)−At(xt|x̄t)∥+ ∥At(xt|x̄t)−At(x̄t|x̄t)∥+∆t,

where the first identity follows from the definition of x 7→ At(x|x) and the second inequality follows

from telescoping. Applying (2.23) and Lemma 9 yields:

∥xt+1 − x̄t+1∥ ≤ ηt∥Gt(xt|xt)−Gt(xt|x̄t)∥+ ∥Gt(xt|x̄t)−Gt(x̄t|x̄t))∥+∆t

≤ νtLtηt∥xt − x̄t∥+ κt∥xt − x̄t∥+∆t

= (κt + νtLtηt) ∥xt − x̄t∥+∆t. (2.26)

Thus we obtain the following by expanding the recursion:

et ≤

(
t∏

i=0

λi

)
e0 +∆t +

t−1∑
i=0

(
t∏

k=i+1

λk

)
∆i,

where we defined λt := κt + νtLtηt. The bound (2.25) then follows by definition of the sequences

{at} and {bt}.

We note that a key feature of this result is that the contraction coefficient ρt = κt − νtLt

is comprised of the contraction due to online gradient descent in κt and the decision-dependent

shift in the gradient represented by νtLt. Hence, in the absence of decision-dependence, νt = 0

and we recover the online gradient descent bound. Furthermore, we know that ρt ≥ 0. Indeed

ρt = γtLt(γt + Lt)
−1 − νtLt ≥ 0 if and only if

νt ≤
γt

γt + Lt
,

which is equivalent to

νt ≤
γt/Lt

γt/Lt + 1
< γt/Lt
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Theorem 11 (Neighborhood Tracking). Let Assumptions 2-5 hold, and suppose that ηt satisfies

ηt ∈
[

ε

γt − νtLt
,

2

γt + Lt

]
(2.27)

for some ε ∈ (0, 1) for all t ≥ 0. Then,

lim sup
t→∞

∥xt − x̄t∥ ≤ ∆

ε
. (2.28)

Proof. Fix ε ∈ (0, 1). Observe that since ηt ≤ 2(γt + Lt)
−1, then κt = 1− γtηt. Hence,

κt + νtLtηt = 1− γtηt + νtLtηt ≤ 1− ε (2.29)

if and only if ηt ≥ ε(γt − νtLt)
−1. Note that since νtLtγ

−1
t < 1 by assumption, then γt − νtLt > 0.

It follows from the proof of Lemma 10 that

∥xt − x̄t∥ ≤ (1− κtηt + νtLtηt) ∥xt−1 − x̄t−1∥+∆t ≤ (1− ε) ∥xt−1 − x̄t−1∥+∆.

By repeatedly applying this bound, we find that

∥xt − x̄t∥ ≤ (1− ε)t∥x0 − x̄0∥+∆
t−1∑
k=1

(1− ε)k ≤ (1− ε)t∥x0 − x̄0∥+
∆

ε

where the last step follows by bounding the geometric series by its limit as t → ∞. Taking the

limit supremum of both sides yields the result.

This section provides a baseline for our analysis of online gradient descent in the decision-

dependent setting, but with full information. In the next section, we extend this to algorithms that

use a stochastic gradient direction.

2.3 Online Stochastic Gradient Descent

In practice, the development of the previous section is not possible to achieve as we merely

have access to samples from Dt(xt). In this section, we demonstrate that the online stochastic

gradient update

xt+1 = projXt
[xt − ηtgt] , (2.30)
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permits us to track stable points in expectation and high probability. Throughout our analysis, we

interpret 2.30 as an inexact online gradient update whose additive error is captured by

ξt := gt −Gt(xt|xt). (2.31)

In order to develop high probability bounds, we introduce the following assumption on the tails of

this gradient error, as is common for a result of this type.

Assumption 7 (Sub-Weibull Error). For all t ≥ 0, ∥ξt∥ ∼ subW (θ, νt) for some θ, ωt > 0.

Assumption 7 allows us to describe a variety of sub-cases, including scenarios where the

error follows sub-Gaussian and sub-Exponential distributions [59], or any distribution with finite

support. Further, notice that Assumption 7 does not require the random variables {ξt}t∈N0 to be

independent.

Theorem 12 (Expected and High-probability Bounds). Let Assumptions 2-5 hold, and suppose

that νtLt
γt

< 1 for all t ∈ N0. Then, the following estimates hold for (2.30):

(1) For all t ∈ N,

E∥xt+1 − x̄t+1∥ ≤ (κt + νtLtηt) ∥x0 − x̄0∥+
t∑

i=1

bi(∆i + ηiE∥ξi∥]) . (2.32)

(2) If, additionally, Assumption 7 holds and δ ∈ (0, 1), then with probability 1− δ:

et+1 ≤
(
2e

θ

)θ

logθ
(
2

δ

)(
at∥x0 − x̄0∥+

t∑
i=1

bi(∆i + ηiνi)
)
, (2.33)

where {at} and {bi} are as in Theorem 10.

Proof. Note that xt ∈ Xt for all t ∈ N directly follows by definition of Euclidean projection. To

prove the first result, we first find a stochastic recursion. By the triangle inequality:

∥xt+1 − x̄t+1∥ ≤ ∥gt −Gt(x̄t|x̄t)∥+∆t ≤ ∥gt −Gt(xt|xt)∥+ ∥Gt(xt|xt)−Gt(x̄t|x̄t)∥+∆t,

where the second inequality follows by adding and subtracting Gt(xt|xt). By iterating (2.26), we

have

∥Gt(xt|xt)−Gt(x̄t|x̄t)∥ ≤ λt∥xt − x̄t∥+∆t,
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where λt := κt + νtLtηt, and thus

∥xt+1 − x̄t+1∥ ≤ ηt∥gt −Gt(xt|xt)∥+ λt∥xt − x̄t∥+∆t.

This yields the stochastic recursion ∥xt+1 − x̄t+1∥ ≤ λt∥xt − x̄t∥ + ∆t + ηt∥ξt∥. Expanding the

recursion yields

∥xt+1 − x̄t+1∥ ≤

(
t∏

i=0

λi

)
e0 +∆t +

t−1∑
i=0

(
t∏

k=i+1

λk

)
(∆i + ηi∥ξi∥),

or, equivalently,

∥xt+1 − x̄t+1∥ ≤ at∥x0 − x̄0∥+
t∑

i=0

bi(∆i + ηi∥ξi∥). (2.34)

Thus, (2.32) follows by taking the expectation on both sides.

To prove (2.33), we demonstrate that the right-hand side of (2.34) is sub-Weibull distributed.

Since ξi ∼ subW (θ, ωi), Proposition 3 implies that bi(∆i + ηi∥ξi∥) ∼ subW (θ, bi(∆i + ηiωi)). By

summing over i, we obtain:

t∑
i=0

bi(∆i + ηi∥ξi∥) ∼ subW

(
θ,

t∑
i=0

bi(∆i + ηiωi)

)
.

Denoting St := at∥x0− x̄0∥+
∑t

i=0 bi(∆i+ηi∥ξi∥), we conclude that St ∼ subW (θ, υt), where

ζt = at∥x0 − x̄0∥+
∑t

i=0 bi(∆i + ηiωi). From our sub-Weibull definition, we have that

P(|ωt| ≥ ε) ≤ 2 exp

(
− θ

2e

(
ε

ζt

) 1
θ

)
. (2.35)

Now let δ ∈ (0, 1) be fixed and let ε be such that δ = 2 exp(−θ(2e)−1ε1/θζ
−1/θ
t ). Solving for ε yields

ε = logθ
(
2
δ

) (
2e
θ

)θ
ζt. It follows that St ≤

(
2e
θ

)θ
logθ

(
2
δ

)
ζt, with probability 1 − δ. Finally, (2.33)

follows by substitution.

The bound (2.32) generalizes the estimate in Lemma 10 by accounting for the gradient error.

It is also worth pointing out that (2.32) and (2.33) have a similar structure; indeed, (2.33) differs

only by a logarithmic factor and by the introduction of the tail parameters ωi (which replaces the

expectation term).
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Remark 1. An alternative high probability bound can be obtained by using (2.32) and Markov’s

inequality. For any δ ∈ (0, 1), then Markov’s inequality guarantees that:

∥xt+1 − x̄t+1∥ ≤ 1

δ

(
at∥x0 − x̄0∥+

t∑
i=1

bi(∆i + ηiE∥ξi∥)
)
, (2.36)

with probability at least 1 − δ. However, if we increase the confidence of the bound by allowing

δ → 0, the right-hand-side of (2.36) grows more rapidly than (2.33). □

Note that the bounds in Theorem 12 are valid for any t ∈ N. The asymptotic behavior is

noted in the next remark.

Remark 2. If (2.27) holds, then lim supt→+∞ ∥xt− x̄t∥ ≤ (1− λ̃)−1(∆̃+ η̃ξ̃) almost surely, where

η̃ and ξ̃ are upper bounds on the step size and E∥ξt∥; the proof is omitted because of space limits,

but follows arguments similar to [5]. □

2.4 Application to Electric Vehicle Charging

This section illustrates the use of the proposed algorithms in an application inspired from [58],

where the operator of a fleet of electric vehicles (EVs) seeks to determine an optimal charging policy

in order to minimize its charging costs. The region of interest is modeled as a graph G = (V, E),

where each node in V represents a charging station (or a group thereof), and an edge (i, j) in E

allows vehicles to transfer from node i to j. We assume that the graph is strongly connected, so

that EVs can be redirected from one node to any other node. We let xi ∈ R>0 denote the energy

requested by the fleet at node i ∈ V. We assume that the net energy available is limited, and

define the set Xt := {x ∈ Rd :
∑

i∈V xi ≤ Xt}, for a given Xt ∈ R>0. Given {xi}, the operator

of the power grid strategically chooses a price per unit of energy so as to optimize its revenue

from selling energy; we let zi ∈ R>0 denote the selected price in region i, and we hypothesise that

zi ∼ N (µtxi, σ
2
t ), µi,t, σt ∈ R>0 as an example. We note that, although the grid operator can choose

the price arbitrarily large to maximize its revenue, large prices may compel the fleet operator to

withdraw its demand, thus motivating the use of a model where the mean grows linearly with the
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Figure 2.1: Time series data representing the price of energy in dollars per kilowatt hour (kWh).
Each time step represents 5 minutes.

energy demand. Accordingly, we model the cost function of the EV operator as follows [58]:

ft(x, z) =
∑
i∈V

zixi,t − γi,txi + κi,tx
2
i , (2.37)

where γi,t ∈ R>0, models the charging aggressiveness of the fleet operator, and κi,tx
2
i,t quantifies

the satisfaction the fleet operator achieves from consuming one unit of energy. In (2.37), the term

zi,txi,t describes the charging cost at station i, the quantity γi,txi,t, and models the energy demand

at the i-th station. Notice that, because the displacement of vehicles can change over time, we

assume that the parameters γi,t and ξi,t are time dependent. We note that: (i) because of the

capacity constraint xt ∈ Xt, the decision variables xi,t, i ∈ V, are coupled, and (ii) although the

optimization could be solved in a distributed fashion since (2.37) is separable, our focus is to solve

it in a centralized way since the EV operator is unique.

We apply the proposed methods to a system of 10 homogeneous charging stations over 100

time steps with fixed net energy (Xt = 10). Namely, γi,t = −1/100|t− 50|+ 1 and κi,t = 2 for i ∈

{1, . . . , 10}. The charging cost distribution is informed by µt and σt; in our case, µt is the time series

data of CAISO real-time prices deposited in Fig 2.1 (taken from http://www.energyonline.com)

and σt = 1. Given these parameter values, the cost is γt-strongly convex and Lt-jointly smooth with

γt = Lt = 2. Following the results in [29], the distributional maps are νt-sensitive with νt = µt.

The sequence of performatively stable points are computed in closed form by solving the KKT

equations.

For each experiment, we run online stochastic gradient descent and full-information online
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Figure 2.2: Online stochastic gradient descent with variable step-size compared to a full-information
online gradient descent baseline.

gradient descent with fixed step size ηt = 0.3 by drawing initial state x0 uniformly from a sphere

of radius 5. We compute the mean tracking error for both single-sample and batch deployments.

The mean tracking error for each is computed via Monte Carlo simulation using 1, 000 realizations

of the initial state.

In Fig. 2.2, we demonstrate the error bound results in the previous section. Here “True” (i.e.,

true gradient) refers to the full-information case whereas “greedy” to the stochatic algirithm with

Nt = 1, and “lazy” to the case where Nt = 10.



Chapter 3

Saddle Point Problems

We are interested in solving a stochastic saddle point problem where the data distribution

shifts in response to decision variables. This feature yields the problem:

min
x∈X

max
y∈Y

{
F (x, y) := E

z∼D(x,y)
[f(x, y, z)]

}
, (3.1)

where X ⊂ Rdx and Y ⊂ Rdy are compact constraint sets, f : Rdx × Rdy → R is a scalar-valued

function of the decision variables (x, y) parameterized by a random vector w, D is a distribution

inducing map. Hereafter, we refer to F as the objective and the function f as the minimax function.

We remark that the distribution of w depends on the decision variables (x, y). When solutions to

the problem (3.1) exist, we will denote these solutions as (x∗, y∗).

For general distributional maps D, solving (3.1) directly is intractable. Indeed, F may be

non-convex-non-concave even when f is strongly-convex-strongly-concave. Additionally, estimating

the gradients ∇xF and ∇yF from samples requires differentiating the probability density of D. If

we could do this freely, then the (3.1) amounts to a deterministic problem, which is well-studied in

the literature on saddle-point problems. To proceed, we will assume that D us unknown and can

only be queried to receive responses z.

A common heuristic when dealing with non-stationary data distributions is to recompute

optimal decisions each time a new data distribution is revealed. For minimax problems, this
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corresponds to generating a sequence of decisions {(xt, yt)}t≥0 such that:

xt+1 ∈ argmin
x∈X

max
y∈Y

E
z∼D(xt,yt)

[f(x, y, z)]

yt+1 ∈ argmax
y∈Y

min
x∈X

E
z∼D(xt,yt)

[f(x, y, z)].

(3.2)

We will refer to fixed points of this sequence as stable points. These can be seen as the generalization

of the so-called performatively stable points in [23, 49, 64] in our stochastic minimax setup (3.1). A

primary objective of this work is illustrating sufficient conditions for the existence and uniqueness of

stable points. In particular, existence of the set stable points is shown when the minimax function

is convex in x and concave in y for a given w, and under continuity of the distributional map.

Building on these results, and focusing on strongly-convex-strongly-concave functions f , we then

develop deterministic and stochastic projected primal-dual algorithms that can determine stable

points.

However, as discussed in the paper, stable points and saddle points are qualitatively distinct.

stable points are saddle points for the stationary problem that they induce, but need not be

necessarily optimal. For this reason, we investigate a sufficient condition on the distributional

map D that allows us to guarantee strong-convexity-strong-concavity of the objective F . We call

this condition opposing mixture dominance, and provide a detailed example of a practical class of

distributions that satisfy this assumption. Since gradient based algorithms will require us to have

knowledge of the explicit dependence D has on the decision variables, we turn to zeroth order

algorithms. We demonstrate that derivative-free algorithms with a single function evaluation are

capable of approximating saddle points provided that F is strongly-convex-strongly-concave.

3.1 Stable Points

In our problem formulation in (3.1), we will assume that the sets X ⊂ Rdx and Y ⊂ Rdy are

convex and compact and that the data is supported on euclidean space, i.e., z ∈ Rk. Let P(Rk) be

the set of finite-first moment probability measures supported on Rk. Then the objective function

can be written in integral form as F (x, y) =
∫
Rk f(x, y, z)µ(x,y) (dz) where µ(x,y) ∈ P(Rk) is given as
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the output of the distributional map D for each (x, y) ∈ X ×Y. Classical solutions to this problem

take the form of saddle points, as defined next.

Definition 6 (Saddle Points). A pair (x∗, y∗) ∈ X × Y is a saddle point for the problem in (3.1)

provided that F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗), ∀x ∈ X , y ∈ Y.

Sufficient conditions for the existence of saddle points consist of F being convex-concave

while X and Y are convex and compact [51, Ex. 11.52]. When minimax equality holds, we can

equivalently characterize saddle points as a pair that satisfies:

x∗ ∈ argmin
x∈X

max
y∈Y

F (x, y), y∗ ∈ argmax
y∈Y

min
x∈X

F (x, y).

In practice, computing saddle points directly is computationally intractable. Namely, the depen-

dence of the distributional map on the decision variables implies that even when f is convex-concave

F may not be and hence saddle points will not even exist. Hence, we direct our attention to the

fixed point of the repeated retraining heuristic in (3.2).

Definition 7 (Stable Points). The point (x̄, ȳ) ∈ X × Y is an stable point provided that

x̄ ∈ argmin
x∈X

{
max
y∈Y

E
z∼D(x̄,ȳ)

[f(x, y, z)]

}
,

ȳ ∈ argmax
y∈Y

{
min
x∈X

E
z∼D(x̄,ȳ)

[f(x, y, z)]

}
.

(3.3)

Intuitively, (x̄, ȳ) are saddle points for the stationary saddle point problem induced by the

distribution D(x̄, ȳ). These are desirable as alternative solutions as they exist under mild convexity

assumptions for problems with compact decision sets. Furthermore, we note that compactness here

is not a limitation, as even unconstrained problems can be artificially constrained to a sufficiently

large compact set without changing the solutions [36].

Our first objective in this work will be to provide conditions for the existence and uniqueness

of these stable points. Later, we develop first order algorithms and demonstrate their convergence

to stable points. In analysis, we will frequently refer to the the “decoupled objective”, defined by

F (x, y|x′, y′) := Ez∼D(x′,y′)[f(x, y, z)] (3.4)
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for all x, x′ ∈ X and y, y′ ∈ Y as a means of separating the effects of f and D in the problem. To

characterize stable points, we will consider the repeated retraining correspondence H : X × Y →

P (X × Y), defined by

H(x, y) :=

(
arg min

x′∈X
max
y′∈Y

F (x′, y′|x, y), argmax
y′∈Y

min
x′∈X

F (x′, y′|x, y)
)

(3.5)

which maps pairs in the product space to its power set P (X × Y). In light of Definition 7, the

stable points are fixed points of H; that is, (x̄, ȳ) ∈ H(x̄, ȳ).

For notional convenience, we will refer to the concatenated vector w = (x, y) ∈ Rdx+dy and

its associated domain X ×Y ⊆ Rdx+dy (consequently, we can identify H(w) and F (w,w′) with the

above functions whenever convenient). In the following section, we provide sufficient conditions for

the existence of stable points.

3.1.1 Existence of Stable Points

Our goal is to demonstrate the existence and uniqueness of stable points. First, we demon-

strate the existence of stable points by showing that the fixed point set of H, defined as Fix(H) :=

{w ∈ X × Y| w ∈ H(w)}, is nonempty. The crux of our proof is showing that, under appropriate

assumptions, H is an upper hemicontinous function. Next, we provide this definition as well as the

notion of a topological neighborhood.

Definition 8 (Neighborhood, [3, Sec. 17.2]). If A is a topological space and x ∈ A , then a

neighborhood of x is a set V ⊂ A such that there exists an open set U with x ∈ U ⊂ V . If the set

V is open, then we say that V is an open neighborhood.

Definition 9 (Upper Hemicontinuity,[3, Sec. 17.2]). If A and B are two topological metric spaces,

then a set valued function φ : A 7→ P (B) is upper hemicontinuous (uhc) at x ∈ A provided that for

every neighborhood U of φ(x) ⊂ B, the upper inverse set φu(U) = {x : φ(x) ⊂ U} is a neighborhood

of x. If φ is uhc at every x in A, then we say that φ is uhc on A.

We next state our result for the existence of stable points.
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Theorem 13 (Existence of Stable Points). Suppose that the following assumptions hold:

i) x 7→ f(x, y, w) is convex in x for all y ∈ Y and for all realizations of z;

ii) y 7→ f(x, y, w) is concave in y for all x ∈ X and for all realizations of z;

iii) (x, y) 7→ f(x, y, z) is continuous on X × Y for all z;

iv) X ⊂ Rdx ,Y ⊂ Rdy are convex compact subsets;

v) the distributional map D : Z → (P(M),W1) is continuous.

Then the fixed point set Fix(H) is nonempty and compact.

Proof. The proof amounts to showing that H satisfies the hypotheses of Kakutani’s Fixed Point

Theorem [3, Corollary 17.55] for correspondences (set-valued functions). Since the domain X × Y

is convex and compact by hypothesis, we show that H has a closed graph and non-empty convex

and compact set values in P (X × Y). Following the Closed Graph Theorem [3, Theorem 17.11],

compactness of X × Y implies that H has closed graph if and only if it is closed valued and upper

hemicontinous. Hence our proof reduces to showing that (i) H has non-empty closed values, (ii) H

is upper hemicontinuous, and (iii) H has convex values.

Define the intermediate functions

f(x′|w) = max
y′∈Y

F (x′, y′|w) and g(y′|w) = min
x∈X

F (x′, y′|w) (3.6)

as well as the realization functions

F (w) = arg min
x′∈X

f(x′|w) and G(w) = argmax
y′∈Y

g(y′|w). (3.7)

for all x′ ∈ X , y′ ∈ Y, and w ∈ X × Y. Using this convention, H can be written compactly as

H(w) = (F (w), G(w)). It follows from continuity of f and D on X × Y, as well as compactness

of X and Y that f and g are continuous [3, Theorem 17.31]. The Maximum Theorem applied to

F and G implies that F and G are upper hemicontinuous and have nonempty compact set values.

Here, compactness implies closed-ness. Thus the values of H are closed since the Cartesian product

of closed sets is closed. This proves (i).

To see that H is upper hemicontinuous, fix w ∈ X × Y and let U be an open set such

that H(z) ⊂ U . Then H will be upper hemicontinuous provided that we can show that there
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exists an open neighborhood W of w such that H(W ) ⊂ U . Given that H(w) is a compact

subset of U , [3, Theorem 2.62] guarantees the existence of open sets Vx ⊂ X and Vy ⊂ Y such

that H(z) ⊂ Vx × Vy ⊂ U . Since F and G are upper hemicontinuous, then the upper inverse

sets F u(Vx) = {w : F (w) ⊂ Vx} and Gu(Vy) = {z : G(z) ⊂ Vy} are open in X × Y. Let

W = F u(Vx) ∩ Gu(Vy). Then w ∈ W by construction, so W,H(W ) ̸= ∅. Furthermore, W is an

open neighborhood of z and H(W ) ⊂ Vx × Vy ⊂ U . Thus condition (ii) holds.

Observe that since x′ 7→ f(x′|w) is convex for all w and X is convex, then F (w) is convex for

all w ∈ X × Y. Similarly, G(w) is convex for all z. Since the Cartesian product of convex sets is

convex, then condition (iii) follows.

Recall that the intuition for the stable points is that they are the saddle points of the station-

ary saddle point problem that they induce. In this next results, we summarize this characterization.

Proposition 14. Suppose that an stable point exists. Then (x̄, ȳ) ∈ X ×Y is an stable point if and

only if

F (x̄, y|x̄, ȳ) ≤ F (x̄, ȳ|x̄, ȳ) ≤ F (x, ȳ|x̄, ȳ) (3.8)

for all x ∈ X and y ∈ Y.

We omit the proof as it is amounts to the same proof technique for the classical saddle point

characterization result.

We will leverage the results of this section in the analysis of first-order methods that will

be utilized to solve the stochastic minmax problem. In the following, we outline some working

assumptions used in the algorithmic synthesis and analysis, and provide additional intermediate

results.

3.1.2 Stable Points for Strongly Monotone Gradient Maps

In what follows, we outline relevant assumptions that we use in this paper for the synthesis

and analysis of first-order deterministic and stochastic algorithms to identify stable points.
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Assumption 8 (Strong-Convexity-Strong-Concavity). For any realization z ∈ Rk, the function

w 7→ f(w, z) is differentiable. The function f γ-strongly-convex-strongly-concave, for any realiza-

tion of w; that is, f is γ-strongly-convex in x for all y ∈ Rdy and γ-strongly-concave in y for all

x ∈ Rdx.

Assumption 9 (Joint Smoothness). The stochastic gradient map g given by

g(w, z) := (∇xf(w, z),−∇yf(w, z)) is L-Lipschitz in w and z. Namely,

∥g(w, z)− g(w′, z)∥ ≤ L∥w − w′∥, ∥g(w, z)− g(w, z′)∥ ≤ L∥z − z′∥.

for any w,w′ ∈ Rdx+dy and z, z′ supported on Rk.

Assumption 10 (Distributional Sensitivity). The distributional map

D : Rdx+dy → P(Rk) is ν-Lipschitz. Namely,

W1(D(w), D(w′)) ≤ ν∥w − w′∥

for any w,w′ ∈ Rdx+dy , where W1 is the Wasserstein-1 distance.

Assumption 11 (Compact Convex Sets). The sets X ⊂ Rdx and Y ⊂ Rdy are compact and convex.

Typically, the assumption of strong-convexity-strong-concavity enables linear convergence

to saddle-points in standard primal-dual methods [36]. Furthermore, strong-convexity-strong-

concavity implies uniqueness of saddle point solutions; this allows to derive convergence results

to the unique saddle-point in the static case, and tracking results in the context of time-varying

minmax problems [18]. We also note that this assumption is useful in this paper in order to char-

acterize the intrinsic relationship between optimal solutions to (3.1) and stable points. We also

note that, for simplicity, the assumption imposes a common geometry parameter in f for both the

x and y values; however, our analysis is the same for functions f being γ1-strongly-convex in x and

γ2-strongly-concave in y (as we can take γ = min{γ1, γ2}).

Assuming that the distributional map is ν-Lipschitz and the gradient is Lipschitz in the ran-

dom variable is commonplace in the literature on decision-dependent distributions to characterize
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the overall effects of the distributional maps on the random variables [23, 49, 64]. Since we assume

the support of our random variables w reside in a complete and separable metric space (Polish

space), then a natural way to relate the resulting distributions is via the Wasserstein-1 metric.

Following Kantorovich-Rubenstein Duality [9, 35], this metric can be written as

W1(µ, ν) = sup

{
E

z∼µ
[g(z)]− E

z∼ν
[g(z)]

∣∣∣∣ g : M → R, Lip(g) ≤ 1

}
for all µ, ν ∈ P(Rk). Here the supremum is taken over all Lipschitz-continuous functionals on Rk

with Lipschitz constant less than or equal to one.

Closed and convex constraint sets are common in the literature on primal-dual methods, which

are the main algorithms that will be considered shortly [30, 36]. Due to Heine-Borel, compactness

of X and Y simply means closed and bounded. The addition of boundedness here is not restrictive;

one can assume boundedness while the underlying sets can still be made arbitrarily large to include

the saddle-points. As an illustration, consider the closed rectangles X = [−r, r]dx and Y = [−r, r]dy

for some r > 0. Then X and Y are compact and convex for any r > 0, and r can be made

an arbitrarily large positive number. See, e.g., [36] for an example in the context of constrained

optimization problems.

To proceed, we cast the stable point problem into the variational inequality framework. We

show that the stable problem is equivalent to a variational inequality over W := X × Y, where we

use the concatenated variable w = (x, y) when convenient. We then demonstrate uniqueness of the

stable points for saddle point problems that satisfy the above assumptions.

Recall that in Assumption 9, we introduce the stochastic gradient map g given by g(w, z) =

(∇xf(w, z),−∇yf(w, z)). Using this convention, we denote the decoupled gradient map as

G(w|w′) = E
z∼D(w′)

[g(w, z)]. (3.9)

This motivates the following characterization, which highlights the fact that stable points are

solutions to the decoupled gradient variational inequality.
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Theorem 15 (Stable Variational Inequality). A point w̄ ∈ W is an stable point provided that

⟨w − w̄, G(w̄|w̄)⟩ ≥ 0 , ∀w ∈ W. (3.10)

Proof of this fact follows steps that are similar to the ones in [51, Example 12.50]. In light

of Definition 7, this result suggest that z̄ are solutions to variational inequality induced by the

stationary distribution D(w̄). In the following, we show that when w 7→ G(w|w′) is strongly

monotone for all w′ ∈ Rdx+dy , a unique stable point exists. Furthermore, under this assumption,

we can show that the distance between the saddle points for the original problem in (3.1) and the

unique stable point is bounded.

Proposition 16. Suppose that Assumption 8 holds. Then, for any z ∈ Rk, z 7→ g(w, z) is γ-

strongly-monotone. Furthermore, for any w′ ∈ Rdx+dy , w 7→ G(w|w′) is γ-strongly-monotone.

Proof of this result is immediate. Below we provide a Lemma that allows us to characterize

the changes in the distributional argument of the decoupled gradient map G. This amounts to the

decoupled gradient map being Lipschitz continuous in the distributional argument.

Lemma 17 (Gradient Deviations). Suppose that Assumptions 9-11 hold. Then, for any ŵ ∈

Rdx+dy , the map w 7→ G(ŵ|w) is νL-Lipschitz. Furthermore, the restriction to W is bounded in

the following way: for any ŵ ∈ W

∥G(ŵ|w)−G(ŵ|w′)∥ ≤ νLDW (3.11)

for all w,w′ ∈ W where DW = diam(W) < ∞.

Proof. Let v ∈ Rdx+dy be an arbitrary unit vector and fix ŵ, w,w′ ∈ Rdx+dy . It follows that

⟨v,G(ŵ|w)−G(ŵ|w′)⟩ = E
z∼D(w)

[⟨v, g(ŵ, z)⟩]− E
w∼D(z′)

[⟨v, g(ŵ, z)⟩].

By our assumption, we have that z 7→ ⟨v, g(ŵ, z)⟩ is Lipschitz with constant L∥v∥. From Kan-

torivich and Rubenstein, we have that

E
z∼D(w)

[⟨v, g(ŵ, z)⟩]− E
z∼D(w′)

[⟨v, g(ŵ, z)⟩] ≤ LW1(D(w), D(w′)) ≤ νL∥w − w′∥,
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where that last inequality follows from ν-sensitivity of D. Thus we have that for any unit vector

v, ⟨v, (G(ŵ|w)−G(ŵ|w′)⟩ ≤ νL∥w − w′∥, Hence, choosing

v =
(G(ŵ|w)−G(ŵ|w′))

∥(G(ŵ|w)−G(ŵ|w′))∥

yields the result. Lastly, by Assumption 11, W is compact and hence ∥w−w′∥ ≤ DW < ∞ for any

w,w′ ∈ W. Thus, Lemma 3.11 follows.

In what follows, we demonstrate existence and uniqueness of stable points. Similar to the

statement of existence, we show that H satisfies the Banach-Picard Fixed Point Theorem by pro-

viding conditions for which H is a strict contraction.

Theorem 18 (Existence and Uniqueness of Stable Points). Suppose that Assumptions 8-11 hold.

Then:

(1) For all w,w′ ∈ W, ∥H(w)−H(w′)∥ ≤ νL
γ ∥w − w′∥,

(2) If νL
γ < 1, then there exists a unique stable point (x̄, ȳ) ∈ X × Y.

Proof. Let ŵ, w̃ ∈ W be fixed. Then the maps w 7→ G(w|ŵ) and w 7→ G(w|w̃) are γ-strongly-

strongly monotone. Furthermore, our strong-convexity and strong-concavity assumptions on f

imply that H(ŵ) and H(w̃) and are single valued in X × Y. Recall from our definition of H that

H(ŵ) and H(w̃) are solutions to the variational inequalities induced by ŵ and w̃ respectively. That

is, for all z ∈ X × Y,

⟨w −H(ŵ), G(H(ŵ)|ŵ)⟩ ≥ 0 and ⟨w −H(w̃), G(H(w̃)|w̃)⟩ ≥ 0. (3.12)

It follows from strong monotonicity that ⟨H(ŵ) −H(w̃), G(H(ŵ)|ŵ) − G(H(w̃)|ŵ)⟩ ≥ γ∥H(ŵ) −

H(w̃)∥2, and Theorem 3.12 imply that ⟨H(w̃)−H(ŵ), G(H(ŵ)|ŵ)⟩ ≥ 0. Hence,

⟨H(ŵ)−H(w̃)), G(H(w̃)|ŵ)⟩ ≤ −γ∥H(ŵ)−H(w̃)∥2. (3.13)

To proceed, we provide a lower bound for the quantity on the left-hand side. By applying Cauchy-

Schwartz and Lemma 17, we get that

⟨H(ŵ)−H(w̃), G(H(w̃)|w̃)−G(H(w̃)|ŵ)⟩ ≤ νL∥H(ŵ)−H(w̃)∥∥w̃ − ŵ∥.
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Since Theorem 3.12 implies that ⟨H(ŵ)−H(w̃), G(H(w̃|w̃)⟩ ≥ 0, then we get that

⟨H(ŵ)−H(w̃), G(H(w̃|ŵ)⟩ ≥ −νL∥H(ŵ)−H(w̃)∥∥w̃ − ŵ∥. (3.14)

Combining inequalities Propositions 3.13 and 3.14 yields

−γ∥H(ŵ)−H(w̃)∥2 ≥ −νL∥H(ŵ)−H(w̃)∥∥w̃ − ŵ∥,

and simplifying yields the result.

Since H is Lipschitz continuous, it is a strict contraction if νL/γ < 1. Uniqueness of the

fixed point follows from the Banach-Picard Fixed-Point Theorem.

We have demonstrated existence and uniqueness of stable points for some classes of problems;

next, we characterize the relationship between stable points and solutions of the original problem

in (3.1). First, an important observation is that when ν = 0, the problem statement in (3.1) has

a stationary probability distribution with respect to the decisions. Hence, saddle points coincide

with stable points. When ν > 0, we provide a guarantee on the distance between solutions of the

two problems.

Proposition 19 (Bounded Distance). Suppose that Assumptions8-11 hold. Let w∗ be the optimal

solution of (3.1), and let w̄ be the stable point. Then,

∥w∗ − w̄∥ ≤ νL

γ
DW . (3.15)

Proof. From the optimality conditions, we have that the decoupled gradient map satisfies ⟨w̄ −

w∗, G(w∗|w∗)⟩ ≥ 0 and ⟨w∗ − w̄, G(w̄|w̄)⟩ ≥ 0. By combining these results with results with our

gradient deviation bound in Lemma 17, we obtain the following:

⟨w̄ − w∗, G(w̄|w̄)−G(w∗|w̄)⟩ = ⟨w̄ − w∗, G(w̄|w̄)⟩ − ⟨w̄ − w∗, G(w∗|w̄)⟩

≤ ⟨w̄ − w∗, G(w∗|w∗)−G(w∗|w̄)⟩

≤ ∥w̄ − w∗∥ ∥G(w∗|w∗)−G(w∗|w̄)∥

≤ νLDW∥w̄ − w∗∥,
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where the second to last step follows from the Cauchy-Schwartz inequality. It follows from γ-strong-

monotonicity that

γ∥w̄ − w∗∥2 ≤ ⟨w̄ − w∗, G(w̄|w̄)−G(w∗|w̄)⟩ ≤ νLDW∥w̄ − w∗∥

so that canceling terms and dividing by γ yields the result.

3.1.3 Finding the Stable oint via Primal-Dual Algorithm

In this section, we discuss a primal-dual method for finding the stable points and demonstrate

its linear convergence for strongly-convex-strongly-concave f . After choosing a starting point w0 ∈

Rdx+dy , we proceed by using the iterative update

wt+1 = projW (wt − ηG(wt|wt)) (3.16)

where η > 0 is a positive step size. A key feature of this method is that each step projects onto

the constraint sets, and hence wt ∈ W for all t ≥ 1 for any initial condition w0. Observe that the

update above can be expressed using the algorithmic map A : W ×W → W given by

A(w|w′) = projW
(
w − ηG(w|w′)

)
, (3.17)

for all w,w′ ∈ Rdx+dy . In the following result, we demonstrate that stable points are fixed points

of w 7→ A(w|w) over W.

Proposition 20 (Fixed Point Characterization). Let Assumptions 8-11 hold and suppose that

νL
γ < 1. A point w̄ ∈ W is an stable point if and only if w̄ = A(w̄|w̄).

Proof. We want to show that w̄ solving the variational inequality in (3.10) is equivalent to being

a fixed point of the algorithmic map A over W. From [26, Theorem 1.5.5], for any ŵ ∈ Rdx+dy ,

projW(ŵ) is the unique element of W such that

⟨w − projW(ŵ), projW(ŵ)− ŵ⟩ ≥ 0 (3.18)

holds for any w ∈ W. As for the forward direction, if w̄ as stable point, then (3.10) is equivalent to

⟨w − w̄, w̄ − (w̄ − ηG(w̄|w̄)) ⟩ ≥ 0. (3.19)
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In setting ŵ = w̄−ηG(w̄|w̄) in Proposition 3.18, we get that w̄ = projW(w̄−ηG(w̄|w̄)). Conversely,

if w̄ is such that w̄ = projW(w̄ − ηG(w̄|w̄)), then by substituting ŵ = w̄ − ηG(w̄) into (3.19), we

have that w̄ satisfies (3.10).

To proceed, we will use a fixed point analysis to demonstrate convergence to the unique stable

point.

Theorem 21 (Primal-Dual Convergence). Suppose that Assumptions 8-11 hold and that νL
γ < 1.

Then the sequence wt+1 = A(wt|wt) satisfies the bound

∥wt − w̄∥ ≤ αt∥w0 − w̄∥ (3.20)

for any initial point w0 ∈ W, and for α :=
√

1− 2ηγ + η2L2 + ηνL. Furthermore, if

η ∈
(
0,

2(γ − νL)

L2(1− ν2)

)
, (3.21)

then zt converges linearly to the unique stable point w̄.

Proof. By applying our fixed point result in Propisition 20 and the triangle inequality, we get that

∥wt+1 − w̄∥ = ∥A(wt|wt)−A(w̄|w̄)∥ ≤ ∥A(wt|wt)−A(wt|w̄)∥+ ∥A(wt|w̄)−A(w̄|w̄)∥. (3.22)

Bounding the first quantity amounts to applying our gradient deviation result in Lemma 17. Hence,

∥A(wt|wt)−A(wt|w̄)∥ ≤ η∥G(wt|wt)−G(wt|w̄)∥ ≤ ηνL∥wt − w̄∥.

The second quantity is the standard analysis for stationary primal-dual. Namely,

∥A(wt|w̄)−A(w̄|w̄))∥2 ≤ ∥(wt − w̄)− η(G(wt|w̄)−G(w̄|w̄)∥2

= ∥wt − w̄∥2 + η2∥(G(wt|w̄)−G(w̄|w̄)∥2 − 2η⟨wt − w̄, G(wt|w̄)−G(w̄|w̄)⟩

≤ (1− 2ηγ + η2L2)∥wt − w̄∥2.

hence adding yields ∥wt+1− w̄∥ ≤ (1− 2ηγ+ η2L2)∥wt− w̄∥ so that repeated application yields the

result in (3.20). Convergence requires choosing step-size η > 0 such that 0 < α < 1. We observe

that if 0 < η < 2γ/L2, then the quantity
√

1− 2ηγ + η2L2 is real-valued.
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Additionally, we find that α < 1 provided that 0 < η
(
ηL2(ν2 − 1)− 2(νL− γ)

)
and hence

we must have that ηL2(ν2 − 1)− 2(νL− γ) > 0. Finally, we note that

2(γ − νL)

L2(1− ν2)
≤ 2γ

L2
,

thus the result follows.

In the next section, we focus on a stochastic algorithm. This stochastic method operates as

an inexact version of the primal-dual algorithm, a fact which we highlight in our results.

3.1.4 Stochastic Primal-Dual Method

In the previous section, we showed convergence of the deterministic primal-dual algorithm for

finding stable points in the full-information setting. Clearly this setting is unrealistic as it requires

knowledge of the entire distributional map, for which we need not even appeal to stable points in

the first place. This section will build on this analysis by investigating the stochastic primal update

wt+1 = projW (wt − ηgt) , (3.23)

for gradient estimator gt. A critical assumption we make is the existence of an oracle that provides

unbiased estimators gt for G(xt|xt) at each iteration of the algorithm. In the simplest case, this

merely implies that we can observe feedback zt ∼ Dt(wt) after deploying xt into the relevant system

and waiting for a response. Upon receiving zt, we compute g(wt, zt) and use this as the direction

in our primal-dual algorithm.

3.1.4.1 Constant step-size

To build on this concept, we do not require this exact estimator be used; instead we simply

assume that the estimator be unbiased and that tails of the estimator can be described by a sub-

Weibull distribution.

In the following, we formally outline the stochastic framework that will be used in our analysis.
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Assumption 12 (Sub-Weibull Framework). Denote Et = Ez∼D(wt). We assume the existence of

an Oracle that will provide gradient estimator gt for G(xt|xt) at each iteration t ≥ 0 such that the

stochastic gradient error sequence ξt given by

ξt = gt −G(xt|xt) (3.24)

satisfies the following properties for all t ≥ 0:

(1) (Unbiased) The gradient estimator gt is an unbiased estimator for Gt in the sense that

Etξt = 0.

(2) (Sub-Weibull Error) The stochastic gradient error ξt is sub-Weibull in norm in the sense

that ∥ξt∥ ∼ subW (θ, ωt) for some ωt > 0 and that ω = supt ωt < ∞. Hence,

P
(
∥ξt∥ ≥ ε

)
≤ exp

(
−
(

ε

ωt

)1/θ
)
. (3.25)

for all ε ≥ 0.

A typical assumption in the literature is that ∥ξt∥2, and hence the trace of the covariance of

ξt, is uniformly bounded in expectation. Here we assume that the norm of the gradient error is

distributed according to a heavy-tailed distribution. Note that, due to Proposition 1, ω = supt ωt <

∞ recovers this uniform boundedness property. By assuming θ is fixed for all t, we assume that all

realizations of the process belong to the same sub-Weibull class.

Theorem 22. Suppose that Assumptions 8-11 hold and νL
γ < 1. If Assumption 12 holds, and η

satisfies the bound in (3.21) then the sequence {wt}t≥0 generated by (3.16) satisfies:

(1) (Expectation). For any t ≥ 0,

E∥wt − w̄∥ ≤ ρt∥w0 − w̄∥+ ωη

1− ρ
. (3.26)

(2) (High Probability). For any δ ∈ (0, 1), and t ≥ 0,

P
(
∥wt − w̄∥ ≤ ρt∥w0 − w̄∥+ c(θ) logθ

(
2

δ

)
ωη

1− ρ

)
≥ 1− δ (3.27)

with c(θ) :=
(
2e
θ

)θ
.
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Proof. Observe that

∥wt+1 − w̄∥ = ∥wt+1 −A(w̄|w̄)∥ ≤ ∥wt+1 −A(wt|wt)∥+ ∥A(wt|wt)−A(w̄|w̄)∥. (3.28)

To bound the first quantity, Applying non-expansiveness and Assumption12 yields

∥wt+1 −A(wt|wt)∥ ≤ η∥gt −G(wt|wt)∥ = η∥ξt∥.

It follows from Theorem 21 that ∥A(wt|wt)−A(w̄|w̄)∥ ≤ ρ∥wt − w̄∥ so that combining and taking

the conditional expectation yields

Et∥wt+1 − w̄∥ ≤ ρ∥wt − w̄∥+ ηEt∥ξt∥ ≤ ρ∥wt − w̄∥+ ηω.

By bounding the finite geometric series
∑t

i=0 ρ
i by its limit (1− ρ)−1 and applying the law of total

expectation to the recursion, we obtain E[et] ≤ ρte0 + ηω(1− ρ)−1.

For notational convenience, in what follows we will denote the error sequence as et := ∥wt−w̄∥.

From the above, we have that

et+1 ≤ ρt+1e0 + η

t−1∑
i=0

ρi∥ξt−i∥. (3.29)

From our sub-Weibull assumption, we have that ∥ξt−i∥ ∼ subW (θ, ωt−i). By applying the addi-

tive closure property in Proposition 3, we find that St :=
∑t

i=0 ρ
i∥ξt−i∥ ∼ subW (θ,

∑t
i=1 ρ

iωt−i).

Furthermore, closure again implies that St ∼ subW (θ, ωη(1− ρ)−1). Hence,

P (St ≥ ε) ≤ 2 exp

(
− θ

2e

(
(1− ρ)ε

ωη

) 1
θ

)
. (3.30)

By setting the right-hand side equal to δ, we find that ε = (2eθ )
θ logθ

(
2
δ

)
ωη(1−ρ)−1. Now, observe

that our stochastic recursion implies that for any a > 0, P(Ct + St ≥ a) ≥ P(et ≥ a). It follows

that setting a = Ct + ε yields

P(et ≤ Ct + ε) ≥ P(Ct + St ≤ Ct + ε) = P(St ≤ ε) ≥ 1− δ,

thus the result follows by substituting the expression for Ct and ε.
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The bounds naturally translate to convergence results by considering the limit supremum.

Now we demonstrate that the algorithm converges to a neighborhood of the the stable in expectation

and almost surely.

Theorem 23 (Neighborhood Convergence). Suppose that Assumptions 8-11 hold, and that gt

satisfies Assumption 12. Assume that η satisfies the condition of (3.21). Then, the sequence of

iterates {wt}t≥0 converges to a neighborhood of w̄ in expectation and almost surely. In particular,

lim sup
t→∞

E∥wt − w̄∥ ≤ ηω

1− ρ
, and P

(
lim sup
t→∞

∥wt − w̄∥ ≤ ηω

1− ρ

)
= 1.

Proof. The limit of the expectation follows immediately from above. As for almost sure convergence,

we simply apply the Borel-Cantelli Lemma. As before we let et = ∥wt − w̄∥, so that the result in

Theorem 3.26 can be compactly written as E[et] ≤ ρte0 + ηω(1− ρ)−1. Denote Et = max{0, et} so

that E[Et] ≤ ρte0.

By Markov’s inequality, P (Et ≤ ε) ≤ E[Et]
ε ≤ ρt+1e0

ε , for any ε > 0. Summing over t yields∑∞
t=0 P (Et ≥ ε) ≤ e0

ε(1−ρ) < ∞. It follows from the Borel-Cantelli Lemma that, since the sum of

tail probabilities is finite, then P (lim supt→∞Et ≤ ε) = 1. Since this is true for any ε > 0, then

the result follows.

Notice that Theorem 22 requires only our heavy tail assumption and not a filtration that is

standard with a ∥wt − w̄∥2 analysis. A drawback to this first-moment analysis, however, is that it

only demonstrates convergence to a neighborhood whose radius is dictated by the proxy variance,

and hence the quality of the estimator.

3.1.4.2 Decaying step-size

In what follows, we part with our heavy-tail assumption and demonstrate that we are able to

obtain stronger convergence results at the expense of requiring our estimator to be unbiased and

introducing a filtration on the probability space.

To do so, we will additionally require that our stochastic primal-dual algorithm use a decaying
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step-size instead of a fixed one. Hence, we will use an update of the form

wt+1 = projW [wt − ηtgt] . (3.31)

In the following, we state an alternative stochastic framework to Assumption 12.

Assumption 13 (Filtration Framework). We assume the existence of an Oracle that will provide

gradient estimator gt for G(xt|xt) at each iteration t ≥ 0. Let F = (Ft)t≥0 with elements

Ft := σ(gτ , τ ≤ t) (3.32)

be the natural filtration of the Borel σ-algebra over Rdx+dy with respect to Gt. Let Et[ · ] = E[·|Ft]

denote the conditional expectation with respect Ft over distribution D(wt) and ξt := gt −Gt(wt|wt

denote the stochastic gradient error.

We assume that the stochastic gradient oracle returns estimators gt satisfying the following

properties:

(1) (Measurable) For all t ≥ 0, ξt is Ft+1-measurable.

(2) (Unbiased) For all t ≥ 0, Etξt = 0.

(3) (Bounded Variance) There exists σ > 0 such that Et∥ξt∥2 ≤ σ2, for all t ≥ 0.

Theorem 24 (Convergence). Suppose that Assumptions 8-11 and Assumption 13 hold. Then the

sequence {wt}t≥0 given by wt+1 = projWt
[wt − ηtgt] satisfies the following:

(1) One Step Bound. For all t ≥ 0,

Et∥wt+1 − w̄∥2 ≤
(
1− 2(γ − νL)ηt + 2(1 + ν)2L2η2t

)
∥wt − w̄∥2 + η2t σ

2.

(2) Convergence. If ηt = ℓ(r + t)−1 where

ℓ >
1

2(γ − νL)
and r >

(1 + ν)2L2

(γ − νL)2
(3.33)

then,

E∥wt − w̄∥2 ≤ M

r + t
, where M := max

{
r∥w0 − w̄∥2, ℓ2σ2

2(γ − νL)ℓ− 1

}
. (3.34)
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Proof. By applying the algorithmic map, and using non-expansiveness of the projection operator

we obtain the following relationship:

Et∥wt+1 − w̄∥2 ≤ ∥wt − w̄∥2 − 2ηt⟨wt − w̄, G(wt|wt)−G(w̄|w̄)⟩+ η2tEt∥gt −G(w̄|w̄)∥2

To bound the inner product term, we use γ-strong-monotonicity and the Gradient Deviations result

from Lemma 2.8:

⟨wt − w̄, G(wt|wt)−G(w̄|w̄)⟩ ≤ (γ − νL)∥wt − w̄∥2. (3.35)

From Young’s inequality, we get that

Et∥gt −G(w̄)∥2 = Et∥gt −G(wt|wt) +G(wt|wt)−G(w̄|w̄)∥2

≤ 2Et∥gt −G(wt|wt)∥2 + 2Et∥G(wt|wt)−G(w̄|w̄)∥2

≤ 2σ2 + 2(1 + ν)2L2∥wt − w̄∥2,

where the last inequality follows from the fact that w 7→ G(w|w) is (1 + ν)L-Lipschitz continuous.

Combining yields the one step improvement bound.

To prove (b), we first the quadratic contraction parameter using convexity. Observe that

0 < ηt ≤ (γ − νL)(2(1 + ν)2L2)−1, implies that

1− 2(γ − νL)ηt + 2(1 + ν)2L2η2t ≤ 1− 2(γ − νL)ηt.

Denoting ρ = 2(γ − νL), follows that

Et∥wt+1 − w̄∥2 ≤ (1− ρηt)∥wt − w̄∥2 + η2t σ
2. (3.36)

We proceed by induction. Clearly the bound in Theorem 3.34 holds for t = 0. Supposing it holds

for t, we have that

E∥wt+1 − w̄∥ ≤
(
1− ρℓ

r + t

)
M

r + t
+

σ2ℓ2

(r + t)2

≤ r + t− 1

(r + t)2
M − ρℓ− 1

(r + t)2
M +

σ2ℓ2

(r + t)2

≤ r + t− 1

(r + t)2
M

≤ M

(r + (t+ 1))2
,
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where the penultimate step follows from the fact that (ρℓ− 1)M + σ2ℓ2 < 0.

This concludes our analysis of stable points. In the following section, we discuss how to

compute saddle points.

3.2 Saddle Points and Mixture Dominance

By introducing the stable point problem, we have shifted the attention to a class of solutions

that are less computationally burdensome to obtain while still serving as meaningful solutions

within the context of decision-dependent stochastic problems. In this section, we demonstrate that

finding saddle points is still possible for some well-behaved distributional maps. We consider a

condition which we call opposing mixture dominance, and show that this condition is sufficient for

guaranteeing existence of saddle points.

Assumption 14 (Opposing Mixture Dominance). For any x, x′, x0 ∈ Rdx, y, y′, y0 ∈ Rdy and

τ ∈ [0, 1], the distributional map satisfies a convex shift in x

E
z∼D(τx+(1−τ)x′,y)

[f(x0, y0, z)] ≤ E
z∼τD(x,y)+(1−τ)D(x′,y)

[f(x0, y0, z)],

and concave shift in y

E
z∼τD(x,y)+(1−τ)D(x,y′)

[f(x0, y0, z)] ≤ E
z∼D(x,τy+(1−τ)y′)

[f(x0, y0, z)].

As an example, we show that Bernoulli mixtures satisfies this assumption.

Example 5 (Bernoulli Mixtures). If the distributional map D : Rdx+dy → P(Rk) is given by

D(x, y) = Bernoulli(p(x, y)) where p : Rdx+dy → R is the bilinear function

p(x, y) = ⟨x,Ay⟩+ ⟨b, x⟩+ ⟨c, y⟩+ d

then Assumption 14 is satisfied since D(τx+(1−τ)x′, y) = τD(x, y)+(1−τ)D(x′, y) and τD(x, y)+

(1− τ)D(x, y′) = D(x, τy + (1− τ)y′).
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Example 6. (Location-Scale Families) A distributional map D : Rdx+dy → P(Rk) induces a

location-scale family provided that for any z ∈ Rdx+dy , z ∼ D(w) if and only if z
d
= Az0 + Bw + c

where z0 is some stationary zero-mean random variable. A sufficient condition for Assumption 14

to hold is that f is convex in the random variable z. A detailed proof of this fact is provided in the

next section.

In the previous section, we made the assumption that our random variables are supported

on some general Polish space and are induced by a Radon probability measure parameterized by

w = (x, y) ∈ Rdx+dy . Here, we assume without loss of generality that the distributional map induces

a probability density function p(z|x, y) and write the objective as F (x, y) =
∫
Rk f(x, y, z)p(z|x, y)dz.

The analysis that follows is identical for the case when the density p(z|x, y) corresponds to discrete

probability distribution parameterized by (x, y) and the proofs follow mutatis mutandis.

Below, we demonstrate that the opposing mixed dominance assumption is sufficient to guar-

antee that the objective is convex-concave in the distribution inducing arguments. The crux of this

proof is observing that convex combinations of probability distributions have a density function

defined by the convex combination of the underlying density functions.

Lemma 25. Let Assumption14 hold. Then, for any w0 ∈ Rdx+dy , the function (x, y) 7→ Ez∼D(x,y)[f(w0, z)]

is convex-concave on Rdx+dy .

Proof. Fix w0 ∈ W, x, x′ ∈ X , and y, y′ ∈ Y and let τ ∈ [0, 1]. Observe that since the distribution

τD(x, y)+(1−τ)D(x′, y) is a convex mixture, then its probability density function is convex sum of

the probability density functions for D(x, y) and D(x′, y). That is, if pτ is the density function for

the convex mixture, and p1 and p2 are the density functions for D(x, y) and D(x′, y), respectively,

then pτ (z) = τp1(z) + (1− τ)p2(z). From this, we conclude that

E
z∼τD(x,y)+(1−τ)D(x′,y)

[f(w0, z)] ≤ τ E
z∼D(x,y)

[f(w0, z)] + (1− τ) E
z∼τD(x′,y)

[f(w0, z)].

Combining this with Assumption 14, we get that

E
z∼D(τx+(1−τ)x′,y)

[f(w0, z)] ≤ τ E
z∼D(x,y)

[f(w0, z)] + (1− τ) E
z∼D(x′,y)

[f(w0, z)].
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This proves convexity of x 7→ Ez∼D(x,y)[f(w0, z)] for any y. The concavity in y can be shown using

similar steps.

We can then utilize this result in conjunction with our previous assumptions to get strong-

convexity-strong-concavity of the objective F .

Theorem 26 (Strong-Convexity-Strong-Concavity). If Assumption 8-10 and Assumption 14 hold,

then (x, y) 7→ F (x, y) is (γ − 2νL)-strongly-convex-strongly-concave over Rdx+dy .

Proof. We prove the assertion by first demonstration that strong-convexity holds in x for y fixed.

Strong-concavity will follow similarly. By applying γ-strong-concavity of f in x, we get that

F (x′, y|x′y) − F (x, y|x′, y) ≥ ⟨x′ − x, E
z∼D(x′,y)

[∇xf(x, y, z)]⟩ +
γ

2
∥x − x′∥2. (3.37)

By the L-smoothness of the gradient, we get that

⟨x′ − x, E
z∼D(x,y)

[∇xf(x, y, z)]− E
z∼D(x′,y)

[∇xf(x, y, z)]⟩ ≤ νL∥x− x′∥2

which is equivalent to

0 ≥ ⟨x′ − x, E
z∼D(x,y)

[∇xf(x, y, z)]− E
z∼D(x′,y)

[∇xf(x, y, z)]⟩ −
2νL

2
∥x− x′∥2. (3.38)

Since for any w0 ∈ Rdx+dy the function (x, y) 7→ Ez∼D(x,y)[f(w0, z)] is convex-concave, we have that

F (x, y|x, y) − F (x, y|x′, y) ≥ ⟨x − x′, E
z∼D(x′,y)

[f(x, y, z)∇x log p(z|x, y)]⟩ (3.39)

by setting w0 = (x, y). By adding inequalities (3.37)-(3.39) we obtain

F (x′, y)− F (x, y) ≥ ⟨x′ − x,∇xF (x, y)⟩+ γ − 2νL

2
∥x− x′∥2,

which is equivalent to strong-convexity in x. Proof of strong-concavity in y follows similarly and it

is omitted due to space limitations.
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3.2.1 Location-Scale Families

In this section, we are interested in solidifying the claims made in Example 6 on Location-

scale families, which have seen much attention in the literature on decision-dependent distributions

as it arises naturally in many common examples [45]. A formal definition is provided next.

Definition 10 (Location-Scale Family). The distributional map D : Rdx+dy → P(Rk) forms a

location-scale family provided that for every z ∈ Rdx+dy and z ∼ D(w), z
d
= Az0 + Bw + c where

z0 ∼ D0. In this model, D0 ∈ P(Rk) is a zero-mean stationary distribution while A0 ∈ Rk×k,

B ∈ Rk×(dx+dy), and c ∈ Rk are model parameters.

To demonstrate that Location-scale Families satisfy Assumption 14, we introduce the notion

of convex stochastic orders. This is an ordering of random variables induced by convex functions.

Definition 11 (Convex Order, [52, Definition 7.A.1]). If two k-dimensional random vectors z and

u are such that E[f(u)] ≤ E[f(z)], for all convex functions f : Rk → R, then we say that u is less

than z in the convex order and write u ≤cx z.

Demonstrating an ordering from this definition alone proves difficult. Instead, we look to the

following theorem that characterizes random variables in the convex stochastic order via couplings.

Theorem 27 ([52, Theorem 7.A.1]). The random vectors u ∼ µ and z ∼ ν satisfy u ≤cx z if and

only if there exists û
d
= u and ẑ

d
= z such that E[ẑ|û] = û a.s.

Following this characterization, we demonstrate that location-scale families have a special

relationship between the convex-combination family and the corresponding convex-mixture.

Lemma 28. Let the distributional map D : Rdx+dy → P(Rk) be a location scale family. Then for

any w,w′ ∈ Rdx+dy and τ ∈ [0, 1],

E
z∼D(τw+(1−τ)w′)

[f(z)] = E
z∼τD(w)+(1−τ)D(w′)

[f(z)]

for any convex function f : Rk → R.
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Proof. Fix τ ∈ [0, 1] and w,w′ ∈ Rdx+dy . In this proof, we use Theorem 27 to show that if

z ∼ D(τw + (1 − τ)w′) and z′ ∼ τD(w) + (1 − τ)D(w′), then we can define couplings that imply

that z ≤cx z′ and z′ ≤cx z. To this end, a key observation is that, if we denote the discrete random

variable T as

T =


z w.p. τ ,

z′ w.p 1− τ ,

then z′ ∼ τD(w) + (1− τ)D(w′) if and only if z
d
= Az0 +BT + c.

First, we suppose that z ∼ D(τw + (1− τ)w′). Then let z′
d
= w −B(τw + (1− τ)w′) +BT .

It follows that E[z′|z] = z, and z′
d
= Az0 +BT + c. Hence z′ ∼ τD(w) + (1− τ)D(w′). This proves

that z ≤cx z′.

Conversely, if we suppose that z′ ∼ τD(w)+(1−τ)D(w′) and set z
d
= z′+B(τw+(1−τ)w′)−

BT then z′ ≤cx z follows. The statement follows from the definition of the convex order.

Since this Lemma holds for any convex function f , it holds for stochastic payoff f provided

that it is convex in w. This combined with the fact that Location-Scale Families are ν-Lipschitz

with ν = ∥B∥2 is sufficient for F to be strongly-convex-strongly-concave.

Theorem 29 (Strong-convexity-strong-concavity). Suppose that f satisfies Assumption 89, and

the constraint sets X and Y satisfy Assumption 11. If D if a location-scale family and f is convex

in w, then F is (γ − 2νL)- strongly-convex-strongly-concave.

Proof. The proof amounts to demonstrating that D being a location-scale family and f being

convex in z is sufficient to satisfy Assumptions 14-and 10. The result then follows by Theorem 26.

We observe that Lemma 28 implies that Assumption 14 holds. As for D being ν- Lipschitz, we

claim that W1(D(w), D(w′)) ≤ ∥B∥2∥w − w′∥. Then the Assumption holds with ν = ∥B∥2. By

definition,

W1(D(w), D(w′)) = inf
Π(D(w),D(w′))

E
(z,z′)∼Π(D(w),D(w′))

∥w − w′∥2
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where the infimum is taken over all couplings of the distributions D(w) and D(w′). We find that

if z0 ∼ D0, then setting z
d
= Az0 + Bw + c and z′

d
= Az0 + Bw′ + c implies that z ∼ D(w) and

z′ ∼ D(w′) and ∥w − w′∥ = ∥B(w − w′)∥. Thus, the result follows.

3.2.2 Derivative-Free Primal-Dual

In this section we study a derivative-free primal-dual algorithm for computing saddle points

without eliciting distribution information from D. A unique feature of this algorithm is that it

uses a stochastic gradient estimator with only a single cost function evaluation. This algorithm is

suitable in the setting where opposing mixture dominance in Assumption 14 is known to hold, but

a model for the distributional map is not available. The use of zeroth-order algorithms has been

studied extensively within the context of derivative-free games in [11, 21]. For d > 0, we will denote

Bd and Sd as the uniform distributions over the unit ball, Bd = {x ∈ Rd| ∥x∥ ≤ 1} and unit sphere,

Sd = {x ∈ Rd| ∥x∥ = 1}, in Rd respectively. Additionally, denote S and B as joint distributions

such that v = (vx, vy) ∼ B, u = (ux, uy) ∼ S with vx ∼ Bdx , vy ∼ Bdy and ux ∼ Sdx , uy ∼ Sdy . The

derivative free algorithm map performs the update

wt+1 = proj(1−δ)W (wt − ηtgδ(wt, zt)) (3.40)

for ηt > 0, with zeroth-order gradient map

gδ(w, z) =

(
dx
δ
f(w + δux, z)ux, −dy

δ
f(w + δuy, z)uy

)
(3.41)

where δ > 0, and u = (ux, uy) with ux ∼ Sdx and uy ∼ Sdy . Note that by projecting onto the

restricted set (1 − δ)W we retain feasibility throughout the iterations of the algorithm. Since we

evaluating the stochastic objective at points perturbed by vectors on the unit sphere, we must

introduce an additional assumption to ensure that the domain of our function is appropriate.

Assumption 15 (Boundedness). There exist positive radii r,R > 0 such that W satisfies rBdx+dy ⊆

W ⊆ RBdx+dy .
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The gradient estimator in (3.41) naturally arises when considering the smoothed objective

over the unit ball, given by

Fδ(w) = E
v∼B

[F (w + δv)] = E
v∼B

[
E

w∼D(w+δv)
[f(w + δv, z)]

]
(3.42)

and its associated gradient map Gδ(w) = (∇xFδ(w),−∇yFδ(w)). These together form the per-

turbed saddle point problem

min
x∈(1−δ)X

max
y∈(1−δ)Y

Fδ(x, y), (3.43)

whose solutions we will we denote w∗
δ = (x∗δ , y

∗
δ ). It follows that gδ is an unbiased estimator of this

gradient map, and hence it will allow us to find saddle points without requiring more information

about the objective or distributional map. We formalize this in the following.

Lemma 30 (Unbiasedness, [11, Lemma C.1]). If δ > 0, then Eu∼S[Ez∼D(w)gδ(w, z)] = Gδ(w), for

all w ∈ Rdx+dy .

The the fact that we can estimate the gradient map using only a single function evaluation is

an attractive feature of (3.40). There are alternatives multi-point estimators that use more function

evaluations, but since the expectation in our problem also depends on the decision variables, they

are biased. Furthermore, in the following we show that the considered perturbed gradient map

retains strong-monotonicity.

Lemma 31 (Strong Monotonicity). If the gradient of the objective F , given by

G(z) = (∇xF (w),−∇yF (w)) is (γ − 2νL)-strongly-monotone, then Gδ is (γ − 2νL)-strongly-

monotone for any δ > 0.

Indeed, by perturbing the objective and the constraint set by δ, the solution of the perturbed

saddle point problem will may may be different from the solutions of the original problem. In the

following, we bound the discrepancy between solutions.

Lemma 32 (Bounded Approximation). If δ < r, and G is (γ − νL)-strongly monotone, then

∥w∗ − w∗
δ∥ ≤ δ

((
1 +

√
2L

(γ − 2νL)

)
∥w∗∥+ 2L

(γ − 2νL)

)
. (3.44)
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Finally, we are ready to demonstrate the performance of the algorithm. Here we impose two

additional restrictions: (i) δ may not exceed the radius of the largest ball completely contained in

W, which we denoted as r; (ii) the map (w, z) 7→ f(w, z) is bounded over W × Rk.

Theorem 33 (Convergence to the δ-Solution). Suppose that δ ≤ r and ηt = ℓ(r + t)−1 for ℓ >

(2(γ − 2νL))−1 r > 0 and that B = supw∈W,z∈Rk |f(w, z)| < ∞. Then, the sequence of iterates

{wt}t≥0 generated by the derivative free stochastic method satisfy

E∥wt − w∗
δ∥2 ≤

M

r + t
, where M := max

{
r∥w0 − w∗

δ∥2,
B2(d2x + d2y)ℓ

2

δ2(2(γ − 2νL)ℓ− 1)

}
. (3.45)

Proof. For notational convenience, we write γ̂ = γ − 2νL, and C = B2(d2x + d2y)δ
−2. By applying

non-expansiveness of the projection map, we get

Et∥wt+1 − w∗
δ∥2 ≤ Et∥wt − w∗

δ∥2 − 2ηtEt⟨wt − w∗
δ , gδ(wt, zt)⟩+ η2tEt∥gδ(wt, zt)∥2

≤ ∥wt − w∗
δ∥2 − 2γ̂ηt∥wt − w∗

δ∥2 + Cη2t

= (1− 2γ̂ηt)∥wt − w∗
δ∥2 + Cη2t .

In substituting the step size ηt = (ℓγ(r + t))−1, we find that

Et∥wt+1 − w∗
δ∥2 ≤

r + t− 2γ̂ℓ

r + t
∥wt − w∗

δ∥2 +
C

(r + t)2
.

As in the proof of Theorem 24, the result follows by induction.

This concludes our proof of convergence to the perturbed saddle point w∗
δ . Obtaining con-

vergence to the saddle point w∗ is a matter of applying the stochastic algorithm in stages with a

geometrically decaying step size.

3.3 Numerical Experiments for Electric Vehicle Charging

To illustrate our results, we apply our algorithms to an electric vehicle charging problem in

which two service providers set optimal prices for their service using demand data. We motivate

this problem formulation in the following exposition.
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3.3.1 Relative Cost Maximization in Competitive Markets

Consider a game in which two competing service providers aim to maximize their relative

profits in a region partitioned in d zones. This applies to, for example, ride sharing [7] and power

providers [2]. Focusing on electric vehicle charging station providers [38], at each zone i ∈ [d] we

denote the average baseline price as pi and the price differential to charge per-minute set by provider

one as xi. The revenue of provider one is (zx)i(xi+pi), based on their demand (zx)i. However, they

must incorporate a zone based utility cost θi(xi + pi), as well as well as a term enforcing quality

of service γ1,ix
2
i (the quadratic term balances the utility of the provider with the cost of ensuring

quality of service by penalizing large deviations from the baseline price).

In total, the profit for provider one over all d zones is given by u1(x, zx) = ⟨zx + θ, x +

p⟩ − ∥Γ1x∥2, with Γ1 = diag{γ1,1, . . . , γ1,n}. If the price and demand of service for provider two

are given by y and zy respectively, then their profit is similarly represented as u2(y, zy) = ⟨zy +

θ, y + p⟩ − ∥Γ2y∥2. Each provider has finite bounds on the prices they are willing to set in each

zone, and hence their prices are constrained to the closed rectangles X = "d
i=1[−pi, c1,ipi] and

Y = "d
i=1[−pi, c2,ipi] with multiplicative factors cj,i > 0. The service demand vectors a and b are

unknown quantities that will depend not only on the price set by their respective providers, but

also their competition. One such example of a dependence is a best response model. It has been

shown that best response models with linear utility and quadratic cost associated with changing

features give rise to location-scale models of the form:

zx
d
= ξx +A1x+A2y,

zy
d
= ξy +B1x+B2y,

where ξx ∼ Dx and ξy ∼ Dy, for which Dx and Dy represent stationary distributions for the demand

associated with providers one and two respectively [49]. In order to maximize their expected profit

relative to provider two, provider one will minimize the negative of their relative profit given by

u1(x, zx)−u2(y, zy), and hence the optimal strategies for both providers are solutions to the saddle
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(a) (b)

Figure 3.1: Data and results from numerical experiments. In (a) deviation in average demand for
provider one’s stations between 12 and 1 pm over 365 days.(b) the error of each algorithm depicted
over 3,00 iterations. Error of the derivative-free method is depicted in both distance to the saddle
point w∗ as well as distance to the perturbed saddle point w∗

δ .

point problem

min
x∈X

max
y∈Y

E
(zx,zy)∼D(x,y)

∥Γ1x∥2 − ∥Γ2y∥2 − ⟨zx + θ, x⟩+ ⟨zy + θ, y⟩, (3.46)

where the dependence on baseline price p has been removed as it has no impact on the optimality

criterion.

3.3.2 Numerical Simulations

In our simulation, each provider has access to three distinct regions, each of which having

one station. The demand for each station is dictated by the data distributions from [28]. Each

station is comprised of 50, 150, or 350 kW chargers with either 2 or 6 ports. We randomize this

allocation at initialization. Data is processed by averaging the demand over each hour-long time

window. After picking an hour block, we re-scale the data by subtract the mean and dividing by

the variance. We choose the demand change in the 12-1pm block, and depict data for the year

in Figure 3.1. Our simulations use charging utility values of γj,i = 1 for j ∈ [2], i ∈ [3], elasticity

values of (A1)i,j = (−0.3)δi,j , (A2)i,j = (0.3)δi,j , B1 = A2, and B2 = A1, and location utility values

ri = 0 for each station. The price deviations x and y are restricted to the interval [−1, 2] for each

station, representing a nominal price of $1 and a maximum price change of twice the nominal price.
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Hence X = Y = [−1, 2]3.

We run each algorithm for 10,000 iterations, and depict the first 3,000 iterations in Figure

3.1 to provide a side-by-side comparison. The stable points and saddle points are computed via

primal-dual with constant step size η = 0.001 as a means to compute the norm squared errors

∥wt − w̄∥2 and ∥wt − w∗∥2. We run stochastic primal-dual and the zeroth order algorithm with

the polynomial decay step-size schedules described in Theorems 3.34 and 33. In the latter, we

choose a fixed δ value of 0.05. Relative to EPD, our results for these stochastic algorithms only

guarantee sub-linear convergence at best; the step-size effectively converges to zero faster than the

error resulting in the plateau of our error curves. The Python code is publicly available1 .

3.4 Time-varying Extension

This work considers the problem of tracking the solution trajectories for problems of the

form:

min
x∈Xt

max
y∈Yt

{
Ft(x, y) := E

z∼Dt(x,y)
[ft(x, y, z)]

}
(3.47)

where t is a time index, Xt ⊆ Rn and Yt ⊆ Rm are convex and compact sets capturing time-varying

constraints, ft : Rdx × Rdy × Rk → R is a strongly-convex-strongly-concave function revealed at

time t, and Dt : Rn × Rm → P(Rk) is a distributional map that maps decision variables to the set

of finite-first moment probability distributions supported on Rk denoted by P(Rk). Without loss

of generality, we refer to the support of w as Rk (even if w is matrix valued, our analysis holds as

w is isomorphic to its vectorization over Rk).

Classical solutions to (3.47) are saddle points, which we denote w∗
t = (x∗t , y

∗
t ) ∈ Xt × Yt.

Under appropriate conditions, namely minimax equality, saddle points satisfy

x∗t ∈ argmin
x∈Xt

max
y∈Yt

Ft(x, y), y∗t ∈ argmax
y∈Yt

min
x∈Xt

Ft(x, y). (3.48)

In this setting, saddle points are optimal decisions that effectively anticipate the distributional shift,

and hence are optimal even after the data distribution has changed in the system. While these are

1 https://github.com/killianrwood/charging-market
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ideal, finding them is typically computationally intractable. While sufficient conditions for their

existence and uniqueness have been studied, guarantees for convergence to saddle points are only

approximate or require explicit knowledge of a model for the distributional map [47, 65]. A common

heuristic to overcome distributional shift in general is to repeatedly retrain the optimal decisions

each time the distribution shifts. This amounts to forming a sequence {zℓt}ℓ≥0 = {(xℓt, yℓt )}ℓ≥0 at

each time t defined by

xℓ+1
t ∈ argmin

x∈Xt

max
y∈Yt

E
z∼Dt(xℓ

t ,y
ℓ
t )
[ft(x, y, z)],

yℓ+1
t ∈ argmax

y∈Yt

min
x∈Xt

E
w∼Dt(xℓ

t ,y
ℓ
t )
[ft(x, y, w)].

(3.49)

The fixed points of this repeated retraining procedure have been coined equilibrium points,

and are known to exist under mild conditions. In what follows we provide algorithms capable of

tracking the equilibrium point trajectory {z̄t}t≥0 = {x̄t, ȳt}t≥0 without requiring that we take the

sequences in 3.49 to convergence (ℓ → ∞). This will be crucial for our online setting, as we assume

that each time t, a new function and distributional map arrive ([6, 34, 13, 54, 18, 64]).

3.4.1 Stable Points

In this section we define the equilibrium problem, the fixed points of the repeated retraining

heuristic in (3.49), and provide sufficient conditions for their existence. We start from the definition

of equilibrium points.

Definition 12 (Equilibrium Points). A pair (x̄t, ȳt) ∈ Rdx+dy is an equilibrium point if:

x̄t ∈ arg min
x∈Xt

{
max
y∈Yt

E
w∼Dt(x̄t,ȳt)

[ft(x, y, z)]

}
,

ȳt ∈ argmax
y∈Yt

{
min
x∈Xt

E
w∼Dt(x̄t,ȳt)

[ft(x, y, z)]

}
.

(3.50)

Sequences of equilibrium points are defined as (x̄t, ȳt)t∈N. □

In essence, equilibrium points are the solutions to the stationary saddle point problem that

they induce. In this way, they are optimal decisions when data distribution is in state Dt(x̄t, ȳt) but

need not be optimal otherwise. Existence of these points is contingent on the distributional function

being continuous on the set of probability distributions, and ft being at least convex-concave.
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Assumption 16 (Strong-Convexity-Strong-Concavity). The function (x, y) 7→ ft(x, y, w) is con-

tinuously differentiable over Rdx+dy for any realization of w. The function (x, y) 7→ ft(x, y, w) is

γ-strongly-convex-strongly-concave, for any realization of w; that is, ft is γ-strongly-convex in x

for all y ∈ Rm and γ-strongly-concave in y for all x ∈ Rn. □

Assumption 17 (Joint Smoothness). The map gt(w, z) := (∇xft(w, z),−∇yft(w, z)) is L-Lipschitz

in z and w. Namely, ∥gt(w, z) − gt(w
′, z)∥ ≤ L∥w − w′∥, ∥gt(w, z) − gt(w, z

′)∥ ≤ L∥w − w′∥, for

any z, z′ ∈ Rdx+dy and z, z′ supported on Rk, for some L ≥ 0. □

Assumption 18 (Lipschitz-Continuous Distributional Map). The distributional maps

Dt : Rdx+dy → P(M) are ν-Lipschitz. Namely, W1(Dt(w), Dt(w
′)) ≤ ν∥w − w′∥, for any w,w′ ∈

Rdx+dy , where W1 is the Wasserstein-1 distance. □

Assumption 19 (Compact Sets). The sets Xt ⊂ Rdx and Yt ⊂ Rdy are compact and convex. □

Assumption 20 (Bounded Drift). There exists a ∆ > 0 such that the equilibrium drift sequence

defined by ∆t := ∥z̄t+1 − z̄t∥ is uniformly bounded by ∆. Namely, ∆t ≤ ∆ for all t ≥ 0. □

These assumptions provided are sufficient to guarantee uniqueness of the equilibrium point,

and convergence of primal-dual algorithms in the offline (time-invariant) setting.

Theorem 34 (Equilibrium Point Uniqueness). If Assumptions 16-19 are satisfied such that νL < γ,

then a unique equilibrium point exists.

Proof of this results amounts to showing that the repeated retraining heuristic in 3.2 is a

strict contraction and hence satisfies the Banach-Picard Fixed Point Theorem. .

Given that the data distribution is shifting, it is necessary to characterize this shift and its

effect on the gradient. The key to computing equilibrium points will be the gradients of ft. We

note that this is only one term required to compute the gradients of Ft, effectively ignoring the

dependence of Dt on the decision variables. For now, we will denote the decoupled gradient map

as the function Gt defined by

Gt(w|w′) := E
z∼Dt(w′)

gt(w, z) =

(
E

z∼Dt(w′)
∇xft(w, z), E

z∼Dt(w′)
−∇yft(w, z)

)
(3.51)
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for all w,w′ ∈ Rdx+dy . Note that we refer to this gradient map as “decoupled” as we separate

the decision variable in the stochastic objective and the distributional map. This will allow us to

characterize these behaviors separately.

Lemma 35 (Gradient Map Characterization). If Assumptions 16-19 hold, then:

(1) (Gradient Deviation) For any fixed w0 ∈ Rdx+dy , the map w 7→ Gt(w0|w) is νL-

Lipschitz-continuous. That is, ∥Gt(w0|w)−Gt(w0|w)∥ ≤ νL∥w−w′∥, for all w,w′ ∈ Rdx+dy .

(2) (Strong-Monotonicity) The map w 7→ Gt(w|w) is (γ − νL)-strongly-monotonic.

(3) (Lipschitz-Continuity) The map w 7→ Gt(w|w) is (L+ νL)-Lipschitz Continuous.

Proof of the Gradient Deviation property follows by combining the properties allowed from

joint smoothness and lipschitz continuity of the distributional map (Assumptions 17 and 18 re-

spectively. Strong monotonicity and Lipschitz continuity of z 7→ Gt(w|w) then follow immediately.

With this lemma, we can effectively deal with the decoupled gradient map by passing variables into

both the Dt and gt simultaneously. Going forward, we will simply write Gt to mean the gradient

map given by w 7→ Gt(w|w).

3.5 Online Algorithms

In this section, we provide online analogs for both the conceptual and stochastic primal-dual

algorithms discussed in Section 3.1.

3.5.1 A Conceptual Primal-Dual Algorithm

In this section, we demonstrate that a full-information primal-dual algorithm is capable of

tracking stable points up to drift error ∆. This provides a basis of comparison for our analysis in

the next section where we use a stochastic gradient estimator in place of Gt. Our online primal-dual

update is given by

wt+1 = projWt
[wt − ηGt(wt|wt), ] (3.52)
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which can be represented via the algorithmic map At : Wt ×Wt → Wt given by

At(w|w′) = projWt

[
w − ηGt(w|w′)

]
. (3.53)

To proceed, we observe that equilibrium points are the fixed points of the primal-dual algorithmic

map.

Proposition 36 (Fixed Point Characterization). Let Assumptions 16-19 hold and suppose that

νL
γ < 1. A point w̄t ∈ Wt is an equilibrium point if and only if w̄t = At(w̄t|w̄t). □

This proposition will allow us to cast our analysis into a fixed point framework, using the

equilibrium points as the fixed points of the distributional map.

Theorem 37 (Primal-Dual Tracking). Suppose that Assumptions 16-19 hold and that νL
γ < 1.

Then the sequence wt+1 = At(wt|wt) satisfies the bound

∥wt − w̄t∥ ≤ αt∥w0 − w̄0∥+∆(1− α)−1 (3.54)

for any initial point w0 ∈ Rdx+dy and α :=
√
1− η(γ − νL) provided that

η < min

{
1

γ − νL
,

γ − νL

(1 + ν)2L2

}
(3.55)

Furthermore, {wt}t≥0 ultimately tracks the sequence of unique equilibrium points {w̄t}t≥0 in the

sense that lim supt→∞ ∥wt − w̄t∥ ≤ (1− α)−1∆. □

Proof. It follows from the triangle inequality that ∥wt+1 − w̄t+1∥ ≤ ∥wt+1 − w̄t∥ + ∥w̄t − w̄t+1∥ =

∥wt+1 − w̄t∥+∆t, and hence we simply need to bound ∥wt+1 − w̄t∥. We observe that

∥wt+1 − w̄t∥2 = ∥projWt
[wt − ηGt(wt|wt)]− projWt

[w̄t − ηGt(w̄t|w̄t)] ∥2

≤ ∥(wt − w̄t)− η (Gt(wt|wt)−Gt(w̄t|w̄t)) ∥2

≤ ∥wt − w̄t∥2 − 2η⟨wt − w̄t, Gt(wt|wt)−Gt(w̄t|w̄t)⟩+ η2∥Gt(wt|wt)−Gt(w̄t|w̄t)∥2.

If we denote γ̄ = γ − νL and L̄ = L + νL, then from Lemma 35 we have that Gt is γ̄-strongly

monotone and L̄-Lipschitz continuous. Combining these facts yields

⟨wt − w̄t, Gt(wt)−Gt(w̄t)⟩ ≥
γ̄

2
∥wt − w̄t∥2 +

γ̄

2L̄2
∥Gt(wt)−Gt(w̄t)∥2.
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Substituting into the above yields

∥wt+1 − w̄t∥2 ≤ (1− ηγ̄)∥wt − w̄t∥2 + η
(
η − γ̄

L̄2

)
∥Gt(wt)−Gt(w̄t)∥2 ≤ (1− ηγ̄)∥wt − w̄t∥2

where the last inequality follows provided that η ≤ γ̄/L̄2. It follows that if η < 1/γ̄ as well, then

1−ηγ̄ < 1 and the bound in Theorem (3.54) follows. Considering the limit supremum of the bound

in (3.54) yields the result.

We note that the noise due to the drift in (3.54) increases as we decrease the step size η. Hence

it is impossible to completely remove this disturbance from the algorithm. This reflects intuition

however as very small step sizes would make it difficult to ever reach the solution trajectory.

Meanwhile, larger step sizes decrease this noise while simultaneously decreasing the rate at which

we overcome the error zt+1 − z̄t between successive iterates. We build on this intuition in our

stochastic algorithm. This concludes our discussion of the conceptual primal-dual algorithm. In

the next section, we demonstrate tracking of a stochastic primal-dual algorithm.

3.5.2 A Stochastic Primal-Dual Algorithm

In previous section, we demonstrated that a conceptual first-order algorithm is capable of

tracking the trajectory of equilibrium point. In this section, we extend this result to a practical

implementation based on a stochastic gradient estimator. To remain consistent with the rest of

this work, we will abuse notion and denote gt as the stochastic gradient estimator of Gt, which we

expect will be some evaluation of the map (w, z) 7→ gt(w, z).

Given a starting point w0, the stochastic primal-dual algorithm performs the update

wt+1 = projWt
[wt − ηtgt] (3.56)

Crucial to our analysis will be providing reasonable assumptions regarding the quality of the

gradient estimator gt. The case where gt = gt(wt, zt) for zt ∼ Dt(wt) is particularly appealing

in applications such as competitive markets, strategic classification, etc. since is does not require

coordinating the algorithm to allow many sources feedback from the population.
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Assumption 21 (Sub-Weibull Framework). Denote the gradient error incurred throughout the

stochastic algorithm as ξt = gt − Gt(wt|wt). Then there exists constants θ, ν > 0 and a sequence

{ωt}t≥0 ⊆ R+ such that the following hold:

(1) Sub-Weibull Gradient Error. For each t ≥ 0, ∥ξt∥ is a sub-Weibull random variable

such that ∥ξt∥ ∼ subW (θ, ωt).

(2) Bounded Variance Proxies. The sequence of variance proxies {ωt}t≥0 is bounded by ω.

With this assumption, the main convergence result is stated next.

Theorem 38. Suppose that Assumptions 16-21 hold and νL
γ < 1. If η satisfies the bound in 3.55

then the following hold:

(1) Expectation. The sequence {zt}t≥0 satisfies the bound in expectation

E∥wt − w̄t∥ ≤ ρt∥w0 − w̄0∥+
∆+ ηω

1− rho
. (3.57)

for all t ≥ 0, for any initial point w0 ∈ Rd, and ρ :=
√

1− η(γ − νL).

(2) High Probability. For any δ ∈ (0, 1), and t ≥ 0,

P
(
∥wt − w̄t∥ ≤ ρt∥w0 − w̄0∥+

∆

1− ρ
+ c(θ) logθ

(
2

δ

)
ην

1− ρ

)
≥ 1− δ . (3.58)

with c(θ) :=
(
2e
θ

)θ
, for any initial point w0 ∈ Wt.

Proof. As before, we have that ∥wt+1 − w̄t+1∥ ≤ ∥wt+1 − w̄t∥+∆t where

∥wt+1 − w̄t∥ ≤ ∥(wt − w̄t)− η(gt −Gt(w̄t|w̄t)∥

= ∥(wt − w̄t)− η(Gt(wt|wt)−Gt(w̄t|w̄t)− ηξt∥

≤ ρ∥wt − w̄t∥+ η∥ξt∥.

This yields that stochastic recursion ∥wt− w̄t∥ ≤ ρt∥w0− w̄0∥+∆
∑t

i=0 ρ
i+η

∑t
i=0 ρ

i∥ξt−i∥. Recall

that when η satisfies the condition in (3.55), ρ < 1. Hence assuming this fact and taking the

expectation of both sides yields

E∥wt − w̄t∥ ≤ ρt∥w0 − w̄0∥+
∆

1− ρ
+ η

t∑
i=0

ρiE∥ξt−i∥
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(a) (b)

Figure 3.2: Demand time series visualization: horizontal axis is time of day, vertical axis is the day
of the year between 1 and 365. Brightness indicates intensity of the demand.

so that the result in (3.57) follows. To prove the result in (3.27), we denote et = ∥wt − w̄t∥,

Et = ρt∥w0 − w̄0∥ + ∆(1 − ρ)−1, and St = η
∑t

i=0 ρ
i∥ξt−i∥. Observe that, due to our closure

properties,

∥St∥p ≤
t∑

i=0

ρiE∥ξt∥p]1/p ≤
ηω

1− ρ
pθ

for any p ≥ 1 and hence St ∼ subW (θ, ην(1− ρ)−1). It follows that

P (St ≥ ε) ≤ 2 exp

(
− θ

2e

(
(1− ρ)ε

ηω

) 1
θ

)
, (3.59)

and setting the right hand side above equal to δ > 0 yields ε = c(θ) logθ
(
2
δ

)
ηω(1 − ρ)−1. Now,

observe that our stochastic recursion implies that for any a > 0, P(Et + St ≥ a) ≥ P(et ≥ a). It

follows that setting a = Et + ε yields P(et ≤ Et + ε) ≥ P(Et + St ≤ Et + ε) = P(St ≤ ε) ≥ 1 − δ,

thus the result follows.

3.5.3 Numerical Simulations on Electric Vehicle Charging

Examples of problems of the form (3.47) emerge in profit maximization in competitive mar-

kets, where the (stochastic) demand shifts in response to prices (see, e.g., [40, 57]), and in ap-

plications in adversarial strategic classification, finance, energy systems, transportation networks,

and ride-sharing—just to mention a few. Focusing on the first example, we consider a competition
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(a) (b)

Figure 3.3: Results: in (a) we depict the evolution of the equilibrium points over the time horizon
plotted in absolute value. In (b), we depict the tracking error for both algorithms.

between two service providers in an area with d distinct regions for which each provider seeks

to maximize their relative revenue, and when the demand for each provider’s service changes in

response to the price variation set by both providers. This problem can be written as the saddle

point problem

min
x∈Xt

max
y∈Yt

{
Ft(x, y) = E(zx,zy)∼Dt(x,y)∥Γ

1
tx∥2 − ∥Γ2

t y∥2 − ⟨zx + β1
t , x⟩+ ⟨zy + β2

t , y⟩
}
, (3.60)

where x = (xi)
d
i=1 and y = (yi)

d
i=1 are vectors of price deviations from a nominal value for

providers one and two respectively (components xi and yi are the prices in region i ∈ [d]); raw

profit for each provider is represented by terms ⟨zx, x⟩ and ⟨zy, y⟩ ; the terms ⟨−β1
t , x⟩ + ∥Γ1

tx∥2

and −⟨b, y⟩ + ∥Γ2
t y∥2 capture the risk-aversion associated with setting large price deviations; and

zx, zy ∈ Rd are changes in demand in each region (in response to price changes) with distributions

zx
d
= ξtx+At

1x+Bt
1y, and zy

d
= ξty +At

2x+Bt
2y. Here {ξtx}t≥0 and {ξty}t≥0 are time series such that

each ξtx and ξty are zero-mean random vectors representing the (nominal) demand of users in the

market in the absence of decision-dependence.

Our experiment use nominal demand data from [28]. This dataset consists of a years of worth

of electricity demand for up to 18 charging stations with entries for each minute of the year. Each

file represents a different type of charging station positioned near commercial uses with varying
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number of ports (2 or 6) and port power output (50, 150, or 350 kW), and demand profile (low,

medium, or high). We randomly allocate each provider with three medium demand stations. At

each time, demand data is standardized across all stations simultaneously.

A representative example of the raw demand data is provided in Figure 1, with time in minutes

along the horizontal axis, day of the year along the vertical, and color intensity representing demand

value. The price elasticity is dictated by the function ht(p) = (−0.8/m|t−m|+ 0.8) and m = 720

is the midpoint of the time horizon. The elasticity matrices are then given by (At
1)ij = −ht(pi)δi,j ,

(Bt
1)ij = −ht(pi)δi,j for i ∈ [3] where pi is the power of each port at the ith station belonging to

the provider and Bt
2 = −Bt

1 and At
2 = −At

1. We set Γ1
t = Γ2

t = I and choose β1
t , β

2
t dependent on

the port power of each station: βj
i,t = c(pji ) where pji is power of port j for provider j such that

c(50) = 1.0, c(150) = 0.5, and c(350) = 0.3. From this we conclude that for all t, Gt is 1-strongly

monotone and 1-Lipschitz. Hence our results apply provided that η < (1 − ν)/(1 + ν)2 where

ν = 0.8.

We compute the equilibrium points by executing a batch primal-dual algorithm for 2000 iter-

ations with a step size of η = 10−3. We then run the online primal-dual and stochastic primal-dual

algorithms over the time horizon and plot the distance to the solutions in Figure 2. We observe

that the primal-dual algorithm is capable of reasonably tracking the trajectory. Furthermore the

stochastic primal-dual algorithm captures the trajectory with noise decreasing as the number sam-

ples increases.



Chapter 4

Monotone Games

We focus on solving the Nash equilibrium problem of a game, which is to find a decision from

which no agent is incentivized by their own cost to deviate when played. Formally, the stochastic

Nash equilibrium problem with decision-dependent distributions considered in this paper is to find

a point x∗ = (x∗1, . . . , x
∗
n) ∈ Rd such that

x∗i ∈ argmin
xi∈Xi

Fi(xi, x
∗
−i), ∀ i ∈ {1, . . . , n} (4.1)

with Fi(xi, x
∗
−i) defined as:

Fi(xi, x
∗
−i) := E

zi∼Di(xi,x∗
−i)

fi(xi, x
∗
−i, zi) (4.2)

where: zi denotes a random variable supported on Rki , fi : Rd × Rki → R is a scalar valued

function that is convex and continuously differentiable in xi, Xi ⊆ Rdi is a compact convex set, and

Di : Rd → P(Rki) is a distributional map whose output is a probability distribution supported on

Rki .

Standard stochastic first-order methods are insufficient for solving problems of this form.

As we will demonstrate later in the paper, even estimating the expected gradient from samples

requires knowledge of the probability density function associated with Di—which is not possible in

a majority of practical applications.

Hereafter, we use the term “system” to refer to a population or a collection of automated

controllers producing a response zi ∈ Rki upon observing x. To illustrate our setup, consider again

the example where each agent represents an EV charging provider. Here, xi ∈ Rdi represents
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the charging price at a station managed by provider i, expressed in $/kWh. Correspondingly, zi

indicates demand for the service at that price, while fi is the service cost (or the negative of the

total profit) for provider i. This is an example of a competitive market in which the demand for

service is a function of the price of all providers; see, for example, the game-theoretic approaches

presented in [43, 27] and the Stackelberg game presented in [58]. However, compared to existing

game-theoretic models for EV markets, the framework proposed in this paper allows for an uncertain

response of EV owners to price variations; this randomness is difficult to model, as it it related to

the drivers’ preferences and other externalities such as the locations of the charging stations, etc.,

as explained in, e.g., [43, 37, 17].

Challenges in solving problems of this form typically stem from the that fact that the dis-

tributional maps Di are often unknown [55, 20, 15, 14]. To overcome this challenge, we propose

a learning-based optimization procedure – in the spirit of the methods proposed for convex opti-

mization in [39, 45] – to tackle the multi-player decision-dependent stochastic game. The key idea

behind this framework is that we first propose a parameterization for the distributional map in the

system and estimate it from responses. Then, we use the estimated distributional map throughout

the game without requiring further interaction with the system.

4.0.1 Monotonicity in Decision-Dependent Games

In this work, we introduce the additional complexity to the formulation in (1.18) that the

Fi’s are the expected cost over a distributional map Di : Rd → P(Rki). In particular, we write the

cost as

Fi(xi, x−i) := E
zi∼Di(xi,x−i)

fi(xi, x−i, zi). (4.3)

This can be written alternatively as the integral

Fi(x) =

∫
Rki

fi(x, zi)pi(zi, x)dzi (4.4)

where pi is the probability density function for the distribution Di(x). When the integral satisfies

the Dominated Convergence Theorem, computing the gradient amounts to differentiating under
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the integral and using the product rule. We then obtain

∇iFi(x) = E
zi∼Di(x)

[∇xifi(x, zi) + fi(x, zi)∇i log pi(x; zi)] , (4.5)

where we recall that G(x) = (∇1F1(x), . . . ,∇nFn(x)). In short, characterizing the gradient of this

decision-dependent game requires assumptions not only on fi, but also on the properties of the

distributional map Di. Sufficient conditions for strong monotonicity of the game in (1.18) are due

to [47] and are stated in terms of the decoupled costs, given by

Fi(x, y) = E
zi∼Di(y)

fi(x, zi) (4.6)

for all x, y ∈ Rd, and their associated decoupled partial gradients

Gi(x, y) = E
zi∼Di(y)

∇ifi(x, zi), (4.7)

for all x, y ∈ Rd and

Hi(x, y) = ∇yi E
zi∼Di(y)

fi(x, zi) (4.8)

for all x, y ∈ Rd. A key observation used in the proof is that Gi(x) = ∇iFi(x) = Gi(x, x)+Hi(x, x).

Theorem 39 (Strong Monotonicity, [47]). Suppose that,

(i) For all y ∈ X , x 7→ G(x, y) is λ-strongly monotone,

(ii) For all x ∈ X , y 7→ H(x, y) is monotone,

and that for all i ∈ [n],

(iii) For all x ∈ X , zi 7→ ∇ifi(x, zi) is Li-Lipschitz continuous,

(iv) y 7→ Di(y) is νi-lipschitz continuous on (P(Rki),W1).

Set κ =
√∑n

i=1(
νiLi
λ )2. Then if κ < 1/2, x 7→ G(x) is γ = (1− 2κ)λ-strongly monotone. □
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Algorithm 1: Multi-phase Optimization

Input: m, {Dxi}ni=1

for j ∈ [m] do
for i ∈ [n] do

Draw x
(j)
i ∼ Dxi ;

end

Deploy x(j) ;

Observe z
(j)
i ∼ Di(x

(j)) ;

end
for i ∈ [n] do

Fit β̂i ∈ argminβi∈Bi

1
m

∑m
j=1Ri(x

(j), z
(j)
i , βi) ;

end
Compute x̂ ∈ Nash(G

β̂
,X ) ;

4.1 Learning-based Decision-Dependent Games

In this work, we aim to solve the stochastic Nash equilibrium problem with decision-dependent

data distributions as formulated in (4.1). Methods for finding Nash equilibrium for games with

decision dependent data distributions either use derivative free optimization, at the expense of

an extremely slow rate, or use derivative information in conjunction with a learned model of the

distributional map [47].

In [39], it is shown that a “plug-in” optimization approach, whereby a model for the distri-

butional map is learned from samples prior to optimization, yields a bounded excess risk for the

convex optimization problems with decision-dependent data. In this work, we leverage the prop-

erties of the system to simplify the communication structure of our approach. We assume that

realizations of zi can be directly observed from the system, and the decisions x−i can be obtained

from a server or are made public (for example, the prices of EV charging of different providers can

be observed at the various stations).

To accommodate this setting, our algorithm proposes a multistage approach consisting of

the following phases: (i) sampling; (ii) learning; (iii) optimization. It is important to note that

following the learning phase players only need to participate in gradient play without receiving

any additional feedback from the system in the form of zi ∼ Di(x). This is distinct from existing
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approaches in which performatively stable points can only be reached after several (even thousands

of) rounds of feedback [49, 47, 65], and performatively optimal points can only be reached for

models known to be location scale families a priori [45, 47].

Sampling. In the sampling phase we require that players collaborate by each deploying a

set of decisions {x(j)i }mj=1
i.i.d∼ Dxi so that they can collectively receive feedback z

(j)
i ∼ Di(x

(j)) from

the system (in response to their deployed decisions {x(j)i }mj=1). The result is that each agent has

access to a dateset {x(j), z(j)i }mj=1 which they can use to learn their distributional map Di

Learning. In this procedure, each player will choose a hypothesis class of parameterized

functions

HBi =
{
Dβi

| βi ∈ Bi ⊆ Rℓi
}
, (4.9)

as well as a suitable criterion or risk function Ri, to formulate their own expected risk minimization

problem

β∗
i ∈ argmin

βi∈Bi

E
x∼Dx,zi∼Di(x)

Ri(x, zi, βi) (4.10)

over the random variable (x, zi) drawn from the coupled distribution (Dx, Di(x)). Then, using the

set of samples from the previous sampling phase, they can formulate the corresponding empirical

risk minimization problem

β̂i ∈ argmin
βi∈Bi

1

m

m∑
j=1

Ri(x
(j), z

(j)
i , βi). (4.11)

The result is a learned distributional map D
β̂i

approximating Di, which we can now use to solve

the approximate Nash equilibrium problem.

Optimization. Following the approximation phase, each player now has an learned model of

their distributional map D
β̂i
, which can be used to formulate an approximation of the ground-truth

cost Fi and hence an approximate Nash equilibrium problem:

x̂i ∈ argmin
xi∈Xi

F
β̂i
(xi, x̂−i) (4.12)

for all i ∈ [n], where

F
β̂i
(xi, x̂−i) := E

zi∼D
β̂i
(xi,x̂−i)

fi(xi, x̂−i, zi) . (4.13)
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Hereafter, we denote the Nash equilibrium of the approximate game as x̂ to distinguish it from

the ground truth x∗. In Algorithm 1, we write the set of Nash equilibria for the operator G
β̂
with

domain X as Nash(G
β̂
,X ). In practice, we will assume the appropriate assumptions to guarantee

uniqueness of this assignment; in which case the set inclusion is simply an equality.

By solving (4.12) instead of (4.1) we have introduced two errors: (i) the approximation error

of the distributional map Di by elements of the hypothesis class HBi , and (ii) the estimation or

statistical error by solving the ERM problem instead of the expected risk minimization problem. In

[39], the main result demonstrates that these two sources of error propagate through the optimiza-

tion problem, and that the resulting excess risk can be bounded in terms of the sample complexity

m. Our goal is to expand this result and provide additional analysis to our setting.

4.1.1 Parameter Estimation for Regular Problems

A critical component of our analysis is the estimation or learning of the distributional map

and the subsequent characterization of the estimation error. In this section, we outline a class of

expected risk minimization problems, which we call regular problems, for which we can characterize

the distance between expected risk minimization solutions and empirical risk minimization solu-

tions. Throughout, we write Ri(βi) = E(x,z)[R(x, zi, βi)] and R̂i(βi) = (1/m)
∑m

j=1Ri(x
(j), z

(j)
i , βi)

for βi ∈ Rℓi to denote the expected and empirical risk, respectively.

Definition 13 (Map Learning Regularity). A map learning problem, consisting of the optimization

problems with costs Ri and R̂i over Bi, is regular provided that:

(a) Convexity: The expected risk βi 7→ Ri(βi) is µi-strongly convex, and the empirical risk

βi 7→ R̂i(βi) is convex.

(b) Smoothness: For all realizations of x ∈ X and zi ∈ Rki, βi 7→ ∇βi
Ri(x, zi, βi) is Lβi

-

Lipschitz continuous.

(c) Boundedness: The set Bi ⊆ Rℓi is convex and compact.
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(d) Sub-Exponential gradient: For all βi ∈ Bi, ∇βi
Ri(x, zi, βi) is a sub-exponential vector

with parameter θi > 0. □

Items (a) and (c), taken together, guarantee existence of β̂ and uniqueness of β∗ as defined

in (4.11) and (4.10), respectively. Furthermore, the inclusion of item (b) is necessary to guarantee

that first-order stochastic gradient methods will converge at least sub-linearly to β̂. Lastly, the

heavy-tail assumption [60] will allow us to describe the concentration of the gradient estimates.

Together, they allow us to relate the solutions to the sample complexity in the following lemma.

Lemma 40 (Uniform Gradient Bound). If the smoothness and sub-exponential gradient assump-

tions in Definition 13 hold for player i ∈ [n], then for any δ ∈ (0, 1/2) and any m such that

m/ log(m) ≥ 2(ℓi + log(1/δ)), we have that:

sup
β∈B

∥∇R̂i(β)−∇Ri(β)∥ ≤ 4max{Lβi
/15ri, θi}

√
log(m)(ℓi + log(1/δ))

m
(4.14)

with probability at least 1− δ.

Proof. For the sake of notation convenience, and visual clarity, we will suppress the i index through-

out the proof. We denote the gradient error by J(β) = ∇R̂(β)−∇R(β) for all β ∈ Rℓ.

To begin, we will generate coverings for the unit sphere in Rℓ and B ⊆ Rℓ and use a dis-

cretization argument to create bounds over these finite sets. Fix β ∈ B and u ∈ Sℓ−1. Let {uj}Nj=1

be an arbitrary 1/2-covering of the sphere Sdℓi with respect to the Euclidean norm. From [62,

Lemma 5.7], we know that N ≤ 5ℓ. From our covering, we have that there exists uj in the covering

such that ∥u− uj∥ ≤ 1/2. Hence,

⟨u, J(β)⟩ = ⟨uj + (u− uj), J(β)⟩

= ⟨uj , J(β)⟩+ ⟨u− uj , J(β)⟩

≤ ⟨uj , J(β)⟩+ ∥u− uj∥∥J(β)∥

≤ ⟨uj , J(β)⟩+
1

2
∥J(β)∥

≤ max
j∈[N ]

⟨uj , J(β)⟩+
1

2
∥J(β)∥ .
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Since this is true for any u ∈ Sd−1, then it holds for u = J(β)/∥J(β)∥. Thus the above becomes

∥J(β)∥ ≤ 2⟨uj , J(β)⟩ ≤ 2 max
j∈[N ]

⟨uj , J(β)⟩. (4.15)

Now we fix ν ∈ (0, 1], and choose and ε-covering for the set B, which we will write as {βk}Mk=1.

Recall that B is bounded, so there exists a constant r > 0 such that for all β ∈ B, ∥β∥ ≤ r. Hence

B ⊆ B(r). From [60, Proposition 4.2.12], we have that

M ≤
vol
(
B(r) + ε

2B(1)
)

vol
(
ε
2B(1)

) =
vol
(
3
2B(r)

)
vol
(
ε
2B(1)

) =

(
3r

ε

)ℓ

. (4.16)

Thus, we conclude that M ≤ (3r/ε)ℓ.

Now by our discretization argument, there exists k ∈ [M ] such that ∥β − βk∥ ≤ ε and hence

max
j∈[N ]

⟨uj , J(β)⟩ = max
j∈[N ]

⟨uj , J(βk) + (J(β)− J(βk)⟩

= max
j∈[N ]

⟨uj , J(βk)⟩+ ⟨uj , J(β)− J(βk)⟩

≤ max
j∈[N ]

⟨uj , J(βk)⟩+ max
j∈[N ]

⟨uj , J(β)− J(βk)⟩

≤ max
k∈[M ]

max
j∈[N ]

⟨uj , J(βk)⟩+ sup
∥α−α′∥≤ε

max
j∈[N ]

⟨uj , J(α)− J(α′)⟩.

We observe that if α, α′ ∈ B are such that ∥α−α′∥ ≤ ε, then applying our smoothness assumption

yields

⟨uj , J(α)− J(α′)⟩ = ⟨uj , (∇R̂(α)−∇R(α))− (∇R̂(α′)−∇R(α′))⟩

= ⟨uj ,∇R̂(α)−∇R̂(α′)⟩+ ⟨uj ,∇R(α′)−∇R(α)⟩

≤ ∥uj∥∥∇R̂(α)−∇R̂(α′)∥+ ∥uj∥∥∇R(α)−∇R(α′)∥

≤ Lβi
∥α− α′∥+ Lβi

∥α− α′∥

≤ 2Lβε,

where the second-to-last inequality uses ∥uj∥ = 1.

To bound the remaining term, we use the concentration of sub-exponential random variables,

due to Bernstein’s Inequality combined with the Union Bound. We have that

P (⟨uj , J(βk)⟩ ≥ t) ≤ 2 exp

(
−mt2

2θ2

)
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for all t ≤ θ, and hence

P
(
max
k∈[M ]

max
j∈[N ]

⟨uj , J(βk⟩ ≥ t

)
= P

 ⋃
k∈[M ]

⋃
j∈[N ]

{⟨uj , J(βk⟩ ≥ t}


≤
∑

k∈[M ]

∑
j∈[N ]

P ({⟨uj , J(βk⟩ ≥ t})

≤
∑

k∈[M ]

∑
j∈[N ]

2 exp

(
−mt2

2θ2

)

= M ·N · 2 exp
(
−mt2

2θ2

)
≤ 2

(
15r

ε

)ℓ

exp

(
−mt2

2θ2

)
for all t ≤ θ, where we used the fact that M ≤ (3r/ε)ℓ and N ≤ 5ℓ. Setting the right hand side

equal to 2δ yields

t =
√
2θ

√
ℓ log(15r/ε) + log(1/δ)

m
. (4.17)

Next we choose ε = 1
15r

√
ℓ+log(1/δ)

m so that

t =
√
2θ

√
ℓ log(15r/ε) + log(1/δ)

m

=
√
2θ

√
ℓ
2 log(m)− ℓ

2 log(ℓ+ log(1/δ)) + log(1/δ)

m

≤
√
2θ

√
ℓ log(m) + log(1/δ)

m

≤
√
2θ

√
log(m)(ℓ+ log(1/δ))

m
.

By requiring that m satisfy m/ log(m) ≥ 2(ℓ+ log(1/δ)), we enforce that t ≤ θ. In combining, we

observe that

t+ 2εL ≤
√
2θ

√
log(m)(ℓ+ log(1/δ))

m
+

2L

15r

√
ℓ+ log(1/δ)

m

≤ 2

(
θ +

L

15r

)√
log(m)(ℓ+ log(1/δ))

m

≤ 4max

{
L

15r
, θ

}√
log(m)(ℓ+ log(1/δ))

m
,

and the result follows.
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This result offers a broad generalization of [46, Equation (19b)] to any risk with Lipschitz-

continuous sub-exponential gradients over any convex and compact set. Our result is comparable

to the O(
√
ℓim) rate that can be found for specific problem instances such as linear least squares

regression and logistic regression, but with the addition of a
√
logm factor. Indeed, the generality

of the risk function requires that we enforce compactness of the domain, thus giving rise to this

extra logarithmic factor. This gradient estimation result will now allow us to reach our desired

bounded distance result, which we present in the following theorem.

Theorem 41 (ERM Approximation). If the map learning problem is regular for player i ∈ [n]

(i.e., it satisfies the assumptions in Definition 13), then for any δ ∈ (0, 1/2) and any m such that

m/ log(m) ≥ 2(ℓi + log(1/δ)) we have that:

∥β̂i − β∗
i ∥ ≤ Ci

√
log(m)(ℓi + log(1/δ))

m
(4.18)

with probability at least 1− δ, where Ci = (4/µi)max{Lβi
/15ri, θi}. □

Proof. We suppress the subscript i for notational simplicity. We recall that that the µ-strong

convexity of the map β 7→ R(x, z;β) implies µ-strong monotonicity of ∇R(β), and ∇R̂(β). It

follows that

µ∥β̂ − β∗∥2 ≤ ⟨β̂ − β∗,∇R(β̂)−∇R(β∗)⟩

= ⟨β̂ − β∗,∇R(β̂)⟩ − ⟨β̂ − β∗,∇R(β∗)⟩

≤ ⟨β̂ − β∗,∇R(β̂)⟩

≤ ⟨β̂ − β∗,∇R(β̂)⟩+ ⟨β∗ − β̂,∇R̂(β̂)⟩

= ⟨β̂ − β∗,∇R(β̂)−∇R̂(β̂)⟩

≤ ∥β̂ − β∗∥ sup
β∈B

∥∇R(β)−∇R̂(β)∥

and hence

∥β̂ − β∗∥ ≤ 1

µ
sup
β∈B

∥∇R(β)−∇R̂(β)∥. (4.19)

The result now follows by applying Lemma 40.
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The power in this characterization lies in the fact that it holds for any statistical learning

problem satisfying the assumptions listed in Definition 13, and is not specific to the setting of

learning distributional maps. We note that our Definition 13, which is a property used in the

Theorem 41, is different from the one in [39] and it involves conditions that are easier to check.

As an example, we provide conditions for which a linear least squares problem satisfies the

regularity conditions and hence is subject to the above ERM approximation result.

Proposition 42 (Linear Least Squares Regularity). Consider the linear least squares problem with

expected risk problem

B∗
i ∈ argmin

B∈Bi

1

2
E(x,z)∥Bx− z∥2,

and empirical risk minimization problem

B̂i ∈ argmin
B∈Bi

1

2m

m∑
j=1

∥Bx
(j)
i − z

(j)
i ∥2.

Let xi ∼ Di with zero mean and covariance matrix Σi. If

(i) There exist γi, Li > 0 such that γiI ≤ Σi ≤ LiI,

(ii) The entries of xxT and zxT are sub-exponential,

(ii) The constraint set Bi is convex and compact.

Then, the map learning problem is regular. □

Proof. We suppress the i index throughout. The associated risk function is R(x, z,B) = 1
2∥Bx−z∥2,

so that ∇R(x, z,B) = (Bx − z)xT = BxxT − zxT and ∇2R(x, z,B) = xxT are the corresponding

gradient and hessian. We observe that enforcing γI ≤ E[xxT ] ≤ LI for some γ, L > 0 ensures γ-

strong convexity and L-smoothness of the expected risk. Similarly, the empirical risk has gradient

∇Rm(B) = 1/m(BXXT − ZXT ), and hessian ∇2Rm(B) = (1/m)XXT . Thus Rm is convex

the hessian is symmetric, then it is positive semi-definite and thus Rm is convex. Furthermore,

smoothness of Rm follows with constant max{L, ∥XXT ∥2}. Lastly, since zxT and xxT have sub-

exponential entries, the gradient is sub-exponential and the result follows.
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Deriving conditions for the more general case of non-linear regression is attainable but outside

the scope of this work.

4.1.2 Bounding the Approximation Error

Finding a relationship between x̂ and x∗ will require that we first characterize an appropriate

hypothesis class of distributions for learning. Here, we formalize the notion of misspecification and

sensitivity for a hypothesis class HBi .

Definition 14 (Misspecification, [39]). A hypothesis class HBi is ζi-misspecified provided that there

exists a ζi > 0 such that

W1(Dβ∗
i
(x), Di(x)) ≤ ζi (4.20)

for all x ∈ X . □

We note that, although ηi is not known to agents in practice, it is a useful conceptual quantity

that can be used to represent the expressiveness of the parameterization relative to the ground truth;

it also captures the ability of the chosen risk function to fit a parameterization. This is similar

to the notion of approximation error used in classical statistical learning methods [53]. However,

unlike this setting, we note that ηi = 0 implies that Dβ∗
i
(x) = Di(x) for all x ∈ X ; hence, z ∼ D(x)

and z′ ∼ Dβ∗
i
(x) yields z

d
= z′ but not necessarily z = z′ almost everywhere as we might like.

Definition 15 (Sensitivity, [39]). The hypothesis class HBi is νi-sensitive if, for any βi, β
′
i ∈ Bi,

W1(Dβi
(x), Dβ′

i
(x)) ≤ υi∥βi − β′

i∥ (4.21)

for all x ∈ X . □

Sensitivity of HBi is merely a convenient name for the condition that β 7→ Dβi
(x) be υi-

Lipschitz continuous for all realizations of x ∈ X . In the result that follows, we demonstrate

that an appropriately misspecified and sensitive hypothesis class induces a cost that has bounded

distance to the ground truth cost in (4.1).



81

Theorem 43 (Bounded Approximation). Suppose that the following conditions hold for all i ∈ [n]:

(i) The hypothesis class HBi is ηi-misspecified, and νi-sensitive.

(ii) The map learning problem is regular.

(iii) For all x ∈ Xi, zi 7→ fi(x, zi) is Lzi-Lipschitz continuous.

Then, the bound

|F
β̂i
(x)− Fi(x)| ≤ ζiLzi + LziυiCi

√
log(m)(ℓi + log(1/δ))

m
, (4.22)

holds with probability 1− δ for any x ∈ X .

Proof. We observe that for any fixed x ∈ X , we have that

|F
β̂i
(x)− Fi(x)| ≤ |F

β̂i
(x)− Fβ∗

i
(x)|+ |Fβ∗

i
(x)− Fi(x)|.

The first term describes our statistical error at x. We denote Π(D
β̂i
, Dβ∗

i
) as a coupling on P(Rki)

so that

|F
β̂i
(x)− Fβ∗

i
(x)| =

∣∣∣∣∣ inf
Π(D

β̂i
(x),Dβ∗

i
(x))

E(z,z′)∼Π(D
β̂i
(x),Dβ∗

i
(x))

(
f(x, z)− f(x, z′)

)∣∣∣∣∣
≤ inf

Π(D
β̂i
(x),Dβ∗

i
(x))

E(z,z′)∼Π(D
β̂i
(x),Dβ∗

i
(x))

∣∣f(x, z)− f(x, z′)
∣∣

≤ Lzi

(
inf

Π(D
β̂i
(x),Dβ∗

i
(x))

E(z,z′)∼Π(D
β̂i
(x),Dβ∗

i
(x))∥zi − z

′
i∥

)

= LziW1(Dβ̂i
(x), Dβ∗

i
(x))

≤ Lziεi∥β̂i − β∗
i ∥ .

By similar argument, we find that |Fβ∗
i
(x) − Fi(x)| ≤ LziW1(Dβ∗

i
(x), Di(x)) ≤ Lziζi. In

combining, we get |F
β̂i
(x)− Fi(x)| ≤ Lziυi∥β̂i − β∗

i ∥+ Lziζi. Lastly, ∥β̂i − β∗
i ∥ can be bounded as

in Theorem 41.

Regarding the second bound, we have that

Fi(x̂)− Fi(x
∗) =

[
Fi(x̂)− Fβ∗

i
(x̂)
]
+
[
Fβ∗

i
(x̂)− F

β̂i
(x̂)
]
+
[
F
β̂i
(x̂)− F

β̂i
(x∗∗)

]
+
[
F
β̂i
(x∗∗)− Fβ∗

i
(x∗∗)

]
+
[
Fβ∗

i
(x∗∗)− Fβ∗

i
(x∗)

]
+
[
Fβ∗

i
(x∗)− Fi(x

∗)
]

≤ 2∥Fi − Fβ∗
i
∥∞ + 2∥Fβ∗

i
− F

β̂i
∥∞ +

[
F
β̂i
(x̂)− F

β̂i
(x∗∗)

]
+
[
Fβ∗

i
(x∗∗)− Fβ∗

i
(x∗)

]
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where x∗∗i ∈ X ∗∗, where X ∗∗ is the set of equilibria of

x∗∗i ∈ argmin
xi∈Xi

Fβ∗
i
(xi, x

∗∗
−i), i ∈ [n] (4.23)

where

Fβ∗
i
(xi, x

∗∗
−i) := E

zi∼Dβ∗
i
(xi,x∗∗

−i)
fi(xi, x

∗∗
−i, zi) .

Then,

F
β̂i
(x̂)− F

β̂i
(x∗∗) ≤

[
F
β̂i
(x̂i, x̂−i)− F

β̂i
(x∗∗i , x̂−i)

]
+
[
F
β̂i
(x∗∗i , x̂−i)− F

β̂i
(x∗∗i , x∗∗−i)

]
≤ Lβ̂

i ∥x̂i − x∗∗i ∥+ Lβ̂
−i∥x̂−i − x∗∗−i∥

≤
√
2max{Lβ̂

i , L
β̂
−i}∥x̂− x∗∗∥

where we have used the inequality
√
a+

√
b ≤

√
2
√
a+ b for some a, b ≥ 0.

Next, consider

Fβ∗
i
(x∗∗)− Fβ∗

i
(x∗) = [Fβ∗

i
(x∗∗i , x∗∗−i)− Fβ∗

i
(x∗∗i , x∗−i)] + [Fβ∗

i
(x∗∗i , x∗−i)− Fβ∗

i
(x∗i , x

∗
−i)]

≤ Lβ∗

−i∥x
∗∗
−i − x∗−i∥+ Lβ∗

i ∥x∗∗i − x∗i ∥

≤
√
2max{Lβ∗

i , Lβ∗

−i}∥x
∗∗ − x∗∥ .

Combining the bounds yields

Fi(x̂)− Fi(x
∗) ≤ 2∥Fi − Fβ∗

i
∥∞ + 2∥Fβ∗

i
− F

β̂i
∥∞ +

√
2max{Lβ̂

i , L
β̂
−i}∥x̂− x∗∗∥

+
√
2max{Lβ∗

i , Lβ∗

−i}∥x
∗∗ − x∗∥

≤ 2ζiLzi + 2υLzi∥β̂i − β∗
i ∥+

√
2(max{Lβ̂

i , L
β̂
−i}+max{Lβ∗

i , Lβ∗

−i})diam(X )

≤ 2ζiLzi + 2υLzi∥β̂i − β∗
i ∥+ 2

√
2L̄idiam(X )

Then, (4.25) follows using the bound on ∥β̂i − β∗
i ∥ from Theorem 41.

Note that since each Fβi
is assumed to be continuously differentiable and X ⊆ Rd is compact,

then x 7→ Fβi
(x) is Lβi

-Lipschitz continuous on X with

Lβi
= max

x∈X
∥∇Fβi

(x)∥. (4.24)
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Leveraging this fact allows us to demonstrate that the excess cost can be bounded—an analog of

the main result in [39].

Corollary 44. Suppose that the hypothesis of Theorem 43 holds. Then,

|Fi(x̂)− Fi(x
∗)| ≤ 2ζiLzi + 2υiCi

√
log(m)(ℓi + log(1/δ))

m
+ 2max{L

β̂i
, Lβ∗

i
}diam(X−i) (4.25)

hold with probability 1− δ for any x̂ ∈ NASH(G
β̂
,X ) and x∗ ∈ NASH(G,X ), where X−i =

∏
j ̸=iXj.

Proof. Observe that

Fi(x̂)− Fi(x
∗) ≤

[
Fi(x̂)− Fβ∗

i
(x̂)
]
+
[
Fβ∗

i
(x̂)− F

β̂i
(x̂)
]
+
[
F
β̂i
(x̂)− F

β̂i
(x∗∗)

]
+
[
F
β̂i
(x∗∗)− Fβ∗

i
(x∗∗)

]
+
[
Fβ∗

i
(x∗∗)− Fβ∗

i
(x∗)

]
+
[
Fβ∗

i
(x∗)− Fi(x

∗)
]

≤ 2∥Fi − Fβ∗
i
∥∞ + 2∥Fβ∗

i
− F

β̂i
∥∞ +

[
F
β̂i
(x̂)− F

β̂i
(x∗∗)

]
+
[
Fβ∗

i
(x∗∗)− Fβ∗

i
(x∗)

]
where x∗∗ ∈ X is the Nash equilibrium satisfying

x∗∗i ∈ argmin
xi∈Xi

Fβ∗
i
(xi, x

∗∗
−i), i ∈ [n]. (4.26)

It follows from (4.24) that

F
β̂i
(x̂)− F

β̂i
(x∗∗) ≤

[
F
β̂i
(x̂i, x̂−i)− F

β̂i
(x∗∗i , x̂−i)

]
+
[
F
β̂i
(x∗∗i , x̂−i)− F

β̂i
(x∗∗i , x∗∗−i)

]
≤ F

β̂i
(x∗∗i , x̂−i)− F

β̂i
(x∗∗i , x∗∗−i)

≤ L
β̂i
∥x̂−i − x∗∗−i∥.

Similarly,

Fβ∗
i
(x∗∗)− Fβ∗

i
(x∗) =

[
Fβ∗

i
(x∗∗i , x∗∗−i)− Fβ∗

i
(x∗∗i , x∗−i)

]
+
[
Fβ∗

i
(x∗∗i , x∗−i)− Fβ∗

i
(x∗i , x

∗
−i)
]

≤ Fβ∗
i
(x∗∗i , x∗−i)− Fβ∗

i
(x∗i , x

∗
−i)

≤ Lβ∗∥x∗∗−i − x∗−i∥.
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Combining the bounds yields

Fi(x̂)− Fi(x
∗)

≤ 2∥Fi − Fβ∗
i
∥∞ + 2∥Fβ∗

i
− F

β̂i
∥∞ + L

β̂
∥x̂−i − x∗∗−i∥+ Lβ∗∥x∗−i − x∗∗−i∥

≤ 2ζiLzi + 2υiLzi∥β̂i − β∗
i ∥+ L

β̂
diam(X−i) + Lβ∗diam(X−i)

≤ 2ζiLzi + 2υiLzi∥β̂i − β∗
i ∥+ 2max{L

β̂i
, Lβ∗

i
}diam(X−i)

Then, (4.25) follows using the bound on ∥β̂i − β∗
i ∥ from Theorem 41.

The analysis in this section demonstrates that the estimation procedure in Algorithm 1 yields

a cost function that approximates the original cost in (4.1) with an error the decreases as the number

of samples increases. Furthermore, this bound exists independent of the conditioning of the Nash

equilibrium problem we solve in the optimization phase. We note that (4.22) is similar to the

result in [39], but it is based on a different definition of regular problem (see Definition 13); the

bound (4.25) is unique to this paper.

In the section that follows, we examine a family of hypothesis classes that allows the approx-

imated game to be monotone, and provide suitable algorithms for solving them with convergence

guarantees.

4.2 Solving Strongly-monotone Decision-dependent Games

Since the agents lack full knowledge of the system and hence the ground truth distributional

mapDi in (4.1), we cannot hope to enforce thatDi satisfy any assumptions to encourage tractability

of our optimization problem. We can however impose conditions on the hypothesis class HBi , which

is chosen by the agents. To successfully find a Nash equilibrium of the approximate problem in

(4.12), it will be crucial that agents choose a class that balances expressiveness of the system

(thereby making ηi small) with tractability of the optimization.

Perhaps the simplest model capable of achieving this goal is the location-scale family [45, 47,

65]. In our setting, a location scale family parameterization for agent i is a distributional map DBi
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having matrix parameter Bi ∈ Rki×d where zi ∼ DBi if and only if

zi
d
= ξi +Bix (4.27)

for stationary random variable ξi ∼ Dξi . We note that this parameterization can be written

alternatively as zi
d
= ξi + Bi

ixi + Bi
−ix−i, where Bi

i ∈ Rki×di and Bi
−i ∈ Rki×(d−di) are block

matrices such that Bix = Bi
ixi + Bi

−ix−i due to linearity. The resulting partial gradient has the

form

∇iFi(x) = Ezi∼D(x)

[
∇ifi(x, zi) + (Bi

i)
T∇zifi(x, zi)

]
,

which is typically much simpler to analyze than alternative models. Intuitively, this model allows

us to express zi as the sum of a stationary random variable from a base distribution with a linear

factor depending on x, where the matrix parameter Bi weights the responsiveness of the population

to the agents decisions.

This model is particularly appealing as guarantees for learning Bi are known and established

in Proposition 42. Moreover, the matter of expressiveness is due to the fact that location scale

families are a particular instance of strategic regression [49, 39], in which member of the population

interact with agents by modifying their stationary data (such as features in a learning task) ξi in

an optimal way upon observing x:

zi
d
= argmin

y

[
−uβi

(x, y) +
1

2
∥y − ξi∥2

]
,

where uβi
is a utility function parameterized by βi ∈ Bi corresponding to the utility that members of

the population derive from changing their data in response to the decisions in x; and the quadratic

term 1/2∥y − ξi∥2 is the cost of changing their data from ξi to y. Indeed when uβi
(x, ) = ⟨y,Bix⟩

for βi = Bi ∈ Rki×d, we recover the form above.

Furthermore, location scale families immediately satisfy several of the assumption required

for further analysis. In particular, it is known that Sensitivity (Definition 15) holds with υi =

maxx∈X ∥x∥2, Lipschitz continuity of x 7→ DBi holds with νi = ∥Bi∥2, and Lipschitz continuity of

GBi holds due to the following result.
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Lemma 45. (Lipschitz Gradient, [47]) Suppose that Dβi
is such that z

d
= Bix+ξi with βi = Bi, and

that for each i ∈ [n] there exists φi ≥ 0 such that (x, zi) 7→ ∇i,zifi(x, zi) is φi-Lipschitz continuous.

Then Gβi
is L-Lipschitz continuous with

L :=

√√√√ n∑
i=1

φ2
i max{1, ∥Bi

i∥2}(1 + ∥Bi∥2) . (4.28)

□

Strong monotonicity will follow from Theorem 39 provided that Gβi
satisfy the remaining

hypothesis on the fβi
—which tends to be on a case-by-case basis. We will not require that Gβi

use this parameterization in our analysis, however we can proceed with knowledge a model class

satisfying our hypothesis does exist.

4.2.1 Distributed Gradient-based Method

In our optimization phase, we seek to use a gradient-based algorithm that respects the agent’s

communication structure with the system. For the sake of readability, we will suppress the βi

subscript and instead refer to quantities Gi keeping in mind that they will correspond to the

approximate Nash equilibrium problem in (4.12) with solution x̂.

We will assume that each agent has access to an estimator of the gradient ∇iFi and is capable

of projecting onto their decision set Xi. In the constant step-size setup, each agent chooses a rate

ωi > 0 and performs the update

xt+1
i = projXi

[
xti − ω−1

i gti
]
,

where gti is a stochastic gradient estimator for ∇iFi used at iteration t, which is then reported to

the system and made available to all agents. For the sake of analysis, we will assume without loss

of generality that the steps-sizes satisfy the ordering

ω1 ≥ ω2 ≥ . . . ≥ ωn
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and hence ω1 = maxi∈[n] ωi and ωn = mini∈[n] ωi. The collective update can be written compactly

as

xt+1 = projX ,W

[
xt −W−1gt

]
, (4.29)

where W = diag(ω11d1 , . . . , ωn1dn) and gt is an estimator for G(xt) at iteration t. Convergence of

this procedure hinges on the following assumptions.

Assumption 22 (Monotone and Lipschitz Gradient). The gradient function G : X ⊆ Rd → Rd is

γ-strongly monotone and L-Lipschitz continuous.

Assumption 23 (Stochastic Framework). Let F = (Ft)t≥0 with elements

Ft = σ(gτ , τ ≤ t) (4.30)

be the natural filtration of the Borel σ-algebra over Rd with respect to gt, and use the short-hand

notation Et[·] := Ez∼D(xt)[·|Ft] as the conditional expectation over the product distribution D(xt) =∏n
i=1Di(x

t). There exist bounded sequences {ρt}t≥0, {σt}t≥0 ⊆ R+ such that

(Bias) ∥Etg
t −G(xt)∥ ≤ ρt

(Variance) Et∥gt − Etg
t∥2 ≤ (σt)2

where ρt ≤ ρ and σ2 ≤ σ for all t ≥ 0.

Assumption 22 is standard for guaranteeing convergence of gradient play [25], and the uni-

formly bounded variance component of Assumption 23 is standard for convergence for stochastic

algorithms. As we will show shortly, convergence with bias is possible and the result reduces to the

unbiased case when ρt = 0. The next result will quantify the one-step improvement of (4.2.1).

Lemma 46 (One-Step Improvement). Let Assumptions 22 and 23 hold. Then, the sequence gen-

erated by iteration (4.29) satisfies:

Et∥xt+1 − x̂∥2W ≤ ω1

ωn + γ
∥xt − x̂∥2W +

2ω1

(
ω1ρ

2 + γσ2
)

γωn (ωn + γ)

for all t ≥ 0, provided that ω1/ω
2
n ≤ γ/(4L2).
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Proof. Consider the function φ : Rd → R defined by φ(y) = 1
2∥x

t − W−1
i gti − y∥2W for all y ∈ X .

Then, φ is ωn-strongly convex over X and has a unique minimizer xt+1 ∈ X . This implies that:

φ(x∗) ≥ φ(xt+1) + ⟨x∗ − xt+1,∇φ(xt+1)⟩+ ωn

2
∥xt+1 − x∗∥2 .

Since ⟨x− xt+1,∇φ(xt+1)⟩ ≥ 0 for all x ∈ X , we obtain

ωn∥xt+1
i − x∗i ∥ ≤ ∥xti − ηig

t
i − x∗i ∥2W − ∥xti − ηig

t
i − xk+1

i ∥2W .

It follows that

ωn

ω1
∥xt+1 − x̂∥2W ≤ ∥xt − x̂∥2W − ∥xt − xt+1

i ∥2W − 2⟨xt − x̂, gt⟩+ 2ηi⟨xt − xt+1, gt⟩.

We now consider the above in the conditional expectation Et· := Ezi∼D(xt)[ · |Ft] with Ft = σ(gt, τ ≥

t). We find that

ωn

ω1
Et∥xt+1 − x̂∥2W

≤ Et∥xt − x̂∥2W − Et∥xt − xt+1∥2W − 2Et⟨xt − x̂, gti⟩ − 2Et⟨xt+1 − xt, gt⟩

= ∥xt − x̂∥2W − Et∥xt − xt+1∥2W − 2⟨xt − x̂, µt⟩ − 2Et⟨xt+1 − xt, gt⟩

= ∥xt − x̂∥2W − Et∥xt − xt+1∥2W + 2Et⟨xt − xt+1, gt − µt⟩+ 2Et⟨x̂− xt+1, µt⟩

= ∥xt − x̂∥2W − Et∥xt − xt+1∥2W − 2⟨xt+1 − x̂, G(xt+1)⟩+ 2Et⟨x̂− xt+1, µt −G(xt+1)⟩

+ 2Et⟨xt − xt+1, gt − µt⟩.

To proceed, we bound the inner product terms. Using strong monotonicity, we have that

Et⟨x̂− xt+1, G(xt+1)⟩ ≥ γEt∥xt+1 − x̂∥2 ≥ γ

ω1
Et∥xt+1 − x̂∥2W .

Furthermore, we observe that

Et⟨x̂− xt+1
i , µt −G(xt+1)⟩ = Et⟨x̂− xt+1, µt −G(xt)⟩+ Et⟨x̂− xt+1, G(xt)−G(xt+1)⟩.

To bound the remaining terms, we use arguments based on a weighted Young’s inequality. Let
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∆1,∆2,∆3 > 0 be fixed constants. It follows that

2Et⟨xt − xt+1, gt − µt⟩ ≤ ∆1Et∥xt+1 − xt∥2 + 1

∆1
Et∥gt − µt∥2

≤ ∆1

ωn
Et∥xt+1 − xt∥2W +

1

∆1

n∑
i=1

Et∥gt − µt∥2

≤ ∆1

ωn
Et∥xt+1 − xt∥2W +

1

∆1

n∑
i=1

σ2
i

≤ ∆1

ωn
Et∥xt+1 − xt∥2W +

σ2

∆1
,

and

2Et⟨x̂− xt+1, µt −G(xt)⟩ ≤ ∆2Et∥xt+1 − x̂∥2 + 1

∆2
Et∥µt −G(xt)∥2

≤ ∆2

ωn
Et∥xt+1 − x̂∥2W +

1

∆2

n∑
i=1

Et∥µt −G(xt)∥2

≤ ∆2

ωn
Et∥xt+1 − x̂∥2W +

1

∆2

n∑
i=1

ρ2i

≤ ∆2

ωn
Et∥xt+1 − x̂∥2W +

ρ2

∆2
.

Additionally, we have that

2Et⟨x̂− xt+1, G(xt)−G(xt+1)⟩ ≤ ∆3Et∥xt+1 − x̂∥2 + 1

∆3
Et∥G(xt)−G(xt+1)∥2

≤ ∆3

ωn
Et∥xt+1 − x̂∥2W +

L2

∆3
Et∥xt+1 − xt∥2

≤ ∆3

ωn
Et∥xt+1 − x̂∥2W +

L2

ωn∆3
Et∥xt+1 − xt∥2W .
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Combining these estimates yields

ωn

ω1
Et∥xt+1 − x̂∥2W ≤ ∥xt − x̂∥2W − Et∥xt+1 − xt∥2W − 2γ

ω1
Et∥xt+1 − x̂∥2W

+

(
∆1

ωn
Et∥xt+1 − xt∥2W +

σ2

∆1

)
+

(
∆2

ωn
Et∥xt+1 − x̂∥2W +

ρ2

∆2

)
+

(
∆3

ωn
Et∥xt+1 − x̂∥2W +

L2

ωn∆3
Et∥xt+1 − xt∥2W

)
= ∥xt − x̂∥2W +

(
∆1

ωn
+

L2

ωn∆3
− 1

)
Et∥xt+1 − xt∥2W

+

(
∆2

ωn
+

∆3

ωn
− 2γ

ω1

)
Et∥xt+1 − x̂∥2W +

(
σ2

∆1
+

ρ2

∆2

)
and simplifying gives(

ωn

ω1
+

2γ

ω1
− ∆2

ωn
− ∆3

ωn

)
Et∥xt+1 − x̂∥2W ≤ ∥xt − x̂∥2W +

(
σ2

∆1
+

ρ2

∆2

)
+

(
∆1

ωn
+

L2

ωn∆3
− 1

)
Et∥xt+1 − xt∥2W .

To proceed, we choose ∆2 = ∆3 = γωn

2ω1
and ∆1 = ωn − 2ω1L

2/(γωn) to ensure that the coefficient

on the Et∥xt+1 − xt∥2W term is zero. Furthermore, enforcing that ω1
ω2
n

≤ γ
4L2 guarantees that

∆−1
1 ≤ 2ω−1

n . Hence the variance term is finite. Substituting these values and simplifying yields

the result.

We note that setting ωi = ω for some ω > 0 recovers the result in [47, Theorem 15]. Following

this one-step analysis, we can show convergence to a neighborhood of the Nash equilibrium.

Theorem 47 (Neighborhood Convergence). Let Assumptions 22 and 23 hold, and suppose that

(ω1 − ωn) < γ. Then,

lim sup
t→∞

E∥xt − x̂∥2 ≤
2ω1

(
ω1ρ

2 + γσ2
)

γωn (ω1 − ωn + γ)
. (4.31)

Proof. For notational convenience, we will use the short-hand notation et := ∥xt − x̂∥2W , c =

ω1(γ + ωn)
−1, and

A = 2
γσ2 + ω1ρ

2

γωn
.

Hence, the result in Lemma 46 can be written compactly as

Et−1e
t ≤ cet−1 + cA.
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By recursively applying this result and applying the law of total expectation, we find that

Eet ≤ cte0 + cA

t−1∑
j=1

cj ≤ cte0 + cA
1− ct

1− c
.

The result shows that the algorithm converges linearly to a neighborhood of the Nash equi-

librium x̂, where the radius of the neighborhood is dictated by the step-size, variance, and bias

bounds. When ρ = σ = 0, we retrieve linear convergence. In order to converge to x̂ directly, we

will require a decaying step-size policy. For example, we consider the following policy:

ωt =
γ(r + t− 2)

2
(4.32)

for fixed constant r > 2, which we assumed to be shared by all agents. Hence, the decaying step-size

update is given by

xt+1 = projX
[
xt − (ωt)−1gt

]
. (4.33)

In the theorem that follows, we show that this sequence converges to x̂ provided that the bias

shares an asymptotic rate with (ωt)−1.

Theorem 48 (Convergence). Suppose that Assumptions 22 and 23 hold and that there exists

ρ̄, s > 0 such that

∥Etg
t −G(xt)∥ ≤ ρ̄

s+ t
(4.34)

for all t ≥ 0. Then,

E∥xt − x̂∥2 ≤ M

γ2(r + t)
(4.35)

where

M = max

{
γ2r∥x0 − x̂∥2, 4ρ̄2max

{r
s
, 1
}
+

8rσ2

r − 2

}
.
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Proof. Fix t ≥ 0. For notational convenience, we will denote et = ∥xt− x̂∥2. Replacing the step-size

matrix in Lemma 46 with W = ωtId yields

Ete
t+1 ≤ ωt

ωt + γ
et +

2σ2

ωt(ωt + γ)
+

2(ρt)2

γ(ωt + γ)
. (4.36)

To proceed, we will use the observation that

1

(s+ t)(r + t)
=

r + t

(s+ t)(r + t)2
≤

max{ r
s , 1}

(r + t)2
(4.37)

and

1

(r + t)(r + t− 2)
≤

r
r−2

(r + t)2
. (4.38)

By substituting our expression for ωt, ρt, and et into (4.36) we obtain

Ete
t+1 ≤ r + t− 2

γ2(r + t)2
M +

8σ2

γ2(r + t− 2)(r + t)
+

4ρ̄

γ2(s+ t)(r + t)

≤ r + t− 2

γ2(r + t)2
M +

8σ2
(

r
r−2

)
γ2(r + t)2

+
4ρ̄max

{
r
s , 1
}

γ2(r + t)2

=
r + t− 1

γ2(r + t)2
M +

−M + 8σ2
(

r
r−2

)
+ 4ρ̄max

{
r
s , 1
}

γ2(r + t)2

≤ r + t− 1

γ2(r + t)2
M

≤ M

γ2(r + t+ 1)
.

Here, the last steps follow from construction ofM , and the fact that (r+t+1)(r+t−1) ≤ (r+t)2.

4.3 Numerical Experiments on Electric Vehicle Charging

In this section, we consider a competitive game between n distinct electric vehicle charging

station operators, where stations are equipped with renewable power sources. The goal of each

player is to set prices to maximize their own profit in a system where demand for their station

will change in response to the prices set by other competing stations as well. The cost function

(negative profit) takes the form

fi(x, zi) = −zixi +
λi

2
x2i︸ ︷︷ ︸

service profit

− pwϕ(wi − zi)︸ ︷︷ ︸
renewable profit

+ prϕ(zi − wi)︸ ︷︷ ︸
operational cost
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(a) (b)

Figure 4.1: Data and results from numerical experiments: (a) Standardized demand data for six
medium demand EVCS’s consisting of either 2 or 6 ports and port power values of 50, 150, and
350 kWh. Standardization maps raw demand instances to instances of demand that are deviations
from the average at each station; (b) Expected error curve and confidence interval for regularized
stochastic gradient descent with decaying step size for a location-scale model.

where ϕ(y) = log(1 + exp(y)) for all y ∈ R. The renewable profit and operational cost terms allow

us to describe the trade-off between profit from renewable power generation sold to the grid at rate

pw, and surplus power required from the grid to meet demand at rate pr. To set prices, we can

formulate a Nash equilibrium problem over the expected costs Fi(x) = Ezi∼Di(x)[fi(x, zi)] for i ∈ [n]

and x ∈ X = Πn
i=1Xi, where Xi = [pw, pr] is the interval of price values between the wholesale and

retail price.

Since the set of reasonable prices will be quite small, we hypothesize that the the price and

demand have a linear relationship of the form zi
d
= ξi + ⟨bi, xi⟩ where bi ∈ Rn with ξi ∼ Dξi

corresponding to the base demand. Since we have a simple model, the first and second derivatives

can be computed in closed form, and the relevant constants can be computed directly. Indeed, we

find that the hypothesis of Theorem 39 are satisfied with λ = mini λi which we set to 1, Li = 1,and

γi = ∥bi∥2. We conclude that G : Rn → Rn is α = (1 − 2∥B∥F )-strongly monotone with where B

is the parameter matrix whose columns are bi.

Our data depicts the demand of electricity across an hour-long period for 6 ports of varying
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power profiles for each day in year. We standardize the data to be zero mean and unit variance

across each station. Solutions are calculated by performing expected gradient play with constant

step size; the expected mean is estimated via the empirical mean over the data set.

We set bii = −1/18+ν and bij = 1/18+ν, where we use ν ∼ N (0, 10−5) to simulate learning

B from samples. Hence demand for agent i decreases as their own price increases, and increases

as the price of other agents decreases. We run the stochastic gradient play algorithm initialized at

x0 = pr1n with a single sample at each round and a decaying step size policy ωt = α(r + t− 2)/2

for r = 3. In Figure 4.1b we plot the mean error trajectory an confidence interval over 50 trials of

2000 iterations.
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bility of aggregations of demand response resources. In IECON 2013-39th Annual Conference
of the IEEE Industrial Electronics Society, pages 8052–8057. IEEE, 2013.

[43] Chathurika P Mediwaththe and David B Smith. Game-theoretic electric vehicle charging man-
agement resilient to non-ideal user behavior. IEEE Transactions on Intelligent Transportation
Systems, 19(11):3486–3495, 2018.

[44] Celestine Mendler-Dünner, Juan Perdomo, Tijana Zrnic, and Moritz Hardt. Stochastic op-
timization for performative prediction. Advances in Neural Information Processing Systems,
33:4929–4939, 2020.

[45] John P Miller, Juan C Perdomo, and Tijana Zrnic. Outside the echo chamber: Optimizing
the performative risk. In International Conference on Machine Learning, pages 7710–7720.
PMLR, 2021.

[46] Wenlong Mou, Nhat Ho, Martin J Wainwright, Peter Bartlett, and Michael I Jordan. A
diffusion process perspective on posterior contraction rates for parameters. arXiv preprint
arXiv:1909.00966, 2019.

[47] Adhyyan Narang, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, and Lillian Ratliff.
Learning in stochastic monotone games with decision-dependent data. In International
Conference on Artificial Intelligence and Statistics, pages 5891–5912. PMLR, 2022.

[48] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochas-
tic approximation approach to stochastic programming. SIAM Journal on optimization,
19(4):1574–1609, 2009.

[49] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative
prediction. In International Conference on Machine Learning, pages 7599–7609. PMLR, 2020.

[50] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[51] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009.

[52] Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer Science & Business
Media, 2007.

[53] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms, 2014.

[54] Iman Shames and Farhad Farokhi. Online stochastic convex optimization: Wasserstein distance
variation. arXiv:2006.01397, 2020.



99

[55] Zhengwei Sun, Andrea C. Hupman, Heather I. Ritchey, and Ali E. Abbas. Bayesian updating
of the price elasticity of uncertain demand. IEEE Systems Journal, 10(1):136–146, 2016.

[56] Joshua A Taylor and Johanna L Mathieu. Uncertainty in demand response—identification,
estimation, and learning. In The Operations research revolution, pages 56–70. Informs, 2015.

[57] Berkay Turan and Mahnoosh Alizadeh. Competition in electric autonomous mobility on de-
mand systems. IEEE Transactions on Control of Network Systems, 2021.

[58] Wayes Tushar, Walid Saad, H Vincent Poor, and David B Smith. Economics of electric vehicle
charging: A game theoretic approach. IEEE Transactions on Smart Grid, 3(4):1767–1778,
2012.

[59] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science. Cambridge University press, 2018.

[60] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.
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