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Abstract

The effects of horizontal discretization on linear baroclinic and symmetric instabilities
are investigated by analyzing the behavior of the hydrostatic Eady problem in ocean
models on the B and C grids. On the C grid a spurious baroclinic instability appears
at small wavelengths. This instability does not disappear as the grid scale decreases;
instead, it simply moves to smaller horizontal scales. The peak growth rate of the
spurious instability is independent of the grid scale as the latter decreases. It is equal
to c f /

√
Ri where Ri is the balanced Richardson number, f is the Coriolis parameter,

and c is a nondimensional constant that depends on the Richardson number. As the
Richardson number increases c increases towards an upper bound of approximately
1/2; for large Richardson numbers the spurious instability is faster than the Eady in-
stability. To suppress the spurious instability it is recommended to use fourth-order
centered tracer advection along with biharmonic viscosity and diffusion with coeffi-
cients (∆x)4 f /(32

√
Ri) or larger where ∆x is the grid scale.

On the B grid, the growth rates of baroclinic and symmetric instabilities are too
small, and converge upwards towards the correct values as the grid scale decreases; no
spurious instabilities are observed. In B grid models at eddy-permitting resolution, the
reduced growth rate of baroclinic instability may contribute to partially-resolved eddies
being too weak. On the C grid the growth rate of symmetric instability is better (larger)
than on the B grid, and converges upwards towards the correct value as the grid scale
decreases.

Keywords: Baroclinic instability, symmetric instability, discretization

1. Introduction

The study of the effects of discretization on free wave propagation in models of
geophysical fluids has a long history, dating at least to the work of Charney et al.
(1950). In particular, the propagation of Rossby and inertia-gravity waves in the various
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staggered ‘Arakawa’ grids (Arakawa and Lamb, 1977) has received a great deal of
attention over the years; many results are reviewed in Haidvogel and Beckmann (1999),
including the seminal work of Wajsowicz (1986) and Dukowicz (1995). On the B grid,
the horizontal components of velocity are staggered with respect to the tracers, but
not with respect to each other; on the C grid they are staggered with respect to each
other and with respect to the tracers. Intuition suggests and the aforementioned studies
confirm that the B grid is more suited to describing large-scale geostrophic dynamics
like Rossby waves than the C grid, and the B grid has been popular in models used to
simulate the global ocean. The B grid is used by the Parallel Ocean Program (POP),
which is the ocean model component of both the Community Climate System Models
(CCSM; Gent et al., 2011) and the current version of the Community Earth System
Model (CESM; Hurrell et al., 2013), and by the Modular Ocean Model (MOM5), which
is the ocean component of the CM2.5 model (Delworth et al., 2012). (The next version
of MOM will use the C grid.) Models used to simulate smaller-scale dynamics, e.g. in
regional simulations and process studies, often use the C grid; examples include the
Regional Ocean Modeling System (ROMS Shchepetkin and McWilliams, 2005), and
the MITgcm (Marshall et al., 1997). The ocean component of the Nucleus for European
Modelling of the Ocean (NEMO-OPA; Madec, 2008) also uses the C grid, which may
become more popular for global models as resolution increases.

The distinction between these model grid types, and their relative advantages and
disadvantages, is important because the steady increase in computational capacity at
many climate modeling centers has ushered in a transitional period for global ocean
models. Previous IPCC-class models have been limited to horizontal resolutions ≥ 1◦,
which is insufficient to resolve oceanic mesoscale eddies. Increasing resolution from
the 1◦ benchmark means that mesoscale eddies will be resolved naturally across some
of the global ocean, promising increased realism of the global circulation (e.g. Maltrud
and McClean, 2005; Kirtman et al., 2012; Hallberg, 2013; Graham, 2014; Treguier
et al., 2014) and improved coupling to other components of the climate system (e.g.
Delworth et al., 2012; Frenger et al., 2013).

Progression into this “eddy-permitting” regime introduces a suite of new chal-
lenges, among which is the issue of how the structure of the model grid affects the
growth and behavior of the mesoscale eddies themselves. These eddies are geostroph-
ically balanced, which suggests that they might be more accurately represented on a
B grid, but they are not linear Rossby waves so the above-referenced free-wave analy-
ses do not directly apply. Direct analysis of the effects of numerical discretization on
nonlinear mesoscale eddy dynamics is not straightforward, and a different approach –
linear, yet hopefully relevant to mesoscale eddy dynamics – is taken here. Mesoscale
eddies are believed to sustain their energy primarily by extracting available potential
energy from the large-scale flow (e.g. Ferrari and Wunsch, 2009), and a canonical lin-
ear model for this process is baroclinic instability. In this paper we study the effects
of discretization on the properties of linear baroclinic instability in the Eady problem.
We use hydrostatic dynamics, as typically used by global ocean models, and consider
commonly-used discretizations on the B and C grids. Since the symmetric instabil-
ity arises in the Eady problem in addition to the baroclinic instability, the behavior of
symmetric instability under discretization is also investigated.

The paper is organized as follows. The hydrostatic ocean primitive equations, the
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spatial grids, and the discretizations of interest are described in section 2. Linear per-
turbation equations for the Eady problem under the different discretizations are derived
in section 3. Growth rates of symmetric and baroclinic instabilities for the discretized
models are presented in section 4. Section 4.4 investigates the causes of and reme-
dies for the spurious baroclinic instability on the C grid, and section 4.5 verifies the
linear analysis by comparison to direct simulations of the nonlinear equations. Some
conclusions are discussed in section 5.

2. Preliminaries & Notation

2.1. Governing Partial Differential Equations
The inviscid, hydrostatic primitive equations on an f -plane are

∂tu + u · ∇u − f0v = −∂x p (1)
∂tv + u · ∇v + f0u = −∂y p (2)

∂tb + u · ∇b = 0 (3)
∇ · u = 0, (4)
∂z p = b. (5)

The velocity is u = (u, v,w), f0 is the Coriolis parameter, and b is the buoyancy. The
pressure p has been rescaled by a constant reference density ρ0, and the Boussinesq
approximation has been used.

The depth-independent (barotropic) component of pressure is not constrained by
Eq. (5). We will here use a rigid-lid approximation to constrain the barotropic pressure.
To wit, the depth-average of Eq. (4) is

∂xU + ∂yV = 0

where U and V are the depth-averaged components of u and v, and the vertical velocity
w has been set to zero at both boundaries. The depth-averages of Eqs. (1) and (2) are

∂tU + H−1
∫ H

0
u · ∇u dz − f0V = −∂xφ

∂tV + H−1
∫ H

0
u · ∇v dz + f0U = −∂yφ

where H is the depth and φ is the barotropic pressure. Taking the divergence of these
equations leads to an elliptic equation for the barotropic pressure

∇2
hφ = f0(∂xV − ∂yU) − H−1∇h ·

∫ H

0
u · ∇u dz (6)

where ∇h = (∂x, ∂y).

The above derivation applies at the level of the partial differential equations. It
bears noting that typical discrete ocean models allow for the existence of a divergent
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barotropic mode, e.g. in the initial condition. In the context of a discrete ocean model,
the above condition on the barotropic pressure does not prevent a divergent barotropic
mode from existing, it simply prevents it from evolving.

2.2. Notation for discretized equations

We wish to investigate the dynamics on a regular Cartesian grid with grid sizes ∆x,
∆y, and ∆z = H/Nz, where Nz is the number of vertical levels. The velocity, pressure,
and buoyancy will be tracked at points on the grid; vectors of their values on the grid
will be denoted u, v, w, p, and b. The vectors will be triply-indexed, e.g. u{i, j,k}, with
indices i, j, and k denoting locations in the x, y, and z directions, respectively. Indices
are often truncated to save space, e.g. u{i+1} is a shorthand for u{i+1, j,k}.

To isolate the effects of horizontal discretization, the vertical discretization will be
kept uniform, with large Nz. The vertical discretization uses the Lorenz grid com-
mon to the ocean models referenced in the introduction (Lorenz, 1960): All variables
except the vertical velocity are associated with the vertical grid points (k − 1/2)∆z,
k = 1, . . . ,Nz. The vertical velocity is associated with the vertical grid points k∆z,
k = 0, . . . ,Nz.

Variables on the B grid occur in one of two sets of horizontal locations: b{i, j}, p{i, j},
φ{i, j}, and w{i, j} are located at (x, y) = (∆xi,∆y j), while u{i, j} and v{i, j} are located at
(x, y) = (∆x(i + 1/2),∆y( j + 1/2)). Variables on the C grid occur in one of three sets
of horizontal locations. The buoyancy, vertical velocity, and tracer are all located at
(x, y) = (∆xi,∆y j) (same as the B grid), while u{i, j} is located at (x, y) = (∆x(i+1/2),∆y j)
and v{i, j} is located at (x, y) = (∆xi,∆y( j + 1/2)). On both grids the vertical velocity is
staggered with respect to the other variables. The convention adopted here is to place
w{k} at z = k∆z, and all the other variables at z = (k − 1/2)∆z.

The methods used to discretize the governing equations can be completely de-
scribed in terms of a few fundamental average and difference operators. These op-
erators are defined below according to their action

[
a±x u

]
{i} =

u{i±1} + u{i}
2

,
[
δ±x u

]
{i} = ±

u{i±1} − u{i}
∆x

(7)[
a±y u

]
{ j}

=
u{ j±1} + u{ j}

2
,
[
δ±y u

]
{ j}

= ±
u{ j±1} − u{ j}

∆y
(8)[

a±z u
]
{k}

=
u{k±1} + u{k}

2
,
[
δ±z u

]
{k}

= ±
u{k±1} − u{k}

∆k
. (9)

It can be easily verified that all of these operators commute with one another, and the
convention adopted here will be to list averages before differences, and plus before
minus. Let the reader be advised that these operators are not centered! The usual
centered differences can be recovered by the combination of a forward difference (δ+)
and a backward average (a−), or a backward difference and a forward average.
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2.3. Discrete formulation on the B Grid

The discrete momentum equations on the B grid have the form

du
dt

+ AB
u − f0v = −a+

y δ
+
x (p + φ) (10)

dv
dt

+ AB
v + f0u = −a+

x δ
+
y (p + φ) (11)

where AB
u and AB

v are discretizations of advection of zonal and meridional momentum,
respectively, and p and φ are the baroclinic and barotropic pressures, respectively. The
dependent variables u and v in Eq. (10) and (11) are vectors of the values of u and v
on the computational grid; as a result, they are systems of ordinary rather than partial
differential equations. The second-order, energy-conserving discretization of momen-
tum advection due to Bryan (1969) is somewhat complicated. To save space, define the
following averaged velocity components

u∗ = a+
x a+

y a−y u (12)

v∗ = a+
x a−x a+

y v (13)

w∗ = a+
x a+

y w. (14)

With this notation, the zonal momentum advection takes the form

AB
u =

δ−x
[
u∗(a+

x u)
]
+ δ−y

[
v∗(a+

y u)
]

+ δ−z
[
w∗(a+

z u)
]
. (15)

The meridional momentum advection has the same form but with v replacing u.
The standard second-order discretization of the tracer advection on the B grid takes

the form

δ−x
[
(a−y u)(a+

x b)
]

+ δ−y
[
(a−x v)(a+

y b)
]

+ δ−z
[
w(a+

z b)
]
. (16)

The discrete continuity equation is obtained by applying the tracer advection to a con-
stant buoyancy profile b = 1,

a−y δ
−
x u + a−x δ

−
y u + δ−z w = 0. (17)

The discrete hydrostatic balance is simply

δ+
z p = a+

z b. (18)

This form of discrete hydrostatic balance has been shown to preserve the total (kinetic
plus potential) energy by Bryan (1969). The equation for discrete barotropic pressure
is obtained by a derivation analogous to the derivation for the continuous equations.
It is unwieldy, and not presented here. A derivation for the much simpler case of a
normal-mode perturbation is in Appendix A.
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2.4. Discrete formulation on the C Grid: Flux-Form
The discrete momentum equations on the C grid have the form

du
dt

+ AC
u − f0a+

x a−y v = −δ+
x (p + φ) (19)

dv
dt

+ AC
v + f0a−x a+

y u = −δ+
y (p + φ) (20)

where AC
u and AC

v are discretizations of zonal and meridional momentum advection,
respectively. Note that, compared to the B grid, the Coriolis terms are now averaged
but the pressure gradient is not. The B grid nevertheless requires fewer averaging
operators than the C grid, which suggests that the B grid will more accurately represent
geostrophic flows at large scales that balance the Coriolis acceleration and the pressure
gradient. The second-order, energy-conserving, flux-form discretization of momentum
advection on the C grid takes the form

AC
u =

δ−x

[
(a+

x u)2

2

]
+ δ−y

[
(a+

x v)(a+
y u)

]
+ δ−z

[
(a+

x w)(a+
z u)

]
. (21)

and the meridional momentum advection takes the form

AC
v =

δ−x
[
(a+

y u)(a+
x v)

]
+ δ−y

 (a+
y v)2

2

 + δ−z
[
(a+

y w)(a+
z v)

]
. (22)

The standard second-order discretization of the tracer advection on the C grid takes
the form

δ−x
[
u(a+

x b)
]
+ δ−y

[
v(a+

y b)
]

+ δ−z
[
w(a+

z b)
]
. (23)

The discrete continuity equation is again obtained by applying the tracer advection to
a constant buoyancy profile b = 1,

δ−x u + δ−y v + δ−z w = 0. (24)

The discrete hydrostatic balance is the same as Eq. (18), and a barotropic pressure
equation for a normal-mode perturbation is derived in Appendix A.

2.5. Discrete formulation on the C Grid: Vector-Invariant
The horizontal advection of momentum in the primitive equations can be written in

vector-invariant form as

u∂xu + v∂yu =
1
2
∂x(u2 + v2) − ζv (25)

u∂xv + v∂yv =
1
2
∂y(u2 + v2) + ζu (26)
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where ζ = ∂xv − ∂yu is the vertical component of relative vorticity. We consider two
discretizations using this form: an enstrophy-conserving form ENS from Sadourny
(1975) and an energy and enstrophy conserving form called EEN (see, e.g. Arakawa
and Lamb (1981), Madec (2008), and Le Sommer et al. (2009)). The ENS discretiza-
tion of equations (25) and (26) takes the form

1
2
∂x(u2 + v2) − ζv ≈

1
2
δ+

x

(
a−x (u2) + a−y (v2)

)
− (a−y (δ+

x v − δ+
y u))(a+

x a−y v) (27)

1
2
∂y(u2 + v2) + ζu ≈

1
2
δ+

y

(
a−x (u2) + a−y (v2)

)
+ (a−x (δ+

x v − δ+
y u))(a−x a+

y u) (28)

The EEN form is significantly more complicated. The gradient of horizontal kinetic
energy remains the same, but the product of relative vorticity and velocity takes the
form

ζv ≈
1
12

[
(ω{i, j} + ω{i, j−1} + ω{i−1, j})v{i, j}

+(ω{i, j} + ω{i, j−1} + ω{i−1, j−1})v{i, j−1}

+(ω{i, j} + ω{i, j−1} + ω{i+1, j})v{i+1, j}

+(ω{i, j} + ω{i, j−1} + ω{i+1, j−1})v{i+1, j−1}

] (29)

ζu ≈
1
12

[
(ω{i, j} + ω{i−1, j} + ω{i, j−1})u{i, j}

+(ω{i, j} + ω{i−1, j} + ω{i−1, j−1})u{i−1, j}

+(ω{i, j} + ω{i−1, j} + ω{i, j+1})u{i, j+1}

+(ω{i, j} + ω{i−1, j} + ω{i−1, j+1})u{i−1, j+1}

] (30)

where ω{i, j} = δ+
x v−δ+

x u.

3. Linear Perturbation Equations

The steady configuration

u(z) = −M2(z − H/2)/ f0, v = w = 0,

b = N2z + M2y (31)

is an exact solution of the governing equations (1)–(6). The Brunt-Väisälä frequency
is N, and the slope of the isopycnals is M2/N2; the vertical shear is −M2/ f0. The lin-
ear stability of this equilibrium to infinitesimal perturbations has been considered by
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a legion of authors beginning with Eady (1949), and with notable contributions in the
hydrostatic, non-geostrophic case by Stone (1966, 1970). The goal here is to study lin-
ear stability of the discretized equations. It is easy to verify that the following discrete
configuration is also an equilibrium of the discretized equations (since a second-order
discretization applied to a linear function is exact):

u{i, j,k} = −
M2∆z

f0

(
k −

Nz + 1
2

)
(32)

b{i, j,k} = N2∆zk + M2 j∆y (33)
v{i, j,k} = 0. (34)

It is straightforward to derive linear perturbation equations about this equilibrium.
On the B grid these have the following form

du′

dt
+ u(a+

x δ
−
x u′) −

M2a+
x a+

y a−z
f0

w′ − f0v′ =

− a+
y δ

+
x (p′ + φ′) (35)

dv′

dt
+ u(a+

x δ
−
x v′) + f0u′ = −a+

x δ
+
y (p′ + φ′) (36)

db′

dt
+ u(a+

x δ
−
x b′) + N2a−z w′ + M2a−x a−y v′ = 0. (37)

The system is completed by the discrete incompressibility condition on the B grid,
Eq. (17), and the discrete hydrostatic balance, Eq. (18). Note that the above equations
are to be interpreted as holding at index {i, j, k}.

The discrete system governing linear perturbations on the C grid with the flux-form
and vector-invariant ENS forms of the momentum equations has the form

du′

dt
+ u(a+

x δ
−
x u′) −

M2a+
x a−z

f0
w′ − f0a+

x a−y v′ =

− δ+
x (p′ + φ′) (38)

dv′

dt
+ u(a+

x δ
−
x v′) + f0a−x a+

y u′ = −δ+
y (p′ + φ′) (39)

db′

dt
+ u(a+

x δ
−
x b′) + N2a−z w′ + M2a−y v′ = 0. (40)

The system is completed by the discrete incompressibility condition on the C grid,
Eq. (24), and by the discrete hydrostatic balance, Eq. (18).

The linear perturbation equations for with the EEN vector-invariant discretization
(Madec, 2008; Le Sommer et al., 2009) only differ in the meridional momentum equa-
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tion, which takes the following form

dv′

dt
+ u

1
3

(
1 + 2a+

y a−y
)

(a+
x δ
−
x v′) + f0a−x a+

y u′

− u
∆2

y

6
(δ+

y )2δ−y u′ = −δ+
y (p′ + φ′). (41)

The final term on the left hand side is purely dispersive and converges towards zero as
the grid is refined. For perturbations on the baroclinic axis, i.e. with no variation in the
meridional direction, the linear perturbation equation is the same as in the ENS and
flux-form cases since a±y → 1 and δ±y → 0. For perturbations on the symmetric axis,
i.e. with no variation in the zonal direction, the term (a+

x δ
−
x )v’→ 0 but the final term

dispersive term on the left-hand side remains. For this reason the EEN vector-invariant
form is only considered separately from the other C grid discretizations in the exami-
nation of symmetric instability.

On both grids, as in the continuous problem, the background state does not vary
in the horizontal. Thus, as in the continuous problem, the linear perturbation equa-
tions can be resolved into normal modes that are simply Fourier modes. Solutions are
therefore sought in the form

u′ = ûei(kx∆xi+ky∆y j) + complex conjugate (42)

with similar representations of the other variables (note the notational distinction be-
tween

√
−1 = i and the index i). The coefficient vector û is now a singly-indexed

vector with index k varying across the depth. By considering the domain to be of infi-
nite horizontal extent, all wavenumbers up to the Nyquist are admissible on the grid:

(kx, ky) ∈
[
−
π

∆x
,
π

∆x

]
×

[
−
π

∆y
,
π

∆y

]
. (43)

The horizontal averaging and difference operators admit these discrete Fourier modes
as eigenvectors, with the following eigenvalues

â±x =
e±ikx∆x + 1

2
, δ̂±x = ±

e±ikx∆x − 1
∆x

(44)

â±y =
e±iky∆y + 1

2
, δ̂±y = ±

e±iky∆y − 1
∆y

. (45)

The equations governing the linear evolution of a normal mode constitute a system
of differential-algebraic equations: differential equations for û, v̂, and b̂ and algebraic
equations for ŵ, p̂, and φ̂. It is convenient to eliminate the three diagnostic variables to
obtain a system of linear differential equations for the three prognostic variables. The
details of this elimination can be found in Appendix A. The result in both cases is a
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system of linear differential equations, i.e.

d
dt


û
v̂

b̂

 = L


û
v̂

b̂

 (46)

where the matrix L takes different forms on the B and C grids. The matrix L is 3Nz ×

3Nz, and depends on the wavenumbers (kx, ky), the grid scales ∆x, ∆y, and ∆z, and
the external parameters H, f0, N2, and M2. The linear stability analysis consists of
computing the eigenvalue with the largest real part; if the real part is positive then the
system is linearly unstable.

4. Discrete Growth Rates

The deformation radius is NH/| f0|; rather than non-dimensionalize the system, we
fix H = 4000 m, N = 10−3 s−1, and f0 = −10−4 s−1, for a deformation radius of
40 km. After nondimensionalization (e.g. Stone (1966)) the linear stability problem
depends only on the Richardson number, so results for other parameter values can be
obtained by rescaling. The grid spacing will always be isotropic: ∆x = ∆y. Unless
noted otherwise, Nz = 128.

Results of the linear stability analysis of the Eady problem are usually organized
using the Richardson number, which (for the Eady problem) is Ri = N2 f 2

0 /M
4. Sum-

marizing the results of Stone (1966, 1970), for Ri � 1 the peak instability occurs on
the ‘baroclinic’ axis ky = 0 at a wavenumber kx somewhat larger than the deforma-
tion wavenumber | f0|/(NH). Ri � 1 is the ‘quasigeostrophic’ regime investigated by
Eady (1949), and the instability is ‘baroclinic.’ In this regime the peak growth rate
scales approximately as 0.31M2/N. For Ri ≤ 1 a new instability occurs with maximum
growth rate on the ‘symmetric’ axis kx = 0; for Ri < 0.95 this new ‘symmetric’ in-
stability grows faster than the baroclinic instability. The symmetric instability in turn
gives way to a Kelvin-Helmholtz instability at Ri < 0.25, but this parameter regime
is not of interest here, being far from the current resolving capabilities of hydrostatic
ocean models.

The correct eigenvalues, without errors due to horizontal discretization, can be ob-
tained by taking the limit ∆x,∆y → 0. The limit is obtained by setting â±x = â±y = 1 and
δ̂±x = ikx, δ̂±y = iky.

4.1. Symmetric Instability
Figure 1 shows growth rates of symmetric instability at Ri = 1/2 for the B and C

grids at grid sizes of 25, 12.5, 6.25, and 3.125 km; the Nyquist wavenumber for each
grid size has been marked with an ×. The B grid does not have any unstable modes for
grid sizes of 25 and 12.5 km. At 6.25 km there is a range of unstable modes but their
growth rates are significantly too small, while at 3.125 km the largest-scale unstable
modes are reasonably well represented. On the C grid there are unstable modes at every
grid scale. As the grid scale decreases the discrete instability becomes more accurate:
the range of unstable modes widens and the growth rates increase. These tendencies
for the range and growth rates to increase as the grid scale decreases was also predicted
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Figure 1: Growth rates of symmetric instability at Ri = 1/2 for grid sizes ∆x = 25, 12.5, 6.25, and 3.125
km. Growth rates are shown in units of s−1; the wavenumber ky has units of m−1. All results were computed
using Nz = 128. The Nyquist wavenumbers for all grid sizes are marked with × at the end of the growth rate
curves. The blue line shows the true growth rate, obtained by taking ∆x → 0. No results are shown for the
B grid at ∆x = 25 and 12.5 km since the code is stable at those grid scales. The dotted green line shows the
growth rate on the C grid with grid size 3.125 km and the vector-invariant EEN discretization.

by Bachman and Taylor (2014) for the case of viscous symmetric instability, though
their analysis did not distinguish between model grid types. The EEN vector-invariant
discretization on the C grid displays too-large growth rates at small scales. Spurious
instability using this discretization has been observed and discussed in a similar con-
figuration (barotropic rather than sheared background velocity) by Hollingsworth et al.
(1983) and Bell et al. (2017). Overall these behaviors confirm intuition: the C grid is
more suited to the unbalanced symmetric instability than the B grid. The B grid with a
grid size of 3.125 km achieves results similar to the C grid with a grid size of 6.25 km;
in this case the B grid requires double the resolution to get results similar to the C grid.
The qualitative behavior for a smaller deformation radius, and proportionally smaller
grid sizes, is identical to that shown here.

4.2. B Grid Baroclinic Instability

Figure 2 shows growth rates of baroclinic instability at Ri = 100 for the B grid
at grid sizes of 25, 12.5, and 6.25 km. At ‘eddy-permitting’ resolution of 25 km,
the growth rate is on the order of 10% too small, but the growth rates and the range
of unstable modes are both quite accurate at ‘eddy-resolving’ grid scales of 12.5 and
6.25 km. This same qualitative behavior occurs at all Richardson numbers from 1/2
to 10,000. The behavior off the baroclinic axis (i.e. ky , 0, not shown) is qualita-
tively similar to the behavior shown here for ky = 0. Since baroclinic instability is a
source of eddy energy, we conjecture that the reduced growth rate of baroclinic insta-
bility at eddy-permitting resolution could lead to unrealistically-weak eddies at these
resolutions.

4.3. C Grid Baroclinic Instability

Figure 3a shows growth rates of baroclinic instability at Ri = 100 for the C grid at
grid sizes of 25, 12.5, and 6.25 km, and for perturbations on the baroclinic axis ky = 0;
the Nyquist wavenumber for each grid size has been marked with an ×. The behavior of
the real instability is overshadowed by the appearance of a spurious instability at higher
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Figure 2: Growth rates of baroclinic instability at Ri = 100 on the B grid for grid sizes ∆x = 25, 12.5, and
6.25 km. Growth rates are shown in units of s−1; the wavenumber kx has units of m−1. The blue line shows
the true growth rate, obtained by taking ∆x → 0. All results were computed using Nz = 128. The abscissa
focuses on the behavior near the main instability; there is no instability at larger wavenumbers.

wavenumbers. The peak of the spurious instability always occurs near the Nyquist
wavenumber, and the peak growth rate is unaffected by variation in ∆x. At any fixed
wavenumber kx the spurious instability decays to 0 as ∆x → 0, but for any ∆x there
is a wavenumber kx that is spuriously unstable. The impact of vertical resolution was
tested by re-computing the growth rates at ∆x = 25 km using Nz = 512; the growth
rates are visually indistinguishable from those computed using Nz = 128.

The eigenvector associated with the peak of the spurious instability at ∆x = 12.5
km (shown as a black square in Fig. 3a) was computed and is shown in Fig. 3b–3d.
Panels b, c, and d show the vertical profiles of the real (blue) and imaginary (red) parts
of û, v̂, and b̂, respectively. The profiles decay rapidly to zero for z < 2000 m. The
amplitude of the profiles is immaterial, since they essentially correspond to an unstable
direction in phase space; they have been normalized so that the maximum of |v̂| is 1.
The spuriously-unstable modes come in pairs with the same growth rate, one for each
boundary (not shown). The unstable modes are dominated by meridional (cross-front)
velocity, with a weaker zonal (along-front) velocity. The buoyancy is approximately
a factor of N smaller than the velocity, which is the same as for the primary Eady
instability.

Figure 4 shows the scaled growth rate along the baroclinic axis for the C grid with
∆x = 6.25 km for a range of Richardson numbers from 1/2 to 104. The raw growth rate
varies by over two orders of magnitude across this range of Richardson numbers, and
Fig. 4 shows the growth rate multiplied by N/M2. In the limit of large Ri, the Eady
baroclinic instability approaches a peak growth rate of approximately 0.31M2/N; this
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Figure 3: a) Growth rates of baroclinic instability at Ri = 100 on the C grid for grid sizes ∆x = 25, 12.5,
and 6.25 km. Growth rates are shown in units of s−1; the wavenumber kx has units of m−1. The blue line
shows the true growth rate, obtained by taking ∆x → 0. All results were computed using Nz = 128. The
abscissa extends to larger wavenumbers than in Fig. 2 to include the spurious instabilities present on the C
grid. The Nyquist wavenumbers for grid sizes ∆x = 25, 12.5, and 6.25 km are marked with × at the end
of the growth rate curves. The eigenvector of the unstable mode shown with a black square in panel a) was
computed; b) û, c) v̂, and d) b̂. Blue and red lines in panels b)–d) are the real and imaginary components of
the eigenvectors, respectively.
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Figure 4: Scaled growth rates of baroclinic instability on the C grid ∆x = 6.25 km and Richardson numbers
1/2 through 104. Growth rates have been multiplied by N/M2 which results in a non-dimensional growth
rate; the wavenumber kx has units of m−1.

behavior is clearly seen for kx < 10−4. The amplitude of the spurious instability at large
kx scales similarly to the non-spurious Eady instability. In the limit of large Richardson
numbers the peak of the spurious instability scales approximately as M2/(2N). At
smaller Richardson numbers the growth rate is somewhat less than this, but across
four orders of magnitude in Richardson number the maximum spurious growth rate is
in the range [0.2M2/N, 0.5M2/N]. The growth rate of the spurious instability decays
as ky moves off of the baroclinic axis, just like the primary baroclinic instability (not
shown).

4.4. Causes & Remedies

In this section tests are performed to attempt to isolate the cause of the spurious
baroclinic instability on the C grid, and to suggest remedies. The most likely cause
is the averaging that appears in the Coriolis terms on the C grid. This averaging is
actually acting as a linear interpolation from the location of u to the location of v, and
vice versa. It is possible to replace this second-order averaging approach with a perfect
interpolation for normal modes; clearly this is not possible in general, but it serves to
test whether Coriolis averaging is an essential cause of the spurious instability. The
term a−x a+

y u′ in Eq. (39) interpolates u′ west and north to the location of v′. Similarly,
the term a+

x a−y v′ in Eq. (38) interpolates v′ east and south to the location of u′. A
normal mode has the following exact horizontal structure ei(kx∆xi+ky∆y j). To evaluate half
a grid point west, one simply multiplies by e−ikx∆x/2, and similarly to move half a grid
point north, south, or east. To test the impact of Coriolis averaging on the spurious
instability we re-compute eigenvalues with this perfect Coriolis interpolation. Figure
5a shows the results of this calculation at Ri = 100 and ∆x = 6.25 km; while it does
reduce the spurious instability at intermediate wavelengths, the growth rate near the
Nyquist wavenumber is slightly worse. This suggests that interpolation schemes for
the Coriolis force that are more accurate than the standard approach will not cure the
spurious instability.

Although higher-order tracer advection schemes are more widely available in ocean
models than higher-order momentum advection schemes, we test whether a fourth-
order centered advection scheme applied to both tracers and momentum might cure
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the spurious instability. This is implemented as follows: the second-order centered
difference a+

x δ
−
x that appears in the terms u(a+

x δ
−
x u′) in Eq. (38), u(a+

x δ
−
x v′) in (39), and

u(a+
x δ
−
x b′) in (40) is replaced with fourth-order centered difference approximation of

the form

δ(4)
x u′ =

u′
{i−2} − 8u′

{i−1} + 8u′
{i+1} − u′

{i+2}

12∆x
. (47)

Figure 5a (yellow line) shows the results of this calculation at Ri = 100 and ∆x = 6.25
km. While fourth-order advection does reduce the spurious instability at intermediate
wavelengths, the growth rate near the Nyquist wavenumber is essentially unchanged.

Although fourth-order momentum and tracer advection fail to significantly improve
the spurious instability, we checked the impact of using fourth-order tracer advection
but only second-order momentum advection. The results of this calculation are shown
in Figure 5a (purple line). Surprisingly, the use of fourth-order advection on only the
tracer field completely removes the spurious instability at intermediate wavelengths.
The peak of the spurious instability near the Nyquist wavenumber is essentially un-
changed.

Several other tests not reported here have failed to identify any single term in the
equations that is primarily responsible for the existence of the spurious instability. It
seems to result from a vicious collusion of the numerical errors present in several dif-
ferent terms in the equations. The behavior reported above holds qualitatively over a
wide range of Richardson numbers.

Having failed to completely remove the spurious instability by improving the nu-
merical approximations (though this may yet prove possible), attention is turned to
methods for mitigating its effects. The obvious candidates to damp a spurious small-
scale instability are viscosity and diffusion. First consider vertical viscosity and dif-
fusion. The coefficient of vertical tracer diffusion is constrained to be small in ocean
models to avoid spurious diapycnal mixing, so we will consider only vertical viscosity.
The vertical scale of the spuriously-growing perturbations is not particularly small, as
exemplified in Fig. 3b–d, and one should not expect vertical viscosity to be an effec-
tive means to damp the instability. It has been verified that the relatively large vertical
viscosity of νz = 10−3 m2/s has minimal impact on the instability at Ri = 100 and
∆x = 6.25 km.

Since the peak growth rate of the spurious instability scales approximately as M2/(2N),
one can simply choose viscous and diffusive coefficients large enough that the rate of
viscous damping matches or exceeds the rate of spurious growth. The problem be-
comes easier to analyze if the coefficient of horizontal viscosity is set equal to that of
horizontal diffusion, in which case the normal mode equations take the form

d
dt


û
v̂

b̂

 =
(
L − νhd̂I

) 
û
v̂

b̂

 (48)

where d̂ is the Fourier symbol of the horizontal diffusion operator. For example, apply-
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ing the standard second-order Laplacian diffusion operator leads to

d̂ =
4
∆2

x
sin2

(
kx∆x

2

)
+

4
∆2

y
sin2

(
ky∆y

2

)
. (49)

To remove the spurious instability one can choose the viscous coefficient νh so that
the peak growth rate of the spurious instability (M2/(2N)) matches the damping rate
of second-order discrete harmonic (Laplacian) or biharmonic diffusion at the Nyquist
wavenumber. Let a harmonic viscosity by ν2 and a biharmonic viscosity be ν4; then the
conditions are

ν2 ≥
M2∆2

x

8N
, ν4 ≥

M2∆4
x

32N
. (50)

Figure 5b compares the effect of harmonic and biharmonic damping and of fourth-
order tracer advection on the growth rates. The parameters are N = 10−3 s−1, M = 10−4

s−1 and ∆x = 6.25 km, and the viscosities have been chosen according to the criteria
above, leading to ν2 = 49 m2/s and ν4 = 4.8 × 108 m4/s. Harmonic viscosity and
diffusion are able to completely damp the spurious instability at all scales. At the
reasonably-high resolution of ∆x = 6.25 km the true baroclinic growth rate is only
slightly diminished, but at coarser scales the amount of dissipation necessary to stop
the instability might be sufficient to detrimentally affect the primary instability.

Biharmonic viscosity is usually preferred over harmonic viscosity in eddying simu-
lations because it helps confine unphysical dissipation to the smallest horizontal scales.
Figure 5b shows that when using the standard second-order discretization of advection,
biharmonic viscosity damps the spurious instability at the smallest scales but not at in-
termediate scales. This residual, weakly-growing spurious instability at intermediate
scales is unsavory, and can be eliminated by using fourth-order tracer advection. The
salutary combined effects of biharmonic viscosity and fourth-order tracer advection are
shown in Fig. 5b.

It is clear from Fig. 5b that the viscosities prescribed in Eq. (50) are slightly larger
than necessary to damp the spurious instability. The results in Fig. 4 indicate that this
will be more pronounced at smaller Richardson numbers. Naturally, other considera-
tions also conspire to set the value of viscous and diffusive coefficients in eddying ocean
model simulations, and the prescriptions of Eq. (50) should be regarded as guidelines.

4.5. Comparison to nonlinear simulations
To verify that the linear stability analysis corresponds with the behavior of ocean

models, we computed unstable perturbations from the linear instability analysis and
introduced them as initial conditions in nonlinear simulations. The simulations were
run using the MITgcm code (Marshall et al., 1997) in a horizontally-periodic domain
of size 1200×400×4 km, with grid spacing 4 km in the horizontal and 100 uniformly-
spaced vertical levels. The parameters of the background flow were set to N2 = 10−6

s−2, M2 = 10−9 s−2, and f0 = −10−4 s−1. An initial perturbation was introduced with
zonal wavelength of 4∆x = 16 km (i.e. with wavenumber equal to half the Nyquist
wavenumber) and with vertical profile that yields the fastest linear growth for perturba-
tions of that scale. The perturbation was normalized so that the maximum velocity was
0.1 cm/s. This perturbation has a wavelength that should be stable in the exact Eady
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Figure 5: Growth rates of baroclinic instability at Ri = 100 on the C grid for ∆x = 6.25 km. Growth
rates are shown in units of s−1; the wavenumber kx has units of m−1. a) Shows the growth rate obtained
with the standard second-order configuration (blue), with perfectly-interpolated Coriolis terms (red), with
fourth-order advection of tracers and momentum (yellow), and with fourth-order advection of tracers only
(purple). b) Shows growth rates obtained with the standard configuration and harmonic (i.e. Laplacian)
horizontal diffusion of momentum and tracers with ν2 = 49 m2/s (blue), with the standard configuration
and biharmonic horizontal diffusion of momentum and tracers with ν4 = 4.8 × 108 m4/s (red), and with
the fourth-order tracer advection and biharmonic horizontal diffusion of tracers and momentum (same ν4;
yellow).

17



problem; by contrast, the linear stability analysis of the second-order C grid discretiza-
tion predicts a growth rate of 2.18 × 10−7 s−1. The kinetic energy of the perturbations
should thus grow at a rate of approximately 2 × 2.18 × 10−7 = 4.36 × 10−7 s−1. The
nonlinear simulation was run for 100 days and the total kinetic energy was tracked;
over this time period the total kinetic energy grew by a factor of more than 1000. The
instantaneous growth rate of kinetic energy was estimated at each day using the formula

KE Growth Rate ≈
1
τ

ln
(

KE(t + τ)
KE(t)

)
where τ is one day and KE is the total kinetic energy. Figure 6a shows a time series
of the estimated growth rate of kinetic energy; the computed growth rate is close to
the value predicted by the linear theory, 4.36 × 10−7 s−1. After 250 days the growth
is sufficient for nonlinear effects to appear, which ends the exponential growth. This
simulation verifies the existence of a spurious linear instability in the C grid Eady
problem.

The linear theory says that when fourth-order tracer advection is used, there are no
eigenvalues with positive real part for perturbations with this wavelength. One could
follow the procedure above by computing any eigenvector of the linear problem and
introducing it as an initial perturbation to the nonlinear simulation, but this might be
unsatisfying because the linear theory suggests that any perturbation with this wave-
length is stable. In fact this suggestion – that having no unstable eigenvalues implies
that no solutions will grow – is false, unless the linear system is normal. A com-
plex matrix A is ‘normal’ when it commutes with its complex-conjugate transpose,
i.e. AA∗ = A∗A. A normal matrix has a complete set of orthogonal eigenvectors, and
the growth or decay of solutions to the linear system of differential equations ẏ = Ay is
determined completely by the eigenvalues of A. The matrix L in Eq. (46) is not normal
(for the second-order, fourth-order, or exact systems), and therefore does not have a
complete set of orthogonal eigenvectors. One of the ramifications of this fact is that so-
lutions of the linear system can grow even when all the eigenvalues have non-positive
real part. Non-normal behavior is common in fluid dynamics, and its presence in the
quasigeostrophic Eady problem was noted by Farrell and Ioannou (1996).

The goal of this section is to verify the linear theory in a nonlinear simulation,
not to perform a full generalized stability analysis in the vein of Farrell and Ioan-
nou (1996). With that in mind, we introduced the same initial perturbation from the
second-order simulation (described above) into a simulation using fourth-order tracer
advection. The perturbation grows, but this is not a contradiction of the linear theory.
The linear theory predicts that the instantaneous growth rate associated with this par-
ticular perturbation (the instantaneous growth rate is y∗(L + L∗)y/‖y‖2 where y is the
initial perturbation) is 4.36 × 10−7 s−1. The growth rate measured from the nonlinear
simulation is shown in Fig. 6b. The first 100 days show wildly varying estimates of
the linear growth rate, which then settles down to a value close to the theoretically-
predicted value. This validates the linear theory while simultaneously illustrating the
dangers of over-interpreting eigenvalues in non-normal systems.
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Figure 6: Growth rates of kinetic energy in nonlinear simulations initialized with the same small-amplitude
perturbation. a) Second-order advection; the theoretically-predicted growth rate is 4.36 × 10−7 s−1. b)
Fourth-order tracer advection; the theoretically-predicted growth rate is 4.36 × 10−7 s−1.

5. Conclusions

This paper investigates the effect of horizontal discretization on baroclinic and
symmetric instabilities in the hydrostatic Eady problem. The effects of vertical dis-
cretization are minimized by using uniform, high resolution in the vertical; the effects
of vertical discretization on baroclinic instability have been studied by Arakawa and
Moorthi (1988), Bell and White (1988) and Bell and White (2017). In the horizontal,
the standard flux-form energy-conserving second-order B and C grid discretizations
are considered, along with the two forms of vector-invariant discretizations on the C
grid. The flux-form and vector-invariant enstrophy-conserving ENS schemes (Madec,
2008) on the C grid give a better representation of symmetric instability than the B
grid; the latter has growth rates that are generally too small. The vector-invariant en-
strophy and energy conserving EEN scheme on the C grid (Arakawa and Lamb, 1981;
Madec, 2008) has too-large growth rates for symmetric instability at small scales. This
behavior is presumably related to the Hollingsworth instability (Hollingsworth et al.,
1983) and the ’symmetric instability of the computational kind’ discussed by Bell et al.
(2017) and Ducousso et al. (2017).

The representation of baroclinic instability on the B grid is qualitatively correct at
eddy-permitting and eddy-resolving resolutions. No spurious instabilities are observed,
and the primary deficiency is that the growth rates can be on the order of 10% too small
at eddy-permitting resolution. Since mesoscale eddies are energized by baroclinic in-
stability, this suggests that eddies in a B grid model at eddy-permitting resolution might
extract too little potential energy from the large scale flow, resulting in eddies that are
too weak. This explanation for the weakness of eddies at eddy-permitting resolution
is in stark contrast to the energetic picture assumed in many recent eddy-permitting
parameterization studies that either assume that the missing energy comes from ener-
getic backscatter from subgrid scales (Grooms and Majda, 2013; Kitsios et al., 2013;
Grooms and Majda, 2014; Grooms et al., 2015b), or that the eddies are overly-damped
by viscosity (Jansen and Held, 2014). The relative importance of anemic baroclinic
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production, missing backscatter, and spurious dissipation in the energy budget of ed-
dies at eddy-permitting resolution remains unknown.

A spurious baroclinic instability was discovered on the C grid, where the flux-form
discretization and the two vector-invariant forms all give the same results. This spu-
rious instability is peaked at scales just below the smallest resolvable (Nyquist) scale,
but has relatively large vertical scales. The unstable perturbations manifest primarily
in the velocity field (primarily cross-front), with a weak signature in the density field.
The growth rates scale similarly to the baroclinic growth rate, with a peak growth rate
of approximately f0/(2

√
Ri) where Ri is the Richardson number. This growth rate is

approximately independent of the grid scale ∆x, and the spurious instability does not
disappear as the grid is refined; instead, it simply moves to smaller scales. It was found
that fourth-order centered tracer advection significantly improves the spurious instabil-
ity, confining it to the very smallest scales but not significantly reducing its growth rate;
curiously, using fourth-order momentum advection had little positive impact. Overall it
is suggested that eddy-permitting and eddy-resolving models on the C grid should use
fourth-order tracer advection with biharmonic viscosity and diffusion with coefficients
ν4, κ4 ≥ f0∆4

x/(32
√

Ri). For mesoscale Richardson numbers on the order of 100 and
eddy-resolving grid scales less than 10 km, this amount of dissipation is not excessive.

The lack of spurious baroclinic instability on the B grid suggests that B grid models
might be more appropriate for eddy-permitting and eddy-resolving simulations, though
perhaps not for simulations resolving submesoscales and smaller. Even on the B grid,
higher-order numerics might improve eddy-permitting ocean models (though fourth-
order tracer advection was not found to improve the growth rates). These models are
defined by the fact that the eddy scales are not much larger than the grid scale. Low- and
high-order methods all give similarly accurate results for scales that are well-resolved
by the grid. Higher-order methods are distinguished by giving better approximations at
intermediate scales that are partially-resolved by the grid (e.g. wavelengths four to six
times the grid spacing), and seem naturally suited to eddy-permitting modeling. (Nei-
ther low- nor high-order methods give accurate approximations for very-small scales
with wavelengths near twice the grid spacing.) Grooms et al. (2015a) recently found
that an idealized eddy-permitting model with fourth-order numerics gave better short-
time forecasting and data-assimilation performance than a model with second-order
numerics, and that the improvement was comparable in magnitude to the improvement
obtained by using improved subgrid-scale parameterizations.

The Eady baroclinic instability is a type of baroclinic instability not often seen
in the ocean. Tulloch et al. (2011) find that baroclinic instability in oceans typically
results from a change of sign of the mean potential vorticity gradient in the interior
(Phillips-type), or of the combination of a surface shear and an interior mean potential
vorticity gradient (‘ocean-Charney’-type). The Eady problem is analyzed here because
the coefficients in the linear perturbation equations are independent of the x and y co-
ordinates. More realistic non-uniform vertical mean shear would, through geostrophic
balance, result in linear perturbation equations with coefficients that depend on the y
coordinate (this does not happen in the quasigeostrophic approximation), which pre-
vents the use of a full normal mode expansion. Because of this mismatch between the
character of the Eady problem and of baroclinic instability in the oceans, the behavior
reported here should be extrapolated to more complex ocean models with caution.
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Finally, the analysis here has focused on the two quadrilateral grid schemes most
common in global ocean models, the Arakawa B and C grids. It is of interest to pur-
sue a similar analysis on the hexagonal grid used in the MPAS ocean model (Ringler
et al., 2013). The methods used by Thuburn (2008) to study free wave propagation on
hexagonal grids may be adapted to the baroclinic instability problem, but the analysis
is sufficiently complex that it merits a separate study.

Acknowledgements

I. Grooms is grateful to F. Bryan, and K. Lindsay for providing references on the
discretizations used in the POP and MOM ocean models, and to A. Adcroft for sug-
gesting useful directions of inquiry. The authors are also grateful to the two anonymous
referees. W. Barham is supported by NSF grant DMS-1407340.

Appendix A. Normal Mode Equations

The way to eliminate hydrostatic pressure is the same on both the B and C grids.
On both grids, the discrete hydrostatic balance for a normal mode may be expressed as
a linear system in the form

−
1
∆z



1 −1 0 · · · 0

0 1 −1 0
...

...
. . .

. . .
...

0 · · · 0 1 −1
1 · · · · · · 1


p̂ =

1
2



1 1 0 · · · 0

0 1 1 0
...

...
. . .

...
0 · · · 0 1 1
0 · · · 0 · · · 0


b̂. (A.1)

The first Nz −1 of these equations encode Eq. (18), while the last ensures that the baro-
clinic pressure has no barotropic component. This allows us to eliminate the baroclinic
pressure by an equation of the form

p̂ = Pb̂ (A.2)

where P is a square matrix; the entries are available in closed form, but the expressions
are unwieldy.
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The vertical velocity is obtained by integrating the discrete incompressibility con-
dition, which has different forms on the B and C grids. On the B grid we have

1
∆z



1 0 · · · · · · 0

−1 1 0
...

...
. . .

. . .
...

0 · · · 1 0
0 · · · 0 −1 1


ŵ = −â−y δ̂

−
x û − â−x δ̂

−
y v̂ (A.3)

and on the C grid

1
∆z



1 0 · · · · · · 0

−1 1 0
...

...
. . .

. . .
...

0 · · · 1 0
0 · · · 0 −1 1


ŵ = −δ̂−x û − δ̂

−
y v̂. (A.4)

The inverse of this coefficient matrix is available in closed form; it is ∆z times a lower-
triangular matrix whose diagonal and sub-diagonal elements are all ones. The vertical
velocity only appears in the linear perturbation equations in the form a+

z w, so we will
write

a+
z ŵ = −W(â−y δ̂

−
x û − â−x δ̂

−
y v̂) (A.5)

on the B grid and
a+

z ŵ = −W(δ̂−x û − δ̂
−
y v̂) (A.6)

on the C grid where the matrix W is, in both cases,

∆z

2



1 0 · · · · · · 0

2 1 0
...

...
. . .

. . .
. . .

...
2 · · · 2 1 0
2 · · · · · · 2 1


. (A.7)

It remains to eliminate the barotropic pressure φ̂. The barotropic pressure is depth-
independent, so it appears in the equations as a scalar coefficient multiplying a vector
of all ones: 1. The normal mode momentum equations on the B grid, without having
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eliminated φ̂, are

dû
dt

= −

â+
x δ̂
−
x U +

M2â+
x â+

y â−y δ̂
−
x

f0
W

 û
+

−M2â+
x â−x â+

y δ̂
−
y

f0
W + f0I

 v̂ (A.8)

− â+
y δ̂

+
x

(
Pb̂ + 1φ̂

)
dv̂
dt

= − f0Iû − â+
x δ̂
−
x Uv̂

− â+
x δ̂

+
y

(
Pb̂ + 1φ̂

)
(A.9)

where U is a diagonal matrix with entries u. Following the derivation for the continu-
ous case, the equations are first averaged across depth by multiplying from the left by
1T /Nz where T indicates the transpose. This eliminates the baroclinic pressure. Next,
φ̂ is obtained by enforcing the condition 1T ( d

dt )(â−y δ̂
−
x û + â−x δ̂

−
y v̂) = 0. This leads to

φ̂ = −
1T

Nz(â+
x â−x δ̂+

x δ̂
−
x + â+

y â−y δ̂+
y δ̂
−
y )

[â+
x â−y (δ̂−x )2U +

M2â+
x â+

y (â−y δ̂
−
x )2

f0
W + f0â−x δ̂

−
y I

 û+â+
x â−x δ̂

−
x δ̂
−
y U +

M2â+
x â−x â+

y â−y δ̂
−
x δ̂
−
y

f0
W − f0ây−δ̂−x I

 v̂ . (A.10)

The C grid expression is similarly derived, and for the flux-form and ENS vector-
invariant forms is

φ̂ = −
1T

Nz(δ̂+
x δ̂
−
x + δ̂+

y δ̂
−
y )

[(
â+

x (δ̂−x )2(U +
M2

f0
W) + f0â−x â+

y δ̂
−
y I

)
û+(

â+
x δ̂
−
x δ̂
−
y (U +

M2

f0
W) − f0â+

x â−y δ̂
−
x I

)
v̂

]
. (A.11)

The expression for the C grid EEN vector-invariant form is similarly derived.
In lieu of a summary explicitly detailing the entries of the matrix L, we have pro-

vided in the supplementary material two Matlab scripts to construct the matrices, one
script for the B grid and one for the C grid.
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